Chapter 1

Groups

1.1 Definitions and Elementary Properties

Definition 1.1.1. A binary operation = on a set S is a function

*:5XS§S > S
(a,b) —» a*b.

x is called associative if (a *b) *c =ax(bxc) Va,b,ceS.
x is called commutative ifaxb =b+a Va,beS.

Definition 1.1.2. A group consists of a set G together with a binary operation

*x:GXGH— G
(g, h) - gxh,

such that the following conditions are satisfied:

I. (asb)yxc=ax((b=xc) Va,b,c €S (associativity),

2. There exists an element e € G such thate xa =aandaxe =a Va € G (identity),

3. For each a € G, there exists an element b € G such that a « b = e and b * a = e (inverse).
Definition 1.1.3. A group (G, ) is called abelian (or commutative) ifa+b =b+a Ya,b € G.

Definition 1.1.4. Let H be a non-empty subset of the group G. Suppose that the product in G of two
elements of H lies in H and that the inverse in G of any element of H lies in H. Then H is called a
subgroup of G, written H < G.



Notation: For X C G, write
(X) = ﬂ H.
XCcH<G
This is called the subgroup of G generated by X.
Exercise: show that (X) is a subgroup.

Example 1.1.5.
1. Cyclic groups C,
Letn e N. C, :={e = x°, x, X, ..., X"}, with multiplication x’ * x
Also, the infinite cyclic group is Co, := {X" | n € Z} with x/ % x* := x/*k,

k = x(}+k)m0dn_

2. Permutation groups
Let X be aset. Sy :={f : X — X | f is a bijection}. Multiplication is composition

SXxle—)SX

(f.8) = gof.

Notation: In case X ={1,...,n} for some n € N, write S, for S x (called a symmetric group).
If G < S, for some n, G is a permutation group of degree n.

3. Linear groups
A field (F, +, ) consists of a set F together with binary operations + and -, such that:

(a) (F,+) forms an abelian group,
(b) (F —{0},-) forms an abelian group (where 0 is the identity for (F, +)),
(c)a-(b+c)=a-b+a-c Va,b,c € F (distributivity).

Let F be a field. GL,(F) := {invertible n X n matrices with entries from F}. The group operation
is matrix multiplication. GL,, is called the general linear group.
If G < GL,(F) for some F and n then G is called a linear group of degree n.

4. Symmetry groups Let X C R". The group of symmetries of X, denoted S ym(X), is the subgroup
of Sx containing only isometries (that is, functions f : X w— X such that ||f(x) — fO)I =
llx=yll VYx,yeX)

Notation: In case N = 2 and X = the regular n-gon, Sym(X) is called the n™ dihedral group,
written D,,,.

Proposition 1.1.6. Let G be a group. Then 1 exactly one element e € G such that e * g = g and
gxe=g Vgeg.



Proof. By definition, such an element exists. If e, ¢’ € G both have the property then

O

Proposition 1.1.7. Let G be a group and let g € G. Then 1 exactly one element h € G such that
gxh=candhxg=e.

Proof. By definition, such an element exists. Suppose &, " are both inverses to g. Then

W=hxe=h=+(@g+hy=Hh+g)xh=exh=h.

O
Notation: The inverse to g will be denoted g~!.
Proposition 1.1.8. Let G be a group and let x,y,z € G.
1. If xz = yz then x = y.
2. Ifzx = zy then x = y.
Proof.
. x=xe=x(zz7)=(x20)z7' = (y2)z' = y(zz") = ye = y.
2. Likewise.
O
Note: xz=2zy# x=y; “mixed” cancellation doesn’t work.
Corollary 1.1.9. Let G be a group and let g, h € G such that g «h = e. Then h = g”' (and g = h™").
Proof. g * h = eis given; g x g! = e by the definition of g~'. So by cancellation, & = g~ |
Proposition 1.1.10. In a group G, (gh)™' = h™'g7".
Proof.
(gh(h'g™") = ghh™)g™ = geg™ =gg” = e.
. h~'g7!is the inverse of gh. |

Proposition 1.1.11. Let G be a group and g, h € G. Then
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1. 3! solution x in G to the equation gx = h.

2. A! solution x in G to the equation xg = h.

Proof.
1. x=g'h.
2. x=hg\.

O

Proposition 1.1.12. A non-empty subset H of a group G is a subgroup iff x,y € H implies xy™" lies in
H.

Proof. Exercise. O

G is called a finite group if its underlying set is finite. In this case, the number of elements in G is
called the order of G, written |G]|.

Definition 1.1.13. Let x € G. The order of x, written |x|, is the least integer k (if any) such that x* = e.
Note: some, or even all elements of a group might have finite order even if |G| is infinite.

Definition 1.1.14. Let (G, x) and (H, ») be groups. A function f : G — H is called a (group) homo-
morphism if f(x «y) = f(x)-f(y) Vx,y € G. A homomorphism f : G — H which is a bijection is
called an isomorphism.

Notation: ¢ : G > H means that ¢ is an isomorphism from G to H.
G = H means that there exists an isomorphism ¢ : G +— H.
Isomorphisms preserve all group properties. e.g. if ¢ : G — H then:

G is abelian < H is abelian,
|x| = |¢(x)] Vx € G, etc.

Lemma 1.1.15. Let ¢ : G — H be a homomorphism, and let e, e’ be the identities in G, H respectively.
Then ¢(e) = €.

Proof. Let h = ¢(e).
h* = g(e)p(e) = ¢p(e*) = ¢(e) = h = he’

.. by cancellation, i = €. O

Corollary 1.1.16. Let ¢ : G — H be a homomorphism. Then Vg € G, ¢(g™") = ¢(g)7".
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Proof.
p(@pg™) = d(gg™") = ¢le) = €.

Thus, ¢(g)~" = ¢(g™"). O

Proposition 1.1.17. Let ¢ : G — H be a group isomorphism. Let ¢~ : H — G be the inverse function
to the bijection ¢. Then ¢~ is an isomorphism.

Proof. Must show ¢! is a homomorphism. Let &, h, € H. Since ¢ is a bijection, A!g;, g» € G such
that ¢(g1) = hy, #(g2) = ha.
#(g182) = d(g1)P(g2) = hihy

So ¢~ (hy) = g182 = ¢~ ()¢~ (ha). O

Proposition 1.1.18. The composition of group homomorphisms is a homomorphism.
The composition of group isomorphisms is a isomorphism.

Proof. Trivial. m|

Notation: Aut(G) = {self-isomorphisms of G} < S¢.

Fundamental Problem of Group Theory:
Make a list of all possible types of groups. ie. Make a list of groups such that every group is isomorphic
to exactly one group on the list.

Given two groups (defined, for example, by multiplication tables, or by generators and relations),

the problem of determining whether or not the groups are isomorphic is, in general, very difficult
(NP-hard).



1.2 New Groups from Old

1.2.1 Quotient Groups
Definition 1.2.1. Let ¢ : G — H be a homomorphism. The kernel of ¢ is
kerg :={g € G| (g) = e}.

The image of ¢ is
Im¢ :={h € H| h = ¢(g) for some g € G}.

Proposition 1.2.2. ker ¢ < G and Im¢ < G.

Proof. Trivial. m|
Definition 1.2.3. For x,y € G, we say y is conjugate to x (in G) if g € G such that y = gxg~'.
Proposition 1.2.4. Conjugacy is an equivalence relation.

Proof. Trivial. m|

Notation: If A, B are subsets of G, let AB := {ab | a € A,b € B}. For g € G,H < G, the set gH is
called the left coset of H generated by g; Hg is the right coset of H generated by g.

Definition 1.2.5. A subgroup N of G is called normal, written N < G, if gN = Ng forall g € G.
Proposition 1.2.6. N < G is normal < gxg7' € N Vxe N,g€G.

Proof.
=: Suppose N is normal. Then for all x € N,g € G, gx € gN = Ng, so gx = yg for some y € N.
Thus, gxg™! =y € N.

&: Suppose gxg' € N VYxeN,geG.If z € gN then z = gx for some x € N. Hence,
z=gx(g"'g) = (gxg")g € Ng

.. gN Cc Ng. Similarly, Ng C gN.

Corollary 1.2.7. Let ¢ : G — H be a homomorphism. Then ker ¢ < G.



Proof. Let x € ker ¢ and let g € G. Then

¢(gxg™) = d(geg(g)™ = e
so gxg~! € ker ¢. 5
Conversely:

Theorem 1.2.8. Suppose N < G. Then 1 a group H and a homomorphism ¢ : G — H such that
N = ker ¢.

Proof. Exercise: check the details of the following:
1. Forg,g' € G, define g ~ g’ if g’'g™! € N.
2. Check that ~ is an equivalence relation.
3. Define H := G/N := {set of equivalence classes of G under ~}.

4. Define binary operation * on G/N by X *y = Xy. Check that this is well-defined, ie. suppose
X' ~xandy ~y. Isx’y ~ xy?
Well, x' ~ x means x’x~' = n; € N, so X' = n;x. Likewise, y’ ~ y means y'y~! = n, € N, so
Y =nyy. So
X'y = nixnyy = ny(xnpx Hxy = nyn)xy,

where n), = xn,x~! € N since N is normal. Hence, x'y’ ~ xy.
5. Check that (G/N, =) forms a group.
6. Define ¢ : G — H by ¢(x) = x.
7. Check that ¢ is a group homomorphism.

8. Check that N = ker ¢.

G/N (as constructed above) is called a quotient group.



1.2.2 Product Groups

Let G, H be groups. The product group is the set G X H, with multiplication
(g.h)- (&', 1) = (gg', hI).

Clearly the projection maps

lg:GXxH— G
(&h) g

and

HH:GXHI—)H
(8, h)—h

are group homomorphisms.
Proposition 1.2.9. Let A, G, H be groups.

1. Universal Property of Product:
Given group homomorphisms p : A — G and q : A — H, 3! group homomorphism ¢ : A —

G X H such that:
A
B[l
p : q
\
GxH
Lt
G ¢ " H

This says that G X H is the product of G and H in the category of groups.

