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Abstract

Treedepth is a well-studied graph invariant in the family of “width measures” that includes
treewidth and pathwidth. Understanding these invariants in terms of excluded minors has
been an active area of research. The recent Grid Minor Theorem of Chekuri and Chuzhoy [12]
establishes that treewidth is polynomially approximated by the largest k×k grid minor. In this
paper, we give a similar polynomial excluded-minor approximation for treedepth in terms of
three basic obstructions: grids, tree, and paths. Specifically, we show that there is a constant c
such that every graph of treedepth ≥ kc contains one of the following minors (each of treedepth
≥ k):

• the k × k grid,

• the complete binary tree of height k,

• the path of order 2k.

Let us point out that we cannot drop any of the above graphs for our purpose. Moreover, given
a graph G we can, in randomized polynomial time, find either an embedding of one of these
minors or conclude that treedepth of G is at most kc.

This result has potential applications in a variety of settings where bounded treedepth plays
a role. In addition to some graph structural applications, we describe a surprising application
in circuit complexity and finite model theory from recent work of the second author [28].

1 Introduction

Treedepth is a well-studied graph invariant with several equivalent definitions. It appears in the
literature under various names including vertex ranking number [30], ordered chromatic number
[17], and minimum elimination tree height [23], before being systematically studied under the name
treedepth by Ossona de Mendes and Nešetřil [20]. Bounded treedepth graphs play an important
role in areas such as the theory of sparse graph classes [21, 22], parameterized complexity theory
[13, 15, 24], and model theory [28, 29].

Formally, the treedepth of an undirected graph G is the minimum height of a rooted forest F
on the same set of vertices such that, for every edge {u, v} in G, vertices u and v have an ancestor-
descendant relationship in F (i.e., lie on a common branch). The forest F may be regarded as
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a decomposition of G into subgraphs of cliques that lie along the branches of F . This type of
decomposition is related to the more familiar tree-decompositions in the definition of treewidth (see
Section 3). Indeed, treedepth is a close relative of “width measures” like treewidth and pathwidth.
Intuitively, treedepth measures how “star-like” a graph is (note that graphs of treedepth 1 are
disjoint unions of stars), whereas treewidth and pathwidth measure the extent to which a graph is
“tree-like” and “path-like”. These three invariants, denoted td(G), tw(G) and pw(G), are related
by inequalities

(1) tw(G) + 1 ≤ pw(G) + 1 ≤ td(G) ≤ (tw(G) + 1) · log |V (G)|.

Treedepth is also related to the order of the longest path in G, denoted lp(G), by

(2) log(lp(G) + 1) ≤ td(G) ≤ lp(G).

(Throughout this paper log(·) denotes the base-2 logarithm. See Ch. 6 of [21] for proofs of (1) and
(2).)

These four graph invariants — td, tw, pw and lp — share the property of being monotone under
the graph-minor relation (a.k.a. minor-monotone). Recall that a graph H is a minor of G, denoted
H � G, if H can be obtained from G by a sequence of vertex deletions, edge deletions and edge
contractions. A graph invariant f : {graphs} → N is minor-monotone if f(H) ≤ f(G) for all
H � G. This is equivalent to the class {G : f(G) ≤ k} being minor-closed for every k ∈ N, where a
class C is minor-closed if G ∈ C ⇒ H ∈ C for all H � G. By the Robertson-Seymour Graph Minor
Theorem [25], every minor-closed class C is characterized by a finite set F of obstructions (a.k.a.
excluded minors) with the property that

G ∈ C ⇐⇒ (∀F ∈ F)(F 6� G)

for all graphs G; moreover, F is unique (up to isomorphism of its elements) subject to minimality
(i.e., F 6� F ′ for all distinct F, F ′ ∈ F). It follows that every minor-monotone graph invariant f
is characterized by the sequence (F1,F2, . . . ,Fk, . . . ) of finite minimal obstruction sets Fk for the
class {G : f(G) ≤ k}.

Understanding the exact minimal obstruction sets Fk (computing, classifying, counting, etc.)
for specific minor-monotone graph invariants is an active topic of research in graph theory (see
[1, 11]). When it comes to treedepth, minimal obstructions have been studied by two sets of
authors [4, 5, 14, 16]. However, a complete classification of minimal obstructions for treedepth ≤ k
remains elusive even for small values of k (less than 10). Moreover, Dvořák et al [14] showed that
the number of minimal obstructions grows enormously fast (at least doubly exponentially) as a
function of k [14]. The situation is similar for other width measures like treewidth. This severely
limits the usefulness of minimal obstructions in applications, such as parameterized algorithms on
bounded tree-depth graphs.

On the other hand, there are applications where having a reasonable approximation of a param-
eter like treedepth or treewidth serves a good enough purpose. (We describe one such application
in Section 7, which was the original motivation for the results of this paper.) The question arises
whether one (or a bounded number of) uniform families of non-minimal obstructions suffice for
a polynomial approximation of a given minor-monotone graph invariant. A recent breakthrough
of Chekuri and Chuzhoy [12] gave precisely such a result for treewidth (resolving a longstanding
conjecture in graph minor theory).
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Theorem 1.1 (Polynomial Grid-Minor Theorem for Treewidth [12]). There is an absolute constant
c such that every graph with treewidth ≥ kc has a k × k grid minor.

Since the k × k grid has treewidth k, Theorem 1.1 establishes the treewidth of a graph is
polynomially related to the size of its largest grid minor. (Prior to Theorem 1.1, treewidth only
known to be exponential in the size of the largest grid minor.) In this paper, we establish an analo-
gous “polynomial excluded-minor approximation” of treedepth in terms of three basic obstructions:
grids, complete binary trees, and paths.

Theorem 1.2 (Polynomial Grid/Tree/Path-Minor Theorem for Treedepth). There is an absolute
constant c such that every graph with treedepth ≥ kc has one or more of the following minors:

• the k × k grid,

• the complete binary tree of height k,

• the path of order 2k.

Since each of the above graphs has treedepth≥ k, the largest such obstruction gives a polynomial
approximation of td(G). Moreover, all three obstructions in Theorem 1.2 are necessary for a
polynomial approximation. (In light of (2), the length of the longest path in G gives a weaker
exponential approximation of td(G).)

Theorem 1.2 is obtained by a combination of Theorem 1.1 and the following result, which is the
technical main theorem of this paper.

Theorem 1.3 (Main Theorem). There is an absolute constant C such that every graph G with
treedepth ≥ Ck5 log2k satisfies one or more of the following conditions:

• G has treewidth ≥ k,

• G has the complete binary tree of height k as a minor,

• G contains a path of order 2k.

