NEXT STEPS (Section 5.8)

 Δ -definability of sets

 $\text{TERMS} := \{ \ulcorner t \urcorner : \text{terms } t \} \qquad = \{ a \in \mathbb{N} : a = \ulcorner t \urcorner \text{ for some term } t \},\$

FORMULAS := { $\ulcorner \varphi \urcorner$: formulas φ } = { $a \in \mathbb{N} : a = \ulcorner \varphi \urcorner$ for some formula φ }.

$\ulcorner\neg \alpha \urcorner = \langle 1, \ulcorner \alpha \urcorner \rangle$	$\lceil =t_1t_2\rceil = \langle 7, \lceil t_1\rceil, \lceil t_2\rceil \rangle$	$\lceil +t_1t_2\rceil = \langle 13, \lceil t_1\rceil, \lceil t_2\rceil \rangle$	$\lceil < t_1 t_2 \rceil = \langle 19, \lceil t_1 \rceil, \lceil t_2 \rceil \rangle$
$\lceil (\alpha \lor \beta) \rceil = \langle 3, \lceil \alpha \rceil, \lceil \beta \rceil \rangle$	$\lceil 0 \rceil = \langle 9 \rangle$	$\ulcorner \cdot t_1 t_2 \urcorner = \langle 15, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle$	$\lceil v_i \rceil = \langle 2i \rangle$
$\lceil (\forall v_i)(\alpha) \rceil = \langle 5, \lceil v_i \rceil, \lceil \alpha \rceil \rangle$	$\lceil St \rceil = \langle 11, \lceil t \rceil \rangle$	$\ulcorner Et_1t_2 \urcorner = \langle 17, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle$	

$\ulcorner\neg \alpha \urcorner = \langle 1, \ulcorner \alpha \urcorner \rangle$	$\lceil =t_1t_2\rceil = \langle 7, \lceil t_1\rceil, \lceil t_2\rceil \rangle$	$\lceil +t_1t_2\rceil = \langle 13, \lceil t_1\rceil, \lceil t_2\rceil \rangle$	$\lceil < t_1 t_2 \rceil = \langle 19, \lceil t_1 \rceil, \lceil t_2 \rceil \rangle$
$\lceil (\alpha \lor \beta) \rceil = \langle 3, \lceil \alpha \rceil, \lceil \beta \rceil \rangle$	$\lceil 0 \rceil = \langle 9 \rangle$	$\ulcorner \cdot t_1 t_2 \urcorner = \langle 15, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle$	$\lceil v_i \rceil = \langle 2i \rangle$
$\ulcorner(\forall v_i)(\alpha)\urcorner = \langle 5, \ulcorner v_i \urcorner, \ulcorner \alpha \urcorner \rangle$	$\lceil St \rceil = \langle 11, \lceil t \rceil \rangle$	$\ulcorner Et_1t_2 \urcorner = \langle 17, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle$	

Recall the inductive definition of an \mathcal{L}_{NT} -term t: it is either

- a variable symbol v_i , St_1 where t_1 is term,
- the constant symbol 0, $+t_1t_2$ or $\cdot t_1t_2$ or Et_1t_2 where t_1, t_2 are terms.

Recall the inductive definition of an \mathcal{L}_{NT} -term t: it is either

- a variable symbol v_i , St_1 where t_1 is term,
- the constant symbol 0, $+t_1t_2$ or $\cdot t_1t_2$ or Et_1t_2 where t_1, t_2 are terms.

