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SUCCESSOR-INVARIANT FIRST-ORDER LOGIC ON FINITE

STRUCTURES

BENJAMIN ROSSMAN

Abstract. We consider successor-invariant first-order logic (FO + succ)inv, consisting

of sentences Φ involving an “auxiliary” binary relation S such that (A, S1) |= Φ ⇐⇒

(A, S2) |= Φ for all finite structures A and successor relations S1, S2 on A. A successor-

invariant sentence Φ has a well-defined semantics on finite structures A with no given

successor relation: one simply evaluates Φ on (A, S) for an arbitrary choice of successor

relation S. In this article, we prove that (FO + succ)inv is more expressive on finite

structures than first-order logic without a successor relation. This extends similar results

for order-invariant logic [7] and epsilon-invariant logic [10].

§1. Introduction. Let σ and τ be disjoint relational vocabularies, and let
C be an isomorphism-closed class of τ -structures, which we call “auxiliary”
structures. A sentence Φ in the first-order language of σ ∪ τ is C -invariant if
A |= Φ ⇐⇒ B |= Φ for all (σ∪ τ)-structures A and B such that A|σ = B|σ and
A|τ , B|τ ∈ C where A|σ denotes the σ-reduct of A (and likewise: A|τ , B|σ, B|τ ).
In other words, Φ is C -invariant if it has the same semantics on every two (σ∪τ)-
expansions of a σ-structure such that both τ -reducts are auxiliary structures in
C . A class K of σ-structures is C -invariantly definable if there exists a C -
invariant sentence Φ such that K = {A|σ : A |= Φ}, i.e., the class of σ-reducts
of models of Φ.

C -invariant definability is a trivial concept when the class C is first-order
axiomatizable. For axiomatizable C , Craig’s Interpolation Theorem implies that
every C -invariantly definable class of σ-structures is definable in the first-order
language of σ (without reference to an auxiliary τ -structure). However, as we will
see, C -invariance can be surprisingly non-trivial for non-axiomatizable classes C ,
including many natural classes of finite structures.

Proviso 1.1. Henceforth, C will always be an isomorphism-closed class of
finite τ -structures. We assume that C contains τ -structures of every finite car-
dinality (a property sometimes called having full finite spectrum). Moreover,

• C -invariant means C -invariant on finite structures,
• definable means first-order definable on finite structures, and
• following [9], we write (FO + C )inv for the set of C -invariant sentences.
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One consequence of this proviso is that every finite set is the universe of some
auxiliary τ -structure in C . Therefore, every σ-structure has at least one (σ∪ τ)-
expansion whose τ -reduct belongs to C . This observation leads to a well-defined
semantics for sentences of (FO + C )inv on the class of finite σ-structures. For a
C -invariant sentence Φ and a finite σ-structure A, we define

A |=(FO+C )inv Φ ⇐⇒ B |=FO Φ

where B is any (σ ∪ τ)-expansion of A such that B|τ ∈ C . Equipped with this
semantics, (FO + C )inv is called C -invariant logic.

Remark 1.2. For many classes C , (FO+C )inv fails to be a logic in the strict
sense defined by Gurevich [8]. This is because the syntax of (FO+C )inv, i.e. the
set of C -invariant sentences, is not recursive in general.

We now restrict our attention to a few specific auxiliary classes C . One case
of particular interest is when C is the class of finite linear orders; in this case,
we speak of order-invariance and denote order-invariant logic by (FO + <)inv.
Similarly, when C is the class of finite successor relations, we speak of successor-

invariance and denote successor-invariant logic by (FO + succ)inv.

1.1. Order-invariant logic. Order-invariant logic arises naturally in set-
tings such as database theory [1] and the theory of embedded finite models [9].
Logical properties of (FO + <)inv such as Gaifman locality have been studied in
[6]. The first to study (FO + <)inv from the standpoint of finite model theory
was Yuri Gurevich [7], to whom the following theorem is due.

Theorem 1.3. (FO + <)inv is more expressive than FO.

Proof. For a finite set X , whose elements we call “atoms”, consider the set-

powerset structure 〈X ∪ ℘(X), ∈〉 associated with X . Here X ∪ ℘(X) is the
disjoint union of X and its powerset ℘(X), and ∈ is the usual set-membership
relation (a subset of X×℘(X)). Let G be the isomorphism-closure of the class of
finite set-powerset structures. It is an easy exercise to show that G is first-order
definable. (To express in first-order language that ℘(X) is the powerset of X ,
one says that the set of subsets of X represented by elements of the ℘(X)-sort
contains all singletons and is closed under union. We spell out the same idea in
a slightly different setting in the proof of Lemma 3.1.)

Now consider the subclass Geven of G -structures with an even number of atoms
(i.e., where the X-sort has even cardinality). By playing Ehrenfeucht-Fräıssé
games, one can show that any two set-powerset structures with at least 2r−1

atoms are indistinguishable by sentences of quantifier rank r. It follows that
Geven is not definable in first-order logic FO.

On the other hand, it turns out that Geven is definable in (FO + <)inv. The
order-invariant sentence defining Geven is the conjunction of a FO sentence defin-
ing G and a sentence asserting the existence of an element y ∈ ℘(X) such that

• xmin ∈ y and xmax /∈ y where xmin and xmax are respectively the minimal
and maximal elements in X with respect to <, and

• x1 ∈ y ⇐⇒ x2 /∈ y whenever x1 immediately precedes x2 in the linear
order induced by < on X .
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There exists such an element y ∈ ℘(X) if, and only if, X has even cardinality.
Therefore, this sentence defines Geven in (FO + <)inv. ⊣

The class Geven plays a critical role in the class Keven which we introduce in
the next section in order to separate the logic (FO + succ)inv from FO.

Remark 1.4. Gurevich’s class Geven is essentially identical to the class BA even

of finite Boolean algebras with an even number of atoms, which is similarly de-
finable in (FO + <) but not in FO (see Chapter 5 of [9] for a detailed proof).

1.2. Successor-invariant logic. Let us first of all clarify what we mean by
“successor relation” in this paper.

Terminology 1.5. Let X be a finite set. A permutation of X is a bijective
function p : X −→ X . p is circular if all elements of X lie in a single orbit (i.e.,
each element of X is reachable from every other element via repeated application
of p). A successor relation on X is the graph of a circular permutation. Abusing
notation, given a successor relation S, we treat S both as a subset of X×X and at
other times as the permutation it represents, as when we write S(x) (respectively,
S−1(x)) for the unique y such that (x, y) ∈ S (respectively, (y, x) ∈ S).