Our proof of Theorem 1.3 is entirely self-contained (in particular, we do not rely on Theorem
1.1). Due to the constructive nature of the proofs, we get an algorithmic version of Theorem 1.3.
Combined with the algorithmic version of Theorem 1.1 from [12], we get a randomized polynomial-
time algorithm which, given a graph G, either determines that G is of small treedepth or outputs
a certificate of one of the three cases in Theorem 1.2 (i.e., a minor-embedding of a grid, tree, or
path. For details see Section 6).

The rest of this paper is organized as follows. In Section 2 we state some basic definitions. In
Section 3 we prove some lemmas on tree decompositions. In Section 4 we prove some additional
lemmas on rooted trees (essentially proving Theorem 1.3 in the case where G is a tree). In Section
5 we present the proof of Theorem 1.3. In Section 6 we describe polynomial-time algorithms which
give effective versions of our main theorems. In Section 7 we describe a surprising application of
Theorem 1.3 in circuit complexity and logic, which was the motivation for this paper. Finally, we
conclude with some observations and open problems in Section 8.
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2 Preliminaries

N = {0, 1, 2, . . . }. For n ∈ N, [n] = {1, . . . , n}. log(·) is the base-2 logarithm.
All graphs in this paper are finite simple graphs. Formally, a graph is a pair G = (V (G), E(G))

where E(G) ⊆
(
V (G)

2

)
. A tree is a connected acyclic graph. A tree is subcubic if it has maximum

degree at most 3. Examples of subcubic trees include paths and binary trees.

Definition 2.1 (Tree Decompositions, Treewidth, Pathwidth).

• A tree decomposition of a graph G is a pair (T,W) where T is a tree and W = {Wt}t∈V (T ) is
a family of sets Wt ⊆ V (G) such that

–
⋃
t∈V (T )Wt = V (G), and every edge of G has both ends in some Wt,

– if t, t′, t′′ ∈ V (T ) and t′ lies on the path in T between t and t′′, then Wt ∩Wt′′ ⊆Wt′ .

• The width of a tree decomposition (T,W) is defined as maxt∈V (T ) |Wt| − 1.

• The treewidth of G, denoted tw(G), is the minimum width of a tree decomposition for G.

• The pathwidth of G, denoted pw(G), is the minimum width of a tree decomposition (T,W)
for G such that T is a path.

Definition 2.2 (Rooted Trees). A rooted tree is a tree T with a designated root vertex. The height
of T is the maximum number of vertices on a root-to-leaf path. We use the following notation:

• ~E(T ) is the set of ordered pairs xy such that x is a child of y in T . (We write xy instead of
(x, y) and think of this pair as a directed edge.)

• <T is the partial order on V (T ) defined by x <T y iff x is a proper descendent of y; we write
x ≤T y iff x <T y or x = y; for W ⊆ V (T ), we write W ≤T x iff w ≤T x for all w ∈W .

• The closure of T , denoted Clos(T ), is the graph with vertex set V (T ) and edge set {{x, y} :
x <T y or y <T x}. (In other words, two vertices are joined by an edge in Clos(T ) iff they
lie on a common branch in T .)

Definition 2.3 (Treedepth). The treedepth of a connected graph G, denoted td(G), is the minimum
height of a rooted tree T such that G ⊆ Clos(T ). The treedepth of a disconnected graph is the
maximum treedepth of its connected components.1

Definition 2.4 (Graph Minors and Minor-Monotonicity).

• A graph F is a minor of G, denoted F � G, if F is isomorphic to a graph that can be obtained
from G by a sequence of edge deletions and edge contractions.

• A graph invariant f : {graphs} → N is minor-monotone if f(F ) ≤ f(G) for all graph F � G.

Width measures tw(·), pw(·) and td(·) are easily seen to be minor-monotone. The parameter
lp(·), the order of the longest path, is minor-monotone as well.

1Treedepth of general graphs G can be defined as the minimum height of a rooted forest F such that G ⊆ Clos(F )
(where Clos(F ) is defined similarly as Clos(T )). Elsewhere in the literature, rooted forests F satisfying G ⊆ Clos(F )
are called treedepth decompositions of G. We avoid this terminology in this paper, to avoid confusion with the more
common notion of tree decompositions.
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3 Lemmas on Tree Decompositions

Our first lemma bounds the treedepth of a graph G in terms of the width of one of its tree
decomposition (T,W) and the treedepth of T . Although this lemma is essentially folklore (it is
implicit in proofs of the inequality td(G) ≤ (tw(G) + 1) log |V (G)| [9, 21]), we could not find a
proof in the literature, so include one for completeness.

Lemma 3.1. If (T,W) is a width-w tree decomposition of a graph G, then

td(G) ≤ (w + 1) · td(T ).

Proof. Suppose (T,W) be a width-w tree decomposition of a graph G. We will construct a rooted
R of height at most (w + 1) · td(T ) such that G ⊆ Clos(R). (The construction is illustrated in
Figure 1. The tree decomposition (T,W) in that example happens to be a path.)

By definition of treedepth, there exists a rooted tree S such that T ⊆ Clos(S) and td(T ) =
height(S). Without loss of generality, we may assume that V (S) = V (T ) (by deleting any vertices
of V (S) \ V (T )).

Recall that W is a family {Wt}t∈V (T ) where Wt ⊆ V (G). For each t ∈ V (T ), define the set
Ut ⊆ Wt by Ut := Wt \

⋃
u : t<S u

Wu. Let U := {Ut}t∈V (T ) and note that U forms a partition of
V (G) (where some of sets Ut may be empty).

For each t ∈ V (T ), fix an arbitrary linear order <t on Ut. Define partial order <? on V (G) by

x <? y
def⇐⇒

( ∨
t∈V (T )

x, y ∈ Ut and x <t y
)

or
( ∨
t,u∈V (T ) : t<Su

x ∈ Ut and y ∈ Uu
)
.

That is, we have x <? y iff either x, y belong to the same set Ut and x <t y, or x, y belong to
distinct Ut, Uu respectively where t <S u.

It is easy to see that <? is equivalent to <R for a unique rooted R with V (R) = V (G). (This
follows from the observation that <? is a partial order on V (G); it has a unique maximal element
(namely, the <t-maximal element of Ut (= Wt) where t = root(S)); and for every x ∈ V (G), the
set {y : x <? y} is totally ordered by <?.) Note that

td(G) ≤ height(R) ≤ max
t∈V (T )

|Wt| · height(S) = (w + 1) · td(T ).

