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Abstract

We exhibit explicit, combinatorially defined graphs satisfyingk#ex-
tension axiom: Given any set kilistinct vertices and any partition of it into
two pieces, there exists another vertex adjacent to all of the vertices in the
first piece and to none in the second.

Quisani:* I've been reading about zero-one laws, and many of the results in-
volve extension axiomdn the simple case of graphs, by which | mean undirected
graphs without loops or multiple edges, #feextension axiorsays that, for any
k distinct vertices«y, . .., X« and any subse® C {1, ...,k}, there is another vertex
adjacent tok, for all @ € S and for no otherr. | know that each of these axioms
is true in almost all sfiiciently large finite graphs. (Of course, ‘f&giently large”
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depends ork.) So there are lots of these graphs, but I'd like to see some actual
examples.

Authors: Well, just take a big set of vertices, flip coins to decide which pairs
to join by edges, and chances are you'll get what you want.
Q: Yes, but I'd like a reasonably regular-looking graph, not something totally
random.
A: There are strongly regular graphs that satisfy extension axioms. In fact,
Cameron and Starl3] show that there are lots of them.
Q: What does “strongly regular” mean?
A: Every vertex has the same number of neighbors (i.e., the graph is regular),
every pair of adjacent vertices has the same number of common neighbors, and
similarly for pairs of non-adjacent vertices.
Q: That sounds good; so they got rid of the randomness.
A: No, part of their construction involves randomization.
Q: So they don't get a really explicit example? That's what I'd want — an ex-
ample that | can get my hands on and really see whkt&etension axiom holds.
Have people given explicit, non-randomizing constructions of graphs that satisfy
extension axioms? More precisely, are there explicitly defined sequences of fi-
nite graphs such that, as you go further in the sequence, more and more of the
extension axioms are true?
A: Yes. It was shown in botHl] and [2] that Paley graphs have the property you
want3 Furthermore, they are strongly regular.
Q: What are Paley graphs?
A: Take a primep (or a prime power) that is congruent to 1 modulo 4 and form
a graph whose vertices are the elements of the Figlof size p. Join two distinct
vertices by an edge if their fierence is a square I,. The theorem is that this
graph will satisfy the&k" extension axiom providegis suficiently large compared
to k.
Q: Three questions: How large isfegiently large? Can you explain why these
Paley graphs satisfy extension axioms? And what’s the purpose of hpwving
(mod 4
A: The easiest question to answer is the last. The congruence is needed to ensure
that—1is a square i, which in turn is needed to make sure the Paley graph is
an undirected grapkx is joined toy if and only if y is joined tox. If p were= 3
(mod 4)then we’'d have a Paley tournament instead of a graph.

Suficiently large is exponentially larger thdn roughly k?4%. (For compari-
son, a random graph has a good chance of satisfyinkjtestension axiom when

3The result isn’t explicitly stated in2], but it's proved in the course of proving Theorem 3,
which says that every finite graph occurs as an induced subgraph infdiestly large Paley
graphs.



the number of vertices is somewhat larger tk?2f; see H#].)

Unfortunately, it's not easy to explain why the Paley graphs satisfy the exten-
sion axioms. Both1] and 2] invoke non-trivial results from number theory in the
proofs of the extension axioms.

Q: Soare there no explicit examples where one can directly see why the extension
axioms hold?

A: Actually, we have such examplésThey're not as pretty as the Paley graphs,
and they're larger (for a givek), but we can explain what they are and how they
work, without appealing to any deep theorems.

Q: Great! Show me.

A: OK. Givenk, we’ll construct a graph whose vertices are certain matrices of
O’'s and 1's. These matrices will have- 2k(k— 1)+ 1 rows andc columns, where

cis chosen large enough so that

2f IC
2¢ > 2K
=2

Q: Wait a minute; let me check that suctc &xists. Yes. The left side is expo-
nential inc while the right side, despite the exponential dependende monly

a polynomial inc whenk is fixed, so any sfliciently largec will do.

A: Right. Having fixed suitable andc, let the vertices of our graph beby c
matrices of 0’s and 1's in which a majority of theows are identical. That is, in
each of our matrices, at ledgk — 1) + 1 of the rows are identical.

To define the edges of our graph requires some preliminary terminology. We
considerconstraintswhich a vertex may or may not satisfy. A constréistgiven
by a pair(A, F) whereA is a set ok — 1 locations in our matrix (i.ek — 1 pairs
(i,j))with1 <i <randl < j <c)andF is a family of at mosk functions from
Ato{0,1}. We say that a verteX satisfiesa constrain{A, F) if the entries inV at
the locations imA form an element oF, i.e., if

Af e F)(¥(, J) e A)Vij = £(i, )).
We need to estimate the number of constra{id). There are(kr_cl) pOSSi-
bilities for A. For each fixedA, there are2k — 1 functions fromA to {0, 1}, so
there ar®% sequences df such functions. Every possible second component

F of a constrain{A, F), except forF = @, is the range of such a sequence. So
the number of’s for a fixed A is certainly at mosg¥’, and the total number of

4The first version of these examples was derived by the second author from a construction,
introduced for quite dferent purposes, i8].

