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Abstract

A first-order sentence ϕ defines k-clique in the average-case if

limn→∞ PrG=G(n,p)

[
G |= ϕ ⇔ G has a k-clique

]
= 1

where G = G(n, p) is the Erdős-Rényi random graph with p = p(n) being the exact
threshold such that Pr[G(n, p) has a k-clique] = 1/2. A question of interest is:

How many variables are required to define average-case k-clique in first-order logic?

Beyond just the usual language of graphs (with only an adjacency relation), we may
consider this question for sentences which involve background relations on {1, . . . , n}
(e.g. the standard linear order). The following have been known:

• With arbitrary background relations, k/4 variables are necessary [6].

• With no background relations, k/2 variables are necessary and k/2 + O(1) vari-
ables are sufficient (Ch. 6 of [7]).

• With arithmetic background relations (<, + and ×), k/4 + O(1) variables are
sufficient (Amano [1]).

In this note, we tie up a loose end—strengthen this last lower bound—by showing that
k/4 + O(1) variables suffice with just a linear order in the background.

1 Introduction

The number of variables in a first-order formula ϕ refers to the number of distinct variable
symbols (x, y, z, etc.) occurring in ϕ. This number includes both free and bound variables,
and we allow variables to be quantified multiple times. For example, the following 2-variable
sentence1 expresses “the universe has > 5 elements” on the class of linear orders:

∃x∃y
(
x < y ∧ ∃x

(
y < x ∧ ∃y

(
x < y ∧ ∃x

(
y < x

))))
.

1Recall that a sentence is a formula with no free variables.
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The number of variables is an important measure of the complexity of a first-order formula.
Under a well-known descriptive complexity characterization of first-order logic in terms of
the complexity class AC0, every s-variable formula has an equivalent AC0 circuit of size
O(ns) [3].

A well-studied question in model theory and finite model theory is: over which classes
of structures does first-order logic increase in express power with respect to the number of
variables? That is, when is the so-called variable hierarchy strict? For instance, 2 variables
are enough to express every first-order property over the class of finite linear orders, whereas
3 variables are enough over the class of finite words [5]. On the other hand, the variable
hierarchy is strict on the class of finite graphs. A longstanding open question was whether
the variable hierarchy is strict on the class of finite ordered graphs (see [2]). Answering this
question, in [6] we showed that the property “there exists a k-clique” requires k/4 variables
on the class of finite ordered graphs. This lower bounds is in fact an average-case hardness
result: in the first-order language of ordered graphs, k/4 variables are required even to
express “there exists a k-clique” with high probability on a certain natural distribution (the
Erdos-Renyi random graph G(n, p) for p = p(n) an appropriate threshold).

Following [6], Kazayuki Amano [1] gave uniform AC0 circuits of size nk/4+O(1) which define
k-clique in the same average-case sense. Under the descriptive complexity characterization
of uniformity, Amano’s circuits are equivalent to a sentence in the first-order language of
graphs on {1, . . . , n} with arithmetic background relations <, + and ×. In the author’s
Ph.D. thesis [7], it was noted that the “k/2-extension axiom” (famous from the 0-1 law for
first-order logic) implies a lower bound of k/2 variables for the average-case definability of
k-clique in the absence of background relation; together with Joel Spencer, an upper bound
of k/2+O(1) was also shown. One question left open from all this work is whether k/4+O(1)
or k/2 + O(1) (or something in-between) is the true number of variables required to define
k-clique in the average-case with only a linear order in the background. Tying up this loose
end, in this paper we show that k/4 +O(1) variables suffice.

2 Preliminaries

Let k be a fixed constant (independent of n). Let p = p(n) = n−2/(k−1), although everything
we write holds for any p(n) = Θ(n−2/(k−1)) including the exact threshold for k-clique (see
any standard text such as [4] for background on random graphs). Let G be the Erdős-Rényi
random graph G(n, p), viewed as a linearly ordered graph. That is, G is random structure
with universe [n] = {1, . . . , n} and binary relations E and < where < is the standard linear on
[n] and E is an anti-reflexive symmetric binary relation such that events {(u, v) ∈ E} occur
independently with probability p over pairs (u, v) such that 1 6 u < v 6 n. Throughout
this note, “almost surely” means “with probability tending to 1 as n → ∞”. For vertices
u, v ∈ [n] such that u 6 v, we denote by [u, v] the interval of vertices including and between
u and v.