2. Given a function ¢ : A — G X H, ¢ is a group homomorphism if and only if Tlg o ¢ and Iy o ¢
are group homomorphisms.



1.2.3 Free Products

Let G, H be groups. The free product of G and H is G * H := {words in G LI H}/ ~, where ~ is the
equivalence relation generated by the following: for g,¢" € G,

X1 X8 V1 Ym ~ X1 X0 (88 V1 Vs

and for h, W' € H,
X1 "'thh/)’1 o YVm ™~ X1 "xn(hhl)yl  Yme

Note: Given A C X X X, the equivalence relation generated by A is
ﬂ{B C X X X | B is an equivalence relation and A C B}.
Multiplication in G * H is given by juxtaposition: (v -« v,) % (Wy -+ Wy,) = Vi VWi -+ Wpy,.

Proposition 1.2.10. Universal Property of Free Product:

G H
\ /
— hi—>h

s§—e 2
GxH
p T q
v
A

(Here, G and H each embed into the words of length 1 in G X H).
This says that G = H is the coproduct of G and H in the category of groups.

F(x) = {x" | n € Z}(= C) is called the free group on the generator x.
F(x,y) := F(x) = F(y) is the free group on 2 generators.
More generally, given a set S,

F(S) ={wordsin S}

is called the free group on S. A group homomorphism F(S) — G is uniquely determined by any
(set) function § — G.



1.3 Centralizers, Normalizers, and Commutators

Let G be a group, X C G.
Notation:

Co(X):={geG|gxg' =x VxeX} isthe centralizer of X in G
Ng(X) :={g e G| ng_1 = X} is the normalizer of X in G
={ge€G|gX =Xg}

These definitions do not require that X be a subgroup, but note that C5(X) = C5((X)). Also,

7Z(G) := Cs(G) is the center of G
={geGlgx=xg VYxeG}

Note: Z(G) = G <= G is abelian.

Example 1.3.1. Let G = GL,(F). Then Z(G) = {cl | ¢ € F*}.

Proposition 1.3.2. C5(X) and Ng(X) are subgroups of G.

Proof.
88 €Co(X) = (88)(N)(gg) ' =g(g'xg' g™ =gxg' =x VxeX
g€Co(X) = glxg =g ' (gxg™)g = (¢7'9x(g7'g) =x VxeX

Likewise,

8.8 €Ng(X) = (g8)X(gg) ' =g(gXg g ' =gXg ' =X
gENX)= g 'Xg=¢""(gXg g =(g"'9X(g ') =X

O

Clearly, Z(G) = Cgs(G) is always abelian, but for arbitrary H, C;(H) need not be abelian. For
example, in the extreme case, Cs({e}) = G, which might not be abelian.
For H < G, by construction, H < Ng(H), and H < G < Ng(H) = G.

Proposition 1.3.3. For A < B <G,

g € Ng(Np(A)) = g(Np(A)g™' c NG(A).
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Proof. If b € Ng(A) and g € Ng(Ng(A)) then b’ = gbg™! € Ny(A), so

(gbg MHa(ghg™) ' =bal) ' €A

Note: K < Hand H <G # K < G. For a counterexample, take

G:S4
H={1234),(13)24)) = Dg
K=(1234)=C,

Notation: For a,b € G, let [a, b] := aba™'b7".

Definition 1.3.4. The commutator subgroup G’ is the subgroup of G generated by
{la,b] | a,b € G}.

Proposition 1.3.5. g[a, blg™! = [gag™", gbg™'].

Corollary 1.3.6. G’ < G.

G := G/G' is abelian. Universal property: given any homomorphism ¢ : G — H with H abelian,

G

> Gab

El

\%
H
That is, if ¢ : G — H with H abelian then G’ C ker ¢.
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1.4 Isomorphism Theorems

Theorem 1.4.1 (First Isomorphism Theorem). Let ¢ : G — H be a group homomorphism. Then
G/ ker ¢ = Img.

Proof. Set N := ker ¢. Elements of G/N are cosets Ng, where g € G. Define ¢ : G/N — Im¢ by
Y(Ng) = ¢(g).

1. ¢ is well defined:
Suppose Ng = Ng’. Then g = ng’ for some n € N. Hence,

$(Q) = ¢(ng') = p(P(g) = end(g') = ¢(g"),
since n € N = ker ¢.
2. ¢ is a homomorphism — easy.
3. y is surjective — easy.

4.  is injective:
If (Ng,) = ¢(Ng,) then

d(g1) = ¢(g2) = #(g18,") =en = g18,' € N = Ng, = Ng»

Proposition 1.4.2. If H, K subgroups of G then HK < G < HK = KH.

Proof.
=: Suppose HK < G. Let x € HK. Then x' € HK. Write x! = hk for some h € H,k € K. Then

x= k' =k"'h" e KH,
so HK c KH, and similarly, KH Cc HK.

&: Suppose HK = KH. Let x,x’ € HK. Write x = kh,x’ = W'k’, for some h,h’ € H,k, k' € K.
Then
Xx U= WER k!
=Wh'kK'k™, letting Kh™' = h'k”, since HK = KH
€ HK
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Corollary 1.4.3. Let H, K be subgroups of G. If H C Ng(K) then HK < G and K < HK.

Proof. Let x = hk € HK. Then x = (hkh™")h € KH, since hkh™' € K. So, HK c KH. Similarly, if
x = kh € HK then x = h(h™'kh) € HK, whence KH c HK. Hence

HK = KH <G.
Also, K ¢ Ng(K) (always) and H C Ng(K) (given), so
HK c Ng(K) = K < HK.

Corollary 1.4.4. If K < G then HK < G for any H < G.
Proof. If K < G then Ng(K) = G, so automatically, H C Ng(K). O
Theorem 1.4.5 (Second Isomorphism Theorem). Let H, K be subgroups of G such that

H c Ng(K).
Then HNK <« H, K < HK, and

HK = H

K  HNK

Proof. K < HK was shown above. Define ¢ : H — HK/K by ¢(h) = Kh € HK/K. ie. ¢ is the
composition
H— HK — HK/K

1. ¢ is a homomorphism (composition of homomorphisms).

2. ¢ is surjective
Proof. Let Kx € HK/K, where x € HK. By above, HK < G, so HK = KH; thus let x = kh,
for some k € K, h € H. Hence,
Kx = Kkh = Kh = ¢(h)
3. kerg =HNK
Proof.
ker¢p ={y e H|¢(y) = e}
={yeH|Ky=¢}
={yeH|y€eK}
=HNK
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HNK < Hand
H H HK

= EI = —.
HrK kerg ™=7%

O

Theorem 1.4.6 (Third Isomorphism Theorem). Let K < Gand H < GwithK C H. Then H/K < G/K

and GIK
GIK L ¢ /H.
H/K
Proof. Define ¢ by composition
G—~»G/K —G/K.
H/K
Check that ker ¢ = H (exercise). O

1.5 The Pullback

Definition 1.5.1. Let ¢ : G — H and j : B — H be group homomorphisms. Define the pullback
G Xy B of ¢ and j by
G Xy B:={(g,b) € GXB|¢(g) = j(b)}.

The pullback gives:
G Xy B Mo G
g ¢
B , H
J

Proposition 1.5.2. G Xy B< G X B.
Proof. 1f (g,b) and (g’,b") belong to G Xy B then
P(gg") = d(9)p(g") = j(b)j(') = j(bD).

If (g,b) € G Xy B then
pg™) =@ =jb)" = ™).
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Proposition 1.5.3. Let¢ : G— H,j: B— Handi: A~ B be homomorphisms. Then

II II
Axg(BxyG) 24 Bx, G —% -G
ITs p.b. Iz p.b. 1)
A : B : H

! J
and A Xg (B Xy G) 2 A Xy G. (Composition of pullbacks is a pullback).

Proof.
AXp(BxyG)={(a,(b,g) |acA, (g eBxyG,i(a) =1sb,g) = b}

In this description, b is redundant because it is determined by a via b = i(a).

(b, g) € B Xy G means that j(b) = ¢(g). So,

AXp(Bxp G)={(a,8) | jli(a) = (@)} = A Xy G.

Note some special cases:
1. If H = {e} then j(b) = ¢(g) holds Vb, g, so B X;,) G = BXG.
2. If B < H and j is the inclusion, then

Bxy G={(b,g) | j(b) = ¢(g)}, so b isredundant
={geG|¢(g) € B}
=¢"'(B)

Proposition 1.5.4. Let

B
be a pullback. Then kerI1p = ker ¢ and ker I1; = ker j.

15
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Proof.

kerllz = {(b,g) € BXG | b = e and ¢(g) = j(b)}
={(e,9) e BXG | p(g) = j(e) = ¢}
={e} xXker¢ Cc BXG
ker ¢

IR

Now consider the special case where B < H and j is inclusion. Set A = B x; G = ¢~'(B).

Proposition 1.5.5.
1. If B< H then A < G.

2. If B< H and ¢ is onto then G/A = H/B.

Proof.
1. Suppose B <« H. Leta € A. Then for g € G,

¢(gag™") = p(g)p(a)p(g)"' € B, since ¢(a) € B < H,
so gag™! € A.

2. Let i be the composition
q

G +% H +% H/B,
where ¢ is the quotient map. Then ¢(A) € B = kerg so A C kery. If g € kery then ¢(g) €
kerg = B,so g € $'(B) = A. Thus, kerys = A. Hence,

G G

| H
= 1Imy = —
A kery v B

since both ¢ and ¢ are onto.

O

Theorem 1.5.6 (Fourth Isomorphism Theorem). Suppose N < G. Then the quotient map q : G — G|/N
induces a bijection between the subgroups of G which contain N and the subgroups of G/N. Explicitly,

A<Gw— q(A) <G/N, and
X<G/N-qg'X)<G

Moreover, this bijection satisfies

16



1. A< Biffq(A) < q(B), and in this case B : A = q(B) : q(A).
2. g(AN B) = q(A) Nq(B).
3. A< Biffq(A) < g(B).

Proof. Exercise.
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1.6 Symmetric Groups

Sul = n!