Remark 1.6. There is another common notion of “successor relation” in the
literature, what one might call a linear (as opposed to circular) successor rela-
tion, that is, the kind of successor relation induced by a linear order. Linear
successor relations differ from circular successor relations in the existence of a
unique minimal and maximal elements having, respectively, no predecessor and
no successor.

The main result of this article, the separation of logics FO $ (FO + succ)inv,
holds true if we adopt the linear, rather than circular, definition of successor
relation. This is because the two kinds of successor relation are interdefinable
in the following sense. A linear successor relation is transformed into a circular
successor relation simply by making the minimal element the successor of the
maximal element. Conversely, a circular successor relation is made into a linear
successor relation by choosing an arbitrary element (to become the maximum)
and removing the succession-link between it and its successor. The choice of
maximal element does not affect the semantics of sentences which are successor-
invariant for linear successor relations.

The decision to work with circular successor relations is merely a matter of con-
venience. The choice between linear and circular might, however, have implica-
tions if we were concerned with syntactic questions about successor-invariant sen-
tences (e.g., the minimal quantifier-rank required to define a successor-invariant
property).

Successor-invariant logic arises naturally in many of the same settings as order-
invariant logic. A salient example is the theory of relational databases. Real-
world implementations often impose some additional structure (say, a successor
relation) on the entries of a relation database. One would like to know whether
this additional structure can be exploited by a first-order query language in a
manner that does not depend on the particular implementation of the database.

The question (FO + succ)inv
?
= FO thus arose in database theory [1] as well as

in finite model theory. We resolve this question in the present article.
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Theorem 4.14. Successor-invariant logic is more expressive than first-order

logic.

Our separating counterexample (a class of structures definable in (FO+succ)inv

but not in FO) is a good deal more complicated than Gurevich’s class Geven. We
begin with the observation that the order-invariant sentence defining Geven uses
the auxiliary linear order on a set-powerset structure 〈X ∪℘(X), ∈〉 only insofar
it induces a successor relation on the X-sort (the set of atoms); the restriction
of < to the ℘(X)-sort is unimportant. A linear order is of course indispensable
for the purpose of inducing a successor relation on the X-sort. Were we instead
given an auxiliary successor relation on X ∪ ℘(X), it is unclear how we might
derive a successor relation on the set X alone. Indeed, it appears unlikely that
that class Geven is successor-invariantly definable, although this has not been
proved.

The classes K and Keven defined in the next section are built around G and
Geven with the intention of allowing us to derive a successor relation on a distin-
guished subset A given an auxiliary successor relation on the entire structure.
The powerset of A is interpretable in structures of K , so that once we derive a
successor relation on A, its parity can be determined in the same manner as for
set-powerset structures. The difficult part of the construction involves ensuring
that the parity of A cannot be detected in the absence of an auxiliary successor
relation on the full structure.

1.3. Epsilon-invariant logic. Epsilon-invariant logic (FO + ε)inv is a close
cousin of the C -invariant logics we have discussed so far. ε stands for Hilbert’s
epsilon “choice” operator, which selects a distinguished element from each non-
empty subset of the universe of a structure. Formulas of epsilon-logic are first-
order formulas with an additional term construct εx φ(x). Epsilon-invariant logic
(FO + ε)inv consists of those sentences of epsilon-logic whose semantics does not
depend on the particular choice of epsilon operator in any finite structure. The
following result is due to Martin Otto [10].

Theorem 1.7. Epsilon-invariant logic is more expressive than first-order logic

on finite structures. ⊣

Order-invariant logic (FO+<)inv is obviously at least as expressive as epsilon-
invariant logic (FO+ε)inv. This follows easily from the fact that any finite linear
order gives rise to an epsilon-operator by distinguishing the minimal element in
each nonempty subset. However, it is unknown whether (FO + <)inv is more
expressive as (FO + ε)inv. The precise relationship between (FO + succ)inv and
(FO + ε)inv is another interesting open question. We will revisit these questions
in §5.

§2. Definition of the class Keven.

Definition 2.1. Let Σ be a set of unary relation symbols, let Σ©∼ be a subset
of Σ, and let ∼ be a binary relation symbol. A structure M in a vocabulary
containing Σ ∪ {∼} is said to be (Σ, Σ©∼,∼)-sorted if

• the universe of M is a disjoint union of the sets (called sorts) defined by
the relations in Σ, and
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• ∼ defines an equivalence relation on each of the sorts in Σ©∼ and is vacuous
elsewhere.

We now fix particular Σ and Σ©∼:

Σ = {A, B, BA
©∼

, C
©∼

, D, BD, (BD)D, E, ED
©∼
},

Σ©∼ = {BA
©∼

, C
©∼

, ED
©∼
}.

The appearance of unary relation symbols BA
©∼

, C
©∼

, BD, (BD)D, ED
©∼

is merely

descriptive. Symbol BD is intended to suggest the set of functions from sort D
to sort B; however, this is not necessarily the case in an arbitrary (Σ, Σ©∼,∼)-
sorted structure. Of course, for the class of structures we are about to define,
BD will have exactly this interpretation.

We also fix a vocabulary σ defined by

σ = Σ ∪ {∼, ◮, app, bar, 0, 1}

where ∼ and ◮ are binary relation symbols, app and bar are ternary relations
symbols, and 0 and 1 are constant symbols. When discussing (Σ, Σ©∼,∼)-sorted
σ-structures:

• Ac denotes the complement of sort A, and
• BA, C, ED respectively denote the quotient sets BA

©∼
/∼, C

©∼
/∼, ED

©∼
/∼.

We now define classes K and Keven.

Definition 2.2. K is the class of finite (Σ, Σ©∼,∼)-sorted σ-structures which
satisfy the following five axioms.

(I) B = {0, 1} and 0 6= 1.

(II) Relation

◮ ⊆ (A × C©∼) ∪ (C©∼ × C©∼) ∪ (C©∼ × D)

is a congruence1 with respect to ∼ such that, with respect to the induced

binary relation2 ⊲ on A ∪ C ∪ D:

– every element of A has in-degree 0 and out-degree 1;

– every element of C has in-degree ≤ 1 and out-degree 1;

– every element of D has in-degree 1 and out-degree 0.

(III) Relation

app ⊆
⋃

X,Y,Z ∈Σ

X is ZY
or ZY

©∼

(X × Y × Z)

satisfies:

– for every x ∈ X , the set {(y, z) : (x, y, z) ∈ app} is the graph of a

function Y −→ Z (which we denote by x∗);
– for every function f : Y −→ Z, there exists x ∈ X such that x∗ = f ;

– this x is unique if X is ZY and unique up to ∼ if X is ZY
©∼

.