In this paper, we prove the following:
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Theorem 1. There is a sentence ϕ in the first-order language of ordered graphs with only
k/4 +O(1) variables such that, almost surely, G |= ϕ if and only if G has a k-clique.

To prove Theorem 1, we first define a property P of finite ordered graphs (Definition 10)
such that P implies the existence of a k-clique. We then show that P is first-order definable
with k/4 + O(1) variables (Lemma 11). Finally, we show that almost surely, if G has a
k-clique then G has property P (Lemma 19).

For simplicity, we treat the case where k > 7 and k ≡ 3 mod 4. The proof holds with
minor modifications when k 6≡ 3 mod 4. Let t = (k − 1)/2 and s = (k − 7)/4. Note that
s > 0 and t = 2s+ 3 are integers and p = n−1/t.

3 Proof sketch

Before defining property P in the next section, we give some basic intuition. We start by
showing how to define k-clique almost surely with k/2 + O(1) variables. Suppose that G
contains a k-clique {v1, . . . , vk} (i.e. condition on this event). Then almost surely vertices
vt+2, . . . , vk are the only common neighbors of v1, . . . , vt+1. This is seen by the following
union bound:

Pr[v1, . . . , vt+1 have a common neighbor beside vt+2, . . . , vk | {v1, . . . , vk} is a k-clique in G]

6
∑

w∈[n]\{v1,...,vk}

Pr[w is a common neighbor of v1, . . . , vt+1 | {v1, . . . , vk} is a k-clique in G]

= (n− k)pt+1 < p = o(1).

Denote by Q the following property: there exist distinct vertices x1, . . . , xt+1 such that
x1, . . . , xt+1 form a clique and have > t common neighbors and every two common neighbors
of x1, . . . , xt+1 are adjacent. Note that property Q implies the existence of a k-clique (as
k = 2t+ 1). The above inequality also shows that, almost surely, if G has a k-clique then G
has property Q; hence Q is almost surely equivalent to k-clique with respect to the random
graph G.

We claim that Q is definable with only t+ 3 = k/2 +O(1) variables on the class of finite
ordered graphs. (Here the linear order is indispensable: Q is not definable with fewer than
k variables on the class of finite graphs.) The key observation is that saying “x1, . . . , xt+1

have > t common neighbors” can be achieved with only 2 bound variables in addition to
free variables x1, . . . , xt+1: letting ν(~x, y) ≡

∧
i∈{1,...,t+1} Edge(xi, y), we have

“x1, . . . , xt+1 have > t common neighbors” ≡

∃y, ν(~x, y) ∧
(
∃z, y < z ∧ ν(~x, z) ∧

(
∃y, z < y ∧ ν(~x, y) ∧

(
∃z, z < y ∧ ν(~x, z) ∧ . . .

)))
where there are t existential quantifiers in total. Hence, property Q can be expressed with
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t+ 3 variables as follows:

Q ≡ ∃x1 . . . ∃xt+1,
∧

16i<j6t+1 Edge(xi, xj)

∧ “x1, . . . , xt+1 have > t common neighbors”

∧ ∀y∀z, (ν(~x, y) ∧ ν(~x, z) ∧ y 6= z)→ Edge(y, z).