Notation for elements of S,: Consider o € S given by:

o(l)y=2
c2)=4
oc(3)=5
c4)=6
o5 =3
o6)=1
Mapping Notation:
o= 1 23 456
2456 31
Cycle Notation:

c=(1246)35)

Usually omit cycles of length one. eg. 7 = (1 4 3) means (1 4 3)(2)(5)(6).
The group operation on S, is * given by

O*xT=TOoO

Note: Dummit and Foote use the opposite convention: 0.t = o o 7. However, the results are
isomorphic; (S, *) = (S, »).

Notation: Sy := permutations of X with f g =go f.

S := permutations of X with f g = fog.

or=((1246)35)(143)=(1235)46)
10 =(143)((1246)35)=(16)(2456)

So §,, is not abelian.
Note: There is an ambiguity in the cycle notation: (1 2 4 6)(3 5) could mean either o or (1 2 4 6) *
(3 5). This is not important because these are equal.
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1.6.1 Conjugationin S,
Example 1.6.1. Let o0 = (12 3)(45),7 =(25). Then
0T = (25)(123)45)25)=(153)42).
This is obtained from o by switching 2 and 5 (in the cycle notation).
Proposition 1.6.2. Let 0,7 € S, with
o = (a(11) e aﬁ”)) (@l - gy,

Then
o' =@y - @) @ @) T a)).

Proof. In general, (tot1)(j) = 7' (a((j))). So
(ot HE 'd") = v (o 'aP)) = (o (@")) = T‘la(f)
etc. m|
Notice that Tor~! has the same cycle type as o
Corollary 1.6.3. o is conjugate to ' <= o and o’ have the same cycle type.

Proof. Above shows that any conjugate of o has the same cycle type as 0. Conversely, suppose that
o, 0’ have the same cycle type. Let

(1 ) 1 n
O':(a])...a(lrl)...(agl)...a;r))
o = (a(l‘)’ a(lr]),)"'(a;(zl), gl
Choose T € S, such that T‘l(agj)) = agj)'. Then o’ = to77\. |

1.6.2 The Alternating Group

Define the polynomial A by
Alxy, ..., x,) = n(xi - xj)

i<j
Foro € S§,, let
o(A)(x1, ... X0) = Alxg(1), ..., xp(n)).
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Here, all the same factors appear, but with some signs reversed.
SOA = A
Definee: S, — {1,—1} by

1 ifocA=A
€o) = . .
-1 ifocA = -A

{1, -1} is a group under multiplication (= C,), and € is a group homomorphism.
Set A, := kere < §,,. This is the alternating group.

Proposition 1.6.4. Let y = (p q) € S, be a transposition (ie. 2-cycle). Theny ¢ A, (ie. YA = —A).

Proof. Say p <gq.

A= ]ei-x)

i<j
= (xp - -xq)( n(xi - -xp))( l_[(-xp - X,'))( n(xi - Xq))( n(xq - X,‘))( 1_[ ()C,' - xj))
i<p i>p i<q i>q . ; <qu
i#p.q
By applying vy to A:
e (x, — x,) becomes (x, — x,) = —(x, — Xx,),

e The factors ([1;c,(xi — x,)) and ( [T;,(xi — x,)) switch,
e The factors ([];,(x, — X)) and ([];,(x, — x;)) switch, and
e The factor
( n (x; — xj))
1<

i#p.q
Jj#Dp.q

is unchanged.
Thus, yA = —A.
Any permutation can be written (in many ways) as a product of transpositions.

Corollary 1.6.5. 0 € A, < 0o is the product of an even number of transpositions.
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1.7 Group Actions

Theorem 1.7.1 (Lagrange’s Theorem). Let G be finite, H < G. Then |H| divides |G|, and

G
G:H:= % = # of left cosets of H in G = # of right cosets of H in G.

(G : H is called the index of H in G).

Proof. Define the equivalence relation ~ by g ~ ¢ <= gH = g’H. For g € G, |H| = |gH| (because
the map x — gx is a bijection). Hence, ~ partitions G into equivalence classes (cosets of H), each
containing |H| elements. ie.

|G| = (number of equiv. classes) X (number of elts. per equiv. class)
= (number of left cosets) X |H|

Similarly, |G| = (number of right cosets) X |H]|. O
Corollary 1.7.2. If H < G then |G/H| = |G|/|H|.
Corollary 1.7.3. For x € G, |x| divides |G|.
Proof. Set H = (x). Then |x| = |H| | |GI. o
Corollary 1.7.4. If |G| = p, a prime number, then G = C,,
Proof. Letx € G, x # e. Then |x| = p, s0 G = (x) = Cp(x). O
Definition 1.7.5. A left action of a group G on a set X consists of an operation

GxX— X
(gx) g -x

such that:
1. (gh)-x=g-(h-x) Vg, heG,xeX, and
2.ex=x VxelX
Equivalently, an action of G on X is a group homomorphism G — §'.

Example 1.7.6.
1. Fafield, G = GL,(F),X =F".
G acts on X by matrix multiplication, A - x = Ax.
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2. G any group, X = G.
G acts by left multiplication on X, ie. g - x = gx.

3. G agroup, N < G.
G acts by conjugation on N, ie. g - x = gxg~".

(gh) - x = ghx(gh)™" = ghxh™'g™" = g(h-x)g™" = g~ (h-x).
In this example, the image of G — S’ lies in Aut(N), ie.
g (xy) = gxyg™' =gxg”'gvg™ = (8- 0 V).
Note special case where N = G.

Similarly, we may define a right action (it is a group homomorphism G — Sx). Given a right
action © of G on X, can define a left action of G on X by

g -x:=x- g_l.

Example 1.7.7. G =S5,,X ={1,...,n}. Then

XXGw— Xbyj-o=0())
vields a right action of G on X, ie.

j-(or)=(on)()) =(o)(j)=1(c()) =(-0)T

. Define left action G X X — X by o - j:= j-o ' =o7'()).
Definition 1.7.8. Let G X X — X be a (left) action of G on X. Let x € X. The orbit of x is

Orb(x):={g-x|geG}C X

The stabilizer of x is
Stab(x) :={geG|g-x=x} CG.

Proposition 1.7.9. Stab(x) < G.
Proposition 1.7.10. Orb(x) = Orb(y) < y € Orb(x).

Proof.
= Suppose Orb(x) = Orb(y). Then

y =e-y e Orb(y) = Orb(x).
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& Suppose y € Orb(x). Write y = g - x, for some g € G.
g ly=gl-(g-x)=g'g-x=e-x=xand thus x € Orb(y).

IfzeOrb(y)thenz=g"-y=g"-(g-x) =(gg’) - xsoze Orb(x). Hence Orb(x) C Orb(y), and
similarly, Orb(y) C Orb(x).

O

Corollary 1.7.11. Given an action of G on X, the relation x ~ y <= Orb(x) = Orb(y) is an
equivalence relation.

Theorem 1.7.12. Let G be a finite group. Let G X X — X be an action of G on X. Then for x € X,
|Orb(x)| [Stab(x)| = |G].
Note: Lagrange’s Theorem is a special case. ie. H < G, X = {left cosets of H}.
GxX—Xbyg-C=gC
defines a left action. Set x = H.

Proof.
(&

m = G : Stab(X) = # of left cosets of Stab(X) in G

Define

6 : {left cosets of Stab(X) = H} — Orb(x)
gH— g-x

1. 6is well-defined:
Suppose gH = g’H. Then g = g’h for some h € H. Hence,

g-x=(gh-x=¢-(h-x)=g -x, sinceh € Stab(x).

2. 6 is surjective:
If y € Orb(x) then y = g - x, for some g € G. Thus y = 6(gH).

3. @ is injective:
Suppose O(gH) = 6(g’'H). Then g - x = g’ - x. Hence,

x=g' (g x0=g"@E 0=(0g"'¢g x

-.g ¢ €H,ie. g = ghforsomeh e H. Thus g’'H = gH.
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.. 8 1s a bijection and the theorem follows.

Corollary 1.7.13. Let G be a finite group acting on a finite set X. Then

B G|
Xl = Z IStab(x)|’

where the sum is taken over one element from each orbit.

Proof. The equivalence relation x ~ y <= Orb(x) = Orb(y) partitions X into disjoint subsets. So

1X| = Z |Orb(x)|, summed over one element from each orbit

_ Z (€
|Stab(x)|

Consider the action of G on itself by conjugation. ie. X = G and g - x = gxg~!. Then
Stab(x) = {g€ Gl g-x=x} = (g€ G| gxg™' = x} = Co(w).

Corollary 1.7.14. Class Formula:
|G
ICo(x)’

summed over one element from each conjugacy class.

Gl =

Corollary 1.7.15. Let p be prime and let G be a p-group (ie. |G| is a power of p). Then Z(G) # {e}.
Proof. Cs(e) = G. By the class formula,
G|
G| =
Z ICa(X)l
all conj. classes
_ @, v o
|CG(€)| remaining conj. |CG(X)|
classes

. G|
Pl )L B

remaining conj.
classes

*. dx # e such that ﬂ is not divisible by p. Since |G| = p”, this can happen only when |Cg(x)| =

ie. when C5(X) = G. ie. de # x € G such that Cs(x) = G, ie. x € Z(G).
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Corollary 1.7.16. If|G| = p?> where p is prime then G is abelian.

Proof. Let x # e such that x € Z(G). If G = (x) then G is abelian. Otherwise, |x| = p, and since
x € Z(G), {x) < G. So, dy € G such thaty generates G/(x) = C,. Then x and y generate G, and since
x € Z(G), x & y. Hence G is abelian. O
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1.8 Semi Direct Products

Let H, K be subgroups of G. Define u : H X K — G by u(h, k) = hk.
Proposition 1.8.1. If H N K = {e} then u is injective.
Proof. Suppose hk = h'k’. Then
(W) '"h=Kk' e HNK = {e}
soh ' =e=kk' ie. h=H andk =K. O
Assuming (for the rest of this section) that H N K = {e}, the above says
u:HxKw— HK CG

is a bijection. We wish to compare H X K to HK (which, in general, may not be a subgroup of G).
Suppose that H < G. Then HK = KH is a subgroup of G, but is not necessarily isomorphic to H X K.
Besides H x K, what other possibilities are there for HK?

