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In [1] the fundamental group of the reductive Borel-Serre compactification of a locally
symmetric space was computed. The authors noted in an appendix (§7), that there is an
intriguing similarity between the results of this paper and computations of the congruence
subgroup kernel in [5]. However, no direct connection was demonstrated. The purpose of
this note is to explain such a connection. A covering space is constructed from inverse limits
of these compactifications. The congruence subgroup kernel then appears as the group of
deck transformations of this covering. Notations and definitions are taken from [1].

1. Let k be a number field and let S be a finite set of places of k, which contains the infinite
places S∞. Let G be a connected, absolutely almost simple, and simply connected algebraic
group defined over k.

Fix a faithful representation

ρ : G −→ GLN

defined over k. Let O the ring of S-integers, and set

G(O) = ρ−1(GLN(O)) ⊂ G(k).

We recall the definition of the congruence subgroup kernel as explained in [2]. Let Ma,
respectively Mc, be the set of S-arithmetic subgroups, respectively S-congruence subgroups,
of G. Taking each of these sets to be a fundamental system of neighbourhoods of 1, we

define two topologies, Ta, respectively Tc, on G(k). Let Ĝ(a), respectively Ĝ(c), denote
the completions of G(k) in these topologies. The corresponding completions of G(O) are

denoted Ĝ(O, a), respectively Ĝ(O, c).
Denote by Na, respectively Nc, the set of normal subgroups of finite index, respectively

principal S-congruence subgroups, of G(O). These define the topologies Ta, respectively Tc,
as well. Then one can regard Ĝ(O, a) and Ĝ(O, c) as inverse limits:

Ĝ(O, a) = lim←−
Γ∈Na

G(O)/Γ

and

Ĝ(O, c) = lim←−
Γ∈Nc

G(O)/Γ .

Since every S-congruence subgroup is also S-arithmetic, we have homomorphisms Ĝ(a)→
Ĝ(c) and Ĝ(O, a)→ Ĝ(O, c). They have a common kernel, called the congruence subgroup
kernel C(S,G). In particular, we have the exact sequence

(1) 1→ C(S,G)→ Ĝ(O, a)→ Ĝ(O, c)→ 1 .
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2. Set H = Resk/Q G, and let X∞ be the symmetric space associated to H. For each
v ∈ S \ S∞, let Xv be the Bruhat-Tits building of G(kv). Set X = X∞ ×

∏
v∈S\S∞

Xv, and

define the reductive Borel-Serre bordification X
RBS

of X as in [1, 2.4]. Set

X
RBS

a = lim←−
Γ∈Ma

Γ\XRBS
= lim←−

Γ∈Na

Γ\XRBS

and

X
RBS

c = lim←−
Γ∈Mc

Γ\XRBS
= lim←−

Γ∈Nc

Γ\XRBS

They are both compact Hausdorff spaces. Let p denote the natural map

X
RBS

a

p−→ X
RBS

c .

Proposition.

π1(X
RBS

a ) ∼= lim←−
Γ∈Ma
Γneat

Γ/EΓ , π1(X
RBS

c ) ∼= lim←−
Γ∈Mc
Γneat

Γ/EΓ

Proof. According to [1, Corollary 5.3], if Γ ∈Ma and Γ is neat, then

π1(Γ\X
RBS

) ∼= Γ/EΓ .

Since

π1(X
RBS

a ) ∼= lim←−
Γ∈Ma
Γneat

π1(Γ\X
RBS

) ,

the result follows for X
RBS

a . The proof for X
RBS

c is similar. □
For Γ ∈ Na there is a well-defined action on the left of G(O), and therefore of G(O)/Γ, on

Γ\XRBS
. This determines an action of Ĝ(O, a) on X

RBS

a . Similarly, Ĝ(O, c) acts on X
RBS

c .

Then p is equivariant. It follows from the descriptions of Ĝ(O, a) and Ĝ(O, c) as inverse

limits and from the definitions of X
RBS

a and X
RBS

c , that C(S,G) acts transitively on each
fibre of p.

3. In [5, Theorem A, Corollary 1] and [3, 2.4.6, I], it is shown that if k-rank G ≥ 1 and
S-rankG ≥ 2, then for any Γ ∈Ma, EΓ ∈Ma. This implies that

Ĝ(O, a) = lim←−
Γ∈Nc

G(O)/EΓ .

It follows then from the exact sequence (1) that

(2) C(S,G) = lim←−
Γ∈Nc

Γ/EΓ .

Furthermore,

(3) X
RBS

a = lim←−
Γ∈Mc

EΓ\XRBS
.

Under these rank assumptions, we obtain a simple geometric realization of C(S,G).
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Theorem. Assume that k-rank G ≥ 1 and S-rank G ≥ 2. Then X
RBS

a is a simply connected

covering of X
RBS

c , and C(S,G) is the group of deck transformations.

Proof. Note that if Γ is neat, then by [1, Corollary 5.2], Γ/EΓ acts freely on EΓ\XRBS
.

Then (2) and (3) imply that C(S,G) acts freely on X
RBS

a . Since C(S,G) acts transitively

on the fibres of p, it follows that p : X
RBS

a → X
RBS

c is a covering space, with C(S,G) the
group of deck transformations. Since the groups {EΓ ∈Ma, Γ neat} are cofinal under the

rank assumption, the Proposition implies that X
RBS

a is simply connected. □

Corollary.

C(S,G) ∼= π1(X
RBS

c ) ∼= lim←−
Γ∈Nc

π1(Γ\X
RBS

) .

Compare [1, §7 (12)]
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