Property P is similar to property Q, except that we must use k/4 + O(1) variables to
isolate the k/2 +O(1) vertices x1, . . . , xt+1 that make up the first half of a possible k-clique
in the graph G. (As with property Q, once we isolate these t + 1 vertices, it will be easy
to say that they belong to a k-clique using just O(1) additional free variables.) What do
we mean by isolate? Well, with only k/4 + O(1) parameters, there is no hope of defining
the set {x1, . . . , xt+1} exactly. But we can define a sequence of intervals I1, . . . , It+1 ⊆ [n]
where Ij contains xj and is not too large; in fact, Ij has size roughly nj/t. This sequence
will isolate x1, . . . , xt+1 in the sense that for all j ∈ {1, . . . , t}, xj+1 is the unique common
neighbor of x1, . . . , xj in the interval Ij. This property allows us to efficiently define xj (with
O(1) extra variables) given formulas defining I1, . . . , It+1. As to defining intervals I1, . . . , It+1

using just k/4 + O(1) variables, this is accomplished by using a single variable for each of
I1, . . . , I4 and a single variable for each pair (I5, It+1), (I6, It), (I7, It−1), . . . , (Is+4, Is+5); that
is, s+ 4 = k/4 +O(1) total variables.

4 Property P
The following definitions refer to a fixed but arbitrary finite ordered graph. Without loss of
generality, we assume this graph has vertex set [n] under the standard ordering. For a vertex
v ∈ [n], we denote by v + 1 and v − 1 the successor and predecessor of v (when defined).

Definition 2. A sequence I1, . . . , I` of subsets of [n] is an `-clique isolator if |I1| = 1 and
there exists (u1, . . . , u`) ∈ I1 × · · · × I` such that for every i ∈ {2, . . . , `}, ui is the unique
common neighbor of u1, . . . , ui−1 in the set Ii.

Remark 3. The notion of an `-clique isolator will be useful for the following reason. Sup-
pose I1, . . . , I` are given by unary relation symbols. Then the statement “I1, . . . , I` is an
`-clique isolator” can be expressed in first-order logic using only 2 variables. To see this, we
inductively define formulas ψi(x) such that ψi(x) is true iff I1, . . . , Ii is an i-clique isolator
and x = ui (i.e., for the unique i-clique {u1, . . . , ui} with (u1, . . . , ui) ∈ I1 × · · · × Ii). In the
base case,

ψ1(x) ≡ I1(x) ∧
(
∀y, y 6= x→ ¬I1(y)

)
.

For i ∈ {2, . . . , `}, define

ψi(x) ≡ θi(x) ∧
(
∀y, y 6= x→ ¬θi(y)

)
where θi(x) ≡ Ii(x) ∧

∧
j∈{1,...,i−1}

(
∃y, ψj(y) ∧ Edge(x, y)

)
.
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The statement “I1, . . . , I` is an `-clique isolator” is equivalent to the 2-variable formula
∃x, ψ`(x). A corollary of this observation is that if each set Ii is definable by an m-variable
formula, then the statement “I1, . . . , I` is an `-clique isolator” is equivalent to a formula with
m+ 2 variables.

Definition 4. A vertex v ∈ [n] is a pointer if v > t + 1 and v, v − 1, . . . , v − t (i.e., v and
its t predecessors) have a unique common neighbor. If v is a pointer, we denote by v∗ the
unique common neighbor of v, v − 1, . . . , v − t.

Remark 5. The predicate “x is a pointer and x∗ = y” is definable with 3 variables (i.e., 1
variable in addition to x and y).

“x is a pointer and x∗ = y” ≡ “x has > t predecessors” ∧ γ(x, y) ∧
(
∀z, z 6= y → ¬γ(x, z)

)
where γ(x, y) ≡

∧
j∈{0,...,t}

(
∃z, “z = x− j” ∧ Edge(y, z)

)
.

We leave it as an exercise to show that “x has > t predecessors” is definable with 1 variable
in addition to x and “z = x − j” (for fixed j) is definable with 1 variable in addition to x
and z.

Remark 6. For any v ∈ [n] such that v > t + 1, the probability that v is a pointer in G
is roughly p. Conditioning on v being a pointer, v∗ is uniformly distributed in [n] \ {v, v −
1, . . . , v − t}. (These facts come up in the proof of Lemma 14.)

Definition 7. For j > 1 and v ∈ [n], denote by fj(v) the minimal w ∈ [n] such that w > v
and w is a common neighbor of v + 1, . . . , v + j (i.e., the j successors of v); in cases where
fj(v) would be undefined (either because v > n − j or because v + 1, . . . , v + j have no
common neighbor greater than v), we set fj(v) = n.

