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Abstract. We present lower and upper bounds showing that the average-case complexity of the
k-Clique problem on monotone circuits is nk/4+O(1). Similar bounds for AC0 circuits were shown
in [18, 5].
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1. Introduction. For a fixed constant k ≥ 3, the k-clique problem (denoted k-
Clique) is the problem of determining whether a graph of size n contains a complete
subgraph of size k. Razborov [16] in 1985 showed that the worst-case complexity of

k-Clique on monotone circuits is Ω̃(nk), nearly matching the trivial O(nk) upper
bound. In this paper, we prove the first (and nearly optimal) lower bounds for the
average-case complexity of k-Clique on monotone circuits. For the average-case
analysis, we consider Erdős-Rényi random graphs G(n, p) where p = p(n) is a threshold
for the existence of k-cliques (i.e., such that Pr[G(n, p) contains a k-clique] is bounded
away from 0 and 1). In previous work [18], we showed a lower bound of Ω(nk/4) on the
size of AC0 circuits (i.e., polynomial-size constant-depth Boolean circuits) which solve
k-Clique with high probability on G(n, p) for any single threshold p. Here we show
a similar Ω(nk/4) lower bound for monotone circuits which solve k-Clique with high
probability on G(n, p) at two sufficiently separated thresholds p, such as n−2/(k−1)

and 2n−2/(k−1). In both results, the exponent k/4 is tight up to an additive constant,
as shown by Amano [5] for AC0 circuits and here for monotone circuits.

Our results support a widely held belief that Erdős-Rényi random graphs are a
source of hard instances for clique problems. This idea goes back to a question raised
by Karp [15] in 1976. It is well-known that the uniform random graph G(n, 1/2) has
maximum cliques of expected size (2−o(1)) log n. While finding the maximum cliques
in G(n, 1/2) appears to be hard, Karp pointed out that maximal cliques of expected
size (1− o(1)) log n are easy to find via a simple greedy algorithm: starting with any
vertex v1, choose any neighbor v2 of v1, then any common neighbor v3 of v1 and v2,
etc., in this way building up a clique as far as possible. Karp asked whether any
polynomial-time algorithm finds a clique of size (1 + ε) log n in G(n, 1/2) with high
probability for any constant ε > 0. This question remains wide open today, despite a
lot of research on algorithms for finding cliques in G(n, 1/2) (including in the setting
of a large planted clique, see [2]). The failure to find efficient algorithms has even
led cryptographic protocols (for example [13]) based on the hypothesis that finding
hidden cliques is hard-on-average. Our results give the first strong evidence for this
hypothesis by way of unconditional lower bounds.

1.1. Previous Bounds for k-Clique on Monotone Circuits. It has long
been observed that k-Clique is solved by monotone DNFs (OR-AND circuits) of
size O(nk). The first (worst-case) lower bounds for k-Clique on monotone circuits
were shown by Razborov in a seminal paper [16], which introduced the technique
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known as Approximation Method. For constant values of k, Razborov’s bound of
Ω((n/ log2 n)k) was later improved to Ω((n/ log n)k) by Alon and Boppana [1]; these
papers also give lower bounds in the setting where k = k(n) is a growing function
of n. Applying the Approximation Method to mildly non-monotone circuits, Amano
and Maruoka [6] proved lower bounds for k-Clique on Boolean circuits with a small
number ((1/6) log log n) of NOT gates. A different approach via communication com-
plexity was used by Goldmann and H̊astad [10] to bound the size of monotone formulas
solving k-Clique.

1.2. Our Results. We now state our results (for formal definitions, see §2).
Let k be a fixed but arbitrary integer ≥ 3. Let p(n) = Θ(n−2/(k−1)) be a fixed
threshold function for the existence of k-cliques in the Erdős-Rényi random graph
G(n, p) (i.e., such that Pr[G(n, p) contains a k-clique] is bounded away from 0 and

1). Let p+ = p + p1+(1/k2) and note that p+ is also a threshold for the existence of
k-cliques (see §2.4).

We consider monotone circuits with arbitrary depth and AND and OR gates of
unbounded fan-in, where size refers to the number of gates. We say that a circuit C
solves k-Clique w.h.p. (with high probability) on G(n, p) if

lim
n→∞

Pr
G∼G(n,p)

[C outputs 1 on G ⇔ G contains a k-clique] = 1.

The following theorems first appeared in conference papers [18, 20] and the au-
thor’s Ph.D. thesis [19].

Theorem 1.1 (Lower Bound for Bounded-Depth Circuits). Boolean circuits of
size O(nk/4) and depth at most k−2 log n/ log log n cannot solve k-Clique w.h.p. on
G(n, p).

Theorem 1.2 (Lower Bound for Monotone Circuits). Monotone circuits of size
O(nk/4) cannot solve k-Clique w.h.p. on both G(n, p) and G(n, p+).

Theorem 1.3 (Matching Upper Bound). There exist monotone circuits of size
nk/4+O(1) and depth 3k which solve k-Clique w.h.p. on G(n, q) for all functions
q : N→ [0, 1].

In this paper, we present complete proofs of Theorems 1.2 and 1.3. Some remarks
on these results:

(a) Theorems 1.1, 1.2 and 1.3 respectively concern circuits which solve k-Clique
w.h.p.

(i) on G(n, p) (i.e., at a single threshold),

(ii) on G(n, p) and G(n, p+) (i.e., at two thresholds with a “gap” of p1+(1/k2)),
(iii) on G(n, q) for all functions q : N→ [0, 1].

Clearly (iii)⇒ (ii)⇒ (i). Condition (i) is perhaps the most natural interpretation
of “average case” in the context of k-Clique. However, condition (iii) is also
reasonable to consider, especially for showing upper bounds. In fact, to pin down
the average-case complexity of k-Clique in a very strong sense, it is desirable
to have matching lower and upper bounds for circuits satisfying (i) and (iii),
respectively. Note that Theorems 1.1 and 1.3 give precisely such a pair of bounds
for the class of AC0 circuits.

(b) The intermediate condition (ii) is introduced as a technical hypothesis in order to
state Theorem 1.2 (our lower bound for monotone circuits) in the strongest terms
that the proof entails. Together with Theorem 1.3, this establishes that nk/4+O(1)

is the average-case complexity of k-Clique in the sense of condition (iii).
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(c) We conjecture that nk/4+O(1) is the average-case complexity of k-Clique in the
sense of condition (i) as well, i.e., that monotone circuits of size O(nk/4) cannot
solve k-Clique w.h.p. on G(n, p). This conjecture and the related challenge of

reducing the “gap” p+ − p (= p1+(1/k2)) in Theorem 1.2 are discussed in §11.
(d) Random graphs G(n, p) and G(n, p+) have statistical distance 1 − o(1) as prob-

ability distributions. They are nevertheless “close” from the standpoint of the
k-Clique problem: the numbers of k-cliques in G(n, p) and G(n, p+) are asymp-
totically equivalent Poisson random variables (see §2.4).

(e) Condition (ii) is equivalent to solving k-Clique w.h.p. on a single distribution,
namely the random graph G(n, q) where the parameter q is uniform in {p, p+}
(or, alternatively, uniform in [p, p+]). In this way, Theorem 1.2 can be restated
in terms of a single distribution.

(f) The monotone circuits constructed in the proof of Theorem 1.3 are based on
non-monotone AC0 circuits due to Amano [5] (which we describe in §10).

(g) Although the lower bounds for AC0 and monotone circuits (Theorems 1.1 and
1.2) rely on different combinatorial techniques, the exponent k/4 arises from a
common bottleneck (the “medium patterns” described in §5).

Preliminary to proving Theorem 1.2, we first show a result involving a different
pair of random graphs. Let δ = 1/k2 and note that the random graph G(n, p1+δ) is
almost surely k-clique-free, i.e., p1+δ = o(n−2/(k−1)) is sub-critical for the existence
of k-cliques (see Lemma 2.2).

Theorem 1.4. Let C be a monotone circuit of size O(nk/4) and suppose that C
outputs 1 on almost all k-cliques (i.e., n-vertex graphs consisting of a single k-clique
with no additional edges). Then C outputs 1 on G(n, p1+δ) almost surely (in fact, with
probability 1− exp(−Ω(nδ))).

Remark 1.5. Unpacking the asymptotic notation, Theorem 1.4 says: for all
constants c1, ε > 0, there is a constant c2 > 0 such that if C is a monotone circuit
of size ≤ c1n

k/4 which outputs 1 on 1 − ε fraction of k-cliques, then C outputs 1 on
G(n, p1+δ) with probability 1− exp(−c2nδ).

Our proof of Theorem 1.4 uses the Approximation Method of Razborov [16]. A
key technical step in the proof involves a new combinatorial notion of quasi-sunflowers,
a relaxation of sunflowers in which petals may overlap to a limited extent. A “Quasi-
sunflower Lemma” (Theorem 4.4) plays a role in our proof analogous to the role of
the Erdős-Rado Sunflower Lemma in previous worst-case monotone lower bounds for
k-Clique. Our results also rely on subtle properties of Erdős-Rényi random graphs
at the k-Clique threshold, as well as a special class of bottleneck shapes (“medium
patterns”) that also play a role in the AC0 setting [18]. In addition, we introduce a
technique for converting lower bounds for circuits with fan-in 2 into nearly equivalent
lower bounds for circuits with unbounded fan-in.

