
Next Steps (Section 5.8)

∆-definability of sets

Terms := {ptq : terms t} = {a ∈ N : a = ptq for some term t},

Formulas := {pϕq : formulas ϕ} = {a ∈ N : a = pϕq for some formula ϕ}.



∆-Definition of Terms = {ptq : t is a term}

p¬αq = 〈1, pαq〉 p=t1t2q = 〈7, pt1q, pt2q〉 p+t1t2q = 〈13, pt1q, pt2q〉 p<t1t2q = 〈19, pt1q, pt2q〉

p(α ∨ β)q = 〈3, pαq, pβq〉 p0q = 〈9〉 p· t1t2q = 〈15, pt1q, pt2q〉 pviq = 〈2i〉

p(∀vi)(α)q = 〈5, pviq, pαq〉 pStq = 〈11, ptq〉 pEt1t2q = 〈17, pt1q, pt2q〉



∆-Definition of Terms = {ptq : t is a term}

p¬αq = 〈1, pαq〉 p=t1t2q = 〈7, pt1q, pt2q〉 p+t1t2q = 〈13, pt1q, pt2q〉 p<t1t2q = 〈19, pt1q, pt2q〉

p(α ∨ β)q = 〈3, pαq, pβq〉 p0q = 〈9〉 p· t1t2q = 〈15, pt1q, pt2q〉 pviq = 〈2i〉

p(∀vi)(α)q = 〈5, pviq, pαq〉 pStq = 〈11, ptq〉 pEt1t2q = 〈17, pt1q, pt2q〉

Recall the inductive definition of an LNT -term t: it is either

• a variable symbol vi, • St1 where t1 is term,

• the constant symbol 0, • +t1t2 or · t1t2 or Et1t2 where t1, t2 are terms.



∆-Definition of Terms = {ptq : t is a term}

p¬αq = 〈1, pαq〉 p=t1t2q = 〈7, pt1q, pt2q〉 p+t1t2q = 〈13, pt1q, pt2q〉 p<t1t2q = 〈19, pt1q, pt2q〉

p(α ∨ β)q = 〈3, pαq, pβq〉 p0q = 〈9〉 p· t1t2q = 〈15, pt1q, pt2q〉 pviq = 〈2i〉

p(∀vi)(α)q = 〈5, pviq, pαq〉 pStq = 〈11, ptq〉 pEt1t2q = 〈17, pt1q, pt2q〉

Recall the inductive definition of an LNT -term t: it is either

• a variable symbol vi, • St1 where t1 is term,

• the constant symbol 0, • +t1t2 or · t1t2 or Et1t2 where t1, t2 are terms.

Let’s start with ∆-definition of

Variables := {pviq : i = 1, 2, . . . } (= {22i+1 : i = 1, 2, . . . }).

by the formula

Variable(x) :≡ (∃y < x)[Even(y) ∧ (0 < y) ∧ (x = 2Sy)].



∆-Definition of Terms = {ptq : t is a term}

p¬αq = 〈1, pαq〉 p=t1t2q = 〈7, pt1q, pt2q〉 p+t1t2q = 〈13, pt1q, pt2q〉 p<t1t2q = 〈19, pt1q, pt2q〉

p(α ∨ β)q = 〈3, pαq, pβq〉 p0q = 〈9〉 p· t1t2q = 〈15, pt1q, pt2q〉 pviq = 〈2i〉

p(∀vi)(α)q = 〈5, pviq, pαq〉 pStq = 〈11, ptq〉 pEt1t2q = 〈17, pt1q, pt2q〉

Recall the inductive definition of an LNT -term t: it is either

• a variable symbol vi, • St1 where t1 is term,

• the constant symbol 0, • +t1t2 or · t1t2 or Et1t2 where t1, t2 are terms.

We would like to write:

Term(x) :≡ Variable(x) ∨

“x is p0q”︷ ︸︸ ︷
x = 210 ∨

“x is pSt1q for some term t1”︷ ︸︸ ︷
(∃y < x)[Term(y) ∧ x = 212·3Sy︸ ︷︷ ︸

〈11,y〉

]

∨ · · ·︸︷︷︸
“x is +t1t2 or · t1t2 or Et1t2”

However, there is a problem with this “∆-formula”.