SReaders familiar with combinatorial set theory will notice a similarity between the notion of
constraint and Hausdfdis construction'¥] of large independent families of sets.



constraints is no more than
rc

k-1

Therefore, we can fix a functidd from the set ot-component vectors of 0’'s and
1's onto the set of constraints. Since the notiercdmponent vector of 0’s and
1's” will be needed repeatedly, we abbreviated it as “row vector,” which makes
sense since these are the vectors that occur as rows in our matrices.
Q: You're not choosingC at random, are you?
A: No. We promised an explicit construction, with no randomization. To get
a definiteC, list all the row vectors in lexicographic order, and, after choosing
some reasonable notation for constraints, list the constraints lexicographically
also. Then leC map then™ element of the first list to the" element of the
second list, cycling back to the beginning of the second list if the first list is longer
(which in fact it will be).
Q: OK. It's an unpleasantly arbitrai@, but | agree it's not random. Why do you
cycle back to the beginning rather than, say, just repeating the last element?
A: The cyclingisirrelevant in this argument, but we’ll want it for another purpose
later.
You're quite right about the arbitrariness Gf Any surjectionC will work
for this proof, so, if you can think of a nicer explict, feel free to use it. But
remember, we warned you that these graphs won't be as pretty as Paley graphs.
UsingC, every verteX/ of our graph determines a constraiitas follows. A
majority of the rows o/ are the same row vector, which we call thajority row
of V; applyC to that vector to get a constraivt.
Now define a directed graph by putting an arrow fréhto W whenevei
satisfies the constraint".
Q: Ithought you were going to produce andirectedgraph.
A: We will; the directed graph is only an auxiliary construction. The undirected
graph has an edge joiningandW if, of the two possible directed edgesto W
andW to V, either both are present or neither is present. That is,adjacent to
W just in case

)2"2 < 2°

(V satisfiesW") < (W satisfiesv").

We'll show that the graph so defined satisfieskfiextension axiom, but in order
to do so we’ll need the following preliminary information.

Claim. Let V,..., Vi bek distinct vertices of our graph, and I8tbe any subset
of {1,...,k}. There is a constraint that is satisfied\gyfor all @ € S and for none
of the othera’s.

Proof. It suffices to find a sef of k — 1 locations(i, j) that separate the,’s, in
the sense that, whenewerlandg are distinct indices i1, ..., k}, thenV, andV,



differ at some location iA. Once we have such & we havek distinct functions

fo - A — {0, 1} defined byf,(i, j) = (V,)ij. Then letF = {f, : @ € S} and observe

that (A, F) can serve as the desired constraint. So it remains only to produce an
appropriateA.

Q: That would be trivial if you aIIowe(Q'g) locations InA, rather than onlk — 1.

You could just choose, for eadh, andV,, one location where they flier.

A: Right, and in fact, if you don’t want to worry about gettifAy down tok — 1,

you could rewrite this whole story witff) in place ofk - 1, starting with the
definition ofc (where the exponerkf would also have to be adjusted).

But in fact, it's not hard to achiev@| = k — 1. Proceed by induction ok the
casek = 1 being vacuous. Fde > 1, start by choosing a locatidn j) where some
V, andV; differ. So our set ok vertices is partitioned into two nonempty subsets,
according to thdi, j) entries. Let these subsets consisaadndb elements, so
a+ b = k. By induction hypothesis, we can firal— 1 locations sficient to
separate any two vertices from the first class and 1 locations skicient to
separate any two vertices from the second class. Togethe(iwijhthat gives us
(a-1)+(b-1)+ 1= k- 1locations that separate all the vertices. |

Q: The claim you just proved gives a sort of extension axiom for the auxiliary,
directed graph. The constraint from the clainCigv) for some row vectow. An
r x ¢ matrix W having all its rows equal tav would be a vertex of your graph, and
there would be a directed edge framto V, if and only if @ € S. So if you could
arrange for thidV to satisfy all the constraintg’, thenW would be adjacent, in
the undirected graph, 1@, if and only if @ € S.

Unfortunately, | don’t see how you can arrange that. The constréjmsight
contradict each other.
A: That's right, so we have to be a little sneakier.

Suppose we're given distinct vertic®s, ...,V and a seS C {1,...,k} as
above, and we want a vert® adjacent to/, if and only if@ € S.