1.3. Outline of the Paper. In §2 we state basic definitions and a few prob-
abilistic lemmas. In §3 we give an overview of the general Approximation Method.
In §4 we define quasi-sunflowers and prove a “Quasi-sunflower Lemma”. In §5 we
introduce a convenient classification of graphs into three “sizes” (small, medium and
large). Our lower bounds (Theorems 1.2 and 1.4) are proved in §6–§8 for the special
case of monotone circuits in which all gates have fan-in 2. In §9 we remove the fan-in
restriction, extending our lower bounds to arbitrary monotone circuits. Our matching
upper bound (Theorem 1.3) is proved in §10. We state some conclusions and open
questions in §11.
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2. Preliminaries. Let k ≥ 3 be an arbitrary but fixed integer. Let n be an
arbitrary (but “growing”) integer and let [n] = {1, . . . , n}. Expressions with high
probability (w.h.p.) and almost surely mean with probability tending to 1 as n→∞.
For a set X and integer t ≥ 0,

(
X
t

)
denotes the set of t-element subsets of X. log(·)

denotes the base-2 logarithm and ln(·) denotes the natural logarithm.

2.1. Graphs and patterns. Graphs in this paper are finite simple graphs.
Formally, a graph is a pair G = (VG, EG) where VG is a finite set and EG ⊆

(
VG
2

)
. We

denote by Gn the set of graphs with vertex set [n]. By default, graphs are elements
of Gn. The term pattern refers to a (constant-size) graph with no isolated vertices;
all patterns we consider in this paper have size ≤ k. (Unlike graphs in Gn, patterns
are only important up to isomorphism.)

For ` ∈ N, K` denotes the complete pattern with vertex set {1, . . . , `} and edge

set
({1,...,`}

2

)
. An `-clique in a graph G is a set of ` vertices with all

(
`
2

)
possible edges

present (i.e., a copy of the pattern K` in G). For graphs as well as patterns, ∪ denotes
the union operation and ⊆ denotes the subgraph/subpattern relation.

2.2. Monotone functions and minterms. A (boolean) graph function is a
function from Gn to {0, 1}. A graph function f is monotone if f(G1) ≤ f(G2) whenever
G1 ⊆ G2.

A graph H is a minterm of monotone graph function f if f(H) = 1 and f(H ′) = 0
for every proper subgraph H ′ ⊂ H. For a pattern P , a minterm H of f is a P -minterm
of f if the induced pattern on the non-isolated vertices of H is isomorphic to P . The
set of minterms (resp. P -minterms) of f is denoted M(f) (resp. M(f, P )).

We will frequently refer to the following basic fact about minterms:

Lemma 2.1. For all monotone graph functions f and g,

M(f ∨ g) ⊆M(f) ∪M(g),

M(f ∧ g) ⊆ {F ∪G : F ∈M(f), G ∈M(g)}.

That is, every minterm of f ∨ g is a minterm of f or a minterm of g and every
minterm of f ∧ g is the union of a minterm of f and a minterm of g.

2.3. Monotone circuits. A monotone circuit on m variables is an acyclic di-
rected graph C with m sources (called inputs) and a unique sink (called the output).
Non-source nodes (called gates) are labelled either ∧ or ∨. C computes a monotone
function {0, 1}m → {0, 1} in the natural way. For m =

(
n
2

)
, we view C as computing

a monotone graph function. C(G) denotes the value of C on a graph G. M(C) (resp.
M(C, P )) denotes the set of minterms (resp. P -minterms) of the function computed
by C.

Size is the number of gates in a circuit. Fan-in is the maximum in-degree among
gates. In §6–§8, we prove our lower bounds (Theorems 1.2 and 1.4) for monotone
circuits with fan-in 2. In §9, we extend these results to monotone circuits with un-
bounded fan-in.

2.4. Random graphs. We consistently represent random objects using boldface
symbols (G, W , etc.). For a set X and p ∈ [0, 1], notation W ⊆p X expresses that
W is a random subset of X where each x ∈ X belongs to W independently with
probability p. For a function p : N→ [0, 1], we denote byG ∼ G(n, p) the Erdős-Rényi
random graph on n vertices, in which each pair of vertices has an edge independently
with probability p(n) (i.e., VG = [n] and EG ⊆p

(
[n]
2

)
). We denote by Kk (= Kk(n))
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the random planted k-clique on n vertices (i.e., VKk
= [n] and EKk

=
(
U
2

)
where U

is uniform random k-element subset of [n]).

We now state two lemmas concerning k-cliques in G(n, p) (for proofs and addi-
tional background, see Ch. 10 of [3], Ch. 4 of [7], or Ch. 3 of [12]). The first lemma
establishes that Θ(n−2/(k−1)) is precisely the class of threshold functions for the ex-
istence of k-cliques in G(n, p).

Lemma 2.2.

• If p(n) = o(n−2/(k−1)) then G(n, p) is almost surely k-clique-free.
• If p(n) = ω(n−2/(k−1)) then G(n, p) has a k-clique almost surely.
• If p(n) = Θ(n−2/(k−1)) then Pr[G(n, p) has a k-clique] is bounded away from

0 and 1.

When p = Θ(n−2/(k−1)), the number of k-cliques in G(n, p) is asymptotically
Poisson, as the next lemma shows. To state the lemma, let Pois(λ) denote the Poisson
distribution with mean λ, let dTV(·, ·) denote the total variation distance (= 1/2 the
`1-distance between two distributions), and let κ(G) denote the number of k-cliques
in a graph G.

Lemma 2.3. Fix c > 0 and let λ = c(
k
2)/k! and G ∼ G(n, cn−2/(k−1)). For t ∈ N,

let Gt denote G conditioned on κ(G) = t.

1. κ(G) and Pois(λ) converge in distribution (i.e., lim
n→∞

dTV(κ(G),Pois(λ)) =

0).
2. Gt+1 and Gt ∪Kk converge in distribution.
3. lim

n→∞
dTV(κ(G), κ(G ∪Kk)) = dTV(Pois(λ),Pois(λ) + 1) < 1.

Proof. [Proof sketch] Proofs of (1) can be found in any of [3, 7, 12]. For (2), let
S ⊆ Gn be the set of graphs with exactly t+1 k-cliques such that no two k-cliques have
a vertex in common. W.h.p., Gt+1 ∈ S and Gt ∪Kk ∈ S. Further, for every G ∈ S,
we have Pr[Gt+1 = G | Gt+1 ∈ S] = Pr[Gt ∪Kk = G | Gt ∪Kk ∈ S]. It follows that
Gt+1 and Gt ∪Kk converge in distribution. For (3), note that (1) and (2) imply that
κ(G ∪Kk) and Pois(λ) + 1 converge in distribution. Hence dTV(κ(G), κ(G ∪Kk))
converges to dTV(Pois(λ),Pois(λ)+1), which is a constant less than 1−Pr[Pois(λ) = 0]
(= 1− e−λ).

3. Razborov’s Approximation Method. Razborov proved the first lower
bounds on the worst-case monotone complexity of k-Clique in a seminal paper [16]
which introduced the technique known as the Approximation Method. A slight quan-
titative improvement to Razborov’s bounds was later given by Alon and Boppana
[1].

Theorem 3.1 ([1, 16]). For every constant k ≥ 3, k-Clique has worst-case
monotone complexity Ω((n/ log n)k).

Theorem 3.1 is derived from a more general lower bound stated in terms of two
random graphs (similar to the statement of Theorem 1.4). Let Pk−1 denote the
uniform distribution on complete (k−1)-partite graphs in Gn. The following theorem
is implicit in [1, 16].

Theorem 3.2. If C is a monotone circuit of size o((n/ log n)k) such that E[C(Kk)] =
1− o(1), then E[C(Pk−1)] = 1− o(1).

We now describe the basic Approximation Method used to prove Theorem 3.2.
Suppose we want to prove a lower bound the size of monotone circuits C which separate
two probability distributions ∆0 and ∆1 on {0, 1}n in the sense that E[C(∆0)] = o(1)
and E[C(∆1)] = 1 − o(1). In the Approximation Method, we consider a class A of
monotone functions {0, 1}n → {0, 1} (called “approximators”) such that
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• A contains the i-coordinate function x 7→ xi for every i ∈ [n],
• A is a lattice with respect to the natural partial order on monotone functions

(i.e. f ≤ g iff f(x) ≤ g(x) for all x ∈ {0, 1}n).

We denote by ∧ and ∨ the g.l.b. and l.u.b. operations in A (note that ∧ and ∨ are
not necessarily the AND and OR operations). Now, for any monotone circuit C on(
n
2

)
variables, we may consider the corresponding circuit {∧,∨}-circuit C in which the

∧ and ∨ gates are replaced by ∧ and ∨ gates. Note that every gate in C computes a
function in A.

To establish that no monotone circuit C of size S separates ∆0 and ∆1, it suffices
to show the following:

1. no f ∈ A satisfies E[f(∆0)] = o(1) and E[f(∆1)] = 1− o(1),
2. for all f, g ∈ A,

E[(f ∨ g)(∆0)]− E[(f ∨ g)(∆0)] = o(1/S),

E[(f ∧ g)(∆1)]− E[(f ∧ g)(∆1)] = o(1/S).

By bounding “local errors”, (2) implies that for any monotone circuit C of size S,

E[C(∆0)] ≤ E[C(∆0)] + o(1),

E[C(∆1)] ≥ E[C(∆1)]− o(1).

It follows that C cannot satisfy both E[C(∆0)] = o(1) and E[C(∆1)] = 1− o(1).

Of course, showing (1) and (2) for given ∆0 and ∆1 depends on a clever choice
of the lattice A. To prove Theorem 3.2 (with respect to ∆0 = Pk−1 and ∆1 = Kk),
Razborov defines a lattice A where the l.u.b. operation ∨ involves “plucking” large
sunflowers among the minterms of the function f∨g. (See [16] for the precise definition
of A.)