To complete the proof, it remains to establish that G ⊆ Clos(R). Consider an edge {x, y} ∈
E(G). By definition of (T,W) being a tree decomposition of G, the set {t ∈ V (T ) : {x, y} ⊆ Wt}
is non-empty; let p be any <S-maximal element in this set. Consider the set {u ∈ V (T ) : p ≤S
u and {x, y} ∩Wt 6= ∅}; let q be the unique <S-maximal element in this set. There are now two
cases to consider:

• Assume p = q. Then x, y ∈ Up. W.l.o.g., x <p y. Then we have x <R y and hence
{x, y} ∈ E(Clos(R)).

• Assume p 6= q. Then |{x, y} ∩Wq| = 1. W.l.o.g., {x, y} ∩Wq = {y}. Then we have x ∈ Up
and y ∈ Uq and p <S q. It follows that x <R y and hence {x, y} ∈ E(Clos(R)).

Since {x, y} ∈ E(Clos(R)) in both cases, we conclude that G ⊆ Clos(R).
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Figure 1: From left to right: G, (T,W), (S,U), R

We next introduce a normal form for tree decompositions of connected graphs, which witnesses
tight upper bounds for both treewidth and treedepth (as shown in Lemmas 3.5 and 3.6).

Definition 3.2 (Greedy Rooted Tree Decomposition).

• A greedy rooted tree decomposition of a connected graph G is a rooted tree T with the following
properties:

1. V (T ) = V (G),

2. G ⊆ Clos(T ),

3. for every child-parent pair xy ∈ ~E(T ), there exists w ≤T x such that {w, y} ∈ E(G).

(Given (1) and (2), note that condition (3) is equivalent to the following: for every x ∈ V (T ),
the induced subgraph of G on {w : w ≤T x} is connected.)

• For each x ∈ V (G), we define the set BagT,G(x) ⊆ V (G) by

BagT,G(x) := {x} ∪ {y : there exists w such that w ≤T x <T y and {w, y} ∈ E(G)}.

• The width of T with respect to G is defined by maxx∈V (G) |BagT,G(x)| − 1.

Remark 3.3. Our notion of greedy rooted tree decompositions is defined only for connected graphs
for simplicity. However, Definition 3.2 extends naturally to general graphs by considering rooted
forests instead of rooted trees.

The same notion appears at least twice in the literature: in [13] under the name good treedepth
decomposition and in [10] under the name reduced separation forest. An even “greedier” class of tree
decompositions appears in [15] under the name minimal rooted trees. Every minimal rooted tree
for a connected graph G (in the sense of [15]) is a greedy rooted tree decomposition of G (in our
sense), but not conversely. (The notion of minimal rooted trees would not work for our purposes,
as Lemma 3.6 is false with respect to this more restrictive class of tree decompositions.)
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The following three lemmas establish the key properties of greedy rooted tree decompositions.
(These properties are also noted in [10, 13].) The first lemma establishes that greedy rooted tree
decompositions are, in fact, tree decompositions in the sense of Definition 2.1.

Lemma 3.4. If T is a greedy rooted tree decomposition of a connected graph G, then T together
with {BagT,G(x)}x∈V (G) is a tree decomposition of G.

Proof. Straightforward from definitions.

The next two lemmas show that height-optimal (resp. width-optimal) greedy rooted tree de-
composition witness the treedepth (resp. treewidth) of connected graphs.

Lemma 3.5. Every connected graph G has a greedy rooted tree decomposition of height td(G).

Proof. By definition of treedepth, there exists a rooted tree T of height td(G) such that G ⊆
Clos(T ). W.l.o.g., we may assume that V (T ) = V (G) (by deleting any vertices in V (T ) \ V (G)).
Thus, T satisfies conditions (i) and (ii) of Definition 3.2. If T satisfies condition (iii), then we are
done. So we assume that T violates condition (iii).

Consider any child-parent pair xy ∈ ~E(T ) witnessing the violation of condition (iii), that is, y
is the parent of x in T and there is no edge in G between y and any element of {w : w ≤T x}. Note
that y cannot be the root of T (since it would then follow from G ⊆ Clos(T ) that G is disconnected).
Let z be the parent of y in T . Let T ′ be the rooted tree obtained from T by removing the edge
{x, y} and adding the edge {x, z}. Note the following:

1. T ′ satisfies conditions (i) and (ii) (that is, V (T ′) = V (G) and G ⊆ Clos(T ′)).

2. height(T ′) ≤ height(T ).

3. width(T ′, G) ≤ width(T,G).

4. We have φ(T ′) < φ(T ) where φ : {rooted trees} → N is the potential function φ(S) :=∑
v∈V (S) depthS(v) where depthS(v) is the distance between v and the root of S. This is

clear, since V (T ′) = V (T ) and

depthT ′(v) =

{
depthT (v)− 1 if v ≤T x,
depthT (v) otherwise.

It follows from observations (1)–(4) that finitely many operations T 7→ T ′ transform T into a greedy
rooted tree decomposition of G of at most the same height and width. In particular, the height is
at most td(T ), which proves the lemma.

Lemma 3.6. Every connected graph G has a greedy rooted tree decomposition of width tw(G).

Proof. By definition of treewidth, there exists a tree decomposition (T,W) of G of width tw(G).
W.l.o.g., we may assume that Wt is nonempty for all t ∈ V (T ). We now make T into a rooted tree
by arbitrary fixing a choice of root(T ) ∈ V (T ). Without increasing width, we can massage2 the
tree decomposition (T,W) in order that

2If |Wroot(T )| = {v1, . . . , vk} where k ≥ 2, then replace root(T ) with a path on fresh vertices t1, . . . , tk where

Wti = {v1, . . . , vi}; if |Ws \Wt| = k ≥ 2 for some st ∈ ~E(T ), then replace the edge {s, t} in T by a path of length
k − 1 with appropriate sets Wu at the newly created vertices u.
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• |Wroot(T )| = 1,

• |Ws \Wt| = 1 for all every child-parent pair st ∈ ~E(T ).

We may now identify V (T ) with V (G) by identifying root(T ) with the unique element of Wroot(T )

and identifying each non-root t with the unique element of Wt \Wu where u is the parent of t.
Thus identified, the rooted tree T now satisfies conditions (i) and (ii), that is, V (T ) = V (G)

and G ⊆ Clos(T ). Moreover, we have width(T,G) ≤ width(T,W). Finally, we repeat the same
operation T 7→ T ′ as in the proof of Lemma 3.5 until T satisfies condition (iii) with respect to G.
Since this operation does not increase width, we obtain a greedy rooted tree decomposition of G of
width at most tw(G), which proves the lemma.

4 Lemmas on Rooted Trees

In this section we some prove results about rooted trees. In particular, we prove the special case
of our main theorem for trees. Namely, we show that every tree with treedepth k contains a path

of length 2Ω(
√
k) or a complete binary tree of height Ω(

√
k) as a minor. We begin with a few

definitions.