1i.e., for all γ, γ′
∈ C©∼, γ ∼ γ′ implies (γ ◮ x ⇐⇒ γ′

◮ x) and (x ◮ γ ⇐⇒ x ◮ γ′)
2defined by (a ⊲ c ⇐⇒ a ◮ γ) and (c ⊲ c′ ⇐⇒ γ ◮ γ′) and (c ⊲ d ⇐⇒ γ ◮ d) where

c, c′ ∈ C are the ∼-equivalence classes of γ and γ′, respectively
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(IV) Relation

bar ⊆ Ac × E × B

has the property that for every x ∈ Ac, the set {(e, b) : (x, e, b) ∈ bar} is

the graph of a function E −→ B (which we denote by x).

(V) For all distinct x, y ∈ Ac, there exists e ∈ E such that x(e) 6= y(e).

Definition 2.3. Keven is the subclass of K -structures in which the sort A
has even cardinality.

Remark 2.4. |A| ≤ |D| in all K -structures, as a consequence of axiom (II).

§3. Keven is successor-invariantly definable. We begin by showing:

Lemma 3.1. K is first-order definable.

Proof. The property of being (Σ, Σ©∼,∼)-sorted is obviously first-order de-
finable, as are axioms (I), (II), (IV) and (V). This leaves only axiom (III). We
render axiom (III) as a first-order sentence via an observation that exploits the
finiteness of structures in K . Consider any sorts X, Y, Z ∈ Σ where X is ZY or
ZY

©∼
. The only clause of axiom (III) that is non-trivial to write out as a first-order

expression is the statement:

for every function f : Y −→ Z, there exists x ∈ X such that x∗ = f .

As we are dealing with finite structures, we can rephrase this statement in terms
of a simple closure property:

for every x1 ∈ X and function f : Y −→ Z that differs from x∗
1 on at

most one value of Y , there exists x2 ∈ X such that x∗
2 = f .

Translated into first-order logic, this becomes:

∀x1 ∈ X ∀y1 ∈ Y ∀z1 ∈ Z ∃x2 ∈ X

app x2y1z1︸ ︷︷ ︸
x∗
2(y1 )=z1

∧
(
∀y2 ∈ Y y2 6= y1 → ∀z2 ∈ Z app x2y2z2 ↔ appx1y2z2︸ ︷︷ ︸

x∗
2(y2 )=x∗

1(y2)

)
.

One small detail: we must take care to add that X is nonempty whenever both
Y and Z are nonempty. ⊣

We next establish an elementary combinatorial lemma.

Lemma 3.2. For any sets X and Y and distinct functions f1, . . . , fk : X −→
Y , there exists a subset X ′ ⊆ X of size < k such that the restrictions (f1 ↾ X ′),
. . . , (fk ↾ X ′) : X ′ −→ Y are all distinct functions.

Proof. We construct X ′ inductively. Let X1 = ∅. For ℓ < k, suppose we
have constructed Xℓ ⊆ X of size < ℓ such that (f1 ↾ Xℓ), . . . , (fℓ ↾ Xℓ) are all
distinct. If (fℓ+1 ↾ Xℓ) 6= (fj ↾ Xℓ) for all j ∈ {1, . . . , ℓ}, then we set Xℓ+1 = Xℓ.
Otherwise, there is a unique j ∈ {1, . . . , ℓ} such that (fℓ+1 ↾ Xℓ) = (fj ↾ Xℓ).
Since fℓ+1 6= fj , we can find x ∈ X such that fℓ+1(x) 6= fj(x). We now set
Xℓ+1 = Xℓ ∪ {x}. Finally, having constructed X1, . . . , Xk, we set X ′ = Xk. ⊣
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We now consider an arbitrary structure M in the class K . Let S be any
successor relation on M. There exists a partition

A = P1 ∪ · · · ∪ Pk

(unique up to labeling of parts) with the property that for all i ∈ {1, . . . , k},

there are unique elements pi, p
′
i ∈ Pi such that

• S(pi), S
−1(p′i) ∈ Ac and

• S(q), S−1(q) ∈ Pi for all q ∈ Pi \ {pi, p
′
i}.

In other words, Pi are the maximal S-paths inside A in which pi is the final
endpoint and p′i is the origin.

S(p1), . . . , S(pk) are distinct elements of Ac. Therefore, S(p1), . . . , S(pk) are
distinct functions E −→ B by axiom (V). So by Lemma 3.2, there is a set

E′ ⊆ E with |E′| < k such that S(p1) ↾ E′, . . . , S(pk) ↾ E′ are distinct functions
E′ −→ B. Since |E′| < k ≤ |A| ≤ |D|, there exists a function f : D −→ E with
Range(f) = E′. Fix any choice of f .

By the same argument, there exists a function f ′ : D −→ E such that

S−1(p′1) ↾ Range(f ′), . . . , S−1(p′k) ↾ Range(f ′) are all distinct functions E −→ B.
Fix any choice of f ′.

We next fix any surjective function h from D onto the set {1, . . . , k}, and we
define functions g, g′ : D −→ BD by

g : d 7−→ S(ph(d)) ◦ f

g′ : d 7−→ S−1(p′
h(d)+1) ◦ f ′

where the index h(d) + 1 is modulo k.
Finally, we select elements F, F ′ ∈ ED

©∼
and G, G′ ∈ (BD)D such that F ∗ = f ,

F ′∗ = f ′, G∗ = g and G′∗ = g′. Note that G and G′ are uniquely determined,
while F and F ′ are determined up to ∼ by axiom (III).

Definition 3.3. s(a, a′, F, F ′, G, G′) is the following first-order formula in
vocabulary σ ∪ {S} with free variables a, a′ ranging over sort A and parameters
F, F ′ ∈ ED

©∼
and G, G′ ∈ (BD)D as chosen:

s(a, a′, F, F ′, G, G′)
def
=

(
S(a) = a′

)
∨

((
S(a) ∈ Ac

)
∧
(
S−1(a′) ∈ Ac

)
∧

∃d ∈ D
(
S(a) ◦ f = g(d)

)
∧
(
S−1(a′) ◦ f ′ = g′(d)

)
)

In the above, the expression S(a) ◦ f = g(d) abbreviates the formula

∀δ ∈ D S(a)(f(δ)) = (g(d))(δ),

where S(a)(f(δ)) = (g(d))(δ) is itself a readable shorthand for

∃e ∈ E ∃x ∈ Ac ∃b ∈ B ∃H ∈ BD

(
app Fδe ∧ Sax ∧ bar xeb

∧ app GdH ∧ app Hδb

)

The expression S−1(a′) ◦ f ′ = g′(d) is similarly an abbreviation.
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Lemma 3.4. s(a, a′, F, F ′, G, G′) defines a successor relation on A, namely

the graph of the circular permutation

a 7−→

{
S(a) if S(a) ∈ A,

p′i+1 if a = pi.