Having outlined the standard Approximation Method framework, we caution the
reader that our proof of Theorem 1.4 does not follow this framework precisely. Rather,
we work with a “one-sided” version of the Approximation Method presented in terms
of a closure operator on the lattice of all monotone graph functions (see §6). However,
this difference is merely a matter of presentation, as our proof could alternatively be
formulated in terms of a suitable lattice A of approximator functions.

4. Quasi-sunflowers. In this section we introduce a new relaxation of sunflow-
ers called quasi-sunflowers. Like sunflowers, quasi-sunflowers are a special class of
hypergraphs. Recall that a hypergraph on a set X is a family F of subsets of X. Ele-
ments of F are called hyperedges. The size |F| of F refers to the number of hyperedges.
We say that F is s-uniform if every hyperedge has size s (i.e., F ⊆

(
X
s

)
).

A sunflower is a nonempty hypergraph F such that the intersection of any two
distinct hyperedges equals the intersection

⋂
F (=

⋂
U∈F U) of all hyperedges. The

set
⋂
F is called the core of F and sets U \

⋂
F where U ∈ F are called petals

of F (note that petals are mutually disjoint). The following result, known as the
Erdős-Rado Sunflower Lemma, plays a key role in many applications of sunflowers.

Theorem 4.1 (Sunflower Lemma [9]). Every s-uniform hypergraph F of size
> s!(N − 1)s contains a sunflower of size N .

We now define our new notion of quasi-sunflowers. Quasi-sunflowers are a relax-
ation of sunflowers in which petals may overlap in a limited way (for other variants
of sunflowers studied in extremal combinatorics, see Ch. 7 of [14]).
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Definition 4.2 (Quasi-sunflowers). Let F be a nonempty hypergraph on a set
X and let Y =

⋂
F . For p ∈ [0, 1] and γ ≥ 0, we say that F is (p, γ)-quasi-sunflower

if for the random set W ⊆p X,

Pr
[
W ∪ Y contains no hyperedge of F

]
≤ e−γ .

Remark 4.3. Every sunflower is a (p, γ)-quasi-sunflower for suitable p and γ.
Specifically, suppose F is a sunflower of size n such that each hyperedge has size ≤ s.
Then for every p ∈ [0, 1], F is a (p, nps)-quasi-sunflower. To see this, let Y =

⋂
F

and note that for W ⊆p X,

Pr
[
W ∪ Y contains no hyperedge of F

]
≤ (1− ps−|Y |)n ≤ exp(nps−|Y |) ≤ exp(nps).

We now give a result on quasi-sunflowers analogous to the Sunflower Lemma.
This lemma plays a key role in our lower bounds.

Theorem 4.4 (Quasi-sunflower Lemma). For all p ∈ [0, 1] and γ ≥ 1, every
s-uniform hypergraph of size ≥ s!(cγ/p)s contains a (p, γ)-quasi-sunflower where c =
1/ ln(3/2) < 2.47.

Remark 4.5. The standard Sunflower Lemma (Theorem 4.1) directly implies
a weaker version of Theorem 4.4. Suppose F is a s-uniform hypergraph of size ≥
s!(γ/ps)s. Then F contains a sunflower of size γ/ps by Theorem 4.1, which is a
(p, γ)-quasi-sunflower by Remark 4.1.

Our proof of Theorem 4.4 relies on Janson’s Inequality [11] (see also Ch. 2 of [12]
and Ch. 8 of [3]).

Lemma 4.6 (Janson’s Inequality [11]). Let F be a nonempty hypergraph on a set
X. Let W be a random subset of X such that events x ∈W are mutually independent
for x ∈ X (for example, W ⊆p X). Define µ and ∆ by

µ =
∑
U∈F

Pr
[
U ⊆W

]
,

∆ =
∑

U,V ∈F :
U 6=V, U ∩V 6= ∅

Pr
[
U ∪ V ⊆W

]
.

Then Pr
[ ∧
U∈F

U *W
]
≤ exp(−min(

µ

2
,
µ2

2∆
)).

Our proof of Theorem 4.4, below, uses Janson’s Inequality within an inductive
argument that resembles proofs of the Sunflower Lemma.

Proof. [Proof of the Quasi-sunflower Lemma (Theorem 4.4)] Define the sequence

`1, `2, . . . inductively by `1 = 1 and `s = 2
∑s−1
t=1

(
s
t

)
`t for s ≥ 2. We have `s ≤

s! ln−s(3/2) by induction: for s ≥ 2, if we assume that `t ≤ t! ln−t(3/2) for all
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t ∈ {1, . . . , s− 1}, then

`s ≤ 2

s−1∑
t=1

(
s

t

)
t! ln−t(3/2)

= 2

(
s−1∑
t=1

lns−t(3/2)

(s− t)!

)
s! ln−s(3/2)

≤ 2

(
−1 +

∞∑
j=0

lnj(3/2)

j!

)
s! ln−s(3/2)

= s! ln−s(3/2).

Suppose F is an s-uniform hypergraph of size ≥ `s(γ/p)
s. Arguing by induction

on s, we claim that F contains an (p, γ)-quasi-sunflower (proving the theorem). In
the base case where s = 1, let W ⊆p X and note that events U ⊆W for U ∈ F are
mutually independent. Therefore,

Pr
[ ∧
U∈F

U *W
]

= (1− p)|F| ≤ (1− p)γ/p ≤ e−γ ,

so F itself is a (p, γ)-quasi-sunflower.

For the induction step, let s ≥ 2 and assume the claim holds for t ∈ {1, . . . , s−1}.
For all A ⊆ X with 1 ≤ |A| ≤ s− 1, let

FA = {U \A : U ∈ F such that A ⊆ U}.

Note that FA is an (s− |A|)-uniform hypergraph. We now consider two cases.

Case 1:. Suppose there exist t ∈ {1, . . . , s − 1} and A ∈
(
X
t

)
such that |FA| ≥

`s−t(γ/p)
s−t. By the induction hypothesis, FA contains a (p, γ)-quasi-sunflower F ′.

Observe that {U ∪A : U ∈ F ′} ⊆ F is a (p, γ)-quasi-sunflower.

Case 2:. Suppose |FA| ≤ `s−t(γ/p)s−t for all t ∈ {1, . . . , s− 1} and A ∈
(
X
t

)
. We

will show that F itself is a (p, γ)-quasi-sunflower. Let W ⊆p X and let µ and ∆ be
as in the statement of Janson’s Inequality (Lemma 4.6), whereby we have

Pr
[ ∧
U∈F

U *W
]
≤ exp(−min(

µ

2
,
µ2

2∆
)).

Thus, to show that F is a (p, γ)-quasi-sunflower, it suffices to show that µ/2 ≥ γ and
µ2/2∆ ≥ γ.

We have µ = |F|ps since Pr[U ⊆ W ] = ps for all U ∈ F . Since |F| ≥ `s(γ/p)
s

and `s ≥ 2 (as s ≥ 2) and γs ≥ γ (as γ ≥ 1), it follows that µ/2 ≥ γ.

It remains to show that µ2/2∆ ≥ γ. For all t ∈ {1, . . . , s−1}, we have
∑
A∈(Xt )

|FA| =(
s
t

)
|F| as each hyperedge of F is counted

(
s
t

)
times in this summation. Therefore,

∑
A∈(Xt )

|FA|2 ≤ |F|
∑

A∈(Xt )

|FA| ≤ µ
(
s

t

)
`s−tγ

s−tpt−2s

(using |F| = µp−s and |FA| ≤ `s−t(γ/p)
s−t). Noting that Pr

[
U ∪ V ⊆ W

]
=
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p2s−|U∩V | for all U, V ∈ F , we bound ∆ as follows:

∆ =
∑
A⊆X :

1≤|A|≤s−1

∑
U,V ∈F :
U∩V=A

Pr
[
U ∪ V ⊆W

]

≤
s−1∑
t=1

( ∑
A∈(Xt )

|FA|2
)
p2s−t

≤ µ
s−1∑
t=1

(
s

t

)
`s−tγ

s−t

≤ µγs−1
s−1∑
t=1

(
s

t

)
`t (using γt ≤ γs−1)

=
µγs−1`s

2
(by definition of `s).

Completing the proof, we have

µ2

2∆
≥ µ

γs−1`s
=
|F|ps

γs−1`s
≥ γ

(using the assumption that |F| ≥ `s(γ/p)s).

5. Small, Medium, Large. Let G ∼ G(n,Θ(n−2/(k−1))) be a random graph
at a threshold for k-Clique. It is instructive to calculate the expected number of
`-cliques in G for ` ∈ {0, . . . , k}:

E[# of `-cliques in G] = Θ
(
n`−

2
k−1 (`2)

)
.

Letting λ = `/k, we have

`− 2

k − 1

(
`

2

)
= λ(1− λ)k +O(1).

Note that λ(1 − λ)k has maximum value k/4 for λ = 1/2. (Indeed, ` − 2
k−1

(
`
2

)
is

maximal for ` ∈ {bk/2c, dk/2e}.)
Related to the fact that G has many cliques of size around k/2 and much fewer

cliques of size ≤ εk or ≥ (1− ε)k for ε > 0, it will be convenient to classify patterns
into three “sizes”.

Definition 5.1. A pattern P is:
• small if |VP | < k/2,
• medium if |VP | ≥ k/2 and there exist small patterns P1, P2 such that P =
P1 ∪ P2,

• large otherwise.
A graph is small, medium or large according to the induced pattern on its non-isolated
vertices.