Definition 4.1 (The Rooted Minor Relation �rooted). For rooted trees S and T , we say that S is
a rooted minor of T , denoted S �rooted T , if S is isomorphic to a rooted tree obtained from T by
deleting non-root leaves and contracting edges.

Definition 4.2 (Rooted Trees Pk and Bh).

• For k ≥ 1, let Pk denote the path of order k rooted at one of its endpoints.

• For h ≥ 1, let Bh denote the rooted complete binary tree of height h (with 2h − 1 vertices).

Note that P1 and B1 are both the rooted tree of size 1 (i.e., an isolated root).

The next definition gives some useful notation for describing the structure of rooted trees.

Definition 4.3 (Rooted Tree-Building Operations ∗ and 〈〉).

• For rooted trees S and T , let S ∗T denote the rooted tree formed by taking the disjoint union
of S and T and identifying the two roots. (For example, P2 ∗ · · · ∗ P2 is a star rooted at its
central vertex.) This operation is associative and commutative with identity element P1. For
a sequence of rooted trees T1, . . . , Tm (m ∈ N), we adopt the convention that T1∗· · ·∗Tm = P1

if m = 0.

• For a rooted tree T , let 〈T 〉 denote the rooted tree obtained from T by creating a new root
ρ and drawing an edge between ρ and the old root of T .

• For a sequence of rooted trees T1, . . . , Tm (m ≥ 1), let

〈T1, . . . , Tm〉 := 〈T1 ∗ 〈T2 ∗ . . . 〈Tm−1 ∗ 〈Tm〉〉 . . . 〉〉.

That is, 〈T1, . . . , Tm〉 is the rooted tree obtained by identifying the root of Ti with the ith
vertex from the root on the rooted path Pm+1.
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These operations on rooted trees are illustrated in Figure 2, below.

T1 ∗ · · · ∗ Tm

TmT1

T2

〈T1〉 ∗ · · · ∗ 〈Tm〉

TmT1

T2

〈T1, . . . , Tm〉

T1 T2 Tm

Figure 2

As a matter of notation, let 〈〉 and 〈B0〉 both denote the rooted tree P1 (i.e., a single isolated
root). Note that for k, h ≥ 1,

Pk = 〈P1, . . . , P1︸ ︷︷ ︸
k−1 times

〉 and Bh = 〈Bh−1〉 ∗ 〈Bh−1〉.

(Note: The reader may regard B0 as the empty tree with 0 vertices; this is not a rooted tree. On
the other hand, 〈B0〉 is a rooted tree with 1 vertex.)

Lemma 4.4. Every rooted tree T has a unique decomposition the form 〈T1〉 ∗ · · · ∗ 〈Tl〉 for some
l ∈ N and rooted trees T1, . . . , Tl (unique up to ordering).

Proof. Straightforward from definitions. Here l is the degree of root(T ) and T1, . . . , Tl are the
subtrees rooted at the children of root(T ) (see Figure 1). (Note that l = 0 in this decomposition
if, and only if, T is an isolated root.)

The next two lemmas characterize the rooted minor relation in terms of the decomposition
given by Lemma 4.4.

Lemma 4.5. For rooted trees S and T , we have 〈S〉 �rooted 〈T 〉 if, and only if, S �rooted T or
〈S〉 �rooted T .

Proof. Assume 〈S〉 �rooted 〈T 〉 and consider the edge in 〈T 〉 between root(〈T 〉) and root(T ). If this
edge is not contracted in the minor isomorphic to S, then S �rooted T . If this edge is contracted,
then 〈S〉 �rooted T .

The other direction is clear. If S �rooted T , then clearly 〈S〉 �rooted 〈T 〉 (by the same sequence of
deletions and contractions). If 〈S〉 �rooted T , then 〈S〉 �rooted 〈T 〉 (by T �rooted 〈T 〉 and transitivity
of �rooted).

Lemma 4.6. Suppose S = 〈S1〉 ∗ · · · ∗ 〈Sl〉 and T = 〈T1〉 ∗ · · · ∗ 〈Tm〉. Then S �rooted T if, and only
if, there exists a one-to-one function j : [l] ↪→ [m] such that 〈Si〉 �rooted 〈Tj(i)〉 for all i ∈ [l].

Proof. Straightforward from definitions.

4.1 Rooted trees that exclude 〈Bh〉 minors

The next lemmas characterize the structure of rooted trees T that omit binary trees 〈Bh〉 as rooted
minors. (We use these results soon in §4.3.)
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Lemma 4.7. If T is a rooted tree such that Bh 6�rooted T and 〈Bh〉 6�rooted T , then there exist m ≥ 1
and rooted trees S1, . . . , Sm such that T = S1 ∗ 〈S2, . . . , Sm〉 and 〈Bh−1〉 6�rooted Si for all i ∈ [m].

Proof. Assume Bh 6�rooted T and 〈Bh〉 6�rooted T and note that this implies h ≥ 2 (since B1 �rooted T ).
We argue by induction on |V (T )|. In the base case T = P1, we set m := 1 and S1 := T .

For the induction step, assume |V (T )| ≥ 1 and let T = 〈T1〉 ∗ · · · ∗ 〈Tl〉 be the decomposition
given by Lemma 4.4. Observe that there exists at most one i ∈ [l] such that 〈Bh−1〉 �rooted 〈Ti〉
(since otherwise we would have Bh = 〈Bh−1〉 ∗ 〈Bh−1〉 �rooted T ).

Consider the case that 〈Bh−1〉 6�rooted 〈Ti〉 for all i ∈ [l]. In this case, we have 〈Bh−1〉 6�rooted T
by Lemma 4.6. Therefore, the condition in the lemma is satisfied with m := 1 and S1 := T .

Finally, consider the case that there exists a unique i ∈ [l] such that 〈Bh−1〉 �rooted 〈Ti〉.
Without loss of generality, assume i = l. Let S1 := 〈T1〉 ∗ · · · ∗ 〈Tl−1〉 and T ′ := Tl. Observe that
〈Bh−1〉 6�rooted S1 and |V (T )| ≥ 1+|V (T ′)| (since 〈T ′〉 is a subtree of T ). By the induction hypothesis
applied to T ′, there exists m ≥ 2 and rooted trees S2, . . . , Sm such that T ′ = S2 ∗ 〈S3, . . . , Sm〉 and
〈Bh−1〉 6�rooted Si for all i ∈ [m]. We are now done, as T = S1 ∗ 〈T ′〉 = S1 ∗ 〈S2, . . . , Sm〉.

Lemma 4.8. If T is a rooted tree such that 〈Bh〉 6�rooted T , then there exist m ≥ 0 and l1, . . . , lm ≥ 1
and rooted trees Si,j (i ∈ [m], j ∈ [li]) such that

T = 〈S1,1, . . . , S1,l1〉 ∗ · · · ∗ 〈Sm,1, . . . , Sm,lm〉

and 〈Bh−1〉 6�rooted Si,j for all i ∈ [m] and j ∈ [li].