Proof. If S(a) ∈ A, then S(a) is evidently the unique a′ ∈ A such that
(M, S) |= s(a, a′, F, F ′, G, G′). This is immediate from the definition of s.

It remains to show that for all i ∈ {1, . . . , k}, p′i+1 is the unique a′ ∈ A
such that (M, S) |= s(pi, a

′, F, F ′, G, G′). This is a consequence of the way
we chose parameters F, F ′, G, G′. Notice that any a′ ∈ A such that M |=
s(pi, a

′, F, F ′, G, G′) must lie in the set {p′1, . . . , p
′
k}, since S(pi) ∈ Ac forces

S−1(a′) ∈ Ac (in order for s(pi, a
′, F, F ′, G, G′) to be satisfied) and p′1, . . . , p

′
k

are precisely the elements of A whose predecessors lie in Ac. By our selection
of f and f ′, functions S(p1) ◦ f, . . . , S(pk) ◦ f : D −→ B are all distinct, as

are functions S−1(p′1) ◦ f ′, . . . , S−1(p′k) ◦ f ′ : D −→ B. By our choice of h and
definition of g and g′, we have

S(pi) ◦ f = g(d) ⇐⇒ S−1(p′i+1) ◦ f ′ = g′(d) ⇐⇒ h(d) = i.

Since h is a surjection from D onto {1, . . . , k}, there exists d ∈ D such that

h(d) = i and thus S(pi) ◦ f = g(d) and S−1(p′i+1) ◦ f ′ = g′(d). It follows that
(M, S) |= s(pi, p

′
i+1, F, F ′, G, G′). Finally, if (M, S) |= s(pi, p

′
j , F, F ′, G, G′)

then we have j = i + 1. ⊣

Definition 3.5. Φ is the following sentence in the first-order language of σ∪
{S}.

Φ
def
= ∃F, F ′ ∈ ED

©∼
∃G, G′ ∈ (BD)D

(
∀a′ ∈ A ∃!a, a′′ ∈ A

s(a, a′, F, F ′, G, G′) ∧ s(a′, a′′, F, F ′, G, G′)

)
∧




∃β ∈ BA
©∼

∀a, a′ ∈ A

s(a, a′, F, F ′, G, G′) →appβa0 ↔ app βa′1︸ ︷︷ ︸
β∗(a)=0 ⇐⇒ β∗(a′)=1




Remark 3.6. In plain language, Φ says there is a choice of parameters F, F ′,
G, G′ such that

• s defines the graph of a permutation of A (not necessarily circular!), and
• there exists a function A −→ {0, 1} such that a 7−→ 0 ⇐⇒ s(a) 7−→ 1 for

all a ∈ A.

Lemma 3.7. For every M ∈ K and successor relation S on M,

(M, S) |= Φ ⇐⇒ M ∈ Keven.

Proof. (=⇒) Suppose (M, S) |= Φ. There is a choice for F, F ′, G, G′ such
that s defines a permutation of A with the property that a 7−→ 0 ⇐⇒ s(a) 7−→
1 for all a ∈ A. This implies that all s-orbits in A have even cardinality.
Therefore, A itself has even cardinality and so M ∈ Keven.
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(⇐=) Assume M ∈ Keven. We demonstrate that (M, S) |= Φ by finding wit-
nesses for the existential quantifiers in Φ. By Lemma 3.4, there exist F, F ′, G, G′

such that s defines a successor relation on A. So the clause

∀a′ ∈ A ∃!a, a′′ ∈ A s(a, a′, F, F ′, G, G′) ∧ s(a′, a′′, F, F ′, G, G′)

of Φ is clearly satisfied. It remains only to find a witness for β in the clause

∃β ∈ BA
©∼

∀a, a′ ∈ A s(a, a′, F, F ′, G, G′) →
(
appβa0 ↔ app βa′1

)
.

This is easy, as A has even cardinality and s is a successor relation on A. There
are exactly two subsets X ⊆ A with the property that a ∈ X ⇐⇒ s(a) /∈ X .
For either choice of X , take any β ∈ BA

©∼
such that β∗ : A −→ {0, 1} is the

characteristic function of X . Such β clearly fits the bill. Thus, we conclude
(M, S) |= Φ. ⊣

Theorem 3.8. Keven is successor-invariantly definable.

Proof. Keven is defined in (FO + succ)inv by the conjunction of Φ and the
first-order axioms for K . ⊣

Remark 3.9. Keven is definable as well in epsilon-invariant logic (FO + ε)inv.
Formulas s and Φ can be adapted to the scenario where, instead of an auxiliary
successor relation on M, we are given an arbitrary injection A −→ Ac. An
epsilon-operator ε on M (i.e., a map associating each nonempty subset X of M

with a distinguished element ε(X) ∈ X) lets us define an injection A −→ Ac via

a 7−→ ε({β ∈ BA
©∼

: (∀a′ ∈ A) β∗(a′) = 1 ⇐⇒ a′ = a}).

Since Keven is not first-order definable (as we show in the next section), it is
thus a separating counterexample for the logics FO $ (FO + ε)inv. (The first
separating counterexample for these logics is due to Otto [10].)

§4. Keven is not first-order definable. Our proof that Keven is undefinable
consists of exhibiting, for every r ∈ N, a pair of structures M ∈ Keven and
N ∈ K \ Keven such that M ≡r N. For the rest of this section, let r be a fixed
natural number.

4.1. Probabilistic construction of M and N. Let σ− = σ \ {bar}, and let
K − be the class of (Σ, Σ©∼,∼)-sorted σ-structures which satisfy axioms (I)–(III)
of Definition 2.2. The next lemma, which follows immediately from definitions,
describes a special family of K −-structures.

Lemma 4.1. For all n ∈ N, there is a unique K −-structure up to isomorphism

which satisfies the following three conditions.

1. Sort E has size n.

2. All ∼-equivalence classes in BA
©∼
∪ C

©∼
∪ ED

©∼
have size n.

3. The digraph 〈A ∪ C ∪ D, ⊲〉, defined in axiom (II) of Definition 2.2, is as

depicted in Figure 1, below. ⊣

As depicted in Figure 1, sorts A and D have sizes 2r and 2r + r, respectively.
2r elements of D are connected to the different elements of A via paths of length
2r + 1 which extend through C. The other r elements of D are the terminal
endpoints of paths of length 2r which originate in C.
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2r

2r

2r + r

A C D

Figure 1. The digraph 〈A ∪ C ∪ D, ⊲〉

Let K ′ be the class of finite (Σ, Σ©∼,∼)-sorted σ-structures which satisfy ax-
ioms (I)–(IV) of Definition 2.2 (but not necessarily axiom (V)). K ′-structures
are essentially K -structures where we do not insist that functions x̄, ȳ : E −→ B
be different for distinct x, y ∈ Ac.