∆-Definition of Terms = {ptq : t is a term}

p¬αq = 〈1, pαq〉 p=t1t2q = 〈7, pt1q, pt2q〉 p+t1t2q = 〈13, pt1q, pt2q〉 p<t1t2q = 〈19, pt1q, pt2q〉

p(α ∨ β)q = 〈3, pαq, pβq〉 p0q = 〈9〉 p· t1t2q = 〈15, pt1q, pt2q〉 pviq = 〈2i〉

p(∀vi)(α)q = 〈5, pviq, pαq〉 pStq = 〈11, ptq〉 pEt1t2q = 〈17, pt1q, pt2q〉

Recall the inductive definition of an LNT -term t: it is either

• a variable symbol vi, • St1 where t1 is term,

• the constant symbol 0, • +t1t2 or · t1t2 or Et1t2 where t1, t2 are terms.

We would like to write:

Term(x) :≡ Variable(x) ∨

“x is p0q”︷ ︸︸ ︷
x = 210 ∨

“x is pSt1q for some term t1”︷ ︸︸ ︷
(∃y < x)[Term(y) ∧ x = 212·3Sy︸ ︷︷ ︸

〈11,y〉

]

∨ · · ·︸︷︷︸
“x is +t1t2 or · t1t2 or Et1t2”

This is a not legitimate formula of first-order logic! Note the circular
use of the subformula Term(y).



∆-Definition of Terms = {ptq : t is a term}

Definition. A term construction sequence for a term t is a finite sequence
of terms (t1, . . . , t`) such that t` :≡ t and, for each k ∈ {1, . . . , `}, the term tk
is either

• a variable symbol,

• the constant symbol 0,

• Stj for some j < k, or

• +titj or · titj or Etitj for some i, j < k.



∆-Definition of Terms = {ptq : t is a term}

Definition. A term construction sequence for a term t is a finite sequence
of terms (t1, . . . , t`) such that t` :≡ t and, for each k ∈ {1, . . . , `}, the term tk
is either

• a variable symbol,

• the constant symbol 0,

• Stj for some j < k, or

• +titj or · titj or Etitj for some i, j < k.

Example. (0, v1, Sv1,+0Sv1) is term construction sequence for the +0Sv1.



∆-Definition of Terms = {ptq : t is a term}

Definition. A term construction sequence for a term t is a finite sequence
of terms (t1, . . . , t`) such that t` :≡ t and, for each k ∈ {1, . . . , `}, the term tk
is either

• a variable symbol,

• the constant symbol 0,

• Stj for some j < k, or

• +titj or · titj or Etitj for some i, j < k.

Example. (0, v1, Sv1,+0Sv1) is term construction sequence for the +0Sv1.

Lemma. Every term t has a term construction sequence of length at most the
number of symbols in t.

(Easy proof by induction.)



∆-Definition of Terms = {ptq : t is a term}

Definition. A term construction sequence for a term t is a finite sequence
of terms (t1, . . . , t`) such that t` :≡ t and, for each k ∈ {1, . . . , `}, the term tk
is either

• a variable symbol,

• the constant symbol 0,

• Stj for some j < k, or

• +titj or · titj or Etitj for some i, j < k.

Key to defining Terms: We will write a ∆-formula defining the set

TermConSeq = {(c, a) : c = 〈pt1q, . . . , pt`q〉 and a = pt`q where

(t1, . . . , t`) is a term construction sequence}.



∆-Definition of Terms = {ptq : t is a term}

TermConSeq(c, a) :≡

Codenumber (c) ∧ (∃` < c)

[
Length(c, `) ∧ IthElement(a, `, c) ∧

(∀k ≤ `)(∃ek < c)

[
IthElement(ek, k, c) ∧

Variable(ek)

∨ ek = 210 }}} “ek is p0q”

∨ (∃j < k)(∃ej < c)[IthElement(ej, j, c) ∧

“ek is pSejq”︷ ︸︸ ︷
ek = 212 · 3Sej ]

∨ · · ·


]]

Key to defining Terms: We will write a ∆-formula defining the set

TermConSeq = {(c, a) : c = 〈pt1q, . . . , pt`q〉 and a = pt`q where

(t1, . . . , t`) is a term construction sequence}.