A few observations about this definition: The union of two small patterns/graphs
is small or medium (but never large). The complete pattern K` is small if ` < k/2
and large otherwise (but never medium). An important example of medium pattern
is Kdk/2e − {single edge} (which is the union of two overlapping copies of Kdk/2e−1).
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Lemma 5.2. For every medium pattern P ,

|VP | −
2

k − 1
|EP | ≥

k + 1

4
+

2

k − 1
.

Proof. Let P be a medium pattern which minimizes |VP |− 2
k−1 |EP |. By definition

of medium, P is the union of two small patterns P1 and P2. We can assume that P1

and P2 are complete, since we only decrease |VP1∪P2
| − 2

k−1 |EP1∪P2
| by replacing P1

and P2 with the (also small) complete patterns with the same vertices. Let a = |VP |,
b = |VP1

| and c = |VP2
| and note that |VP | − 2

k−1 |EP | = a− 2
k−1 (

(
b
2

)
+
(
c
2

)
−
(
b+c−a

2

)
).

First, consider the case that k is odd and let t = k−1
2 . Note that integers a, b, c

satisfy 1 ≤ b, c ≤ t and t + 1 ≤ a ≤ b + c. Relaxing integrality, let α, β, γ be
real numbers minimizing α − 1

t (
(
β
2

)
+
(
γ
2

)
−
(
β+γ−α

2

)
) subject to 1 ≤ β, γ ≤ t and

t + 1 ≤ α ≤ β + γ. Note that β = γ since, if not, by replacing both β and γ with
their mean (β + γ)/2 we could reduce the objective function while still satisfying the
constraints. Our task is now to minimize the function f(α, β) defined by

f(α, β) = α+
1

t

(
2β − α

2

)
− 2

t

(
β

2

)
subject to 1 ≤ β ≤ t and t+ 1 ≤ α ≤ 2β. Since d

dαf(α, β) > 0 and d
dβ f(α, β) < 0 for

all α, β in this range, it follows that α = t+ 1 and β = t. Therefore,

|VP | −
2

k − 1
|EP | ≥ f(t+ 1, t) =

t+ 1

2
+

1

t
=
k + 1

4
+

2

k − 1
.

In the case where k is even, we get

|VP | −
2

k − 1
|EP | ≥

k + 1

4
+

9

4(k − 1)
>
k + 1

4
+

2

k − 1

by a similar calculation.
We point out that Lemma 5.2 is tight when P is the medium pattern Kdk/2e −

{single edge}.
Remark 5.3. The dominant term k/4 in Lemma 5.2 is the same k/4 that appears

in the exponent of nk/4 in our main theorems. In fact, Lemma 5.2 also accounts for
the exponent in the nk/4 lower bound on the average-case complexity of k-Clique
on AC0 circuits from [18]. It is notable that the same bottleneck arises in the distinct
settings of AC0 circuits and monotone circuits.

6. The Approximation via a Closure Operator. In this section, we define
a closure operator in the lattice of monotone graph functions. For a monotone graph
function f , its closure cl(f) is a good approximation for f (Lemma 6.6). A key
property of closed functions is that they have few P -minterms for small and medium
patterns P (Lemma 6.9).

Remark 6.1. The approximation of f by cl(f) is a variation of the standard
Approximation Method as described in §3. To fit that framework exactly (define
the lattice of approximator functions, etc.), it becomes necessary to work with an
additional “truncation” operator which cuts out large minterms (as in [16]). We find
it more natural to work with a closure operator alone, so our presentation differs from
the framework described in §3.

From now through §8, fix p = n−2/(k−1) and δ = k−2 and let G ∼ G(n, p) and
G− ∼ G(n, p1+δ). Keep in mind that:
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• p is a fixed threshold function for the existence of k-cliques (our results in
fact hold for any p = Θ(n−2/(k−1)),

• δ is a sufficiently small constant (this happens to mean ≤ k−2),
• G is random graph at k-clique threshold p, and
• G− is a random graph which is slightly subcritical for the existence of k-

cliques. That is, G− is almost surely k-clique-free since p1+δ = o(n−2/(k−1)),
but for instanceG− contains many cliques of size k−1 since p1+δ = ω(n−2/(k−2)).

In addition, from now through §8, monotone circuits are assumed to have fan-in 2.
That is, we first prove Theorems 1.2 and 1.4 for monotone circuits with fan-in 2. In
§9, we extend these theorems to monotone circuits with unbounded fan-in.

We now present the key definition of this section:
Definition 6.2. A monotone graph function f : Gn → {0, 1} is closed if for

every small-or-medium graph H,

E[f(G− ∪H)] ≥ 1− e−n
δ

=⇒ f(H) = 1.

In order words, the expectation E[f(G− ∪H)] (= Pr[f(G− ∪H) = 1]) never lies

in the interval [1− e−nδ , 1); it is either < 1− e−nδ or = 1. Note that if both f and g
are closed, then the conjunction f ∧ g is also closed.

Definition 6.3. For a monotone graph function f , we denote by cl(f) the unique
minimal closed function such that f ≤ cl(f); this is well-defined since the constant
function 1 is closed and conjunctions of closed functions are closed. We call cl(f) the
closure of f .

Remark 6.4. Viewed as an operation on the set of monotone graph functions,
cl(·) is a closure operator in the usual sense. That is, it satisfies:

• (increasing) f ≤ cl(f),
• (monotone) f ≤ g =⇒ cl(f) ≤ cl(g),
• (idempotent) cl(cl(f)) = cl(f).

Definition 6.5. We denote by ∨ the operation on monotone graph functions
defined by f ∨ g = cl(f ∨ g). For a monotone circuit C, let C be the corresponding
circuit with basis {∧,∨} in which the ∨-gates in C are replaced by ∨-gates. For a node
ν in C, we denote by ν the corresponding node in C.

Note that cl(C) (i.e., cl(f) where f is the function computed by C) is not neces-
sarily the same function as C, although C is indeed a closed function satisfying C ≤ C
(i.e., C(G) ≤ C(G) for all graphs G).

Lemma 6.6. For every monotone graph function f ,

Pr
[
f(G−) 6= (cl(f))(G−)

]
≤ 2k

2

nke−n
δ

.

Proof. We claim that there exist t ∈ N and small-or-medium graphs H1, . . . ,Ht

and monotone functions f0, . . . , ft : Gn → {0, 1} such that
• f0 = f ,

• E[fi−1(G− ∪Hi)] ∈ [1− e−nδ , 1),
• fi = fi−1 ∨ IndHi where IndHi : Gn → {0, 1} is the function IndHi(G) = 1 iff
Hi ⊆ G,

• ft is closed.
We can generate such a sequence simply by choosing any suitable Hi+1 so long as fi
is not closed; this process eventually terminates, since each small or medium graph
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H appears at most once in the sequence H1, H2, . . . . Note that

t ≤ |{small and medium graphs in Gn}| ≤ 2k
2

nk.

We argue by induction that fi ≤ cl(f) for all i ∈ {0, . . . , t}. This is true for i = 0
since f0 = f . Let i ≥ 1 and assume fi−1 ≤ cl(f). We have E[(cl(f))(G− ∪ Hi)] ≥
E[fi−1(G− ∪Hi)] ≥ 1 − e−nδ . Therefore cl(f)(Hi) = 1 (by definition of cl(f) being
closed). Since fi (= fi−1∨ IndHi) is minimal among monotone graph functions g such
that fi−1 ≤ g and g(Hi) = 1, we have fi ≤ cl(f).

It follows that ft = cl(f) since ft is closed and f ≤ ft ≤ cl(f). Concluding the
proof of the lemma, we have

Pr
[
f(G−) 6= (cl(f))(G−)

]
≤

t∑
i=1

Pr
[
fi−1(G−) 6= fi(G

−)
]

=

t∑
i=1

Pr
[
fi−1(G−) = 0 and Hi ⊆ G−

]
≤

t∑
i=1

Pr
[
fi−1(G− ∪Hi) = 0

]
≤ 2k

2

nke−n
δ

.

The next two lemmas follow immediately from Lemma 6.6.
Lemma 6.7. For every monotone graph function f , M(cl(f)) \M(f) contains

only small and medium graphs.
Proof. The proof of Lemma 6.6 shows that there exist small-or-medium graphs

H1, . . . ,Ht such that cl(f) = f∨
∨t
i=1 IndHi . Thus,M(cl(f)) ⊆M(f)∪{H1, . . . ,Ht}.

Lemma 6.8. For every monotone circuit C of size exp(o(nδ)),

E[C(G−)]− E[C(G−)] = exp(−Ω(nδ)).

Proof. For any graph H, note that if C(H) 6= C(H) then there exists an ∨-
gate ν with children µ1 and µ2 in C such that ν(H) 6= (µ1 ∨ µ2)(H) (equivalently:
f(H) 6= (cl(f))(H) where f is the function µ1 ∨ µ2). It follows that

E[C(G−)]− E[C(G−)] = Pr
[
C(G−) 6= C(G−)

]
≤

∑
∨-gates ν in C with
children µ1 and µ2

Pr
[
ν(G−) 6= (µ1 ∨ µ2)(G−)

]
≤ size(C)2k

2

nke−n
δ

(by Lemma 6.6)

= exp(−Ω(nδ)).

The next lemma gives a key property of closed functions that relies on the Quasi-
sunflower Lemma (Theorem 4.4).

Lemma 6.9. A closed monotone graph function has at most kk
2

(nδ/p1+δ)|EP |

P -minterms for every small or medium pattern P .
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Proof. Let f be a closed monotone graph function and let P be a small or
medium pattern. Toward a contradiction, assume that |M(f, P )| ≥ kk2(nδ/p1+δ)|EP |.