Suppose g = hk and g’ = h’'k’ lie in HK. Then

gg = hkh'k' = hkh'k'kk' = h'’'k”

where b = h(kh'k™") € H and k" = kk’ € K.
ie., Labelling elements of HK by the corresponding element in H X K, the group operation in HK

can be written
(h, k)W k') = (hk - I, kKk")

where k - i’ := kh'k™! (the restriction to K of the conjugation action of G on the normal subgroup H).
Recall that this action satisfies & - (h1h,) = (k - hy)(k - hy), ie. it is a homomorphism into Aut(H).
Reverse the process:

Definition 1.8.2. Given groups H, K together with a group homomorphism ¢ : K — Aut(H), (an
action of K on H — denote k - h = ¢(k)(h)), the semidirect product H =< K is the set H X K with the
binary operation

(h, k)W k) := (h(k - h'), kk").

Proposition 1.8.3. H < K forms a group.

26



Proof.
((h, k)W, KD))(h" k") = (h(k - h'), kk")(R” k")
= (h(k-W)(kK' - h'"),kk'k’), and
(h, k)W, KYR",K")) = (h, k)W (K" - W), kK'k”)
= (hk- (WK -KW")),kk'k").
However, since Im¢ C Aut(H),
k-(Wk -hW"))y=0k-hW)k-&*& -h"))=Ck-h)YkKK -h").
S((h kY ED) R KT = (h, k)R, K )R, K7)).

(e,e)(W,k')=(e(e-h),ek’) = (eh',ek’) = (W' ,k"), and
(h,k)(e,e) = (h(k - e), ke) = (he, ke) = (h, k).

(Here, k - e = e since Im¢ C Aut(H).) Hence (e, e) is the identity.

& - kY = (k- (- R, kT
= (h((kk™") - ™), kk™")
= (h(e-h™"), kk™")
= (hh ' kk™")
=(e,e), and
kY k) = (- RYET - h), kK
=k (W'h),k'k), since Im¢ C Aut(H)

=k ee)
= (e, e).
Hence (h, k)" = (k' - h™' k7).
Define
ig: H— HxK

h (h,e), and
iK K> HxK
ki (e, k)
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Proposition 1.8.4. iy and i are (injective) group homomorphisms.
Proof.

(h,e)(W,e) = (h(e-h"),ee) = (hl',e)
(e,k)(e, k") = (e(k - e),kk") = (ee, kk') = (e, kk")

O
Using iy and ik, regard H and K as subgroups of H < K.
ie. H=iy(H) = {(h,e)} < H=K
K=ig(K)={(e,k)}) <H=K
Proposition 1.8.5. H < (H < K) and (H >~ K)/H = K.
Proof. Define ¢ : H < K — K by ¢(h, k) = k. Then
¢((h, k)(H', k")) = ¢(h(k - h), kk') = kK’
so ¢ is a group homomorphism.
ker¢ = {(h,e) € H~ K} = iy(H) = H.
O

Returning to the motivating example, H < G, K < G, H N K = {e}, and by construction,
HK = H % K.

Proposition 1.8.6. If both H < G and K < G with HN K = {e} thenu : HX K — HK is an
isomorphism.

Proof. Forhe H ke K,
hkh k™' = (hkh™DYk™' € K, and
hkh 'k = h(kh 7'k e H

So hkh™'k™' e HN K = {e}.
ie. hk=kh Vhe HkeK.

Hence
uCh, u(h' k'Y = hkh'k’ = hi'kk' = u(hh', kk’y = u((h, k)(h', k")).

.. i is @ homomorphisms, so u : H X K —> HK. O
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Proposition 1.8.7. Let H, K be groups and let ¢ : K — Aut(H). TFAE:
1. HXK = H~K.
2. ¢ is the trivial homomorphism.
3. K < (H=K).

Proof.

1= 2:
Yh,h' € H k,k' € K, (hih',kk’) = (h,k)(W' k') = (h(k - h"),kk")

Lok W)=k-W =h VK, ie. ¢(k) = 1y.
2 = 3: Since H, K generate H = K, it suffices to check hKh~™! C K, Vh € H. Note that
(h,e)™' = (h7!,e),

SO

(h,e)e, k)(h™',e) = (h(e - e), ek)(h™", e)
= (hk)(h™',e)
= (h(k - h™"), ke)
= (hh™',ke), by?2
=(e,k) € K

3 = 1: This is the previous proposition.

In particular, this proposition says that if G has normal subgroups H,K such that

HNK ={e}and HK =G then G = H X K.

O

Theorem 1.8.8. Let ¢ : G — K be a group homomorphism. Suppose 3 a group homomorphism

s : K — G such that ¢s = 1g. (s is called a section or a right splitting of ¢.) Then

G = (ker¢) < K

Proof. Observe that existence of a function s : K +— G such that ¢s = 1¢ implies that ¢ is onto and s

is injective. Let H = ker ¢. Set
K =Ims «— sKk.

Then
(ker¢p)«K=H=K=HK<G
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so it suffices to show HK = G.
Given g € G, let k = ¢(g) € K and let

k = s(k) = sp(g) € K.
Then
P(k) = ¢sp(g) = #(8),
since ¢s = 1x. Hence gk™' € ker¢ = H, and so g € HK. Thus G = HK. O

A right splitting of ¢ does not make G a product. In contrast, a left splitting does imply that G is
a product:

Theorem 1.8.9. Let H < G. Let i : H — G be the inclusion map. Suppose 1 a group homomorphism
r: G v H suchthat ri = 1y. Then
G=HXxG/H.

Proof. Define 0 : G — H X (G/H) by
0(g) = (rg,q8)

where g : G — G/H is the quotient projection g — gH. Then 6 is a homomorphism.
If 6(g) = 6(g’) then r(g) = r(g’) and gH = g’'H, so let ¢’ = gh for some h € H. Hence

r(g) = r(g") = r(g)r(h),
SO
e=r(h)=rith) = h.

.. g = gh = ge = g. Thus 0 is injective.
To show 6 is surjective, it suffices to show H X {e} C Im6 and {e} X (G/H) c Im#, since these
generate H X (G/H).
Given h € H,
0(h) = (r(h), hH) = (h, e).

Given q(g) = gH € G/H, let h = r(g) and set g’ = h™'g. Then
0(g") = (r(h™'g),q(h" "))
= (r(h™")r(2),q(2)

= (h'h, q(g))
= (e, q(g))

So 6 is onto. O
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Example 1.8.10. Use ¢ = €: S5 +— C,. Then ker ¢ = A;. Let

§s:C,—> 83 by
s(l1)=e
s(=1)=(12)

s is a right splitting. Thus S3 = A3 < C,.
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1.9 Sylow Theorems

Throughout this section, p denotes a prime and G is a finite group.
Suppose |G| = n. If H < G then by Lagrange, |H]| | n. However, the converse is false, eg. if G = S5
then n = 120, but G has no subgroups of order 15, 30, or 40. However, 1 a partial converse:

|G| then AH < G such that |H| = p'.

Theorem 1.9.1 ((First) Sylow Theorem). If p’
Proof. Write |G| = mp'. Find r > 0 such that p” | m but p™*! { m.

t t
Lemma 1.9.2. pr}(”;’,’ )bm p”lT( ”;’,’ )

Proof.

mp' \ _ (mp)(mp'=1)---(mp' = p'+ 1)
P T D32
If0 < j < p' then

# of times p divides p’ — j = # of times p divides j
= # of times p divides mp' — j
.. Powers of p cancel except for those in the factor m. O
Proof of Theorem continued. Let S = {S c G | |S| = p'}. Define right action
SXxG—S by S-g=8g.

t

S has ( n;;to ) elements, so there exists an orbit X = {S|, S, ..., S} (of size k) such that p"*! { k.

(If p"*! divided the number of elements in each orbit then p’*!' would divide |S]).
Orb(S ) = X by definition. Set H := Stab(§;) < G. Then

G _(m,

H| = - =
|H] X~k

k p

By construction, p"*! { k so p divides m at least as many times as p divides k. Thus |H| is divisible by
p', and in particular,
|H| > p'.

Pick s€S,. ThenVhe H,she S, buth # ' = sh # sh’. Hence
p' =152 [H|
S H| = pl. O
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Definition 1.9.3. Suppose |G| = n. Let p be a prime and let p' be the largest power of p dividing n.
Then a subgroup of G having order p' is called a Sylow p-subgroup of G.

Notation: Syl (G) := {Sylow p-subgroups of G}.
Corollary 1.9.4 (Corollary to Sylow Theorem). Syl (G) is non-empty ¥ p.
Suppose H < G. Then Vg € G, gHg™' < G and
H+ gH g_l
X - gxg_1
In particular, |gHg™!| = |H|. (gHg™' is called a conjugate subgroup of H in G.)
P e Syl (G) = gPg™' e Syl (G) VgeG.
Pick P € Sylp(G). Let
X = {Sylow p-subgroups of G which are conjugate to P}.

GactsonXbyg-S =gSg!.
If O < G, can restrict to get an action of Q on X. For an action of Q on Syl (G), have

|QI = Orby(S)] [Stabo(S)-

Here,
Staby(S) ={g€ Q1gSq™' =S} =Ny(S).

Lemma 1.9.5. If Q is a p-subgroup then for any Sylow p-subgroup S,
No(§)=8SnoQ.

Proof. Let H = Ny(S). From the definition, S N Q C H. Conversely, H C Q, so it suffices to show
H c §S. Consider S H.
SH=HS <G, sinceS < H.

S11H] ]
SH| = =15 > S|
ISH] IS N H| | ||S N H| IS1

H = Ny(S) < QO = |H|is a power of p = |SH| is a power of p. But § is a Sylow p-subgroup and
SCcSH,soS =SH.
~H=Cc. ThusH=S§nNQ. O
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Lemma 1.9.6. |[X| =1 mod p.

