
T L  C S C



Y G

Microsoft Research
One Microsoft Way, Redmond WA 98052, USA

gurevich@microsoft.com

E G  E P

Andreas Blass∗ Benjamin Rossman†

Abstract

We exhibit explicit, combinatorially defined graphs satisfying thekth ex-
tension axiom: Given any set ofk distinct vertices and any partition of it into
two pieces, there exists another vertex adjacent to all of the vertices in the
first piece and to none in the second.

Quisani:1 I’ve been reading about zero-one laws, and many of the results in-
volveextension axioms. In the simple case of graphs, by which I mean undirected
graphs without loops or multiple edges, thekth extension axiom2 says that, for any
k distinct verticesx1, . . . , xk and any subsetS ⊆ {1, . . . , k}, there is another vertex
adjacent toxα for all α ∈ S and for no otherα. I know that each of these axioms
is true in almost all sufficiently large finite graphs. (Of course, “sufficiently large”
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depends onk.) So there are lots of these graphs, but I’d like to see some actual
examples.

Authors: Well, just take a big set of vertices, flip coins to decide which pairs
to join by edges, and chances are you’ll get what you want.
Q: Yes, but I’d like a reasonably regular-looking graph, not something totally
random.
A: There are strongly regular graphs that satisfy extension axioms. In fact,
Cameron and Stark [3] show that there are lots of them.
Q: What does “strongly regular” mean?
A: Every vertex has the same number of neighbors (i.e., the graph is regular),
every pair of adjacent vertices has the same number of common neighbors, and
similarly for pairs of non-adjacent vertices.
Q: That sounds good; so they got rid of the randomness.
A: No, part of their construction involves randomization.
Q: So they don’t get a really explicit example? That’s what I’d want — an ex-
ample that I can get my hands on and really see why thek-extension axiom holds.
Have people given explicit, non-randomizing constructions of graphs that satisfy
extension axioms? More precisely, are there explicitly defined sequences of fi-
nite graphs such that, as you go further in the sequence, more and more of the
extension axioms are true?
A: Yes. It was shown in both [1] and [2] that Paley graphs have the property you
want.3 Furthermore, they are strongly regular.
Q: What are Paley graphs?
A: Take a primep (or a prime power) that is congruent to 1 modulo 4 and form
a graph whose vertices are the elements of the fieldFp of sizep. Join two distinct
vertices by an edge if their difference is a square inFp. The theorem is that this
graph will satisfy thekth extension axiom providedp is sufficiently large compared
to k.
Q: Three questions: How large is sufficiently large? Can you explain why these
Paley graphs satisfy extension axioms? And what’s the purpose of havingp ≡ 1
(mod 4)?
A: The easiest question to answer is the last. The congruence is needed to ensure
that−1 is a square inFp, which in turn is needed to make sure the Paley graph is
an undirected graph;x is joined toy if and only if y is joined tox. If p were≡ 3
(mod 4)then we’d have a Paley tournament instead of a graph.

Sufficiently large is exponentially larger thank, roughlyk24k. (For compari-
son, a random graph has a good chance of satisfying thekth extension axiom when

3The result isn’t explicitly stated in [2], but it’s proved in the course of proving Theorem 3,
which says that every finite graph occurs as an induced subgraph in all sufficiently large Paley
graphs.



the number of vertices is somewhat larger thank22k; see [4].)
Unfortunately, it’s not easy to explain why the Paley graphs satisfy the exten-

sion axioms. Both [1] and [2] invoke non-trivial results from number theory in the
proofs of the extension axioms.
Q: So are there no explicit examples where one can directly see why the extension
axioms hold?
A: Actually, we have such examples.4 They’re not as pretty as the Paley graphs,
and they’re larger (for a givenk), but we can explain what they are and how they
work, without appealing to any deep theorems.
Q: Great! Show me.
A: OK. Givenk, we’ll construct a graph whose vertices are certain matrices of
0’s and 1’s. These matrices will haver = 2k(k−1)+ 1 rows andc columns, where
c is chosen large enough so that

2c ≥ 2k2

(
rc

k− 1

)

Q: Wait a minute; let me check that such ac exists. Yes. The left side is expo-
nential inc while the right side, despite the exponential dependence onk, is only
a polynomial inc whenk is fixed, so any sufficiently largec will do.
A: Right. Having fixed suitabler andc, let the vertices of our graph ber by c
matrices of 0’s and 1’s in which a majority of ther rows are identical. That is, in
each of our matrices, at leastk(k− 1) + 1 of the rows are identical.