Let X =
(
[n]
2

)
and consider the |EP |-uniform hypergraph F ⊆

(
X
|EP |

)
defined by

F = {EF : F ∈M(f, P )}. Since |EP | ≤ k2/4 (i.e., no medium pattern has more than

k2/4 edges), we have |EP |!2.47|EP | ≤ kk2 and hence

|F| = |M(f, P )| ≥ |EP |!2.47|EP |(nδ/p1+δ)|EP |.

By Theorem 4.4, there exists a (p1+δ, nδ)-quasi-sunflower F0 ⊆ F . Let Y =
⋂
F and

let H be the graph with edge set EH = Y . Let W ⊆p1+δ X and note that W has the
same distribution as EG− . We have

E[f(G− ∪H)] ≥ Pr
[
G− ∪H contains a P -minterm of f

]
≥ Pr

[
W ∪ Y contains a hyperedge of F0

]
≥ 1− e−n

δ

.

Since f is closed and H is small or medium, it follows that f(H) = 1. Note that H has
fewer than |EP | edges, so in particular H is a proper subgraph of some F ∈M(f, P )
with EF ∈ F0. However, this contradicts the fact that F is a minterm of f .

Our final lemma on closed functions concerns the pattern Kk − {single edge}.
Lemma 6.10. Suppose f is a closed monotone graph function. Let Q be a random

planted copy of Kk − {single edge} among n vertices. Then either f is the constant
function 1 or else E[f(Q)] = o(1).

Proof. Assume that E[f(Q)] ≥ ε for some constant ε > 0. We will show that f is
the constant function 1 using Janson’s Inequality (Lemma 4.6). Let F be the family
of graphs H such that f(H) = 1 and the induced subgraph on non-isolated vertices of
H is isomorphic to Q (= Kk −{single edge}). We have |F| = ε

(
n
k

)
= Ω(nk). Viewing

F as a |EQ|-uniform hypergraph on
(
[n]
2

)
, we bound µ and ∆ in the statement of

Lemma 4.6:

µ =
∑
H∈F

Pr
[
H ⊆ G−

]
, ∆ =

∑
H1,H2 ∈F :H1 6=H2, H1 ∩H2 6= ∅

Pr
[
H1 ∪H2 ⊆ G−

]
.

Recalling that p = n−2/(k−1) and δ = k−2, we have µ = |F|p(1+δ)((
k
2)−1) = εn(2/(k−1))−(1/k).

Note that ∆ is dominated by terms where H1, H2 are copies of Q which overlap on
a single edge (so that H1 ∪ H2 has 2k − 2 vertices and 2

(
k
2

)
− 3 edges). Thus, we

have ∆ = O(n2k−2p(1+δ)(2(
k
2)−3)) and hence µ2/∆ = Ω(n2p1+δ) = Ω(n2−

2
k−1 (1+k

−2)).
Noting that µ and µ2/∆ are both Ω(n1/k), Lemma 4.6 implies Pr[G− contains no Q-
minterm of f ] = exp(−Ω(n1/k)). It follows that E[f(G−)] ≥ Pr[G− has a subgraph
in F ] ≥ 1 − exp(−nδ) for sufficiently large n. The assumption that f is closed now
implies that E[f(G−)] = 1, that is, f is the constant function 1.

7. K vs. G−. In the previous section, we defined a closure operator cl(·) on
monotone graph functions and an operation transforming a monotone circuit C into
a {∧,∨}-circuit C. In this section, we prove Theorem 1.4.

Lemma 7.1. Let C be a monotone circuit. For every H ∈ M(C,Kk), there exist
a gate ν in C and a medium subgraph H ′ of H such that H ′ ∈M(ν).

Proof. Suppose H ∈M(C,Kk) and let

H = {subgraphs of H}, A = {small graphs}, B = {medium graphs}.
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Toward a contradiction, assume that M(ν) ∩ H ∩ B = ∅ for every gate ν in C. We
will show, arguing by induction on ν, thatM(ν)∩H ⊆ A for every node ν in C. This
yields a contradiction since H ∈ (M(νout)∩H) \A where νout is the output gate of C.

Consider first the base case where ν is an input node labelled by 0 or 1 or the
indicator function for some edge e ∈

(
[n]
2

)
. Note that M(ν) is respectively the empty

set or {the empty graph} or {the graph with only edge e}. In any case, ν has only
small minterms. Since ν = ν, we have M(ν) ∩H ⊆ A as required.

For the induction step, suppose ν is a gate in C with children µ1 and µ2 and
assume that M(µi) ∩H ⊆ A for i ∈ {1, 2}. If ν is an ∧-gate, then

M(ν) ∩H =M(µ1 ∧ µ2) ∩H
= {F1 ∪ F2 : F1 ∈M(µ1), F2 ∈M(µ2)} ∩ H (Lemma 2.1)

= {F1 ∪ F2 : F1 ∈M(µ1) ∩H, F2 ∈M(µ2) ∩H}
⊆ {F1 ∪ F2 : F1, F2 ∈ A} (since M(µi) ∩H ⊆ A)

⊆ A ∪ B (the union of two small graphs cannot be large)

⊆ A (by assumption M(ν) ∩H ∩ B = ∅).

Finally, if ν is a ∨-gate, then

M(ν) ∩H =M(µ1 ∨ µ2) ∩H
=M(cl(µ1 ∨ µ2)) ∩H (definition of ∨)

⊆
(
M(µ1 ∨ µ2) ∪ A ∪ B

)
∩H (Lemma 6.7)

⊆
(
M(µ1) ∪M(µ2) ∪ A ∪ B

)
∩H (Lemma 2.1)

⊆ A ∪ B (since M(µi) ∩H ⊆ A for i ∈ {1, 2})
⊆ A (by assumption M(ν) ∩H ∩ B = ∅).

Lemma 7.2. For every monotone circuit C, there exists a medium pattern P such
that

size(C) ≥ |M(C,Kk)|
(2k)k2nk−|VP |(nδ/p1+δ)|EP |

.

Proof. By Lemma 7.1, for each H ∈ M(C,Kk), there exists a gate µH in C and
a medium subgraph H ′ of H such that H ′ ∈ M(µH). Fix choices of µH and H ′ for
all H ∈M(C,Kk). For every gate ν in C and medium pattern P , let

t(ν, P ) = |{H ∈M(C,Kk) : µH = ν and H ′ ∈M(ν, P )}|.

By a simple counting argument, there exist ν and P such that

|M(C,Kk)|
size(C)|{medium patterns up to isomorphism}|

≤ t(ν, P ).

For each H ′ ∈ M(ν, P ), there are at most nk−|VP | different H ∈ M(C,Kk) of which
H ′ is a subgraph. It follows that

t(ν, P ) ≤ nk−|VP ||M(ν, P )|.
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Since ν is closed and P is medium, Lemma 6.9 implies

|M(ν, P )| ≤ kk
2

(nδ/p1+δ)|EP |.

The result follows by combining these three inequalities, together with the bound 2k
2

on the number of medium patterns up to isomorphism.
We are ready now to prove Theorem 1.4.
Proof. [Proof of Theorem 1.4] Suppose f : Gn → {0, 1} is computed by mono-

tone circuits of size O(nk/4) and satisfies E[f(Kk)] = 1 − o(1). We must show that
E[f(G−)] = 1− exp(−Ω(nδ)).

Let C be the circuit computing f . By Lemma 6.8, we have

E[C(G−)]− E[f(G−)] = Pr[f(G−) 6= C(G−)] = exp(−Ω(nδ)).

Therefore, it suffices to show that E[C(G−)] = 1 (i.e., C is the constant function 1).
We now assume that E[C(G−)] 6= 1 and derive a contradiction. Lemma 6.10 im-

plies that E[C(random planted copy of Kk −{single edge}] = o(1). Since E[C(Kk)] ≥
E[f(Kk)] = 1 − o(1), it follows that almost all k-cliques are minterms of C, that is,
|M(C,Kk)| = (1− o(1))

(
n
k

)
.

For the following calculations, recall that p = n−2/(k−1) and δ = k−2. By
Lemma 7.2, there is a medium pattern P such that

size(C) ≥ |M(C,Kk)|
(2k)k2nk−|VP |(nδ/p1+δ)|EP |

= Ω

(
n|VP |−(

2
k−1 (1+δ)+δ)|EP |

kk(2k)k2

)
.

Note that |EP | < k2/4 (since among medium patterns, the disjoint union of two
bk−12 c-cliques has the most edges). By Lemma 5.2, |VP | − 2

k−1 |EP | ≥
k
4 + 1

4 + 2
k−1 .

Thus,

|VP | −
(

2

k − 1
(1 + δ) + δ

)
|EP | > |VP | −

2

k − 1
|EP | −

1

4

(
1 +

2

k − 1

)
>
k

4
+

1

k
.

So we have size(C) = Ω(k−k(2k)−k
2

n(k/4)+(1/k)). But since k is a constant, this
contradicts the assumption that size(C) = O(nk/4).

8. G∪K vs. G∪G−. In this section, we prove Theorem 1.2 using Theorem 1.4
together with the following lemma. Recall that G ∼ G(n, p) and G− ∼ G(n, p1+δ).
Note that G ∪G− ∼ G(n, p + (1 − p)p1+δ) and p + (1 − p)p1+δ = p + o(n−2/(k−1)),
which is also a threshold function for k-Clique.

Lemma 8.1. Let f be a graph function (not necessarily monotone) and let G0 ∼
G(n, p) conditioned on G0 being k-clique-free.