First, fix an arbitrary (not random!) verta&”; for definiteness, let it be the
matrix of all zeros. Let

T={eel{l,...,kl : W satisfiesV,}.

Apply the claim with the given verticeg, but with S replaced by the complement
of the symmetric dierence ofS andT, i.e.,, by{a : (¢ €S) & (a € T)}. The
constraint given by the claim is, as you not&fyw) for some row vectow. Let
W” be the vertex that has all its rows equaitoSo we have, thanks to the choice
of W’ and the definition of,

V, satisfieqfW")" < ((@ € S) < (W’ satisfiesV))).



Since < s an associative and commutative operation on truth values, this can
be rewritten as

aeS < ((V, satisfieqfW")") < (W’ satisfiesV.)). (1)

Q: You'd be done iW andW” were equal, but that would require a miracle. It's
true thatwW’ was arbitrary, butW”’ depends o which depends on the choice of
W, so | see no chance to use the arbitrarines&’afo make it matchw” .

A: Absolutely right; there’s no reason to thifk andW” are equal. But we can
combine them into a singM/ that inherits the desirable features of both.

For eacha, whetherW’ satisfies the constraiM; (and thus whethex € T)
depends only on the entries of the mainkin k—1locations, namely the locations
in the first componenA of the constrainV; = (A, F). So at mosk(k — 1) entries
of W’ are involved in the satisfaction or non-satisfaction of kheonstraintsv;.
DefineW to agree with/V in those entries and witt”” at all other locations.

We've kept enough entries &% in W to ensure that

(W satisfiesV)) < (W’ satisfiesV)). (2)

On the other hand)V agrees withWW” at all but at mosk(k — 1) entries. Since
there areg = 2k(k — 1) + 1 rows, the majority of the rows Al are identical to the
rows of W”’, namely thew that we chose when constructidg’. So

W* — (W”)*. (3)
Inserting @) and @) into (1), we get
aeS = ((V, satisfiesV’) < (W satisfiesV)).

SoW is as required by the extension axiom.

Q: That's a clever proof. You could have gotten by with a slightly smaller graph,
if you had been less generous when estimating the number of constraints. The
factor2¢’ is larger, for anyk > 1, than the value actually given by your argument,
2k=1) 1 1, Even that can be reduced since a typical fanfilwill have many
sequences enumerating it irffiégrent orders, and with fierent repetitions in case

IF| < k.

A: That's right. And other reductions are possible. For example, we could define
the vertices of our graph to be only thoséy ¢ matrices in which all the rows

are identical except for at moktk — 1) locations where 1's have been changed to
0’s. These vertices flice, because they include evatyused in the proof of the
k-extension property (sind&”” had all its rows identical and we toak’ to be the

all 0 matrix).



Another substantial reduction could be obtained by being more clever in our

choice of error-correcting code.

Q: I didn't see any error-correcting code here.

A: When we took a row vectow and repeated it times to make a matrixV”’,

we were in &ect using the simplest error-correcting code, namely repetition. The
point of the repetition is that when we changed at nkfist- 1) entries ofW” to

form W, the original could still be recovered, despite the changes. That’s exactly
what error-correcting codes are good for. By using a more sophisticated code, we
could get by with vertices that contain far fewer thrarbinary components, and

so we could get a smaller graph.

Furthermore, since the “errors” that we introduced into a “code w@vtto
produce ouMW were only replacing some 1's by 0's, never the reverse, the code
only has to correct errors of this one sort.

Q: This improvement looks pretty complicated, especially since | know almost
nothing about coding theory. Rather than going into the details, it might be more
interesting to look for other extension properties that can be obtained by the same
method.

A: A slight modification of the method gives tournaments satisfying the natural
extension axioms.

Q: Presumably, th&™" of these natural extension axioms for tournaments says
that, givenk distinct verticesv/s, ..., Vi and given a subs@& C {1,...,k}, there is
another verteXV with a directed edge td, whena € S and a directed edge from

V, whena ¢ S.

A: That’s right. The same arguments as for undirected graphs show that each of
these extension axioms holds in almost affisiently large finite graphs and that

the extension axioms plus the basic axioms for tournaments (saying that, for each
pair of distinct vertices, there is an edge betwen them in exactly one direction and
that there are no loops) constitute a complete first-order tfe®hys, one gets a
zero-one law for the first-oraéproperties of tournaments.

Also, recall that the Paley construction wiphe 3 (mod 4)produces tourna-
ments rather than undirected graphs. It is kno@jrijat these Paley tournaments
satisfy thek™™ extension axioprovidedp is large enough compared ko As
with the Paley graphs, any > k4% is large enough, and the proof relies on the
same non-trivial number theory.