Proof. Assume 〈Bh〉 6�rooted T . Let T = 〈T1〉 ∗ · · · ∗ 〈Tm〉 be the decomposition given by Lemma
4.4. For all i ∈ [m], we have 〈Bh〉 6�rooted Ti and Bh 6�rooted Ti by Lemmas 4.5 and 4.6. By Lemma
4.7, there exist li ∈ N and rooted trees Si,1, . . . , Si,li such that Ti = Si,1 ∗ 〈Si,2, . . . , Si,li〉 and
〈Bh−1〉 6�rooted Si,j for all j ∈ [li]. We have 〈Ti〉 = 〈Si,1, . . . , Si,li〉, and hence T = 〈S1,1, . . . , S1,l1〉 ∗
· · · ∗ 〈Sm,1, . . . , Sm,lm〉.

4.2 Treedepth bounds

The next lemmas give bounds on the treedepth of the underlying graph of a tree T (that is, ignoring
the root). These lemmas play a role in the proof of Theorem 1.3 in §5.

Lemma 4.9 ([20, 21]). For all k, h ≥ 1, we have td(Pk) = dlog(k + 1)e and td(Bh) = h.

Note that the embedding P15 ⊆ Clos(B4), which witnesses the bound td(P15) ≤ 4, is depicted
in Figure 1.

Lemma 4.10. For all m ≥ 0 and rooted trees T1, . . . , Tm,

td(T1 ∗ · · · ∗ Tm) ≤ max{td(T1), . . . , td(Tm)}+ 1.

Proof. Let tdrooted(T ) denote the minimum height of a rooted tree T ′ with root(T ′) = root(T )
and E(T ) ⊆ E(clos(T ′)). It is easy to see that td(T ) ≤ tdrooted(T ) and tdrooted(T1 ∗ · · · ∗ Tm) =
max{td(T1), . . . , td(Tm)}+ 1.

Lemma 4.11. For all m ≥ 0 and rooted trees T1, . . . , Tm,

td(〈T1, . . . , Tm〉) ≤ dlog(m+ 2)e+ max{td(T1), . . . , td(Tm)}.
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Proof. For each i ∈ [m], fix a rooted tree T ′i of height td(Ti) such that E(Ti) ⊆ E(clos(T ′i )).
Invoking Lemma 4.9, let T ′0 be a rooted tree of height dlog(m+2)e such that E(Pk+1) ⊆ E(clos(T ′0)).
Label the vertices of Pm+1 as v0, . . . , vk with v0 being the root. Let T ′ be the rooted tree, with
root v0, obtained from the disjoint union of T ′0, . . . , T

′
k by identifying vertices vi and root(T ′i ) for

each i ∈ [m]. Note that E(〈T1, . . . , Tk〉) ⊆ E(clos(T ′)) and

height(T ′) ≤ height(T ′0) + max
i∈[m]

height(T ′i ) = dlog(m+ 2)e+ max
i∈[m]

td(Ti).

Lemma 4.12. For every rooted tree T and h ≥ 0 and k ≥ 1, if 〈Bh〉 6�rooted T and Pk 6�rooted T ,
then

td(T ) ≤ h · (dlog(k + 1)e+ 1).

Proof. The lemma is proved by induction on h. The base case h = 0 is vacuous, since 〈B0〉 = P1 is a
rooted minor of every rooted tree. For the induction step, let h ≥ 1 and assume 〈Bh〉 6�rooted T and
Pk 6�rooted T . By Lemma 4.8, there exist m ∈ N and l1, . . . , lm ∈ N and rooted trees Si,j (i ∈ [m],
j ∈ [li]) such that

T = 〈S1,1, . . . , S1,l1〉 ∗ · · · ∗ 〈Sm,1, . . . , Sm,lm〉

and 〈Bh−1〉 6�rooted Si,j for all i ∈ [m] and j ∈ [li]. We also clearly have li < k and Pk 6�rooted Si,j for
all i ∈ [m] and [li]. By the induction hypothesis, td(Si,j) ≤ (h− 1) · dlog(k+ 1)e. By Lemma 4.11,
we have

td(〈Si,1, . . . , Si,li〉) ≤ dlog(li + 2)e+ max{td(Si,1), . . . , td(Si,li)}
≤ dlog(k + 1)e+ (h− 1) · (dlog(k + 1)e+ 1)

= h · (dlog(k + 1)e+ 1)− 1.

Finally, by Lemma 4.10, we have

td(T ) ≤ max{td(〈S1,1, . . . , S1,l1〉), . . . , td(〈Sm,1, . . . , Sm,lm〉)}+ 1

≤ h · (dlog(k + 1)e+ 1).

Lemma 4.13. Every rooted tree with treedepth ≥ d contains a subcubic rooted subtree of order

≥ 2
√
d−2.

Proof. We prove the contrapositive. Suppose T is a rooted tree that does not contain a subcubic

rooted subtree of order ≥ 2
√
d−2. In particular, T does not have 〈Bh〉 or Pk as a rooted minor

where h = d
√
d− 2e and k = 2h. By Lemma 4.12, it follows that

td(T ) ≤ h · (dlog(k + 1)e+ 1) ≤ (
√
d− 1)(dlog(2

√
d−1 + 1)e+ 1) < d.

4.3 Bounded-degree graphs that omit Pk and Bh minors

The final two lemmas of this section bound the size of bounded-degree graphs that omit Pk and
Bh minors.

Lemma 4.14. Let h, k, c ≥ 1 and suppose T is a rooted tree such that 〈Bh〉 6�rooted T and Pk 6�rooted

T and every vertex of T has at most c children. Then |V (T )| ≤ (ck)h−1.
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Proof. The lemma is proved by induction on h. In the base case h = 1, the condition 〈B1〉 6�rooted T
implies that T is an isolated root (since 〈B1〉 = P2). Therefore |V (T )| = 1 = (ck)h−1.

For the induction step, suppose h ≥ 2. By Lemma 4.8, there exist m ∈ N and l1, . . . , lm ∈ N
and rooted trees Si,j such that T = 〈S1,1, . . . , S1,l1〉 ∗ · · · ∗ 〈Sm,1, . . . , Sm,lm〉 and 〈Bh−1〉 6�rooted Si,j
for all i ∈ [m] and j ∈ [lm]. Note that m ≤ c and li ≤ k− 1 and Pk−1 6�rooted Si,j for all i ∈ [m] and
j ∈ [li]. By the induction hypothesis, we have |V (Si,j)| ≤ (c(k − 1))h−2 for all i and j. Therefore,

|V (T )| = 1 +
m∑
i=1

li∑
j=1

|V (Si,j)|

≤ 1 + c(k − 1)(c(k − 1))h−2 = 1 + (c(k − 1))h−1 ≤ (ck)h−1.