Remark 8. For fixed j > 1, the predicate “fj(x) = y” is definable with 3 variables (cf.
Remark 5).

Remark 9. For any j ∈ {1, . . . , t− 1} and v ∈ [n] such that v < n− n1−ε, we expect fj(v)
to be around v + p−j = v + nj/t in the random graph G. Indeed, for any constant ε > 0,
it holds almost surely that v + n(j/t)−ε < fj(v) < v + n(j/t)+ε. Moreover, this is true even
if we condition on arbitrary events in G depending only on edges outside of the interval
[v + n(j/t)−ε, v + n(j/t)+ε].

Definition 10. A finite ordered graph has property P if there exist vertices v1, v2, v3, v4 and
w1, . . . , ws such that

(i) w1, . . . , ws are pointers and

(ii) the following sequence of subsets of [n] is a (t+ 1)-clique isolator:

{v1}, {v2}, {v3}, {v4}, [w1, f3(w1)], . . . , [ws, fs+2(ws)]︸ ︷︷ ︸
[wi,fi+2(wi)] for i=1,...,s

, [w∗s , ft−s(w
∗
s)], . . . , [w

∗
1, ft−1(w

∗
1)]︸ ︷︷ ︸

[w∗
i ,ft−i(w∗

i )] for i=s,...,1

,
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(iii) for the unique (t + 1)-clique {v1, . . . , vt+1} isolated by this sequence, v1, . . . , vt+1 have
exactly t common neighbors and these common neighbors form a t-clique.

Lemma 11. There is a formula with k/4 + O(1) variables that defines property P on the
class of finite ordered graphs.

Proof. The formula defining P begins with ∃v1, v2, v3, v4, w1, . . . , ws. Each set [wi, fi+2(wi)]
and [w∗i , ft−i(w

∗
i )] is definable with C = O(1) variables in addition to parameter wi (cf.

Remarks 5 and 8). Therefore, the statement that

{v1}, {v2}, {v3}, {v4}, [w1, f3(w1)], . . . , [ws, fs+2(ws)], [w
∗
s , ft−s(w

∗
s)], . . . , [w

∗
1, ft−1(w

∗
1)]

is a (t+1)-clique isolator can be expressed with only C+2 variables in addition to parameters
v1, v2, v3, v4, w1, . . . , ws; moreover, the individual elements v1, . . . , vt+1 of the unique (t +
1)-clique isolated by this sequence are definable with the same s + O(1) total variables
(cf. Remark 3). Using the order, we can express that v1, . . . , vt+1 have exactly t common
neighbors with only 3 additional variables. To express that these common neighbors form
a k-clique, we can say any two common neighbors are adjacent, using just 2 additional
variables. So in total we require s + O(1) = k/4 + O(1) variables (in fact, k/4 + 10 are
sufficient).

5 Almost surely, G has a k-clique iff G has property P
Let ε > 0 be a sufficiently small constant (ε = 1/k will do).

Definition 12. A tuple (u1, . . . , u`) of vertices in [n] is well-spaced if

n1−ε < u1 < · · · < u` < n− n1−ε

and ui+1 − ui > n1−ε for i ∈ {1, . . . , `− 1}.

Lemma 13. Almost surely, if G contains a k-clique, then G contains a well-spaced k-clique.

Proof. Condition on G containing a k-clique. Sample {v1, . . . , vk} uniformly from among the
k-cliques of G where v1 < · · · < vk. Notice that (v1, . . . , vk) is uniformly distributed among
increasing k-tuples in [n]k. The lemma follows from the observation that a uniform random
increasing k-tuple in [n]k is well-spaced with high probability.

Lemma 14. Let u, u′ ∈ [n] be a fixed well-spaced pair of vertices and let i ∈ {1, . . . , s}.
Almost surely in G, there is a vertex w such that

u− n
i+2
t
−ε < w < u < fi+2(w) < u+ n

i+2
t

+ε,

u′ − n
t−i−1

t
+3ε < w∗ < u′ < ft−i(w

∗) < u′ + n
t−i
t

+ε.
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Proof. Let M = {1, . . . , dn i+2
t
−2εe} and for m ∈M , let xm = u− 2tm and denote by Zm the

event that xm is a pointer and u′ − n t−i−1
t

+3ε < x∗m < u′. Note that events Zm are mutually
independent (using the fact that u, u′ are well-spaced). We have

Pr[Zm] ∼ n−
i+2
t

+3ε.