To define the edges of our graph requires some preliminary terminology. We
considerconstraints, which a vertex may or may not satisfy. A constraint5 is given
by a pair(A, F) whereA is a set ofk − 1 locations in our matrix (i.e.,k − 1 pairs
(i, j) with 1 ≤ i ≤ r and1 ≤ j ≤ c) andF is a family of at mostk functions from
A to {0,1}. We say that a vertexV satisfiesa constraint(A, F) if the entries inV at
the locations inA form an element ofF, i.e., if

(∃ f ∈ F)(∀(i, j) ∈ A) Vi j = f (i, j).

We need to estimate the number of constraints(A, F). There are
(

rc
k−1

)
possi-

bilities for A. For each fixedA, there are2k− 1 functions fromA to {0,1}, so
there are2(k−1)k sequences ofk such functions. Every possible second component
F of a constraint(A, F), except forF = ∅, is the range of such a sequence. So
the number ofF’s for a fixedA is certainly at most2k2

, and the total number of

4The first version of these examples was derived by the second author from a construction,
introduced for quite different purposes, in [8].

5Readers familiar with combinatorial set theory will notice a similarity between the notion of
constraint and Hausdorff’s construction [7] of large independent families of sets.



constraints is no more than (
rc

k− 1

)
2k2 ≤ 2c.

Therefore, we can fix a functionC from the set ofc-component vectors of 0’s and
1’s onto the set of constraints. Since the notion “c-component vector of 0’s and
1’s” will be needed repeatedly, we abbreviated it as “row vector,” which makes
sense since these are the vectors that occur as rows in our matrices.
Q: You’re not choosingC at random, are you?
A: No. We promised an explicit construction, with no randomization. To get
a definiteC, list all the row vectors in lexicographic order, and, after choosing
some reasonable notation for constraints, list the constraints lexicographically
also. Then letC map thenth element of the first list to thenth element of the
second list, cycling back to the beginning of the second list if the first list is longer
(which in fact it will be).
Q: OK. It’s an unpleasantly arbitraryC, but I agree it’s not random. Why do you
cycle back to the beginning rather than, say, just repeating the last element?
A: The cycling is irrelevant in this argument, but we’ll want it for another purpose
later.

You’re quite right about the arbitrariness ofC. Any surjectionC will work
for this proof, so, if you can think of a nicer explicitC, feel free to use it. But
remember, we warned you that these graphs won’t be as pretty as Paley graphs.

UsingC, every vertexV of our graph determines a constraintV∗ as follows. A
majority of the rows ofV are the same row vector, which we call themajority row
of V; applyC to that vector to get a constraintV∗.

Now define a directed graph by putting an arrow fromV to W wheneverW
satisfies the constraintV∗.
Q: I thought you were going to produce anundirectedgraph.
A: We will; the directed graph is only an auxiliary construction. The undirected
graph has an edge joiningV andW if, of the two possible directed edges,V to W
andW to V, either both are present or neither is present. That is,V is adjacent to
W just in case

(V satisfiesW∗) ⇐⇒ (W satisfiesV∗).

We’ll show that the graph so defined satisfies thekth extension axiom, but in order
to do so we’ll need the following preliminary information.

Claim. Let V1, . . . ,Vk bek distinct vertices of our graph, and letS be any subset
of {1, . . . , k}. There is a constraint that is satisfied byVα for all α ∈ S and for none
of the otherα’s.