Let's start with Δ -definition of

VARIABLES := {
$$\ulcorner v_i \urcorner : i = 1, 2, ...$$
} (= { $2^{2i+1} : i = 1, 2, ...$ }).

by the formula

 $Variable(x) :\equiv (\exists y < x) [Even(y) \land (0 < y) \land (x = 2^{Sy})].$

 $\lceil \neg \alpha \rceil = \langle 1, \lceil \alpha \rceil \rangle \qquad \lceil =t_1 t_2 \rceil = \langle 7, \lceil t_1 \rceil, \lceil t_2 \rceil \rangle \qquad \lceil +t_1 t_2 \rceil = \langle 13, \lceil t_1 \rceil, \lceil t_2 \rceil \rangle \qquad \lceil <t_1 t_2 \rceil = \langle 19, \lceil t_1 \rceil, \lceil t_2 \rceil \rangle$ $\lceil (\alpha \lor \beta) \rceil = \langle 3, \lceil \alpha \rceil, \lceil \beta \rceil \rangle \qquad \lceil 0 \rceil = \langle 9 \rangle \qquad \lceil \cdot t_1 t_2 \rceil = \langle 15, \lceil t_1 \rceil, \lceil t_2 \rceil \rangle \qquad \lceil v_i \rceil = \langle 2i \rangle$ $\lceil (\forall v_i)(\alpha) \rceil = \langle 5, \lceil v_i \rceil, \lceil \alpha \rceil \rangle \qquad \lceil St \rceil = \langle 11, \lceil t \rceil \rangle \qquad \lceil Et_1 t_2 \rceil = \langle 17, \lceil t_1 \rceil, \lceil t_2 \rceil \rangle$

Recall the inductive definition of an \mathcal{L}_{NT} -term t: it is either

- a variable symbol v_i , St_1 where t_1 is term,
- the constant symbol 0, $+t_1t_2$ or $\cdot t_1t_2$ or Et_1t_2 where t_1, t_2 are terms.

However, there is a problem with this " Δ -formula".

$\lceil \neg \alpha \rceil = \langle 1, \lceil \alpha \rceil \rangle$	$\ulcorner=t_1t_2\urcorner=\langle 7, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner\rangle$	$\ulcorner + t_1 t_2 \urcorner = \langle 13, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle$	$\lceil < t_1 t_2 \rceil = \langle 19, \lceil t_1 \rceil, \lceil t_2 \rceil \rangle$
$\lceil (\alpha \lor \beta) \rceil = \langle 3, \lceil \alpha \rceil, \lceil \beta \rceil \rangle$	$\lceil 0 \rceil = \langle 9 \rangle$	$\ulcorner \cdot t_1 t_2 \urcorner = \langle 15, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle$	$\lceil v_i \rceil = \langle 2i \rangle$
$ \ulcorner (\forall v_i)(\alpha) \urcorner = \langle 5, \ulcorner v_i \urcorner, \ulcorner \alpha \urcorner \rangle $	$\lceil St \rceil = \langle 11, \lceil t \rceil \rangle$	$\ulcorner Et_1t_2 \urcorner = \langle 17, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle$	

Recall the inductive definition of an \mathcal{L}_{NT} -term t: it is either

- a variable symbol v_i , St_1 where t_1 is term,
- the constant symbol 0, $+t_1t_2$ or $\cdot t_1t_2$ or Et_1t_2 where t_1, t_2 are terms.

This is a not legitimate formula of first-order logic! Note the circular use of the subformula Term(y).

Definition. A term construction sequence for a term t is a finite sequence of terms (t_1, \ldots, t_ℓ) such that $t_\ell :\equiv t$ and, for each $k \in \{1, \ldots, \ell\}$, the term t_k is either

- a variable symbol,
- the constant symbol 0,
- St_j for some j < k, or
- $+t_i t_j$ or $\cdot t_i t_j$ or $Et_i t_j$ for some i, j < k.

Definition. A term construction sequence for a term t is a finite sequence of terms (t_1, \ldots, t_ℓ) such that $t_\ell :\equiv t$ and, for each $k \in \{1, \ldots, \ell\}$, the term t_k is either

- a variable symbol,
- the constant symbol 0,
- St_j for some j < k, or
- $+t_i t_j$ or $\cdot t_i t_j$ or $Et_i t_j$ for some i, j < k.

Example. $(0, v_1, Sv_1, +0Sv_1)$ is term construction sequence for the $+0Sv_1$.