This is obtained from the following inequalities:

• Pr[Zm] = Pr[xm is a pointer] Pr[u′ − n t−i−1
t

+3ε < x∗m < u′ | xm is a pointer],

• Pr[xm is a pointer] = Pr[xm, xm − 1, . . . , xm − t have a unique common neighbor]

= Pr[> 1 common neighbor]− Pr[> 2 common neighbors],

• Pr[> 1 common neighbor] = 1− (1− pt+1)n−t−1 ∼ 1− exp(n1+(1/t))n−t−1 ∼ n−1/t,

• Pr[> 2 common neighbors] 6
(
n−t−1

2

)
(pt+1)2 < n−2/t,

• Pr[u′ − n t−i−1
t

+3ε < x∗m < u′ | xm is a pointer] ∼ n−
i+1
t

+3ε

since x∗m is uniformly distributed in [n] \ {x, x− 1, . . . , x− t} conditioned on xm being
a pointer.

By independence of Zm’s, we have

Pr[
∧

m∈M

¬Zm] =
∏
m∈M

Pr[¬Zm] 6 (1− n−
i+2
t

+3ε + o(n−
i+2
t

+3ε))n
i+2
t −2ε

∼ exp(n−ε).

Therefore, almost surely at least one of the events Zm holds in G~v.
Now observe the following (cf. Remark 9)

Pr
[
xm + n

i+2
t
−ε < fi+2(xm) < xm + n

i+2
t

+ε
∣∣ Zm

]
= 1− o(1),

Pr
[
x∗m + n

t−i
t
−ε < ft−i(x

∗
m) < x∗m + n

t−i
t

+ε
∣∣ Zm

]
= 1− o(1).

It follows that for any m ∈ M such that Zm holds in G~v, the vertex xm is almost surely a
suitable witness for w.

We now fix an arbitrary well-spaced k-tuple of vertices ~v = (v1, . . . , vk) ∈ [n]k. Denote
by G~v the random graph G conditioned on ~v being a k-clique (that is, G~v = G ∪ {k-clique
supported on v1, . . . , vk}).

Lemma 15. The following hold almost surely in G~v.

1. For all j ∈ {1, . . . , t}, vj+1 is the unique common neighbor of v1, . . . , vj in the interval

[vj+1 − n
j
t
−ε, vj+1 + n

j
t
−ε]. Hence, the sequence

{v1}, [v2 − n
1
t
−ε, v2 + n

1
t
−ε], [v3 − n

2
t
−ε, v3 + n

2
t
−ε], . . . , [vt+1 − n1−ε, vt+1 + n1+ε]

is almost surely a (t+ 1)-clique isolator in G~v.
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2. vt+2, . . . , vk are the only common neighbors of v1, . . . , vt+1.

Proof. Taking union bounds, we have

1. Pr

[
v1, . . . , vj have a common neighbor beside

vj+1 in [vj+1 − n
j
t
−ε, vj+1 + n

j
t
−ε] in G~v

]
6 2n

j
t
−εpj = 2n−ε = o(1),

2. Pr

[
v1, . . . , vt+1 have a common neighbor

beside vt+2, . . . , vk in G~v

]
6 (n− k)pt+1 < p = o(1).

For the next two lemmas, it will be convenient to relabel the first t+1 (= 2s+4) vertices
in ~v as follows. Let

v1, . . . , vt+1 = v1, v2, v3, v4, v
′
1, . . . , v

′
s, v
′′
s , . . . , v

′′
1 .

That is, v′i = vi+4 and v′′i = vt−i+2 for i ∈ {1, . . . , s}.