Proof. It suffices to find a setA of k − 1 locations(i, j) that separate theVα’s, in
the sense that, wheneverα andβ are distinct indices in{1, . . . , k}, thenVα andVβ



differ at some location inA. Once we have such anA, we havek distinct functions
fα : A→ {0,1} defined byfα(i, j) = (Vα)i j . Then letF = { fα : α ∈ S} and observe
that (A, F) can serve as the desired constraint. So it remains only to produce an
appropriateA.
Q: That would be trivial if you allowed

(
k
2

)
locations inA, rather than onlyk− 1.

You could just choose, for eachVα andVβ, one location where they differ.
A: Right, and in fact, if you don’t want to worry about getting|A| down tok− 1,
you could rewrite this whole story with

(
k
2

)
in place ofk − 1, starting with the

definition ofc (where the exponentk2 would also have to be adjusted).
But in fact, it’s not hard to achieve|A| = k− 1. Proceed by induction onk, the

casek = 1 being vacuous. Fork > 1, start by choosing a location(i, j) where some
Vα andVβ differ. So our set ofk vertices is partitioned into two nonempty subsets,
according to the(i, j) entries. Let these subsets consist ofa andb elements, so
a + b = k. By induction hypothesis, we can finda − 1 locations sufficient to
separate any two vertices from the first class andb − 1 locations sufficient to
separate any two vertices from the second class. Together with(i, j), that gives us
(a− 1) + (b− 1) + 1 = k− 1 locations that separate all the vertices. �

Q: The claim you just proved gives a sort of extension axiom for the auxiliary,
directed graph. The constraint from the claim isC(w) for some row vectorw. An
r × c matrixW having all its rows equal tow would be a vertex of your graph, and
there would be a directed edge fromW to Vα if and only if α ∈ S. So if you could
arrange for thisW to satisfy all the constraintsV∗α, thenW would be adjacent, in
the undirected graph, toVα if and only if α ∈ S.

Unfortunately, I don’t see how you can arrange that. The constraintsV∗α might
contradict each other.
A: That’s right, so we have to be a little sneakier.

Suppose we’re given distinct verticesV1, . . . ,Vk and a setS ⊆ {1, . . . , k} as
above, and we want a vertexW adjacent toVα if and only if α ∈ S.

First, fix an arbitrary (not random!) vertexW′; for definiteness, let it be the
matrix of all zeros. Let

T = {α ∈ {1, . . . , k} : W′ satisfiesV∗α}.

Apply the claim with the given verticesVα but withS replaced by the complement
of the symmetric difference ofS andT, i.e., by{α : (α ∈ S) ⇐⇒ (α ∈ T)}. The
constraint given by the claim is, as you noted,C(w) for some row vectorw. Let
W′′ be the vertex that has all its rows equal tow. So we have, thanks to the choice
of W′′ and the definition ofT,

Vα satisfies(W′′)∗ ⇐⇒ (
(α ∈ S) ⇐⇒ (W′ satisfiesV∗α)

)
.



Since⇐⇒ is an associative and commutative operation on truth values, this can
be rewritten as

α ∈ S ⇐⇒ (
(Vα satisfies(W′′)∗) ⇐⇒ (W′ satisfiesV∗α)

)
. (1)

Q: You’d be done ifW′ andW′′ were equal, but that would require a miracle. It’s
true thatW′ was arbitrary, butW′′ depends onT which depends on the choice of
W′, so I see no chance to use the arbitrariness ofW′ to make it matchW′′.
A: Absolutely right; there’s no reason to thinkW′ andW′′ are equal. But we can
combine them into a singleW that inherits the desirable features of both.

For eachα, whetherW′ satisfies the constraintV∗α (and thus whetherα ∈ T)
depends only on the entries of the matrixW′ in k−1 locations, namely the locations
in the first componentA of the constraintV∗α = (A, F). So at mostk(k− 1) entries
of W′ are involved in the satisfaction or non-satisfaction of thek constraintsV∗α.
DefineW to agree withW′ in those entries and withW′′ at all other locations.