1. If f solves k-Clique w.h.p. on G, then E[f(G0 ∪Kk)] = 1− o(1).
2. If f solves k-Clique w.h.p. on G ∪G−, then E[f(G0 ∪G−)] = o(1).

Proof. Let κ(G) denote the number of k-cliques in a graph G.
(1): Suppose f solves k-Clique w.h.p. on G. This means, in particular, that

E[f(G) | κ(G) = 1] = 1 − o(1). Let G1 ∼ G(n, p) conditioned on κ(G1) = 1. Note
that E[f(G1)] = 1− o(1) (using the fact that Pr[κ(G) = 1] = Ω(1)). By Lemma 2.3,
random graphs G0 ∪Kk and G1 have total variation distance o(1). Therefore, w.h.p.
E[f(G0 ∪Kk)] = 1− o(1).

(2): Suppose f solves k-Clique w.h.p. on G ∪G−. In particular,

(∗) E[f(G ∪G−) | κ(G ∪G−) = 0] = o(1).
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SinceG ∼ G(n, p) andG∪G− ∼ G(n, p+o(p)), random variables κ(G) and κ(G∪G−)
converge in distribution to the same Poisson distribution by Lemma 2.3. In particular,
we have

(∗∗) Pr[κ(G) = 0] = (1 + o(1)) Pr[κ(G ∪G−) = 0].

Thus, we have

E[f(G0 ∪G−)] = Pr[f(G ∪G−) = 1 | κ(G) = 0]

=
Pr[f(G ∪G−) = 1 and κ(G) = 0]

Pr[κ(G) = 0]

≥ Pr[f(G ∪G−) = 1 and κ(G ∪G−) = 0]

Pr[κ(G) = 0]

(∗∗)
=

Pr[f(G ∪G−) = 1 and κ(G ∪G−) = 0]

(1 + o(1)) Pr[κ(G ∪G−) = 0]

= (1− o(1)) Pr[f(G ∪G−) = 1 | κ(G ∪G−) = 0]

(∗)
= 1− o(1).

Proof. (of Theorem 1.2) Let C be a monotone circuit of size O(nk/4). Toward
a contradiction, assume that C solves k-Clique w.h.p. on both G and G ∪ G−.
For a graph G, let CG be the circuit obtained from C by substituting 1 for each
input corresponding to an edge in G. Note that CG computes the function CG(H) =
C(G ∪H).

Let G0 ∼ G(n, p) conditioned on G0 being k-clique-free. Lemma 8.1 implies that
for every constant ε > 0,

Pr
G0

[
E
Kk

[CG0(Kk)] ≥ 1− ε
]

= 1− o(1),

Pr
G0

[
E
G−

[CG0(G−)] ≤ ε
]

= 1− o(1).

It follows that there is a sequence of monotone circuits of size O(nk/4) (namely, CG0

for almost every G0) with expected value 1 − o(1) on Kk and o(1) on G−. But
Theorem 1.4 says this is impossible, which gives the desired contradiction.

9. Removing the Fan-in Restriction. In this section, we remove the fan-in
2 restriction in our lower bounds (Theorem 1.2 and 1.4). Let C be a fixed monotone
circuit of size O(nk/4) with

∧
-gates and

∨
-gates of unbounded fan-in. We will show

that the lower bounds of Theorems 1.2 and 1.4 (on size, as defined by the number of
gates) still hold in this setting.

We first note that there is an obvious generalization of the binary operation ∨
(defined by f ∨ g = cl(f ∨ g)) to a multi-ary operation

∨
on functions f1, . . . , fm,

which we define by
∨m
i=1fi = cl

(∨m
i=1 fi

)
. Denote by C the {

∧
,
∨
}-circuit obtained

by replacing
∨

-gates in C with
∨

-gates.
There is only one place in the proof of Theorem 1.4 where the fan-in 2 assumption

comes into play: namely in Lemma 7.1. To be precise, this lemma relies on the fact
that if f1 and f2 are monotone graph functions with only small minterms, then f1∧f2
has no large minterms. This is a consequence of facts:

• the union of two small graphs is either small or medium, and
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• M(f1 ∧ f2) ⊆ {F1 ∪ F2 : F1 ∈M(f1), F1 ∈M(f2)} (Lemma 2.1).
The trouble is that the union of three or more small graphs can be large. So Lemma
7.1 is invalid for the circuit C.

We get around this problem as follows. Denote by [k log n] the set {1, . . . , dk log ne}
and by [n1/2k] the set {1, . . . , dn1/2ke}. For every

∧
-gate ν in C and i ∈ [k log n] and

j ∈ [n1/2k], generate a random set Sν,i,j ⊆2−i Children(ν) (that is, Sν,i,j indepen-
dently contains each child of ν with probability 2−i). We replace Lemma 7.1 with the
following:

Lemma 9.1. With probability 1− exp(−Ω(n1/3k)), the following holds: for every
H ∈ M(C,Kk), there exist a gate ν in C and a medium subgraph H ′ of H such that
either

• ν is an
∨

-gate and H ′ ∈M(ν), or
• ν is an

∧
-gate and H ′ ∈M(

∧
µ∈Sν,i,j µ) for some i ∈ [k log n] and j ∈ [n1/2k].

Proof. Suppose H ∈M(C,Kk) and for notational convenience let

H = {subgraphs of H}, A = {small graphs}, B = {medium graphs}.

An easy argument (along the lines of the proof of Lemma 7.1) shows that there exists
a gate ν in C, with children µ1, . . . , µm, such that

1. M(µ`) ∩H ⊆ A for all ` ∈ [m], and
2.
(
M(ν) ∩H

)
\ A is nonempty.

Fix any H ′ ∈
(
M(ν) ∩H

)
\ A.

In the case where ν is
∨

-gate, we have

M(ν) =M(
∨
`∈[m]µ`)

=M(cl(
∨
`∈[m] µ`)) (definition of

∨
)

⊆M(
∨
`∈[m] µ`) ∪ A ∪ B (Lemma 6.7)

⊆
⋃
`∈[m]M(µ`) ∪ A ∪ B (Lemma 2.1).

Since H ′ /∈ A and M(µ`) ∩ H ⊆ A for all ` ∈ [m], it follows that H ′ ∈ B (i.e., H ′ is
medium, so we are done).

Now suppose ν is an
∧

-gate. We have

M(ν) =M(
∧
`∈[m] µ`)

⊆ {F1 ∪ · · · ∪ Fm : F1 ∈M(µ1), . . . , Fm ∈M(µm)} (Lemma 2.1).

Hence there exist F1 ∈M(µ1), . . . , Fm ∈M(µm) such that H ′ = F1 ∪ · · · ∪ Fm. Fix
any such F1, . . . , Fm.

We next fix an enumeration H1, . . . ,Ht of the set {F1, . . . , Fm} subject to

|{` ∈ [m] : Ht′ = F`}| ≥ |{` ∈ [m] : Ht′+1 = F`}|

for all t′ ∈ {1, . . . , t − 1}. (That is, Ht′ are ranked in decreasing order according to

their frequency among F1, . . . , Fm.) Note that t ≤ 2k
2

(even though m may be as

large as nk/4), since there are ≤ 2k
2

distinct subgraphs of H.
Let s be the least index in {2, . . . , t} such that H1 ∪ · · · ∪ Hs /∈ A. (Such s is

well-defined since H1∪· · ·∪Ht = F1∪· · ·∪Fm = H ′ /∈ A.) Note that H1∪· · ·∪Hs ∈ B,
since H1 ∪ · · · ∪ Hs−1 ∈ A and Hs ∈ A (using the fact that the union of two small
graphs is either small or medium). Let i be the unique integer in [k log n] such that

2i−1 ≤ |{` ∈ [m] : Hs = F`}| < 2i.
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(Such i exists since m ≤ fanin(C) ≤ size(C) = O(nk/4).)
We now show that, with extremely high probability, there exists j ∈ [n1/2k]

such that H1 ∪ · · · ∪Hs ∈ M(
∧
µ∈Sν,i,j µ). Consider a random set S ⊆2−i [m]. For

t′ ∈ {1, . . . , t}, denote byXt′ the event that there exists ` ∈ S such that Ht′ ∈M(µ`).
Note the following:

• for t′ ∈ {1, . . . , s},

Pr[Xt′ ] = 1− (1− 2−i)|{`∈[m]:Ht′=F`}| ≥ 1− (1− 2−i)2
i−1

> 1− 1√
e
>

1

4
,

• for t′ ∈ {s+ 1, . . . , t},

Pr[¬Xt′ ] ≥ (1− 2−i)|{`∈[m]:Ht′=F`}| > (1− 2−i)2
i

≥ 1

4
.

Note that X1, . . . ,Xt are independent. It follows that

Pr
[
H1 ∪ · · · ∪Hs ∈M(

∧
`∈S µ`)

]
≥ Pr

[
(X1 ∧ · · · ∧Xs) ∧ (¬Xs+1 ∧ · · · ∧ ¬Xt)

]
=
( ∏
t′∈{1,...,s}

Pr[Xt′ ]
)( ∏

t′∈{s+1,...,t}

Pr[¬Xt′ ]
)

≥ 4−t

≥ 4−2
k2

.

By independence (for different j ∈ [n1/2k]) of sets Sν,i,j , we have

Pr
[
∀j ∈ [n1/2k], H1 ∪ · · · ∪Hs /∈M(

∧
µ∈Sν,i,j µ)

]
≤

∏
j∈[n1/2k]

Pr
[
H1 ∪ · · · ∪Hs /∈M(σν,i,j)

]
≤
(
1− 4−2

k2 )n1/2k

≤ exp(−4−2
k2

n1/2k).