Lemma 4.15. Let h, c ≥ 1 and suppose G is a connected graph with maximum degree ≤ c+ 1 such
that Bh 6� G and Pch 6� G. Then |V (G)| ≤ ch2

.

Proof. Let T be any spanning tree of G rooted at any of its leaves. Since G has maximum degree
c+ 1, every vertex has at most c children in T . The assumption that Pch 6� G and Bh 6� G implies
that Pch 6�rooted T and 〈Bh〉 6�rooted T . Therefore, by Lemma 4.14,

|V (G)| = |V (T )| ≤ (ch+1)h−1 ≤ ch2
.

5 Proof of Theorem 1.3

In this section, we prove Theorem 1.3 by showing the following stronger result.

Theorem 5.1. Every graph G contains a path of order 2h or has a Bh-minor where

h = Ω

(
r1/4

log1/2(tw(G) + 1)

)
, r =

td(G)

tw(G) + 1
.

(Obs: Note that the ratio r is at most 1 by inequality (1).)

Proof of Theorem 1.3 assuming Theorem 5.1. Let k ≥ 1 and suppose G is a graph of treewidth
< k which does not contains a path of order 2k nor a Bk-minor. Theorem 5.1 implies

k ≥ Ω

(
td(G)1/4

(tw(G) + 1)1/4 log1/2(tw(G) + 1)

)
≥ Ω

(
td(G)1/4

k1/4 log1/2 k

)
.

It follows that td(G) ≤ O(k5 log2k).

The rest of this section is devoted the proof of Theorem 5.1.

Proof of Theorem 5.1. It clearly suffices to prove the theorem for connected graphs G. Let G be
any connected graph and let r = td(G)/(tw(G) + 1). We must show that G contains a path of
length 2h or a Bh-minor where h = Ω(r1/4/ log1/2(tw(G) + 1)).

By Lemma 3.6, we may fix a greedy rooted tree decomposition T of width tw(G) for G. By
Lemma 3.1, we have td(T ) ≥ r.

In the rest of the proof, we will construct a sequence of three trees: first a spanning tree F ⊆ G,
then a subcubic rooted subtree S ⊆ T of order |V (S)| = 2Ω(

√
r), and finally a subtree Q ⊆ F with

maximum degree ≤ tw(G) + 2 and V (S) ⊆ V (Q). By Lemma 4.15, we conclude that Q contains a
path of length 2h or a Bh-minor where h = Ω(r1/4/ log1/2(tw(G)+1)). Since Q ⊆ G, this completes
the proof.
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The spanning tree F ⊆ G:

• Let V ′ = V (G) \ {root(T )}. For x ∈ V ′, let x̂ be the parent of x in T (i.e., the unique vertex
in V (G) (= V (T )) such that xx̂ ∈ ~E(T )).

• By condition (iii) of Definition 3.2, there exists a function x 7→ x̂ : V ′ → V ′ such that x̂ ≤T x
and {x̂, x̂} ∈ E(G) for all x ∈ V ′. Fix any choice of such a function x 7→ x̂.

• Let F ⊆ G be the subgraph of G defined by V (F ) = V (G) and E(F ) = {{x̂, x̂} : x ∈ V ′}.

Claim 1. F is a spanning tree for G (that is, F is a tree and V (F ) = V (G)).

I The fact that F is a tree follows from the observation that x̂ <T x̂ for all x ∈ V ′ (since x̂ ≤T x and
x <T x̂). To see that V (F ) = V (G), note that V (G) = V (T ) and consider any vertex x ∈ V (G).
If x is a non-leaf in T , then let w be any of its children (i.e., x = ŵ); we have {ŵ, x} ∈ E(F ) and
hence x ∈ V (F ). If x is a leaf in T , then (assuming w.l.o.g. that |V (G)| ≥ 2 so that x ∈ V ′) we
have x̂ = x (this is forced by the requirement x̂ ≤T x) and therefore {x̂, x̂} ∈ E(F ) and hence
x̂ ∈ V (F ). JClaim 1

Claim 2. Each edge {u, v} ∈ E(F ) satisfies u <T v or v <T u.

I Let {u, v} ∈ E(F ). There exists x ∈ V ′ such that {u, v} = {x̂, x̂}. Either u = x̂ and v ∈ x̂ (in
which case u ≤T x <T v), or u = x̂ and v ∈ x̂ (in which case v ≤T x <T u). JClaim 2

Claim 3. If x ∈ V ′ and P is the unique path in F between x̂ and x, then V (P ) \ {x̂} ≤T x.

I Let (p0, . . . , pt) be the sequence of vertices on the unique path from x̂ to x in F (with p0 = x̂
and pt = x). Let pi be the unique <T -maximum element in {p0, . . . , pt}. Toward a contradiction
assume i 6= 0 (that is, pi 6= x̂). Then i ∈ {1, . . . , t − 1} and, moreover, pi−1 <T pi and pi+1 <T pi
(by Claim 2 since {pi−1, pi} ∈ E(F ) and {pi, pi+1} ∈ E(G)). Since pi−1 6= pi+1, it must be the case
that pi−1 = û and pi+1 = ŵ for distinct u,w ∈ V ′ such that û = ŵ = pi. It may now be seen that
p0, . . . , pi−1 ≤T u and pi+1, . . . , pt ≤T w.3 Since x̂ = p0 and x = pt, this means that x̂ ≤T u and
x ≤T w. But then x̂ and x would be incomparable under <T (since u and w are siblings in T ).
This yields the desired contradiction, since x̂ is the parent of x in T . JClaim 3

The rooted subtree S ⊆ T :

• By Lemma 4.13, T has a subcubic rooted subtree S of order 2Ω(
√
r) (with root(S) = root(T )

and ~E(S) ⊆ ~E(T )). Fix any choice of S.

• Let W = V (S) and W ′ = V (S) \ {root(S)}.

The reason we need this subcubic tree S will become clear later on (in Claim 4). In short, the
fact that S has degree ≤ 3 guarantees that the tree Q (which we are about to construct) will have
maximum degree ≤ tw(G) + 2.