Definition. A term construction sequence for a term t is a finite sequence of terms (t_1, \ldots, t_ℓ) such that $t_\ell :\equiv t$ and, for each $k \in \{1, \ldots, \ell\}$, the term t_k is either

- a variable symbol,
- the constant symbol 0,
- St_j for some j < k, or
- $+t_i t_j$ or $\cdot t_i t_j$ or $Et_i t_j$ for some i, j < k.

Example. $(0, v_1, Sv_1, +0Sv_1)$ is term construction sequence for the $+0Sv_1$.

Lemma. Every term t has a term construction sequence of length at most the number of symbols in t.

(Easy proof by induction.)

Definition. A term construction sequence for a term t is a finite sequence of terms (t_1, \ldots, t_ℓ) such that $t_\ell :\equiv t$ and, for each $k \in \{1, \ldots, \ell\}$, the term t_k is either

- a variable symbol,
- the constant symbol 0,
- St_j for some j < k, or
- $+t_i t_j$ or $\cdot t_i t_j$ or $Et_i t_j$ for some i, j < k.

Key to defining TERMS: We will write a Δ -formula defining the set TERMCONSEQ = { $(c, a) : c = \langle \ulcorner t_1 \urcorner, \ldots, \ulcorner t_\ell \urcorner \rangle$ and $a = \ulcorner t_\ell \urcorner$ where (t_1, \ldots, t_ℓ) is a term construction sequence}. Δ -DEFINITION OF TERMS = { $\ulcorner t \urcorner : t \text{ is a term}$ } $TermConSeq(c, a) :\equiv$ $\begin{aligned} \text{Codenumber}(c) \wedge (\exists \ell < c) \left[\text{Length}(c, \ell) \wedge \text{IthElement}(a, \ell, c) \wedge \right. \\ (\forall k \leq \ell) (\exists e_k < c) \left[\text{IthElement}(e_k, k, c) \wedge \right. \\ \left. \left(\begin{array}{c} \text{Variable}(e_k) \\ \forall e_k = \overline{2^{10}} \end{array} \right)_{e_k \text{ is } \lceil 0 \rceil^n} \\ \forall (\exists j < k) (\exists e_j < c) [\text{IthElement}(e_j, j, c) \wedge e_k = \overline{2^{12}} \cdot \overline{3}^{Se_j}] \\ \forall \cdots \end{aligned} \right] \right] \end{aligned}$

Key to defining TERMS: We will write a Δ -formula defining the set TERMCONSEQ = { $(c, a) : c = \langle \ulcorner t_1 \urcorner, \ldots, \ulcorner t_\ell \urcorner \rangle$ and $a = \ulcorner t_\ell \urcorner$ where (t_1, \ldots, t_ℓ) is a term construction sequence}.

Now there is an obvious way to define Term(a):

 $Term(a) :\equiv (\exists c) TermConSeq(c, a).$

To make this a Δ -formula, we need an upper bound on c as a function of a.

Now there is an obvious way to define Term(a):

 $Term(a) :\equiv (\exists c) TermConSeq(c, a).$

To make this a Δ -formula, we need an upper bound on c as a function of a.

Suppose $a = \lceil t \rceil$. Another easy lemma by induction: The number of symbols in t is at most a. Therefore, there exists a term construction sequence (t_1, \ldots, t_ℓ) for t with length $\leq a$. We may assume that each t_k is a subterm of t, so that $\lceil t_k \rceil \leq \lceil t \rceil = a$ for all $k \in \{1, \ldots, \ell\}$.