∆-Definition of Terms = {ptq : t is a term}

Now there is an obvious way to define Term(a):

Term(a) :≡ (∃c)TermConSeq(c, a).

To make this a ∆-formula, we need an upper bound on c as a function of a.



∆-Definition of Terms = {ptq : t is a term}

Now there is an obvious way to define Term(a):

Term(a) :≡ (∃c)TermConSeq(c, a).

To make this a ∆-formula, we need an upper bound on c as a function of a.

Suppose a = ptq. Another easy lemma by induction: The number of symbols in
t is at most a. Therefore, there exists a term construction sequence (t1, . . . , t`)
for t with length ≤ a. We may assume that each tk is a subterm of t, so that
ptkq ≤ ptq = a for all k ∈ {1, . . . , `}.

Let c := 〈pt1q, . . . , pt`q〉. We have

c = 2pt1q+13pt2q+1 · · · (p`)pt`q+1 ≤ (p`)
pt1q+···+pt`q+` ≤ (p`)

`a+` ≤ (pa)
a2+a.

Easy fact: The ath prime number pa is at most aa. (In fact, pa ≤ 2a
2

using the
Prime Number Theorem: a(log a + log log a − 1) < pa < a(log a + log log a)

for all a ≥ 6.) We conclude that c ≤ aa(a
2+a) ≤ a2a

3
.



∆-Definition of Terms = {ptq : t is a term}

Now there is an obvious way to define Term(a):

Term(a) :≡ (∃c)TermConSeq(c, a).

To make this a ∆-formula, we need an upper bound on c as a function of a.

We may therefore take

Term(a) :≡ (∃c ≤ Ea·SS0EaSSS0︸ ︷︷ ︸
a2a

3

)TermConSeq(c, a).



Construction Sequences for Other Recursive Definitions

In a similar way, using the notion of a formula construction sequence, we get
a ∆-definition of the set

Formulas = {pϕq : ϕ is a formula}.

Definition. A formula construction sequence for a formula ϕ is a finite
sequence of terms (ϕ1, . . . , ϕ`) such that ϕ` :≡ ϕ and, for each k ∈ {1, . . . , `},
the term ϕk is either

• =t1t2 for some terms t1 and t2

• <t1t2 for some terms t1 and t2

• ¬ϕj for some j < k

• (ϕi ∨ ϕj) for some i, j < k

• (∀x)(ϕi) for some i < k and x ∈ Vars



Construction Sequences for General Recursive Definitions

This idea is very general: using an appropriate notion of construction sequence,
we get a ∆-definition of any recursively defined set or function.

For example, recall the Fibonacci numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

defined by f (1) = f (2) = 1 and f (n) = f (n− 1) +f (n− 2) for n ≥ 3. We can
define the function f (n) in terms of the set of codes of construction sequences

FibonacciConSeq = {〈f (1), f (2), . . . , f (n)〉 : n = 1, 2, . . . }.



Next Steps (Sections 5.11–5.12)

The following are ∆-definable:

LogicalAxiom :=
{
pϕq : ϕ is a logical axiom

}
RuleOfInference :=

{
(〈pγ1q, . . . , pγnq〉, pϕq) : ({γ1, . . . , γn}, ϕ) is a

rule of inference
}

AxiomN :=
{
pN1q, . . . , pN11q

}
DeductionN :=

{
(〈pδ1q, . . . , pδ1q〉, pϕq) : (δ1, . . . , δn) is a

deduction from N of ϕ
}
.

Important ∆-definable functions:

Num(a) := p a q,

TermSub(puq, pxq, ptq) := puxt q,

Sub(pϕq, pxq, ptq) := pϕxt q.