Definition 4.2. For all n ∈ N, let M−
n be a fixed K −-structure satisfying

conditions (1)–(3) of Lemma 4.1, and let Mn be a random K ′-structure where

• M−
n is the σ−-reduct of Mn (with probability 1), and

• relation bar ⊆ Ac × E × B is defined probabilistically such that

Pr
[
x(e) = 1

]
=






1 if x = e,

0 if x ∈ E \ {e},
1
2 if x ∈ Ac \ E,

independently for all x ∈ Ac and e ∈ E.

We now show that a certain property of K ′-structures called ℓ-extendibility
holds for Mn with limit probability 1 as n → ∞. The notion of ℓ-extendibility
and the method for proving Mn is almost surely ℓ-extendibility are closely re-
lated to the notion of ℓ-extendibility for graphs and well-known probabilistic
arguments for the existence of finite ℓ-extendible graphs (see e.g. [2]).

Definition 4.3. A K ′-structure is ℓ-extendible (ℓ ∈ N) if the following two
conditions hold.

⊚ℓ For every set X ⊆ Ac \E of size ≤ ℓ and every function f : X −→ B, there
are at least ℓ different e ∈ E such that x(e) = f(x) for all x ∈ X .

⊛ℓ For every ∼-equivalence class Y ⊆ BA
©∼
∪ C

©∼
∪ ED

©∼
, every set Z ⊆ E of size

≤ ℓ and every function g : Z −→ B, there are at least ℓ different y ∈ Y
such that y(z) = g(z) for all z ∈ Z.

Remark 4.4. Every (≥ 2)-extendible K ′-structure is a K -structure, as con-
dition ⊚ℓ implies axiom (V) for all ℓ ≥ 2. Recall axiom (V) states that for all
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distinct x, y ∈ Ac, there exists e ∈ E such that x(e) 6= y(e). Condition ⊚ℓ with
X = {x, y} and f : X −→ B defined by f(x) = 0 and f(y) = 1 guarantees
that there exist (at least ℓ different) e ∈ E such that x(e) = f(x) = 0 and
y(e) = f(y) = 1.

Lemma 4.5. For all ℓ ∈ N, lim
n→∞

Pr
[
Mn is ℓ-extendible

]
= 1.

Proof. Fix ℓ ∈ N. We claim that there exist constants λ > 0 and 0 < µ < 1
such that statements (a)–(d) hold for all large enough n.

(a) There are ≤ nλ different pairs (X, f) where X is a set of ≤ ℓ elements of
Ac \ E and f is a function X −→ B.

(b) For each pair (X, f), the probability that (X, f) witnesses the failure of ⊚ℓ

is ≤ µn.

(c) There are ≤ nλ different triples (Y, Z, g) where Y is a ∼-equivalence class
in BA

©∼
∪ C

©∼
∪ ED

©∼
, Z is a set of ≤ ℓ elements of E and g is a function

Z −→ B.

(d) For each triple (Y, Z, g), the probability that (Y, Z, g) witnesses the failure
of ⊛ℓ is ≤ µn.

Assume for the moment that (a)–(d) hold for some µ and λ. Then for all large
enough n,

Pr
[
Mn is not ℓ-extendible

]
≤ Pr

[
Mn fails ⊚ℓ

]
+ Pr

[
Mn fails ⊛ℓ

]

= Pr
[
∃(X, f) witnessing ¬⊚ℓ

]
+ Pr

[
∃(Y, Z, g) witnessing ¬⊛ℓ

]

≤
∑

X,f

Pr
[
(X, f) witnesses ¬⊚ℓ

]
+
∑

Y,Z,g

Pr
[
(Y, Z, g) witnesses ¬⊛ℓ

]

≤ 2nλµn.

Since 2nλµn → 0 as n → ∞, it follows that lim
n→∞

Pr
[
Mn is not ℓ-extendible

]
= 0

and, therefore, lim
n→∞

Pr
[
Mn is ℓ-extendible

]
= 1.

It remains to show that there exist λ and µ which satisfy (a)–(d). We find λ
which meets conditions (a) and (c) by counting:

#Z ≤ |E|ℓ = nℓ = nØ(1)

#Y = |BA| + |C| + |ED| = 22r

+ 2r·(2r + r) + n2r+r < nØ(1)

#X ≤ |Ac \ E|ℓ =
(
|B|+|D|+|BD|+|(BD)D|︸ ︷︷ ︸

Ø(1)

+ |BA
©∼
|+|C

©∼
|+|ED

©∼
|

︸ ︷︷ ︸
n·(|BA|+|C|+|ED|)

)ℓ
< nØ(1)

We also count:
(
#f for any given X

)
=
(
#g for any given Z

)
≤ 2ℓ = Ø(1).

It follows that #(X, f) < nØ(1) and #(Y, Z, g) < nØ(1). Therefore, there exists
a constant λ as in the hypothesis. (Any λ > ℓ·(2r + r + 1) does the job.)

Now consider a particular pair (X, f) and let ℓ0 = |X |. For all e ∈ E, we have

Pr
[
∀x ∈ X x(e) = f(x)

]
= 2−ℓ0 .
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Since events ∃x ∈ X x(e) 6= f(x) are independent as e ranges over E, we have

Pr
[
(X, f) witnesses ¬⊚ℓ

]
= Pr

[∣∣{e ∈ E : ∀x ∈ X x(e) = f(x)}
∣∣ < ℓ

]

=

ℓ−1∑

j=0

Pr
[∣∣{e ∈ E : ∀x ∈ X x(e) = f(x)}

∣∣ = j
]

<

ℓ−1∑

j=0

(
n

j

)
(2−ℓ0)j(1 − 2−ℓ0)n−j

< ℓnℓ(1 − 2−ℓ)n−ℓ.

We derive the last inequality using
(
n
j

)
≤ nℓ and (2−ℓ0)j ≤ 1 and (1−2−ℓ0)n−j ≤

(1 − 2−ℓ)n−ℓ, as 0 ≤ j, ℓ0 ≤ ℓ. For any µ such that 1− 2−ℓ < µ < 1, we see that
ℓnℓ(1 − 2−ℓ)n−ℓ < µn for all large enough n.