3To see why, if pj ≤T w and pj+1 6≤T w for some i + 1 ≤ j ≤ t − 1, then it must be the case that pj <T pj+1;
hence pj+1 and pi are comparable (since pj ≤T w <T pi and <T linearly orders {y : pj ≤ y}); hence pi <T pj+1, but
this contradicts the maximality of pi. A similar contradiction arises if we assume that pj 6≤T u for some 0 ≤ j ≤ i−1.
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Trees {Qx ⊆ F}x∈W and paths {Px ⊆ F}x∈W ′: By simultaneous induction (upward from the
leaves of S), we define families of subgraphs {Qx ⊆ F}x∈W and {Px ⊆ F}x∈W ′ where each Qx
is a tree satisfying x ∈ V (Qx) and V (Qx) ≤T x and each Px is a path satisfying x̂ ∈ V (Px) and
V (Px) \ {x̂} ≤T x and |V (Px) ∩ V (Qx)| = 1.

• Suppose x ∈W is a leaf in S. Then Qx is the single-vertex graph with V (Qx) = {x}.

(Note that Qx satisfies x ∈ V (Qx) and V (Qx) ≤T x.)

• Suppose x ∈ W ′ where Qx is already defined. Let (p0, . . . , pt) be the sequence of vertices
on the unique path from x̂ to x in F (with p0 = x̂ and pt = x). Let s ∈ {1, . . . , t} be the
minimum index satisfying ps ∈ V (Qx). (This is well-defined since pt = x ∈ V (Qx).) Then Px
is the subpath of F with V (Px) = {p0, . . . , ps} and E(Px) = {{p0, p1}, . . . , {ps−1, ps}}.

(Note that Px satisfies x̂ = p0 ∈ V (Px) and V (Px) \ {x̂} = {p1, . . . , ps} ≤T x (by Claim 3)
and V (Px) ∩ V (Qx) = {ps}.)

• Suppose x ∈ W is a non-leaf with children w1, . . . , wk in S (i.e., {w1, . . . , wk} = {w ∈
W : wx ∈ ~E(S)} where x may have additional children in T ) such that Qw1 , . . . , Qwk

and
Pw1 , . . . , Pwk

are already defined. (Obs: k ≤ 2 since S is subcubic.) We define Qx =
(Qw1 ∪ · · · ∪Qwk

) ∪ (Pw1 ∪ · · · ∪ Pwk
).

(Note that Qx satisfies x ∈ V (Qx) and V (Qx) ≤T x.)

The tree Q ⊆ F and vertices {x? ∈ V (Px) ∩ V (Qx)}x∈W ′:

• Finally, let Q = Qroot(S). Note that Q =
⋃
x∈W ′ Px by the above definition.

• For each x ∈ W ′, let x? be the unique element in V (Px) ∩ V (Qx). (That is, x? is the vertex
ps in the above definition of Px.) Thus, Px is the unique path in F between x̂ (the parent of
x in S) and x? (the first vertex in V (Qx) encountered on the unique path in F from x̂ to x).

Claim 4. For all q ∈ V (Q), we have degQ(q) ≤ |{x ∈W ′ : q = x?}|+ 2.

I Consider any q ∈ V (Q). Since Q =
⋃
x∈W ′ Px, we have

degQ(q) =
∑
x∈W ′

degPx
(q)

= 2·|{x ∈W ′ : degPx
(q) = 2}|+ |{x ∈W ′ : q = x̂}|+ |{x ∈W ′ : q = x?}|.

We now note:

• |{x ∈W ′ : q = x̂}| ≤ 2 (since S is subcubic).

• |{x ∈W ′ : degPx
(q) = 2}| ≤ 1 (this follows from the definition of Px).

• If q ∈W , then {x ∈W ′ : degPx
(q) = 2} = ∅.

• If q /∈W , then {x ∈W ′ : q = x̂} = ∅.

The claim follows from these observations. JClaim 4
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Claim 5. For all q ∈ V (Q), we have |{x ∈W ′ : q = x?}| ≤ |BagT,G(q)| − 1 ≤ tw(G).

I Consider any q ∈ V (Q). Recall that

BagT,G(q) = {q} ∪ {y : there exists w such that w ≤T q <T y and {w, y} ∈ E(G)}.

For each x ∈W ′ such that q = x?, define the set

Ux = {u ∈ V (Px) : û ≤T q <T u}.

Three simple observations:

• We have Ux ⊆ BagT,G(q) \ {x} (since {û, u} ∈ E(F ) ⊆ E(G) for all u ∈ V ′).

• Let (p0, . . . , ps) be the unique path in F from x̂ to q (with p0 = x̂ and ps = q). Let
i ∈ {1, . . . , s} be the minimum index such that pi ≤T q. Then pi = p̂i−1 and pi ≤T q <T pi−1.
Therefore, Ux is nonempty.

• We have V (Px) ∩ V (Py) = {q} for all distinct x, y ∈ W ′ such that q = x? = y?. Therefore,
Ux and Uy are disjoint.

It follows from these three observations that |{x ∈ W ′ : q = x?}| ≤ |BagT,G(q)| − 1. Finally, recall
that T was chosen such that width(T,G) = maxx∈V (G) |BagT,G(x)| − 1 = tw(G). JClaim 5

Claims 4 and 5 imply that Q has maximum degree ≤ tw(G) + 2. Since V (S) ⊆ V (Q), we have

|V (Q)| ≥ |V (S)| ≥ 2Ω(
√
r) = (tw(G) + 1)Ω(

√
r/ log(tw(G)+1)).

It now follows from Lemma 4.15 that Q (and hence also G since Q ⊆ G) contains either a path of
order 2h or a Bh-minor where h = Ω(r1/4/ log1/2(tw(G)+1)). This completes the proof of Theorem
5.1.

6 Algorithmic Results

In this section, we describe the algorithmic versions of our main results. From the constructive
nature of the proof of Theorem 5.1, we have the following

Corollary 6.1 (Algorithmic Version of Theorem 5.1). There is a polynomial-time algorithm which,
given a graph G and a width-w tree decomposition of G, outputs a minor embedding of either P2h

or Bh where

h = Ω

(
r1/4

log1/2(w + 1)

)
, r =

td(G)

w + 1
.

Results of Bodlaender et al [9, 8] give a polynomial-time algorithm which, given a graph G,
outputs a tree decomposition of G of width O(tw(G)2). (This is actually a combination of two
polynomial-time approximation algorithms for treewidth: an O(log n)-approximation for arbitrary
n-vertex graphs G [9] and a 5-approximation algorithm in the case where tw(G) ≤ log n [9].)
Combining this algorithm with Corollary 6.2, we get
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Corollary 6.2. There is a polynomial-time algorithm which, given a graph G, outputs a minor
embedding of P2h or Bh where

h = Ω

(
td(G)1/4√

(tw(G) + 1) log(tw(G) + 1)

)
.

To obtain the algorithmic version of Theorem 1.2, we combine Corollary 6.2 with the randomized
polynomial-time algorithm of Chekuri and Chuzhoy [12] which, given a graph G, a minor embedding
of the k × k grid where k = tw(G)Ω(1).