We’ve kept enough entries ofW′ in W to ensure that

(W satisfiesV∗α) ⇐⇒ (W′ satisfiesV∗α). (2)

On the other hand,W agrees withW′′ at all but at mostk(k − 1) entries. Since
there arer = 2k(k− 1)+ 1 rows, the majority of the rows ofW are identical to the
rows ofW′′, namely thew that we chose when constructingW′′. So

W∗ = (W′′)∗. (3)

Inserting (2) and (3) into (1), we get

α ∈ S ⇐⇒ (
(Vα satisfiesW∗) ⇐⇒ (W satisfiesV∗α)

)
.

SoW is as required by the extension axiom.
Q: That’s a clever proof. You could have gotten by with a slightly smaller graph,
if you had been less generous when estimating the number of constraints. The
factor2k2

is larger, for anyk > 1, than the value actually given by your argument,
2k(k−1) + 1. Even that can be reduced since a typical familyF will have many
sequences enumerating it in different orders, and with different repetitions in case
|F| < k.
A: That’s right. And other reductions are possible. For example, we could define
the vertices of our graph to be only thoser by c matrices in which all the rows
are identical except for at mostk(k− 1) locations where 1’s have been changed to
0’s. These vertices suffice, because they include everyW used in the proof of the
k-extension property (sinceW′′ had all its rows identical and we tookW′ to be the
all 0 matrix).



Another substantial reduction could be obtained by being more clever in our
choice of error-correcting code.
Q: I didn’t see any error-correcting code here.
A: When we took a row vectorw and repeated itr times to make a matrixW′′,
we were in effect using the simplest error-correcting code, namely repetition. The
point of the repetition is that when we changed at mostk(k − 1) entries ofW′′ to
form W, the originalw could still be recovered, despite the changes. That’s exactly
what error-correcting codes are good for. By using a more sophisticated code, we
could get by with vertices that contain far fewer thanrc binary components, and
so we could get a smaller graph.

Furthermore, since the “errors” that we introduced into a “code word”W′′ to
produce ourW were only replacing some 1’s by 0’s, never the reverse, the code
only has to correct errors of this one sort.
Q: This improvement looks pretty complicated, especially since I know almost
nothing about coding theory. Rather than going into the details, it might be more
interesting to look for other extension properties that can be obtained by the same
method.
A: A slight modification of the method gives tournaments satisfying the natural
extension axioms.
Q: Presumably, thekth of these natural extension axioms for tournaments says
that, givenk distinct verticesV1, . . . ,Vk and given a subsetS ⊆ {1, . . . , k}, there is
another vertexW with a directed edge toVα whenα ∈ S and a directed edge from
Vα whenα < S.
A: That’s right. The same arguments as for undirected graphs show that each of
these extension axioms holds in almost all sufficiently large finite graphs and that
the extension axioms plus the basic axioms for tournaments (saying that, for each
pair of distinct vertices, there is an edge betwen them in exactly one direction and
that there are no loops) constitute a complete first-order theory.6 Thus, one gets a
zero-one law for the first-order7 properties of tournaments.

Also, recall that the Paley construction withp ≡ 3 (mod 4)produces tourna-
ments rather than undirected graphs. It is known [6] that these Paley tournaments
satisfy thekth extension axiom8 providedp is large enough compared tok. As
with the Paley graphs, anyp ≥ k24k is large enough, and the proof relies on the
same non-trivial number theory.
Q: I suppose that your construction of undirected graphs can be converted into

6As in the undirected case, one can prove completeness either by showing that the theory
admits elimination of quantifiers or by showing that it is categorical in powerℵ0.

7This extends easily to finite-variable infinitary logic.
8The result stated in [6] is weaker, namely that, given anyk vertices, there is another vertex

with edges directed to each of the given ones. A minor modification of the proof, however, would
establish the extension axiom.



an analogous construction for tournaments by replacing “adjacent” and “non-
adjacent” with “edge directed one way” and “edge directed the other way,” right?
A: That’s the basic idea, but we need to clarify what is “one way” and what is
“the other way.”
Q: Can’t you just linearly order the vertices and let “one way” mean from the
earlier to the later vertex in this ordering?
A: That doesn’t quite work. The problem is that, if you’re given the vertices
Vα and the setS specifying the directions for the edges between theVα’s and
the desiredW, you need to convert these data into specifications of adjacency or
non-adjacency between theVα’s andW in the undirected graph. These new spec-
ifications will depend on the position ofW relative to theVα’s in your ordering.
By Murphy’s law, if you choose a particular relative position forW, you’ll get
constraints that can only be satisfied byW’s in other relative positions, not the one
you chose.
Q: I understand the problem. How do you escape from it?
A: Here’s a modification of the undirected construction. First, increasec if nec-
essary so that

2c ≥ (k + 1)2k2

(
rc

k− 1

)
.