Taking a union bound over all ≤
(
n
k

)
graphs H ∈ M(C,Kk), we upper bound the

total failure probability by(
n

k

)
exp(−4−2

k2

n1/2k) = exp(−Ω(n1/3k)),

which proves the lemma.
We now get the following modified version of Lemma 7.2.
Lemma 9.2. With probability 1− exp(−Ω(n1/3k)), there exists a medium pattern

P such that

size(C) ≥ 1

(k log n)n1/2k
· |M(C,Kk)|
(2k)k2nk−|VP |(nδ/p1+δ)|EP |

.

Proof. The argument is nearly identical to the proof of Lemma 7.2, with Lemma
9.1 playing the role of Lemma 7.1.

Compared with Lemma 7.2, the bound in Lemma 9.2 incurs a loss of 1/(k log n)n1/2k.
To achieve a lower bound of ω(nk/4), this loss is tolerable since it is eaten up by the
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slack factor of n1/k/kk(2k)k
2

in the actual bound size(C) = Ω(n(k/4)+(1/k)/kk(2k)k
2

)
given by the proof of Theorem 1.4. The fact that the bottleneck of Lemma 9.2 fails
with probability exp(−Ω(n1/3k)) is also tolerable, since the error E[C(G−)]−E[C(G−)]
allowed by the proof of Theorem 1.4 is exp(−Ω(nδ)) where δ = 1/k2 = o(1/3k). By
this argument, it is seen that the lower bounds proved in this paper remain valid for
monotone circuits with unbounded fan-in.

10. Matching Upper Bound. In this section, we prove Theorem 1.3 (restated
below). This theorem shows that the exponent k/4 in our lower bound (Theorem 1.2)
is tight up to an additive constant.

Theorem 10.1 (Theorem 1.3 restated). There exist monotone circuits C of
size nk/4+O(1) and depth 3k such that C solves k-Clique w.h.p. on G(n, q) for every
function q : N→ [0, 1].

The monotone circuits C constructed in the proof of Theorem 1.3 are adapted from
non-monotone AC0 circuits for the average-case k-Clique problem due to Amano [5].
We briefly describe the idea behind Amano’s construction. Consider the random
graph G ∼ G(n, p) at a k-clique threshold p = Θ(n−2/(k−1)). Pick random sets
U1, . . . , Uk ⊆ {1, . . . , n} such that Ui has size slightly less than min(p−i, n). Let’s
say that (U1, . . . , Uk) isolates a k-clique if there exists a k-clique {u1, . . . , uk} in G
such that for all i ∈ {1, . . . , k}, ui is the unique common neighbor in the set Ui of
vertices u1, . . . , ui−1. The key observation is that, for any fixed choice of U1, . . . , Uk,
it’s possible to test whether (U1, . . . , Uk) isolates a k-clique in G via AC0 circuits

of size Õ(n) and depth O(k). Taking a disjunction of these circuits over nk/4+O(1)

independent choices of U1, . . . , Uk, we get an AC0 circuit of size nk/4+O(1) and depth
O(k) which solves k-Clique w.h.p. on G. (The actual circuits from Amano’s paper
[5] have a different description, but the essential idea is the same.)

We will show how to carry out this construction with monotone circuits. One
immediate challenge is that the graph property “(U1, . . . , Uk) isolates a k-clique” is
non-monotone. We work around this problem using a technique that involves hash
functions.

Remark 10.2. A typical maximal (as opposed to maximum) clique in G ∼
G(n, n−2/(k−1)) has size bk/2c or dk/2e. Unlike maximum cliques, maximal cliques
are easy to find: they can be sampled roughly uniformly at random in linear time
via a simple greedy algorithm (cf. the discussion of Karp’s question in §1). It turns
out that G has nk/4+O(1) maximal cliques in expectation. By running the greedy
algorithm nk/4+O(1) times (each time using fresh randomness to extend cliques as
far as possible), we can enumerate all the maximal cliques (including the maximum
cliques) with high probability. This gives a randomized nk/4+O(1) time algorithm
for solving k-Clique w.h.p. on G. This observation is closely related to the above
description of Amano’s AC0 circuits.

10.1. Subcircuits AU1,...,U` and BcU1,...,U`
. To define the circuit C in Theorem

1.3, we start by defining its principal subcircuits.

Definition 10.3. For a graph G ∈ Gn and sets U1, . . . , U` ⊆ [n] where ` ≥ 1,
define ΓG(U1, . . . , U`) ⊆ U` inductively as follows:

• ΓG(U1) = U1,
• for ` ≥ 2, ΓG(U1, . . . , U`) is the set of u` ∈ U` such that for every i ∈
{1, . . . , ` − 1}, there exists ui ∈ ΓG(U1, . . . , Ui) such that {ui, u`} is an edge
in G.
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Lemma 10.4. If ΓG(U1, . . . , Ui) is a singleton {ui} for each i ∈ {1, . . . , `}, then
u1, . . . , u` form an `-clique in G.

Proof. Immediate from the definition of ΓG(·).
Lemma 10.5. There exist monotone circuits AU1,...,U` of size ≤ `2n2 and depth

3(`− 1) with n output nodes, denoted AvU1,...,U`
for v ∈ [n], such that for every graph

G ∈ Gn and vertex v ∈ [n],

AvU1,...,U`
(G) = 1 ⇐⇒ v ∈ ΓG(U1, . . . , U`).

Proof. The proof is by induction on `. In the base case where ` = 1, the circuit
AU1

consists of n isolated output nodes where AvU1
is labeled by the constant 1 if

v ∈ U1 and by the constant 0 otherwise.
For the induction step, assume ` ≥ 2. Starting with the circuit AU1,...,U`−1

, for
each v ∈ [n] create new gates νv and (µv,i)i∈{1,...,`−1} and (ξv,i,w)i∈{1,...,`−1}, w∈[n]\{v}.
The labels and wires are as follows:

• νv = AND
i∈{1,...,`−1}

µv,i,

• µv,i = OR
w∈[n]\{v}

ξv,i,w,

• ξv,i,w = AND(X{v,w},A
w
U1,...,Ui

) where X{v,w} is the indicator variable for the
edge {v, w}.

The output node AvU1,...,U`−1
is of course νv.

It is easy to see that AU1,...,U` correctly computes the set ΓG(U1, . . . , U`) (assuming
that AU1,...,Ui correctly computes ΓG(U1, . . . , Ui) for every i ∈ {1, . . . , ` − 1}). Note
that we have added 3 to the depth and created (`− 1)n2 + n ≤ `n2 new gates. Thus,
as required we have

• depth(AU1,...,U`) = depth(AU1,...,U`−1
) + 3 = 3(`− 1),

• size(AU1,...,U`) ≤ size(AU1,...,U`−1
) + `n2 ≤ (`− 1)2n2 + `n2 ≤ `2n2.

Next comes another useful definition, followed by a description of circuits BcU1,...,U`
.

Definition 10.6. A sequence (U1, . . . , U`) is c-bounded in graph G if for all
i ∈ {1, . . . , `} and distinct u1 ∈ U1, . . . , ui−1 ∈ Ui−1, there are at most c different
ui ∈ Ui such that {uj , ui} is an edge in G for all j ∈ {1, . . . , i− 1}.

Lemma 10.7. For all c, ` ∈ N, there exist single-output monotone circuits
BcU1,...,U`

of size O(n2 log n) and depth 3`−1 such that for every graph G, if (U1, . . . , U`)
is c-bounded in G then

BcU1,...,U`
(G) = 1 ⇐⇒ U1 × · · · × U` contains an `-clique in G.

(The hidden constant in this O(·) term is `c`4`c
`

.)

Proof. Let H be an `c`-perfect family of O(4`c
`

log n) hash functions from [n] to
[`c`]. That is, H is a set of functions [n] → [`c`] such that for every X ⊆ [n] such
that |X| ≤ `c`, there exists h ∈ H such that |h(X)| = |X|. The existence of an

`c`-perfect family |H| of size O(4`c
`

log n) is established by a probabilistic argument:

simply choose 4`c
`

log n functions at random for sufficiently large n (see [4]).
Define BcU1,...,U`

by

BcU1,...,U`
= AND

h∈H
OR

z1,...,z`∈[`c`], v∈[n]
AvU1∩h−1(z1),...,U`∩h−1(z`)

.
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Finally, note that BcU1,...,U`
has size O(n2 log n) and depth 3`− 1.

To see that BcU1,...,U`
computes a suitable function, let G be any graph such

that (U1, . . . , U`) is c-bounded in G. We will now show that BcU1,...,U`
(G) = 1 ⇐⇒

U1 × · · · × U` contains an `-clique in G.

(⇐=) Assume that u1, . . . , u` form an `-clique in G where ui ∈ Ui for every
i ∈ {1, . . . , `}. To show that BcU1,...,U`

(G) = 1, let h be any function in H (cho-

sen adversarially). Select any zi = h−1(ui) for each i ∈ {1, . . . , `} and note that
Au`U1∩h−1(z1),...,U`∩h−1(z`)

(G) = 1.

(=⇒) Assume that BcU1,...,U`
(G) = 1. Let X =

⋃
i∈{1,...,`} ΓU1,...,Ui(G). Since

(U1, . . . , U`) is c-bounded in G, we have |X| ≤ c + c2 + · · · + c` ≤ `c`. Since H is an
`c`-perfect family of hash functions, there exists h ∈ H such that |h(X)| = |X|. By
definition of BcU1,...,U`

, there exist z1, . . . , z` ∈ [`c`] such that

OR
v∈[n]

AvU1∩h−1(z1),...,U`∩h−1(z`)
(G) = 1.