Lemma 16. Almost surely in G~v, there exist vertices w1, . . . , ws such that

v′i − n
i+2
t
−ε < wi < v′i < fi+2(wi) < v′i + n

i+2
t

+ε,

v′′i − n
t−i−1

t
+3ε < w∗i < v′′i < ft−i(w

∗
i ) < v′′i + n

t−i
t

+ε.

Proof. This is pretty much a corollary of the argument in Lemma 14. Whereas Lemma
14 concerns a single well-separated pair (u, u′) in the random graph G, we now consider s
well-separated pairs (v′1, v

′′
1), . . . , (v′s, v

′′
s ) in the random graph G~v. However, we can ap-

ply the argument in Lemma 14 independently to each pair (v′i, v
′′
i ) using the fact that

(v′1, . . . , v
′
s, v
′′
s , . . . , v

′′
1) is well-separated; conditioning on {v1, . . . , vk} being a clique does not

affect the argument.

Lemma 17. Almost surely in G~v, there exist vertices w1, . . . , ws such that

• v′i ∈ [wi, fi+2(wi)] and v′′i ∈ [w∗i , ft−i(w
∗
i )] for all i ∈ {1, . . . , s},

• the sequence

{v1}, {v2}, {v3}, {v4}, [w1, f3(w1)], . . . , [ws, fs+2(ws)], [w
∗
s , ft−s(w

∗
s)], . . . , [w

∗
1, ft−1(w

∗
1)]

is a (t+ 1)-clique isolator (and hence isolates the clique {v1, . . . , vt+1}).

Proof. Condition on the almost sure properties of G~v given by Lemma 15(1) and 16. For
vertices w1, . . . , ws as in Lemma 16, we have v′i ∈ [wi, fi+2(wi)] and v′′i ∈ [w∗i , ft−i(w

∗
i )] for all

i ∈ {1, . . . , s}. The claim that the sequence

{v1}, {v2}, {v3}, {v4}, [w1, f3(w1)]︸ ︷︷ ︸
3 v5

, . . . , [ws, fs+2(ws)]︸ ︷︷ ︸
3 vs+2

, [w∗s , ft−s(w
∗
s)]︸ ︷︷ ︸

3 vs+3 = vt−i+2

, . . . , [w∗1, ft−1(w
∗
1)]︸ ︷︷ ︸

3 vt+1
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is a (t+1)-clique isolator follows from the fact that is subsumed by the (t+1)-clique isolator

{v1}, [v2 − n
1
t
−ε, v2 + n

1
t
−ε], [v3 − n

2
t
−ε, v3 + n

2
t
−ε], . . . , [vt+1 − n1−ε, vt+1 + n1−ε].

That is, we have {vi0} ⊆ [vi0 − n
i0−1

t
−ε, vi0 + n

i0−1
t
−ε] trivially for i0 ∈ {2, 3, 4}, while for

i ∈ {1, . . . , s}, we have

[wi, fi+2(wi)] ⊆ [v′i − n
i+2
t
−ε, v′i + n

i+2
t

+ε] ⊆ [vi+4 − n
i+3
t
−ε, vi+4 + n

i+3
t
−ε],

[w∗i , ft−i(w
∗
i )] ⊆ [v′′i − n

t−i−1
t

+3ε, v′′i + n
t−i
t

+ε] ⊆ [vt−i+2 − n
t−i+1

t
−ε, vt−i+2 + n

t−i+1
t
−ε].

Lemma 18. Almost surely, G~v has property P.

Proof. Condition on the almost sure properties of G~v given by Lemmas 15(2) and 17. Vertices
v1, v2, v3, v4 together with w1, . . . , ws from Lemma 17 witness property P . Lemma 17 takes
care of conditions (i) and (ii) in Definition 10, while Lemma 15(2) takes care of condition
(iii).

Lemma 19. Almost surely, G contains a k-clique iff G has property P.

Proof. Property P implies the existence of a k-clique (with probability 1). The other direc-
tion follows from Lemmas 13 and 18. Almost surely, if G contains a k-clique then it contains
a well-spaced k-clique. But for any well-spaced k-clique ~v = (v1, . . . , vk) that we condition
on, G~v has property P almost surely. Therefore, the existence of a k-clique in G implies that
property P holds almost surely.
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