Proof. Write X ={P =S§,,...,S,}. For any Q the action of Q on X divides X into orbits:

I1X| = Z (# of elts. in that orbit).
orbits
Apply this with Q = S| = P:
Stabp(S) = Np(S) = PN S.

. Stabp(S)| | |P], with equality only when S = P. Hence,

|P|

|Orbp(S)| = Stabp(S)]

is one when § = P, and is divisible by p otherwise. So

IX| = Z (# of elts. in that orbit)

orbits

=1+ Z (# of elts. in that orbit)

orbits not
containing P

=1 mod p.

Lemma 1.9.7. If Q is a p-subgroup then Q C P; for some P; € X.

Proof. Again,
1X| = Z (# of elts. in that orbit).

orbits

Unless Q C P, for some j then for each j, O N P; will be a proper subset of Q, so that

10l

Orby(P))| =
[Orbe () [Staby(P;)

is divisible by p V.

But if p | (# of elements in orbit) for each orbit then p | |X|, contradicting the last lemma.
.. Q C Pjfor some j.

Corollary 1.9.8. Syl (G) = X.
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Proof. For § € Syl (G), |S|1s a power of p = § C P; for some P; € X. But |S| = |P}| since both are
Sylow p-subgroups.
S = PJ' € X. O

Lemma 1.9.9. Syl (G)| | IGI.
Proof. Consider the action of G on Syl ,(G). Let P € Syl,(G).
|G| = |Orbg(P)| [Stabs(P)|
Orbg(P) = {subgroups of G conjugate to P} = X = Sylp(G).
. |Sylp(G)| divides G. O
In summary:
Theorem 1.9.10 ((Main) Sylow Theorem). Let G be a finite group and let p be a prime.
1 ISylp(G)l =1 mod p.
2. 1SyL(G)l | IGI.
3. Any two Sylow p-subgroups of G are conjugate (and in particular, isomorphic).

4. Every p-subgroup of G is contained in some Sylow p-subgroup. In particular, every element
whose order is a power of p is contained in some Sylow p-subgroup.

Proof. Showed that if X = {Sylow p-subgroups conjugate to P} then Syl,(G) = X < 3.
Also showed [X| =1 mod p < 1.
Also showed: every p-subgroup of G is contained in some S € X <= 4.

Also showed [Syl.(G)| | IG] < 2. O
Corollary 1.9.11. Let P be a Sylow p-subgroup of G. Then P < G &= P is the unique Sylow
p-subgroup.

Proof.

&: Suppose ! Sylow p-subgroup. Since gPg~! is a Sylow p-subgroup Vg,
gPg ' =P VG,
ie. P<G.

=: Suppose P < G. Then the only subgroup of G conjugate to P is P. By Sylow Theorem, 3, P is
the only Sylow p-subgroup.
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Corollary 1.9.12. Let P be a Sylow p-subgroup of G. Let N = Ng(P). Then
Ng(N) = N.
In particular, N < G iff P < G.

Proof. Set H := Ng(N). Then Vh € H, hPh™' C N and |hPh~'| = |P|, so hPh~! is a Sylow p-subgroup
of G. But then hPh™! is also a Sylow p-subgroup of N. However, P < N, so P is the unique Sylow
p-subgroup of N.

S hPh™' = P,soh € Ng(P)=N.Hence HC N,so H = N.

In particular, if N < Gthen N =H =G so P < G. O
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1.10 Applications of Sylow’s Theorem

1. Suppose |G| = 15. Then

ISyls(G)l =1 mod 5 _

. 4! element of Syls(G). Let H be the unique Sylow 5-subgroup, so H < G. Similarly,

ISyL,(G)|=1 mod 3 B

so A! Sylow 3-subgroup K, and so K < G.
Pick generators h € H,k € K; |h| = 5,|k| = 3. H, K are normal = hk = kh, so |hk| = 15. Hence,
G has an element of order 15, so G = Cys.

2. Suppose |G| = 10.
ISyls(G)[=1 mod 5 )
syl Gy |10 = BL@I=1

Let H be the unique Sylow 5-subgroup. Then H < G. Pick a generator .

ISyL(G)l=1 mod 2

syL@G)[10 = S¥hGI=Tors.

Case I |Syl,(G)| = 1. Then G = C)y, using argument above.

Case II: |Syl,(G)| = 5.
Let K be a Sylow 2-subgroup; K = {e, k}. If hk = kh then |hk| = 10 and we would be in

Case I. Hence,

hkh™ = k, = generator of a different Sylow 2-subgroup.

Similarly, h?kh=2, h*kh=3, h*kh=* must be the generators of the other Sylow 2-subgroups.
(Again, if h'kh™" = hkh™/ for i # j then h/~'k = kh/~' and we would be in Case I.)
.. Can list the ten elements of G: L

e

h  hkh™!

h* h*kh™?

W Wkh

h* htkh™



From this, we can construct the group table. eg. what is hk?
Well, hk # h/ for any j, so hk has order 2.

. hkhk = e
hkh =k =k
. hk = h(hkh)
= h’kh
= h*(hkh)h
= ki?
= kh3.
This group must be Dy.
1
S 2
4 3
his (12345)

k— (25)34)

Conclusion: If |G| = 10 then G = C;y or G = Dyj.
In passing: note the existence of an element k of order 2 in Dy, gives a splitting

DyyZ__2 D/H=C(C,
K

where if C, = {e, x} then s(x) = k. Thus

Dig= H>xCy=Cs>xC,.
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The corresponding homomorphism ¢ : C, — Aut(Cs) is given by k- h = h™! = h*.
(Aut(Cs) = C, is generated by the map T, taking & to h%. The only element of order 2 in
Aut(Cs) is T o 7, which is & — h*)

3. Suppose |G| = 12. Then

Case I:

Case II:

Case Ila:

ISyLL,(G)| = 1 or 3,
ISyl;(G)| = 1 or 4.

ISyL(G)l = 3 and ISyly(G)] = 4.
Since two distinct groups of order 3 intersect only in the identity, and each Sylow 3-
subgroup has 2 elements of order 3, G has 4 X 2 = 8 elements of order 3. The remaining
4 elements must form a Sylow 2-subgroup.

.. There aren’t enough elements left to form any more Sylow 2-subgroups. This is a
contradiction, so Case I doesn’t occur.

SYL(G) = 1.

Let H be the unique Sylow 2-subgroup, so H < G. |H| = 4, so either H = C4 or H =
Cy X Cs.

H = Cy(0).

Let 7 be an element of some Sylow 3-subgroup, |7| = 3.

tor'eH
lror | =lo| =4

= 1ot ! = either o or .

1

If ror™! = o3 then

3_-1

0T 9

= (oY =0’ =0.

Moreover, 7> = e, SO

3 2 3 3

oc=ror = (tor O =Pt = (et = 6.

This is a contradiction. Thus, tov™! = 0.

Using the fact that 7 and o commute, |to| = 12. Thus G = C,.

Equivalent way of phrasing argument that ror~! = o: Let T = {e, 7, 7*}. Hisnormal = T
actson Hviat-o := tor .

|Orb(o)| [Stab(o)| = |T'| = 3.

o has order 2 = x - o has order 2 Vx € T. So Orb(c) C {o, 0}. Since |Orb(c)| divides 3,
Orb(o) = {o}.
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Case IIb:

Case IIbi:

Case IIIbii:

Lrotl =0

Another rephrasing: H < G.

G____G/H=C(C;,
s

where s takes the generator a to 7. ie. The existence of an element 7 of order 3 in G gives
a splitting, so
G=Cy >y Cs

for some ¢ : C5 — Aut(C4). However, Aut(Cy) = C, = {l¢, and o — o). so the only
homomorphism C; — Aut(Cy) is trivial.

LG 2CyxCy=Chh.

H=C,x(C,.
Let
H=le,o1,0,,03}, o0;=e.

Let T = {e, 7, 7} be some Sylow 3-subgroup.

GZ---G/H= (s,
S

and thus,
G=H ol T,

with ¢ : T — Aut(H) = permutations of {0y, 0,03} = S3. So
(@(O)(o) =107 = 071,07, Or 3.

to 17! = oy Then since the order of ¢(7) must divide the order of 7, which is 3, ¢(7) = id.
Hence ¢ = id and

G=2HXT =(Cy,xCyXxCs.

70'17‘1 *07.

So to ;77! = 0, or o3. By symmetry, assume 107! = 07,. Then ¢(7) must be a 3-cycle,
so0 10T ! = 0.
Elements of G:

e (O] () g3

T TO TO ) TO3

2

2 TPoy TPo, TPos

40



Case III:

Each o ; has order 2, and the elements 7, 2, 10 ;and T’ ; each have order 3. Multiplication
is determined by o 7! !

=0, and 10,7 = 03. eg.
-1 2 2 -1 _
g T=T7TT O1T=TT 01T =TTOT = T03.

What group is this? Let 74, T,, T3, T4 be the Sylow 3-subgroups. ie.

T;={e, 1o, (To-j)z} j=1,2,3,

T, = {e, 7, 7%}

Let X = {T,T»,Ts,T4}. Conjugation by elements of G permutes elements of X, ie. have
morphism

0:GH SX = S4.
What is 6(1)?
Tt = {ret !, 1(ro )t = 100, 110 )T} = T
Tt ={rer (o)t =105, - =T,

TT3T_1 = T1

Ty =T,
) 0
ie. 7 +— (123).

What is 9(0’1)? O']T]O'Il =7
Suffices to compute o (7070 .

0'1(70'1)0'1_1 =0T = T03.

0'1(70'1)0'I1 =T; |loq]l =2 = 0'1T30'I1 = T,. Likewise, 0'1T40'1‘1 =75 Soo; &
(13)24).
What is 6(0,)?

O'QTIO'E] = 0'270'10'51 70'%0'51 =T10,€T),

etc., get o, — (12)(3 4).
G = A4.

ISyL,(G)| = 3, so [SyL,(G)| = 1.
Let T = {e,7,7%} be the unique Sylow 3-subgroup, so T < G. Let H be a Sylow 2-
subgroup. |H| =4, so H = C4 or C, X C,. Then

H— G—G/T
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Case Illa:

is an isomorphism (it is an injection since H N T = {e} for degree reasons, and since
|H| =4 =|G/T)|, it is bijective). This splits g : G = G /T, so

G=Tx4H.