A similar argument shows that Pr
[
(Y, Z, g) witnesses ¬⊛ℓ

]
is also eventually

bounded by µn for some choice of 0 < µ < 1. ⊣

Definition 4.6. Structures M and N are defined as follows.

(1) Let ℓr equal 24r+1

and choose n sufficiently large such that Pr
[
Mn is ℓr-

extendible
]

> 0.

(2) Let M be a fixed ℓr-extendible structure from the distribution associated
with the random structure Mn.

(3) For all β ∈ BA
©∼

, let β† denote the set {a ∈ A : β∗(a) = 1}.

(4) Let a0 be a fixed element of A, and let N be the induced substructure of
M after removing a0 as well as all β ∈ BA

©∼
such that a0 ∈ β†.

(5) We denote by A′ the set A\{a0} = AN (i.e., the interpretation of sort A in

N) and by BA′

©∼
the set {β ∈ BA

©∼
: a0 /∈ β†} = (BA

©∼
)N (i.e., the interpretation

of sort BA
©∼

in N). All other sorts are the same in N as in M.

Clearly, M ∈ Keven and N ∈ K \ Keven. Also note that N is ℓr-extendible.
This follows from the fact that N is obtained from an ℓr-extendible struc-
ture (namely M) by purging individual element(s) from sort A and entire ∼-
equivalence class(es) from sort BA

©∼
. Looking closely at Definition 4.3 of ℓ-

extendibility, one sees that conditions ⊚ℓ and ⊛ℓ are preserved under the act
of purging sorts A and BA

©∼
in this manner.

4.2. Secondary structures related to M and N. It is convenient at this
juncture to define a couple of secondary structures derived from M and N:

M
† = 〈A ∪ ℘(A),∈〉, N

† = 〈A′ ∪ ℘(A′),∈〉,

M
‡ = 〈A ∪ C ∪ D, ⊲〉, N

‡ = 〈A′ ∪ C ∪ D, ⊲〉.

M† and N† are the familiar set-powerset structures we saw in our discussion of
the class G in §1.1. M

‡ is precisely the directed graph depicted in Figure 1. N
‡

is the subgraph of M‡ after removing the element a0. Note that structures M†

and M‡ are interpretable in M, and likewise N† and N‡ in N.
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Every partial isomorphism π : M −⇀ N induces partial isomorphisms π† :
M† −⇀ N† and π‡ : M‡ −⇀ N‡ defined by

π† =
(
A × A′ ∩ π

)
∪
{
(β†, β′†) : (β, β′) ∈ BA

©∼
× BA′

©∼
∩ π
}
,

π‡ =
(
A × A′ ∩ π

)
∪
{
(γ/∼, γ′/∼) : (γ, γ′) ∈ C©∼ × C©∼ ∩ π

}
∪
{
(d, d) : d ∈ D

}

where γ/∼, γ′/∼ ∈ C are the ∼-equivalence classes of γ and γ′, respectively. The
induced partial isomorphisms π† and π‡ on these secondary structures facilitate
our description of a family of “good” partial isomorphisms M −⇀ N in the next
subsection.

An additional bit of notation: for an element x in M‡ or N‡, let ⊲j(x)
(respectively, ⊲−j(x)) denote the unique jth ⊲-successor (respectively, jth ⊲-
predecessor) of x, when defined (see Figure 1). When we speak of the ⊲-distance

between elements x and y (respectively, between an element x and a set Y ) in
M‡ or N‡, we mean the minimal j ∈ N such that ⊲±j(x) = y (respectively,
⊲±j(x) ∈ Y ).

4.3. k-good partial isomorphisms M −⇀ N. We begin with a familiar
definition.

Definition 4.7. Let A and B be structures in the same vocabulary. A partial
isomorphism from A to B defined by x1, . . . , xm 7−→ y1, . . . , ym (where xi are
elements of A and yi are elements of B) is a j-equivalence if (A, x1, . . . , xm) ≡j

(B, y1, . . . , ym), that is,

A |= Ψ(x1, . . . , xm) ⇐⇒ B |= Ψ(y1, . . . , ym)

for all m-ary first-order formulas Ψ of quantifier rank at most j.

j-equivalences have the following “back and forth” property. (Lemma 4.8,
below, can be taken for an inductive definition of j-equivalence where, in the
base case, 0-equivalences are just partial isomorphisms.)

Lemma 4.8. If π : A −⇀ B is a j-equivalence where j ≥ 1, then for every

x ∈ A (respectively, y ∈ B), there exists y ∈ B (respectively, x ∈ A) such that

π ∪ {(x, y)} : A −⇀ B is a (j − 1)-equivalence. ⊣

The class of k-good partial isomorphisms from M to N is a special subclass
of (r − k)-equivalences with a similar “back and forth” property (Lemma 4.11).
From the standpoint of Ehrenfeucht-Fräıssé games, k-goodness provides the cri-
terion for a winning strategy in the k-round game on structures M and N.

Definition 4.9. For k ∈ {0, . . . , r}, a partial isomorphism π : M −⇀ N is
k-good if it satisfies conditions (i)–(v), below.

(i) Dom(π) contains B ∪ D ∪ BD ∪ (BD)D and π acts as the identity on this

set, that is, π(x) = x for all x ∈ B ∪ D ∪ BD ∪ (BD)D.

(ii) f∗(d) ∈ Dom(π) for all f ∈ ED
©∼

∩ Dom(π) and d ∈ D.

(iii) Induced partial isomorphism π† : M
† −⇀ N

† is an (r − k)-equivalence.

(iv) Induced partial isomorphism π‡ : M‡ −⇀ N‡ satisfies the following for all

c ∈ C ∩ Dom(π‡):

• c and π‡(c) have the same ⊲-distance to the set D,



14 BENJAMIN ROSSMAN

• if ⊲±j(c) ∈ Dom(π‡) where j < 2r−k, then π‡(⊲±j(c)) = ⊲±j(π‡(c)),

• if ⊲−j(c) ∈ A where j < 2r−k, then ⊲−j(c) ∈ Dom(π‡).

(v) The following inequalities hold:

• |(BA
©∼
∪ C

©∼
∪ ED

©∼
) ∩ Dom(π)| ≤ k,

• |E ∩ Dom(π)| ≤ k|D|,

• |(Ac \ E) ∩ Dom(π)| < ℓr.

Condition (i) says that all k-good partial isomorphisms extend the identity
function on the common subset B ∪ D ∪ BD ∪ (BD)D of M and N.

Condition (ii) gives a closure property of k-good π. It is equivalently stated
as π(f∗(d)) = (π(f))∗(d) for all f ∈ ED

©∼
∩ Dom(π) and d ∈ D.