Let $c := \langle \ulcorner t_1 \urcorner, \ldots, \ulcorner t_\ell \urcorner \rangle$. We have

$$c = 2^{\lceil t_1 \rceil + 1} 3^{\lceil t_2 \rceil + 1} \cdots (p_\ell)^{\lceil t_\ell \rceil + 1} \le (p_\ell)^{\lceil t_1 \rceil + \dots + \lceil t_\ell \rceil + \ell} \le (p_\ell)^{\ell a + \ell} \le (p_a)^{a^2 + a}.$$

Easy fact: The a^{th} prime number p_a is at most a^a . (In fact, $p_a \leq 2^{a^2}$ using the Prime Number Theorem: $a(\log a + \log \log a - 1) < p_a < a(\log a + \log \log a)$ for all $a \geq 6$.) We conclude that $c \leq a^{a(a^2+a)} \leq a^{2a^3}$.

Now there is an obvious way to define Term(a):

 $Term(a) :\equiv (\exists c) TermConSeq(c, a).$

To make this a Δ -formula, we need an upper bound on c as a function of a. We may therefore take

$$\label{eq:term} \begin{split} \textit{Term}(a) :\equiv (\exists c \leq \underbrace{\textit{Ea}{\cdot}\textit{SS0EaSSS0}}_{a^{2a^3}}) \textit{TermConSeq}(c,a). \end{split}$$

CONSTRUCTION SEQUENCES FOR OTHER RECURSIVE DEFINITIONS

In a similar way, using the notion of a *formula construction sequence*, we get a Δ -definition of the set

FORMULAS = { $\ulcorner \varphi \urcorner$: φ is a formula }.

Definition. A formula construction sequence for a formula φ is a finite sequence of terms $(\varphi_1, \ldots, \varphi_\ell)$ such that $\varphi_\ell :\equiv \varphi$ and, for each $k \in \{1, \ldots, \ell\}$, the term φ_k is either

- $=t_1t_2$ for some terms t_1 and t_2
- $< t_1 t_2$ for some terms t_1 and t_2
- $\neg \varphi_j$ for some j < k
- $(\varphi_i \lor \varphi_j)$ for some i, j < k
- $(\forall x)(\varphi_i)$ for some i < k and $x \in Vars$

CONSTRUCTION SEQUENCES FOR GENERAL RECURSIVE DEFINITIONS

This idea is very general: using an appropriate notion of *construction sequence*, we get a Δ -definition of any recursively defined set or function.

For example, recall the Fibonacci numbers

 $1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots$

defined by f(1) = f(2) = 1 and f(n) = f(n-1) + f(n-2) for $n \ge 3$. We can define the function f(n) in terms of the set of codes of construction sequences

FIBONACCICONSEQ = { $\langle f(1), f(2), \ldots, f(n) \rangle : n = 1, 2, \ldots$ }.

NEXT STEPS (Sections 5.11–5.12)

The following are Δ -definable:

 $LOGICALAXIOM := \{ \ulcorner \varphi \urcorner : \varphi \text{ is a logical axiom} \}$

 $RULEOFINFERENCE := \{ (\langle \lceil \gamma_1 \rceil, \dots, \lceil \gamma_n \rceil \rangle, \lceil \varphi \rceil) : (\{\gamma_1, \dots, \gamma_n\}, \varphi) \text{ is a} \\ rule \text{ of inference} \}$

$$\operatorname{AXIOM}_N := \left\{ \ulcorner N_1 \urcorner, \ldots, \ulcorner N_{11} \urcorner \right\}$$

DEDUCTION_N := {($\langle \ulcorner \delta_1 \urcorner, \ldots, \ulcorner \delta_1 \urcorner \rangle, \ulcorner \varphi \urcorner$) : ($\delta_1, \ldots, \delta_n$) is a deduction from N of φ }.

Important Δ -definable functions:

$$\begin{aligned} \operatorname{Num}(a) &:= \ulcorner \overline{a} \urcorner, \\ \operatorname{TermSub}(\ulcorner u \urcorner, \ulcorner x \urcorner, \ulcorner t \urcorner) &:= \ulcorner u_t^x \urcorner, \\ \operatorname{Sub}(\ulcorner \varphi \urcorner, \ulcorner x \urcorner, \ulcorner t \urcorner) &:= \ulcorner \varphi_t^x \urcorner. \end{aligned}$$