H=C, xC,.
Let H = {e, 0, 03,03}
¢ : H— AutT = AutC; = C,.

If ¢(h) = 17 Yh € H then G = T X H, transposing to Case II. So ¢ is non-trivial,
ie. ¢(h)(1) = 72 for some h € H. Then

ker¢ = C,
so 3h € H such that i # e and ¢(h) = 17. ¢(W')(1) = 72 for the other two non-trivial

elements 4’ of H. By symmetry, suppose ¢(o3) = 17, ie.

(o)1) = o710 =17,

P(o2)(1) = op10;y! = 17,
P(o3)(T) = 0'37051 =T

This determines multiplication in G.

What group is this? 037 = 1073, S0 |o37] = |o3] 7| = 2 -3 = 6. Set x = 037. Elements of
G:

e X X2 X x* X

oy xoy x*oy xXoy xtoy X0

Multiplication of elements in this form can be derived from:

o1x= 0'1xa'1_10'1 = 0'10'37'0'1_10'1 = 0'3(0'170'1_1)0'1 = o370 = agrsm = Xo.

So G = Dy,.
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x—(123456)
— (26)(35)

What are the 3 Sylow 2-subgroups? One is H = {e, 01, 0, 03}. Note that

o3 =030 =X,

0'220'30'1:)630'1

o H=le,o,x0,x%).
To find the others, pick g € G and compute gHg™!

g=x = gHg e, Xo X = xx30'1x_1,xx3x_1}
e, xo 1 x>, xor 2, %)
543 Yo
Yo, () oy, X))

=1
=1
= {e, x(x
= {e,
={

e, x 0'1,x50'1,x3}.

The other is {e, x*cy, xo1, X°}.
Note that different Sylow p-subgroups can intersect non-trivially. eg. Here, x* is in all
Sylow 2-subgroups.

Case IIIb: H = Cy.
Let H = {e, 0, 0%, 0}. Recall
T = {e’ T’ TZ}’
¢:H=Cy Aut(T) =C,

Aside from trivial ¢ (yielding G = T X H = C3xCy4, which is Case Ila), ¢ acts non-trivially

on o and 7. ie. oro~! = 72. Elements of G are:
e o o o
T 100 T0? 107
2 2 2 2 2.3

T T TO0OT TO

-1

Multiplication is determined by oro~! = 72 (and 7° = e, 0* = ¢).

In summary, there are 5 (non-isomorphic) groups of order 12: Cy,, C, X C, X C3, A4, Dy, and
C3 ~ C4.
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1.11 Solvable and Nilpotent Groups

Let G be a group, A, B C G.
Notation: [A, B] := subgrp. of G generated by {[a,b] | a € A,b € B}. So [G,G] is the commutator
subgroup of G.

Inductively define:

G :=G,
G" :=[G"",G" "], and
G'? =G,

G :=[G"V,G].

Then

G=G9>GY >G? >...>G"™ >... Derived (or commutator) series of G
I I A In
GO>GV>G?>...>G'"™>... Lower central series of G

Definition 1.11.1. G is called solvable if AN such that G™ = {e}. G is called nilpotent if AN such
that G'™ = {e).

Since G™ < G'™, nilpotent = solvable. We already showed [G, G] < G, so G™ < G"™V_ In fact:

Proposition 1.11.2.
1. G™ < G VYn. In particular, G™ < GV (because for A < B< G, ifA <G then A < B).

2. G'™ < G Vn. In particular, G'™ < GV,

Proof.
1. For g € G and [a, b] a generator of G, where a,b € G"™,

gla,blg™! = [gag™", gbg™'1 € [G"V,G" V]
by induction.

2. For g € G and [a, b] a generator of G'™, where a € G’V and b € G,
gla,blg™" = [gag™". gbg™'1 € [G""",G]

by induction.

44



Notice that G"~D/G™ = G"" is abelian. Conversely:
Proposition 1.11.3. G is solvable iff A a finite sequence of subgroups
le}=Hy<Hy_1<---<Hy=G
such that H,_,/H, is abelian for all n.

Proof. Suppose that such a sequence exists. Since H,_,/H, is abelian, [H,_, H,_1] < H, for all n.
Inductively,
G(n) = [G(n_l)’ G(n_l)] < [Hn—l’Hn—l] <H,

so G™ < H, VYn. Thus,
G < Hy = {e}

5 GWY = {e). O
Lemma 1.11.4. S, is solvable iff n < 5.

Proof.
n=1,2: §, is abelian and thus solvable.

n = 3: Note that [0, 7] is always an even permutation, SO
[S,,S.]<A, Vn
When n = 3, A; = C; is abelian, so S; is solvable.

n =4: Since [S4,S4] < Ay, in suffices to check that A4 is solvable. Let
H=1{e,(12)34),(13)(24),(14)23)}.
Then H = C, X C, is abelian, H < A4, and
|As/H| =3,

so A4/H = Cj is abelian.
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n>5 Letoc=(153), 7= (142). Then

[0, 7] = oro 77!

=(153)(142)(135)(124)
=(123) €[S, 5,]

Similarly, every 3-cycle is a commutator of 3-cycles, provided n > 5. Thus, Vk, AP contains
every 3-cycle.

Aﬁ,k) # {e} Yk, so A, is not solvable.

Theorem 1.11.5. Suppose A < B. Then B is solvable <= both A and B/A are solvable.
Furthermore, if A < B and B is solvable then A is solvable (even if A is not normal in B).

Proof. Suppose B is solvable and A < B. Then AV < BY V¥, so B® = {e} for some k = A® = {¢},
so A is solvable.

=: Suppose now that A < B and let 7 : B — B/A be the canonical projection. If x € B lies in B’
then 7(x) € (B/A)’, and conversely, if

y=@@vw) ') €(B/AY
then y = m(uvu~'v') € n(B’). Hence,

n(B) = (B/AY
7(B?) = n(B") = (n(B")) = (BJAY" = (B/A)®

aB®) = ... = (B/A)P
Since 1(B®) = {e}, (B/A)® = {e}, whence B/A is solvable.

&: Suppose A and B/A are both solvable. If {e} = (B/A)*® = x(B®) then B®¥ c A. Thus, B**) =
(BD c AD . So if A™ = {e} then B**™ = {e}. Hence, B is solvable.

Theorem 1.11.6. G is finite and solvable = 3 subgroups
{e} =A, <A1 <9---<A; <Ay=G

such that A;/Aj., is cyclic of prime order Y j.

46



Proof. The proceding theorem reduces the proof to the case where G is abelian, and it is clear that a
finite abelian group has such a composition series. O

Upper Central Series:
Given a group G, inductively define Z,(G) as follows: Set Z; := {e}. Having defined Z,_; such that
Z,-1 < G, define Z, as the pullback:

Z, UG/Z,-y)
G—I.6/z,,

where g,-; : G — G/Z,_, is the quotient map. ie.
Z = 4, (UG Zyy)).
Z, < G because Z(G/Z,-1) < G|Z,_;.
Gn-1(Z,, G]) C (UG /21, G Zy-1] = {e},
so [Z,,G] Cckerqg,.1 =Z,;.
Lemma 1.11.7. G is nilpotent iff Zy(G) = G for some N.

Proof.
=: Suppose Zy = G.
GV = [G,G] = [Zy.G] < Zy-i.

Inductively,
Gl(k) - [G’(k_l)’ G] S [ZN—(k+1)’G] S ZN—k'

5. G'™) < Zy = {e} so G is nilpotent.
&: Suppose G'™ = {e}. Inductively (as k decreases), assume
[G'P,G] = G'*V < Zy 1.
Suppose x € G'®. Given g = gy_i_1(8) € G/Zy_x-1,

[gn—k-1(%), g] = gn-k-1[x, &]
€ gn-i-1(IG'V, G])
C gN-k-1(Zn-k-1)

= {e}.
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S gN—i—1(x) commutes with g Vg € G/Zy_;_1 so

gn-i-1(x) € Z(G/Zy_i-1).

S X €Ly
Thus G’® < Zy_, Vk. Therefore,
Zy>G" =G
.. Zy = G as required.
]
Corollary 1.11.8. If G is a finite group then G is nilpotent iff Vn, Z(G/Z,) # {e} unless G/Z, = {e}.
Proof. If Z(G/Z,) = {e} then Z,,, = ¢ {e} = Z,, so the series
W<y L Zy<Zy <+
never reaches G (unless Z, = G already).
Conversely, if Yn, Z(G/Z,) # {e} then
Z,<Zy VYn
and since G is finite, eventually Z, = G. m]

Corollary 1.11.9. If G is a p-group then G is nilpotent.

Lemma 1.11.10. G is nilpotent iff G| Z(G) is nilpotent. More precisely, Zy.\(G) = G iff Zy(G/Z(G)) =
G/Z(G).

Proof. Set H := G/Z(G).
2(G)

2(G)=Z,(H)

p.b.

G

7 H =G/Z(G) = G/Z,(G)
1

Suppose inductively that Z,_;(G) is isomorphic to the pullback
Pn—l - Zn—Z(H)

p.b.

> H

q1

48



By a property of pullbacks (Proposition 1.5.5),
G/Z2,.1(G) = G/Py-y = H|Z,»(H).

So
P, ——Z,.1(H) — Z(H[/Z,»(H)) = Z(G/Z,-1(G))

p.b. p.b.

G q > H > H/Zn—Z(H) = G/Zn—l(G)
1

Then P, is isomorphic to the composite pullback, which, by definition, is Z,(G). So
Z,G)=P, Vn.
If H is nilpotent then AN such that Zy(H) = H. Then
Zy(G) —— Zy(H)

p.b.

G >H

q1

shows Zy,1 = G.
Conversely, if Zy,1(G) = G for some N then the pullback shows

H/Zy(H) = G/Zy.1(G) = {e}
soZy(H) = H.
Corollary 1.11.11. G is nilpotent iff the sequence of surjections
Qo> O > O e R On >

G  G/UG)  Qi/Z(Q) On-1/Z(Qn-1)

eventually reaches {e}. (Qy = {e} for some N).
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Proof.
=: @, is nilpotent iff 0, is nilpotent. So, if Oy = {e} then Qy is nilpotent, so Qy = G is nilpotent.