Condition (iii) is a bridge to a well-known result about j-equivalence of set-
powerset structures. This saves us from having to reinvent the wheel in the
course of proving Lemma 4.11.

Condition (iv) implies that π‡ : M‡ −⇀ N‡ is an (r − k)-equivalence. It also
gives a closure property on π, requiring that an element a ∈ A belongs to the
domain (respectively, range) of π whenever it is within ◮-distance 2r−k − 1 of
an element of C©∼ ∩ Dom(π) (respectively, C©∼ ∩ Range(π)).

Condition (v) bounds the size of π over various sorts. Note that the first
inequality implies the third, as

|(Ac \ E) ∩ Dom(π)| =

|B ∪ D ∪ BD ∪ (BD)D|︸ ︷︷ ︸
2+(2r+r)+2(2r+r)+2(2r+r)2

+ |(BA
©∼
∪ C

©∼
∪ ED

©∼
) ∩ Dom(π)|

︸ ︷︷ ︸
≤r

< 24r+1

= ℓr.

Also note that we can replace Dom(π) with Range(π) in any of these inequalities,
since π is a partial isomorphism and therefore preserves sorts.

Lemma 4.10. The identity function on the set B∪D∪BD∪(BD)D is a 0-good
partial isomorphism from M to N.

Proof. Let π0 denote the identity function on B∪D∪BD ∪ (BD)D. π0 triv-
ially satisfies conditions (i), (ii), (iv) and (v) of 0-goodness. As for condition (iii),

notice that π†
0 is the empty partial isomorphism from M† to N†. So condition

(iii) is equivalent to the statement that M† and N† are r-equivalent, i.e., that
they satisfy the same first-order sentences of quantifier rank r. It is well-known
that every two set-powerset structures with at least 2r−1 atoms are indistin-
guishable by sentences of quantifier rank r (see proof of Theorem 1.3). Since
M

† and N
† are set-powerset structures with 2r and 2r − 1 atoms, respectively,

it follows that π†
0 is an r-equivalence and, therefore, that π0 is 0-good. ⊣

Lemma 4.11. Suppose π is a k-good partial isomorphism from M to N where

k < r. Then every x ∈ M (respectively, y ∈ N) belongs to the domain (respec-
tively, range) of a (k + 1)-good partial isomorphism π̂ : M −⇀ N extending π.

Proof. Let x be any element of M. We prove that π has a (k + 1)-good
extension whose domain contains x. By symmetry of the argument in M and
N, we get for free the other direction of the lemma: for every y ∈ N, there is a
(k + 1)-good extension of π whose range contains y.
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We assume that x /∈ Dom(π), since in the event that x ∈ Dom(π) we simply
let π̂ = π (as a k-good partial isomorphism is clearly also (k + 1)-good). We
consider five cases, according to whether x belongs to sort A, BA

©∼
, C

©∼
, E or ED

©∼
.

Note that x cannot belong to B, D, BD or (BD)D, because of the assumption
that x /∈ Dom(π). In each of the five cases below, we explain how π̂ is defined
and leave verification that π̂ is (k + 1)-good as a straightforward exercise.

Case 1: x ∈ A

Since π† : M† −⇀ N† is an (r − k)-equivalence by condition (iii), there exists
x′ ∈ A′ such that π† ∪{(x, x′)} is an (r− k− 1)-equivalence by Lemma 4.8. The
partial isomorphism π̂ : M −⇀ N is now defined by π̂ = π ∪ {(x, x′)}.

Case 2: x ∈ BA
©∼

Let y = x† ∈ ℘(A). Again using the fact that π† : M† −⇀ N† is an (r − k)-
equivalence, there exists y′ ∈ ℘(A′) such that π† ∪ {(y, y′)} is an (r − k − 1)-
equivalence.

We now invoke the ℓr-extendibility of N (property ⊛) to find ℓr distinct x′ ∈

BA′

©∼
such that x′† = y′ and x′(e) = x(π−1(e)) for all e ∈ E ∩ Range(π). Since

|Range(π)| < ℓr by condition (v), by the pigeonhole principle at least one of these
x′ does not belong to Range(π). Choose any such x′ and let π̂ = π ∪ {(x, x′)}.

Case 3: x ∈ C©∼

Let c ∈ C be the ∼-equivalence class of x. We begin by finding a suitable
c′ ∈ C from which to pick the image x′ of x under π̂. First, assume

⊲±j(c) ∈ Dom(π‡) for some j < 2r−k−1.(⋆)

In this case, let c′ = ⊲∓j(π‡(⊲±j(c))). Due to condition (iv), c′ does not depend
on the value of j, if more than one choice is possible.

Next suppose (⋆) does not hold, and let us instead assume

⊲−j(c) ∈ A for some j < 2r−k−1.(⋆⋆)

Let a = ⊲−j(c) and, proceeding as in Case 1, we find a′ ∈ A′ such that π† ∪
{(a, a′)} is an (r − k − 1)-equivalence between M† and N†. Now let c′ = ⊲j(a′).

Finally, suppose neither (⋆) nor (⋆⋆) holds. Let c′1, . . . , c
′
r be distinct elements

of C such that in the directed graph N‡,

• c′i has the same ⊲-distance to D as c, and
• c′i is not ⊲-connected to A.

Since |C©∼ ∩ Range(π)| ≤ k < r by condition (v), there is some c′i which is not
⊲-connected to the set C ∩ Range(π‡). Let c′ = c′i.

Now that c′ ∈ C has been chosen in all cases, proceeding as in Case 2, we
invoke the ℓr-extendibility of N (property ⊛) to find ℓr distinct x′ ∈ C

©∼
such that

c′ is the ∼-equivalence class of x′ and x′(e) = x(π−1(e)) for all e ∈ E∩Range(π).
Since |Range(π)| < ℓr, at least one of these x′ is not contained in Range(π).
Choose any such x′ and let

π̂ =

{
π ∪ {(x, x′), (a, a′)} in case (⋆⋆),

π ∪ {(x, x′)} otherwise.
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Case 4: x ∈ E

We prove a stronger claim (which will help us in Case 5). Let e1, . . . , ej be
any elements of E where j ≤ |D|. We wish to show:

There exist e′1, . . . , e
′
j ∈ E such that π̃ = π ∪

{(e1, e
′
1), . . . , (ej , e

′
j)} is a (k + 1)-good partial iso-

morphism from M to N .