An inductive argument shows that ΓG(U1 ∩ h−1(z1), . . . , Ui ∩ h−1(zi)) is a singleton
for every i ∈ {1, . . . , `}. By Lemma 10.4, it follows that G contains an `-clique in
U1 × · · · × U`.

10.2. Random sets U
(t)
1 , . . . ,U

(t)
k . Using the circuits BcU1,...,U`

defined in the

last section, we now present a monotone constant-depth circuit of size nk/4+O(1) which
solves k-Clique on G(n, p) for all functions p : N→ [0, 1].

Definition 10.8. For i ∈ {1, . . . , k}, let pi = min{n(i−2) 2
k−1, 1} and let Ui ⊆pi

[n] (that is, Pr[v ∈ Ui] = pi independently for all v ∈ [n]).

This definition of random sets Ui is motivated by the following lemma.

Lemma 10.9. For all α ≥ 2/k and i ∈ {1, . . . , k} and distinct v1, . . . , vi−1 ∈ [n],

Pr
G∼G(n,n−α)

[
Ui contains > c common neighbors of v1, . . . , vi−1 in G

]
= O(n−

2
k (c+1)).

Proof. For each w ∈ [n]\{v1, . . . , vi−1}, the probability that w belongs toUi and is

a common neighbor of v1, . . . , vi−1 in G is precisely pi(n
−α)i−1. Since pi ≤ n(i−2)

2
k−1

and n−α ≤ n− 2
k , we have pi(n

−α)i−1 ≤ n−1− 2
k . By a union bound and independence,

Pr
[
Ui contains > c common neighbors of v1, . . . , vi−1 in G

]
≤

∑
distinct w1,...,wc+1∈[n]\{v1,...,vi−1}

Pr

[
w1, . . . , wc+1 ∈ Ui are common

neighbors of v1, . . . , vi−1 in G

]

=

(
n− i+ 1

c+ 1

)(
n−1−

2
k

)c+1

= O(n−
2
k (c+1)).

We proceed by stating four lemmas that give further properties of U1, . . . ,Uk.

Lemma 10.10. p1p2 · · · pk ≥ n−(k/4)−3.
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Proof. We have p1p2 · · · pk = n−β where

β =

k∑
i=1

max

{
0, 1− (i− 2)

2

k

}
=

bk2 c+2∑
i=1

(
1− (i− 2)

2

k

)
=

(⌊
k

2

⌋
+ 2

)(
1 +

2

k

)
− 2

k

(
bk2 c+ 1

2

)
<
k

4
+ 3.

Lemma 10.11. For all α ≥ 2/k and G ∼ G(n, n−α),

Pr
[
(U1, . . . ,Uk) is not k2-bounded in G

]
= O(n−k).

Proof. We have

Pr
[
(U1, . . . ,Uk) is not k2-bounded in G

]
≤

∑
distinct v1,...,vk∈[n]

∑
i∈{1,...,k}

Pr

[
Ui contains > k2 common

neighbors of v1, . . . , vi−1 in G

]

≤
(
n

k

)
k ·O(n−

2
k (k

2+1)) (Lemma 10.9)

= O(n−k).

Definition 10.12. Let S = dn(k/4)+4e and let U
(t)
1 , . . . ,U

(t)
k be independent

copies of U1, . . . ,Uk for t ∈ {1, . . . , S}.
We choose S large enough so that the following lemma holds.

Lemma 10.13. W.h.p.,
⋃

t∈{1,...,S}

U
(t)
1 × · · · ×U

(t)
k = [n]k.

Proof. Another straightforward calculation:

Pr
[ ⋃
t∈{1,...,S}

U
(t)
1 × · · · ×U

(t)
k 6= [n]k

]
= Pr

[ ∨
v1,...,vk∈[n]

∧
t∈{1,...,S}

∨
i∈{1,...,k}

vi /∈ U (t)
i

]
≤

∑
v1,...,vk∈[n]

Pr
[ ∧
t∈{1,...,S}

∨
i∈{1,...,k}

vi /∈ U (t)
i

]
(union bound)

=
∑

v1,...,vk∈[n]

(
Pr
[ ∨
i∈{1,...,k}

vi /∈ Ui
])S

(independence)

=
∑

v1,...,vk∈[n]

(
1− Pr

[ ∧
i∈{1,...,k}

vi ∈ Ui
])S

=
∑

v1,...,vk∈[n]

(
1−

∏
i

pi
)S

≤ nk
(
1− n−(k/4)−3

)n(k/4)+4

(Lemma 10.10)

= o(1).
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Lemma 10.14. There exist sets U
(t)
1 , . . . , U

(t)
k (t ∈ {1, . . . , S}), such that

1.
⋃

t∈{1,...,S}

U
(t)
1 × · · · × U

(t)
k = [n]k, and

2. for all α ≥ 2/k, w.h.p. for G ∼ G(n, n−α),

(U
(t)
1 , . . . , U

(t)
k ) is k2-bounded in G for all t ∈ {1, . . . , S}.

Proof. Follows from Lemma 10.11 (taking a union bound over t) and Lemma 10.13.

10.3. Proof of Theorem 1.3. We now prove Theorem 1.3. Fix sets U
(t)
1 , . . . , U

(t)
k

(t ∈ {1, . . . , S}) as in Lemma 10.14. Let E be an arbitrary subset
(
[n]
2

)
of size

dn2/(k−(1/2))e. The circuit C is defined by

C =
(

OR
t∈{1,...,S}

Bk
2

U
(t)
1 ,...,U

(t)
k

)
OR

(
OR

{v,w}∈E
X{v,w}

)
.

(Here the subcircuit OR{v,w}∈E X{v,w} has value 1 on a graph G if, and only if, some
element of E is an edge in G.)

We check that the circuit C has the correct size and depth. C has sizeO(Sn3 log n) =
nk/4+O(1) as each B subcircuit has size O(n3 log n). Combining the three OR gates
at the top of C, we see that C has depth 3k as each B has depth 3k − 1.

It remains to show that C solves k-Clique w.h.p. on G ∼ G(n, p) for all functions
p : N→ [0, 1]. We split the argument into three cases.

Case 1: p ≥ n−2/k.

W.h.p. G contains a k-clique (by Lemma 2.2 since n−2/k = ω(n−2/(k−1))) as well
as an edge in E . So w.h.p. both C(G) and k-Clique(G) equal 1.

Case 2: n−2/(k−(1/4)) < p < n−2/k.

W.h.p. G contains a k-clique. Let X (= X(G)) be the event that (U
(t)
1 , . . . , U

(t)
k )

is k2-bounded in G for all t ∈ {1, . . . , S}. Since p ≤ n−2/k, X holds almost surely
by Lemma 10.14(2). We may therefore condition on X and the event that G con-
tains a k-clique. It now suffices to show that C(G) = 1. Let {v1, . . . , vk} be a k-
clique in G. By Lemma 10.14(1), there exists t ∈ {1, . . . , S} such that (v1, . . . , vk) ∈
U

(t)
1 × · · · × U (t)

k . Since (U
(t)
1 , . . . , U

(t)
k ) is k2-bounded (by X), Lemma 10.7 implies

that Bk
2

U
(t)
1 ,...,U

(t)
k

(G) = 1 and hence C(G) = 1.

Case 3: p ≤ n−2/(k−(1/4)).

As in Case 2, X holds almost surely. Since p = o(n−2/(k−(1/2))), w.h.p.G contains
no edge in E . We may therefore condition on X and the event that G contains no
edge in E. It suffices to show that C(G) = 1 if, and only if, G contains a k-clique.
If G contains a k-clique {v1, . . . , vk}, then C(G) = 1 by same reasoning as in Case

2. For the converse direction, assume C(G) = 1. Then Bk
2

U
(t)
1 ,...,U

(t)
k

(G) = 1 for some

t ∈ {1, . . . , S}. Since (U
(t)
1 , . . . , U

(t)
k ) is k2-bounded (by X), Lemma 10.7 implies that

U
(t)
1 × · · · × U

(t)
k contains a k-clique in G.
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11. Concluding Remarks. We point out that there is a trade-off in Theorem
1.2 between the strength of the lower bound and the size of the gap p+−p (= p1+(1/k2))
between thresholds p and p+. This trade-off is easily extracted from the proof of
Theorem 1.2. We can express this trade-off as follows:

Theorem 11.1. For all λ ∈ [0, 1], monotone circuits of size O(n(1−λ)k/4) cannot
solve k-Clique w.h.p. on both G(n, p) and G(n, p+ p1+(λ/k)).

We thus get non-trivial lower bounds for a gap of size p1+((1+ε)/k). It is a challenge
for future research to reduce or eliminate this gap. In fact, we conjecture that the
gap is unnecessary, i.e., that Theorem 1.2 applies to monotone circuits which solve
k-Clique w.h.p. at a single threshold.

Conjecture 11.2. Monotone circuits of size O(nk/4) cannot solve k-Clique
w.h.p. on G(n, p).

We view Theorem 1.2 as strong evidence for Conjecture 11.2. Unfortunately, the
existing Approximation Method framework seems to require that the distributions on
positive and negative instances be well separated, with the negative instances having
significantly higher Hamming weight. For this reason, we speculate that entirely new
techniques might be needed to prove Conjecture 11.2.

Finally, it would be interesting to find other applications of quasi-sunflowers.
Given the many applications of sunflowers, we believe that quasi-sunflowers might be
useful in a variety of settings.
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