This ensures that, when we produce the mapC from row vectors to constraints,
each constraint is the image of at leastk + 1 row vectors. In fact, because of the
specific way we obtainedC (which was irrelevant earlier but is important now), as
w runs through all the row vectors in lexicographic order,C(w) will cycle through
the contraints at leastk + 1 times. Thus,C has the following “interval property”:

• The lexicographic order of the row vectors containsk + 1 disjoint intervals,
each of which is mapped byC onto all of the constraints.

Second, list the vertices in such an order that, if the majority row ofV lexico-
graphically precedes the majority row ofW thenV precedesW in the list.
Q: That implies that all the vertices with a given majority row occur consecutively
in the list.
A: Right, and that will be important for our proof.

The interval property above and the specification of our list have the following
consequence, an “interval property” for vertices:

• The list of vertices containsk+1 disjoint intervals such that, if we are given
one of these intervals and we are given a constraint, then there exists a row
w such thatC(w) is the given constraint and all vertices with majority row
w are in the given interval.



Now define a tournament just as you suggested above: There is an edge from
V to W if and only if eitherV andW are adjacent in our undirected graph andV
precedesW in our list orV andW are not adjacent in the undirected graph andW
precedesV in the list.

To prove that this tournament satisfies thekth extension axiom, let distinct
verticesV1, . . . ,Vk be given, along with a setS ⊆ {1, . . . , k}. Since there are onlyk
given verticesVα and there arek + 1 intervals in the interval property for vertices,
fix one of these intervals, sayI, that contains noVα. Thus, the set

U = {α : W precedesVα in the list}

is the same for all verticesW ∈ I.
In our proof of thekth extension axiom for our undirected graph, we found a

row w coding a certain constraint and then we constructed the requiredW to have
majority roww (while a minority of rows provided sufficient agreement withW′).
In the present context, we can always, thanks to the interval property, choosew so
that all verticesW with majority roww are inI. We use this to find someW ∈ I
that is adjacent, in the undirected graph, toVα exactly whenα is in both or neither
of S andU, that is, when

(α ∈ S) ⇐⇒ (α ∈ U).

Then, for eachα ∈ S, we have that each of the following statements is equivalent
to the next.

• There is a directed edge fromW to Vα.

• (Vα andW are adjacent in the undirected graph)⇐⇒ (W precedesVα in the
list).

• (
(α ∈ S) ⇐⇒ (α ∈ U)

) ⇐⇒ (α ∈ U).

• α ∈ S.

Q: So you got around the “Murphy’s law” problem by making sure that you could
specify the position ofW relative to theVα’s and still have enoughW’s to obtain
the desired adjacencies and non-adjacencies.

Can your construction be used to get extension axioms in more contexts?
A: Probably, but we haven’t yet looked into this carefully. It would be partic-
ularly interesting to get triangle-free graphs satisfying the appropriate extension
axioms. These axioms are the same as for ordinary, undirected graphs, except
that they assume the verticesVα for α ∈ S are pairwise non-adjacent. That’s
obviously necessary so that the vertexW given by the axiom doesn’t complete



a triangle. What makes this case particularly interesting is that it is not known
that the desired objects — finite triangle free graphs satisfying thekth extension
axiom for a prescribedk — exist at all. The probabilistic arguments used to give
existence proofs in the case of graphs and tournaments do not apply to the case
of triangle-free graphs. Nor is there a Paley-style construction; indeed it is known
that a strongly regular triangle-free graph cannot satisfy the 4th extension axiom
(see [5]).
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