(⋆⋆⋆)

We proceed by induction. For i ∈ {1, . . . , j}, suppose we have found e′1, . . . , e
′
i−1

such that π̃i−1 = π ∪ {(e1, e
′
1), . . . , (ei−1, e

′
i−1)} is a (k + 1)-good partial iso-

morphism from M to N. We choose e′i as follows. If ei ∈ Dom(π̃i−1), then
let e′i = π̃i−1(ei). Otherwise, we use the ℓr-extendibility of N (this time prop-
erty ⊚) to come up with ℓr different e′ ∈ E such that x′(e′) = x′(ei) for all
x′ ∈ (Ac \ E) ∩ Range(π). Since |(E ∪ {e′1, . . . , e

′
i−1}) ∩ Range(π)| < r|D| < ℓr,

at least one of these e′ is not contained in Range(π). Let e′i be any such e′. It is
straightforward to check that π̃i = π̃i−1 ∪ {(ei , e

′
i)} is (k + 1)-good. The claim

(⋆⋆⋆) follows by induction.

Case 5: x ∈ ED
©∼

Let e1, . . . , ej enumerate the set {x∗(d) : d ∈ D}. By the claim (⋆⋆⋆) of
Case 4, there exist e′1, . . . , e

′
j ∈ E such that π̃ = π ∪ {(e1, e

′
1), . . . , (ej , e

′
j)} is a

(k + 1)-good partial isomorphism M −⇀ N.
By the ℓr-extendibility of N (property ⊛), there exist ℓr distinct x′ ∈ ED

©∼

such that x′∗ = π̃ ◦ x∗ and x′(e) = x(π̃−1(e)) for all e ∈ E ∩ Range(π̃). Since
|Range(π)| < ℓr, at least one of these x′ is not in Range(π). Choose any such x′

and let π̂ = π̃ ∪ {(x, x′)}. ⊣

Corollary 4.12. For k ∈ {0, . . . , r}, every partial isomorphism from M to

N which admits a k-good extension is an (r − k)-equivalence.

Proof. k-goodness provides the basis for a winning strategy for the Duplica-
tor in the k-round Ehrenfeucht-Fräıssé game on structures M and N. By Lem-
mas 4.10 and 4.11, the Duplicator can guarantee that the partial isomorphism
defined after the kth round of play admits a k-good extension. ⊣

Corollary 4.13. M ≡r N.

Proof. The empty partial isomorphism from M to N has a 0-good extension
by Lemma 4.10 (namely the identity function on the set B ∪D ∪BD ∪ (BD)D).
Therefore, M and N are r-equivalent by Corollary 4.12. ⊣

Since M ∈ Keven and N /∈ Keven and r ∈ N was taken to be arbitrary,
Corollary 4.13 implies the main theorem of this section.

Theorem 4.14. Keven is not first-order definable.

Proof. Toward a contradiction, assume there exists a first-order sentence
Ψ defining Keven. Let r be the quantifier rank of Ψ, and let M and N be as
constructed above with respect to this r. We now have:

M |= Ψ since M ∈ Keven,
M ≡r N by Corollary 4.13,

N |= Ψ by definition of ≡r.
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But since N /∈ Keven, this contradicts our assumption that Φ defines Keven. ⊣

As a corollary, we have proved our main theorem (Theorem 4.14) that successor-
invariant logic (FO + succ)inv is more expressive than FO.

§5. Conclusion. Theorem 4.14 can be somewhat strengthened.

Corollary 5.1. (FO+C )inv is more expressive than FO where C is the class

of permutations on finite sets with at most k cycles, for any fixed positive integer

k.

Proof. We claim that Keven can be defined in the logic (FO + C )inv, thus
witnessing the separation FO $ (FO + C )inv. The formula Φ (Definition 3.5)
no longer defines Keven. However, we can suitably adapt Φ after observing that
for a suitable choice of parameters F, F ′, G, G′, the formula s(a, a′, F, F ′, G, G′)
defines a permutation of A with at most k cycles. Therefore, we modify Φ to
express that there exists a function A −→ {0, 1} such that

• a 7−→ 0 =⇒ s(a) 7−→ 1 for all a ∈ A, and
• |{a ∈ A : a 7−→ 1 and s(a) 7−→ 1}| is an even number ≤ k.

Since k is fixed, this modified Φ can be expressed by a single C -invariant sentence.
⊣

As another corollary of Theorem 4.14, we obtain the non-inclusion of epsilon-
invariant logic in successor-invariant logic.

Corollary 5.2. (FO + ε)inv " (FO + succ)inv.

Proof. Let K P
even denote the relativization of class Keven by a new unary

predicate P . That is, K P
even is the class of (σ ∪ {P})-structures M whose rela-

tivized reducts M|Pσ are Keven-structures. K P
even is epsilon-invariantly definable

in the precisely manner described in Remark 3.9.
However, K P

even is not definable in successor-invariant logic. To see this, con-
sider successor relations which put a large number of non-P elements between
any two elements of P . If M′ and N′ are (σ∪{P, S})-structures with such “spaced
out” successor relations and relativized reducts M′|Pσ = M and N′|Pσ = N (for
M and N as defined in Definition 4.6), then M′ and N′ are clearly also indistin-
guishable by sentences of quantifier rank r. Therefore, K P

even is not definable in
successor-invariant logic. ⊣

An interesting question raised by this work concerns derangement-invariant
logic. A derangement of a set X is a permutation d of X having no fixed points
(i.e., such that d(x) 6= x for all x ∈ X). Let D be the class of finite derangements,
that is, structures consisting of a set X with a single binary relation D which is
the graph of a derangement on X .

Question 5.3. Is (FO + D)inv more expressive than FO?

Remark 5.4. It is a simple exercise modifying Keven to get a class which is
(FO + succ)inv-definable but not (FO + D)inv-definable, thus proving the sepa-
ration (FO + D)inv $ (FO + succ)inv.

Remark 5.5. If instead of D we consider the class C of all finite permutations,
then (FO + C )inv is equivalent in expressive power to FO. This is clear since
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the identity permutation is uniformly definable in all structures by the single
formula x = y. In general, for a class C to satisfy FO $ (FO + C )inv, there can
exist no such uniform interpretation of a subclass of C -structures.

Another open question is the precise relation between epsilon-invariant logic
and order-invariant logic.

Question 5.6 ([3, 10]). Is (FO + ε)inv more expressive than (FO + ε)inv?

Figure 2 depicts the known separations among first-order logic and a few of
its C -invariant extensions. Question marks indicate relationships that are not
completely determined.

(FO + succ)inv

FO (FO + D)inv (FO + <)inv

(FO + ε)inv

??

?

$
$

$

?

$

Figure 2. Known separations among first-order logic and a few
of its C -invariant extensions.

Finally, the reader is referred to the article [4] in which a few ideas developed
here are used to construct elementary explicit (non-probabilistic) finite graphs
and tournaments satisfying certain extension axioms.
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