Q: | suppose that your construction of undirected graphs can be converted into

6As in the undirected case, one can prove completeness either by showing that the theory
admits elimination of quantifiers or by showing that it is categorical in pdvger

"This extends easily to finite-variable infinitary logic.

8The result stated ing| is weaker, namely that, given arkyvertices, there is another vertex
with edges directed to each of the given ones. A minor modification of the proof, however, would
establish the extension axiom.



an analogous construction for tournaments by replacing “adjacent” and “non-
adjacent” with “edge directed one way” and “edge directed the other way,” right?
A: That's the basic idea, but we need to clarify what is “one way” and what is
“the other way.”
Q: Can't you just linearly order the vertices and let “one way” mean from the
earlier to the later vertex in this ordering?
A: That doesn’'t quite work. The problem is that, if you're given the vertices
V, and the se6 specifying the directions for the edges between\Whis and
the desiredV, you need to convert these data into specifications of adjacency or
non-adjacency between thg’s andW in the undirected graph. These new spec-
ifications will depend on the position &¥ relative to theV,’s in your ordering.
By Murphy’s law, if you choose a particular relative position #f you'll get
constraints that can only be satisfiedWss in other relative positions, not the one
you chose.
Q: lunderstand the problem. How do you escape from it?
A: Here’s a modification of the undirected construction. First, increakeec-
essary so that
c 2f IC

2¢ > (k+ 1) (k_ 1).
This ensures that, when we produce the rGafpom row vectors to constraints,
each constraint is the image of at lekst 1 row vectors. In fact, because of the
specific way we obtaine@ (which was irrelevant earlier but is important now), as
w runs through all the row vectors in lexicographic ord&v) will cycle through
the contraints at leagt+ 1 times. ThusC has the following “interval property”:

e The lexicographic order of the row vectors contains 1 disjoint intervals,
each of which is mapped & onto all of the constraints.

Second, list the vertices in such an order that, if the majority row lexico-
graphically precedes the majority rowdf thenV precede$V in the list.
Q: Thatimplies that all the vertices with a given majority row occur consecutively
in the list.
A: Right, and that will be important for our proof.

The interval property above and the specification of our list have the following
consequence, an “interval property” for vertices:

e The list of vertices contains+ 1 disjoint intervals such that, if we are given
one of these intervals and we are given a constraint, then there exists a row
w such thatC(w) is the given constraint and all vertices with majority row
w are in the given interval.



Now define a tournament just as you suggested above: There is an edge from
V to W if and only if eitherV andW are adjacent in our undirected graph and
precededV in our list orV andW are not adjacent in the undirected graph sd
precede¥d in the list.

To prove that this tournament satisfies #i& extension axiom, let distinct
verticesVi, ..., Vk be given, along withas& C {1, ..., k}. Since there are only
given vertices/, and there ar& + 1 intervals in the interval property for vertices,
fix one of these intervals, sa, that contains n¥,. Thus, the set

U = {a : W precede¥y, in the list

is the same for all verticed/ € 7.

In our proof of thek!™ extension axiom for our undirected graph, we found a
row w coding a certain constraint and then we constructed the reguiredhave
majority roww (while a minority of rows provided dficient agreement witlV’).

In the present context, we can always, thanks to the interval property, civeuse
that all verticedN with majority roww are inZ. We use this to find somé/ € 1
that is adjacent, in the undirected graphytoexactly whenx is in both or neither
of S andU, that is, when

(e S) = (axel).

Then, for eaclw € S, we have that each of the following statements is equivalent
to the next.

e There is a directed edge froWi to V,,.

e (V, andW are adjacent in the undirected graphy (W precede¥, in the
list).

¢ ((¢eS) = (vel)) = (axel).
e v €S.

Q: Soyou got around the “Murphy’s law” problem by making sure that you could
specify the position oV relative to theV,’s and still have enougll/’s to obtain
the desired adjacencies and non-adjacencies.

Can your construction be used to get extension axioms in more contexts?
A: Probably, but we haven't yet looked into this carefully. It would be partic-
ularly interesting to get triangle-free graphs satisfying the appropriate extension
axioms. These axioms are the same as for ordinary, undirected graphs, except
that they assume the vertic®s for « € S are pairwise non-adjacent. That'’s
obviously necessary so that the vertékgiven by the axiom doesn’t complete



a triangle. What makes this case particularly interesting is that it is not known
that the desired objects — finite triangle free graphs satisfyindthextension

axiom for a prescribed — exist at all. The probabilistic arguments used to give
existence proofs in the case of graphs and tournaments do not apply to the case
of triangle-free graphs. Nor is there a Paley-style construction; indeed it is known
that a strongly regular triangle-free graph cannot satisfy thextension axiom

(see B]).
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