«: Suppose that G is nilpotent with Zy(G) = G. Then Zy_(Q;) = Q; and inductively, Zy_(Qx) =
O Yk. Then

Z(On-1) = Z1(Qn-1) = On-1
$0 Oy = On-1/Z(Qn-1) = {e}.

Corollary 1.11.12. A finite product of nilpotent groups is nilpotent.

Proof. By induction, it suffices to consider the product of two nilpotent groups, G and G,.

G X Gy
2(Gy x G)
G xGy
 ZG1) X Z(G)
= G1/Z(G1) X G2/ Z(G)

= Q1(G1) X Q1(G)

By iterating, Q,(G| X G2) = Q.(Gy) X 0,(Gy). So if Oy, (Gy) = {e} and Qu,(G,) = {e} then
Omaxiv V) (G1 X G) = {el. o

01(G XGy) =

Theorem 1.11.13. Let G be a finite group. For each prime p, let P, be a Sylow p-subgroup. Then
TFAE:

1. G is nilpotent.

2. H < G = H < Ng(H) (every proper subgroup of G is a proper subgroup of its normalizer).
3. P,<G Vp.

4. G=][, P,

Proof.
1 = 2: Suppose H < G. Z(G) < Ng(H), so unless Z(G) C H, it is immediate that H < Ng(H).

So assume Z(G) ¢ H. Write G := G/Z(G) and let

q:G—>G
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be the quotient map. Set H = g(H) < G. G nilpotent = G nilpotent. By induction (assuming 1
= 2 is known for all groups of order less than |G),

H < NE (E) .
But then by the 4" Isomorphism Theorem,
H=q"'(H) < q"'Ng(H) = No(H).

2= 3: Let N = Ng(P,). By a corollary to the Sylow Theorem (Corollary 1.9.12), Ng(N) = N.
. Hypothesis 2 = N = G,so P, < G.

3= 4: Write

Gl = py'p5 - Py
Suppose by induction (on m) that
H=P, ---P, =P, x---P, .
Then H < G, P,, < G,and HN P, = {e}. Hence,
pP,---P, =HP, =HXP, =P, X---P, .
However, |P,, --- P, | =|G|so P, ---P, =G.

4 = 1: It was already shown that p-groups are nilpotent and a finite product of nilpotent groups is
nilpotent.
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1.12 Free Groups

Theorem 1.12.1. A subgroup of a free group is free.

Proof. Let S be asetand let G = F(S). Suppose H < G. Let
S’ = S I {inverses of elts. in S }.

Recall that elements of G are finite length words in S and S’. Let M(S’) denote the free monoid
on S’ (so that in M(S"), ss~! does not simplify for s € S). I a surjective map of monoids g : M(S’)
F(S) given by
glx)=x VYxe M(S").

Write x for g(x).

Say that a word x = x; -+ - x, € M(S’) (where x; € S’ Vi) is reduced (or a reduced representative)
if 1 a shorter word y € M(S”) s.t. g(x) = g(y) = x; -+ x; in G.

Well-order S’. This induces a well-order on M(S’) by ordering the words first by length, and then
lexicographically among words of the same length. Let

R = {reduced words} c M(S’).
ie. x € Riff x = min g '{g(x)}. For g € G, define g € M(S’) by
g =ming™'(Hg).
ie. g =min{x € M(S") | Hx = Hg}. Let
R=1{g1geG}c M(S’)

be the set of chosen coset representatives. Clearly, only reduced words can occur: R C R.

Lemma 1.12.2. A left substring of an element in R is in R.

Proof. Suppose b = cu € M(S’") with b € R_ and c¢ a proper substring. Check that ¢ € R. 3
Since b € R and c is shorter than b, Hb # Hc (or else, ¢ would be the chosen coset rep. for Hb
rather than b). If ¢ ¢ R then ¢’ < ¢ and H¢’ = He. So

Hb = Hcu = Hc'u = Hc'u.

However, the ordering is such that x <y = xz < yz. So ¢’ < ¢ = c¢'u < b, which contradicts the
minimality of b. O
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Proof of Theorem continued. Given r € R, s € S’, define v,, € H by
v, = 7s(r)"',  where i’ = 7s € R.
ie. 1’ is the canonical rep. for Hrs. So Hr" = Hrs, and thus v, € H.
Notice v} = #s7'()7!, and
Hr' = Hrs = Hr=Hr's™",

and since r € R, r is the canonical rep. for Hr's™!. Thus

-1
v = Vr',s’la

r,s

sof{v,s| 1€ R, s € S'} is closed under inverses. Let
T={,cHIreRseS v, #el.

Note that it is possible to have v, ; = v, withoutr = " and s = §'.

Define ¢ : F(T) — H by ¢(v,s) := v,s Vv, € T. To finish the proof that H is free, we show that ¢
is an isomorphism.

Let h € H. Write h = s;---s, in terms of generators of G. Set b; = e and inductively set

bj= b_jsj (ie. bj4 is the canon. rep. for coset Hb_jsj).

. By construction, v, = b_js ja_l. By induction,
Hm = Hb_jsj = Hﬁsj_lsj = --~Hb_1s1 coe8;=Hsy -5
“ Hbpy =Hsy -5, = Hh=H, s0 b = e.
Vb5 Vo ** * Vorse) = D151(52) ' basa(ba) ™"+ - bese(beat)™ = 51+ 8¢ = h.

.. ¢ 1s onto.

Suppose ¢(x) = e for some x € F(T) and x # e. Let x = x;---x, be an expression for x as a
reduced word in the elts. of 7. Recall that the elemnts of 7' can be written as v, ; in many ways. For
each i = 1,...,¢, pick the expression x; = v, ,, in which b; € R be minimal. Then Vp,.s; contains
an occurrence of s;, since if s; cancelled then, using the fact that R is closed under left substrings, a
shorter b} and an s; could be picked such that x; = Vi s

Since ¢(x) = e, within G, the string ¢(x), which initially contains all of sy,..., s,, must reduce
to eliminate them. So dm such that ¢(v;,, 5, Vs ) reduces to eliminate s,, or s,,,; (or both). Write
v as:

m+1>Sm+1

m,vabm+1,Sm+l

DS b1 Smi1 @7

where y = canon. rep. for Hﬁsm and z = canon. rep. for Hb,,,;5,+1. Cancellation of at least one of
Sms Sm+1 €an happen in one of three ways:
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-1

=byyand s, =5, 4,

or

-
<

2. byi1Sm+1 18 a left substring of y, or

3. ys,!is a left substring of b, ;.

If1: Hz = Hb,,.1Sy1 = H}s,‘n1 = Hb_m, so z = b, (both lie in R and they represent the same coset).
SO Vi, 15 = (Vb,,.5,) "+ and the word x was not reduced, which is a contradiction.

If 2: Since b,,,y,bpi1,2 € R c R, all are reduced, S0 b, {8, is a left substring of y = by,41Sm+1
is a left substring of y. Hence b,,11 5,41 € R. So b,+15,+1 and z are canon. reps. for the coset
Hb,, 15441, 80 2 = b1 Sme1. But then vy, = e S0V, ¢ T, which is a contradiction.

m+1>Sm+1 m+1sSm+1

If 3: Asin case 2, ys,;1 is a left substring of b,,,; so ys,‘n1 € R and represents the same coset as b,,. So
b, = ys,‘nl and so v, =e¢ ¢ T, which is a contradiction.

'ms>Sm
.. None of these cases can occur, so ¢(x) = e for x # e is not possible. Hence ¢ is an injection. O

Note: itis possible that H is not finitely generated, even if G is finitely generated. e.g. Let G = F(x,y)
and let H = [G, G] (the commutator subgroup). Then

H=F(x,y, [y, x], [y, xI, x], ..., [--- [[y, x], x]x -+, x],...}.
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Chapter 2

Rings and Modules

2.1 Rings
Definition 2.1.1. A ring consists of a set R together with binary operations + and - satisfying:
1. (R, +) forms an abelian group,
2. (a-b)y-c=a-(b-c)VYa,b,c €R,
3. A1 #0€Rsuchthata-1=1-a=aVa € R, and
4 a-(b+c)=a-b+a-cand(a+b)-c=a-c+b-cVYa,b,c €R.
Note:

1. Some people (e.g. Dummit + Foote) do not require condition 3, and refer to a “ring with
identity” if they want to assume - has an identity element.

2. People who include existence of a unit in their defn. of a ring refer to a “ring without identity”
for an object satisfying the other three axioms. Some people (e.g. Jacobson) call this a “rng”.

3. Some people (e.g. Lang) do not require 1 # 0 in condition 3.

Definition 2.1.2. R is called commutative if its multiplication is commutative, ie.
ab=ba Va,b€R.
Definition 2.1.3. A ring homomorphism from R to S is a function f : R — S such that Va,b € R:
1. fla+b) = f(a)+ f(D),
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2. f(ab) = f(a)f(b), and
3. f()=1.
A bijective ring homomorphism is called an isomorphism.

Definition 2.1.4. A subring of R is a subset A which forms a ring such that the inclusion A — R is a
ring homomorphism. A subgroup I of the abelian group (R, +) is called a (two -sided) ideal if

xel,reR= rxelandxrel.

Similarly if a subgroup I satisfies
xel,reR= rxel,

1 is called a left ideal, and if it satisfies
xel,reR= xrel,

it is called a right ideal.

Example 2.1.5. If f : R — S is a homomorphism then ker f := {x € R | f(x) = 0} is an ideal in R.
(An ideal is always a subrng but never a subring, unless it is all of R.)

Theorem 2.1.6. Let I & R be a proper ideal. Then 1 a ring R/I and a surjective ring homomorphism
f:Rw—> R/l such that ker f = L.

Proof. Define an equivalence relationon Rby x ~y &= x—-ye[l. Let
R/I := {equiv. classes}.
Define operations on R/I by

[x] + [y] .= [x +yl,
[x] - [y] := [xy].