Corollary 6.3 (Algorithmic Version of Theorem 1.2). There is a randomized polynomial-time
algorithm which, given a graph G, outputs a minor embedding of one of the following graphs where
k = td(G)Ω(1):

• the k × k grid,

• the complete binary tree of height k,

• the path of order 2k.

The algorithm of Corollary 6.3 finds a k×k grid minor via the Chekuri-Chuzhoy algorithm and
a P2h or Bh minor via Corollary 6.2. It outputs the grid minor if k > h and the P2h or Bh minor
otherwise.

7 Applications in Complexity and Logic

The main result of this paper, Theorem 1.3, was motivated by a specific application in circuit
complexity and logic. By combining our polynomial excluded-minor approximation of treedepth
with lower bounds on the AC0 formula size of detecting grids [18], paths [27] and trees [29], we
obtain an npoly(td(G)) lower bound on the AC0 formula size of the colored G-subgraph isomorphism
problem for all graphs G. This result, in turn, has a surprising corollary in finite model theory: a
polynomial-rank homomorphism preservation theorem on finite structures. In this section, we give
a brief overview of these results; see the paper [28] for details.

7.1 The AC0-Formula Size of Subgraph Isomorphism

In order to define the colored G-subgraph isomorphism problem, we first introduce the blow-up
G↑n.

Definition 7.1. For a graph G and n ∈ N, the n-fold blow-up of G is the graph G↑n defined by

V (G↑n) = V (G)× [n],

E(G↑n) =
{
{(v, a), (w, b)} : {v, w} ∈ E(G), a, b ∈ [n]

}
.

For α ∈ [n]V (G), the subgraph G(α) ⊆ G↑n (an isomorphic copy of G) is defined by

V (G(α)) =
{

(v, αv) : v ∈ V (G)
}
,

E(G(α)) =
{
{(v, αv), (w,αw)} : {v, w} ∈ E(G)

}
.
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Definition 7.2. The colored G-subgraph isomorphism problem is the following problem:

Given a graph X ⊆ G↑n, does there exist α ∈ [n]V (G) such that G(α) ⊆ X?

To study the complexity of this problem, we view it as a sequence SUB(G) = {SUB(G,n)}n∈N of
Boolean functions SUB(G,n) : {0, 1}|E(G)|·n2 → {0, 1}.

The following lemma from Li et al [18] shows that the complexity of SUB(G) is a minor-
monotone graph invariant.

Lemma 7.3. If H is a minor of G, then there is a monotone-projection reduction from SUB(H,n)
to SUB(G,n) for every n ∈ N.4

As a consequence of Lemma 7.3, the function G 7→ χ(SUB(G,n)) is a minor-monotone graph
invariant for all standard complexity measures χ(·), including AC0 circuit/formula size.5

It is known that SUB(G) is computable by AC0 circuits of size O(ntw(G)+1), as well as by AC0

formulas of size O(ntd(G)) (moreover, depth |V (G)| is sufficient in both cases).6 The next theorem
summarizes known lower bounds on the AC0 complexity of SUB(G).

Theorem 7.4 (AC0 lower bounds).

1. SUB(G) has AC0 circuit size nΩ(tw(G)/ log tw(G)) for all graphs G [18].

2. SUB(Pk) has AC0 formula size nΩ(log k) for all k [27].

3. SUB(Bk) has AC0 formula size nk
Ω(1)

for all k [29].

Combining Theorem 1.3 with the three lower bounds in Theorem 7.4, and using the fact that
the AC0 formula size of SUB(G) is minor-monotone by Lemma 7.3, we get the following:

Theorem 7.5. There is an absolute constant ε > 0 such that SUB(G) has AC0 formula size
nΩ(td(G)ε) for all graphs G.

Theorem 1.3(1) and Theorem 7.5 lend support to the conjectures that the unbounded-depth
circuit (resp. formula) size of SUB(G) is nΩ(tw(G)) (resp. nΩ(td(G))). Since these conjectures imply
P 6= NP and NC1 6= NL, it is an interesting and worthwhile first step to prove these lower bounds
in the restricted bounded-depth setting.

4This means that SUB(H,n) reduces to SUB(G,n) via a function that maps each edge-indicator variable Ye′

(e′ ∈ E(H↑n)) to either a constant (0 or 1) or an edge-indicator variable Xe (e ∈ E(G↑n)).
5Recall that AC0 is the class of constant-depth polynomial-size circuits in the basis {AND∞,OR∞,NOT}. For-

mulas are circuits with fan-out 1. For a sequence of Boolean function f = (fn) and d ≥ 2, the depth-d AC0

circuit/formula size of f is the minimum number of gates in a depth-d AC0 circuit/formula that computes fn, as a
function of n. We say that the AC0 circuit/formula size of f is O(nc) (resp. Ω(nc)) if the depth-d AC0 circuit/formula
size of f is Od(nc) (resp. Ωd(nc)).

6With respect to the uncolored G-subgraph isomorphism problem, one obtains the essentially same upper bounds
via the “color-coding” technique of Alon, Yuster and Zwick [2], which Amano [3] observed can be implemented in
AC0.
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7.2 An Improved Homomorphism Preservation Theorem on Finite Structures

Theorem 7.5 turns out to have a surprising corollary in finite model theory. The following result
was proved in [28].

Theorem 7.6. Let ϕ be a first-order sentence of quantifier-rank r. If ϕ is preserved under homo-
morphisms on finite structures, then there is an existential-positive sentence ψ of quantifier-rank
rO(1) such that ϕ and ψ are logically equivalent on finite structures.

The proof of Theorem 7.6 is based on a reduction to the AC0 formula of SUB(G) and relies
on Theorem 7.5 (and hence on Theorem 1.3) for the polynomial bound on the quantifier-rank of
ψ. Theorem 7.6 dramatically improves an earlier result in [26], in which the bound on quantifier-
rank of ψ is a non-elementary function of r (i.e., growing faster than any constant-height tower of
exponentials).

8 Open Questions

In light of Theorems 1.1 and 1.2, we conjecture the following “Polynomial Grid/Tree-Minor Theo-
rem for Pathwidth”:

Conjecture 8.1. There is an absolute constant c such that every graph with pathwidth ≥ kc has
one of the following minors:

• the k × k grid,

• the complete binary tree of height k.

The techniques introduced in this paper might be helpful in proving this conjecture. Another
open problem is to improve the O(k5 log2k) bound in Theorem 1.3. The optimal bound is likely
smaller; however, examples show one cannot do better than O(k2).

Acknowledgements. We are grateful to the anonymous referees for their close reading of this
paper and many helpful comments and corrections.
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