Check that these are well-defined and produce a ring structure on R/1.
Define f : R — R/I by f(x) = [x]. f is a ring homomorphism. Moreover, f(x) = 0 iff [x] = 0 iff
x=x-0€l O

Definition 2.1.7. The ring R is called a division ring if (R — {0}, ) forms a group. A commutative
division ring is called a field.
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An element u € R for which dv € R such that uv = vu = 1 is called a unit.
Notation: R* = {units of R}. This forms a group under multiplication.

A non-zero element x € R is called a zero divisor if dy # O such that either xy = 0 or yx = 0. A
commutative ring with no zero divisors is called an integral domain.

Proposition 2.1.8. If x # 0 is not a zero divisor and xy = xz then 'y = z.
Proof. x(y —z) = 0 and x is not a zero divisor so either x =0ory—-z=0. Butx #0soy =z |

Theorem 2.1.9 (First Isomorphism Theorem). Let f : R — S be a ring homomorphism. Then
R/ ker f = Imf.

Theorem 2.1.10 (Second Isomorphism Theorem). Let A C R be a subring and let I & R be a proper
ideal. Then A+ 1 :={a+x|a € A,x € l}isasubring of R, AN I is a proper ideal in A, and

A+D/I=A/(AN]).

Theorem 2.1.11 (Third Isomorphism Theorem). Let I C J be proper ideals of R. Then J/I := {[x] €

R/I| x € J}is anideal in R/1, and
R/T _ R/J
J/II ’

Theorem 2.1.12 (Fourth Isomorphism Theorem). Let I be a proper ideal of R. Then the correspon-
dence J — J/I is a bijection between the ideals of J containing I and the ideals of R/I.

Let 7, J be ideals in R. Define ideals

I+J:={x+yl|lxel,yel}
InJ,

1J = {Zx,-yylneN,xi el,y; € J}

i=1

Then
IJciInJcluJcl+J

(Note that I U J may not be an ideal.) I + J is the smallest ideal containing both 7 and J.
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2.2 Maximal and Prime Ideals

Definition 2.2.1. An ideal M S R is called a maximal ideal if A an ideal I s.t. M &1 C R.
Lemma 2.2.2. Given an ideal I & R, 1 a maximal ideal M s.t. [ C M.

Proof. Let
S ={ideals J | I c J &R}

Then § is a partially ordered set (ordered by inclusion). If C € 8 is a chain (ie. a totally ordered

subset) then
I=Jc

CeC

is an ideal which forms an upper bound for C in & (it is indeed a proper ideal since 1 ¢ J).
.. Zorn’s Lemma = § has a maximal element M. O

For the rest of this section, suppose that R is commutative.

Proposition 2.2.3. R is a field < the only ideals of R are {0} and R.

Proof.
=: Let R be a field and let I C R be an ideal. If I # {0} then dx £ 0 € 1.
R afield = dy € R such that xy = yx = 1. Since [ is anideal, 1 € I, sor € I Vr € R. Thus
I =R.

«: Suppose the only ideals in R are {0} and R. Let x # 0 € R. Let
I =Rx:={rx|reR}.

Iisanideal and x = 1xe R,sol #0. Hence I = R,so 1 € I. ie. 1 = yzfor some y € R.

.. Every x # 0 € R has an inverse, so R is a field.

Corollary 2.2.4. Let f : F — S be a ring homomorphism where F is a field. Then f is injective.
Proof. ker f is a proper ideal in F, so ker f = 0. |
Theorem 2.2.5. M is a maximal ideal <= R/M is a field.

Proof. The 4" iso. thm. says 1 a bijection between the ideals of R containing M and the ideals of
R/M.
SAlst MGIGR & Js.t. {0} & J &S R/M. ie. M is not maximal <= R/M is not a field. m|
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Definition 2.2.6. An ideal P C R is called a prime ideal if ab € P implies a € P or b € P.
Theorem 2.2.7. P is a prime ideal <= R/P is an integral domain.

Proof.
=: Suppose P is a prime ideal. If [xy] = [x][y] = O in R/P then xy € P, so either x € Pory € P.
ie. either [x] = O or [y] = 0. Thus R/% has no zero divisors.

&: Suppose R/% is an integral domain. If xy € P then [x][y] = 0in R/P, so [x] = 0 or [y] = 0. ie.
eitherx e Pory e P.

O
Corollary 2.2.8. A maximal ideal is a prime ideal.
Proof. A field is an integral domain. O
Notation: a | b means dc s.t. b = ac (say a divides b).
Proposition 2.2.9. In an integral domain, if a | b and b | a then b = ua for some unit u.
Proof. a|b= b =uaforsomeu € R.b|a= a=vbforsomeveR.
.. b = ua = uvb, and since b is not a zero divisor, 1 = uv. Thus, u is a unit. m|

Definition 2.2.10. g is called a greatest common divisor of a and b if:
1. glaand q| b, and
2. If c also satisfies c | a,c | b then c | q.

Notation: ¢ = gcd(a, b) means q is the greatest common divisor of a and b.
We say a and b are relatively prime if gcd(a, b) = 1.

Proposition 2.2.11. Let R be an integral domain. If g = gcd(a, b) and g’ = gcd(a, b) then ¢’ = uq for
some unit u. Conversely, if ¢ = gcd(a, b) and q' = uq where u is a unit then q' = gcd(a, b).

Proof. Let g = gcd(a,b). If ¢’ = ged(a,b) then ¢’ | g and g | ¢’ so ¢’ = uqg for some unit u.
Conversely, if ¢’ = ug for some unit u then ¢’ | g so ¢’ | aand g’ | b. Also q | ¢’ so whenever ¢ | a
andc|b,c|lgsoc|q. O

Definition 2.2.12. A non-unit p # 0 € R is called a prime if p | ab = p|aorp|b.
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Notation: Let x € R. (x) := Rx = {rx | r € R} is called the principal ideal generated by x. Thus

ye x)iff x|y.
Likewise, for xi,...,x, € R, let (xy, ..., x,) denote the following ideal:
{rix;+---+rx,|r,...,r, €R},
ie. the ideal generated by xi, ..., x,.

Proposition 2.2.13. If p # O then p is prime <= (p) is a prime ideal.

Proof.
=: Suppose p is prime. If ab € (p) then ab = rp for some r, so p | ab. Sop|aor p|b. ie. a € (p)
or b € (p).

«: Suppose (p) is a prime ideal. If p | ab then ab € (p) soa € (p) or b € (p).
S.plaorp]|b.

O

Nonzero elements x and y are called associates if 3 a unit u s.t. x = uy,y = u~'x. Thus, x,y are
associate &= (x) = (y). ie. For associates x and y, x | a iff y | a.
x ~ yiff x, y are associate forms an equivalence relation on R — {0}.

Definition 2.2.14. x € R is irreducible if x # 0, x is not a unit, and whenever x = ab, either a is a
unit or b is a unit.

Definition 2.2.15. Ideals I and J are called comaximal or relatively prime if [ + J = R.

Theorem 2.2.16 (Chinese Remainder Theorem). Let R be a commutative ring. Let
Li,....,I CR

be ideals. Suppose 1; and I; are comaximal whenever i # j. Let

¢RP—>R/11 XR/Ih X -+ X R/
ro>o+L,r+5hL,....,r+1).

Then ¢ is surjective and
kerqﬁ:Il ﬂlzﬂ---ﬂlk:Il---Ik.
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Proof. Consider first the case when k = 2. Suppose /, J are comaximal. ThenAx € I,y € Js.t. x+y =
1. So ¢(x) = (0,1) and ¢(y) = (1,0). Since (0, 1) and (1, 0) generate R/I X R/J, ¢ is surjective.
Clearly ker¢ = I N J, and in general, IJ c INJ. Foranyce INJ,

c=cl=cx+cyell

SAJ=1InJ.
General case: set I = 1,,J = 1,---I;. Foreachi =2,...,k, dx; e [and y; € I; s.t. x; +y; = 1.
Since x; + y; =y; mod I,

I=1---1=@2+y)x3+y3) (X +y) =y2+--y mod [

Solel+J.
.. R+ R/I X R/J and by induction,

R/IXR/J >R/} XR/I, XR/I; X ---XR/I;

and
LL---I,=1J=InJ=0LnLN---I.
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2.3 Polynomial Rings
Let R be a ring.

Rx] :={a, X"+ a,_ X" " +---+ax+ay|n >0€Zanda;eRfor j=0,---,n}
(modulo 0x" + a1 X' + -+ ag ~ a1 ¥ + -+ + ay). Operations are

n n n
Z ax' + Z bix' = Z(ai +b)x', and
i=1 i=1

i=1
n m n+m k

(Z aixi) [ b,-x‘) = Z [Z a,-bk_i) x*.
i=1 i=1 k=0 \ i=0

More formally,

(RIxl,+) = PR,
n=0

with multiplication defined by

k
(@)i=0(b)) j0 = (ch=0 Where ¢; = Z aby_;.

i=0

Inductively, set
Rlx1, ..., x,] .= (R[x1, ..., x,-1D[xa]

(called the polynomial ring in » variables). For an arbitrary set S, set

R[S] := U R[T].

T=finite subset of
If g(x) = Y., a;x' and a, # O then n is called the degree of g. Embed R — R[x] via
r — r (polynomial of degree 0).
Some properties:
1. R[x] is commutative <= R is commutative.
2. R[x] is an integral domain <= R is an integral domain.

3. If R is an integral domain then g(x) € R[x] is invertible <= ¢g(x) € R and is invertible in R.
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Proposition 2.3.1. Let I C R be an ideal. Let I[x] denote the ideal of R[x] generated by I. Then
R[x]/1[x] = (R/D)[x].

Proof. Define ¢ : R[x] — (R/I)[x] by
¢(Z ax') = Z ax'.

R[x]/1[x] = (R/D[x].

Then ¢ is onto and ker ¢ = I[x], so

Corollary 2.3.2. I[x] is a prime ideal <= I is a prime ideal.
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2.4 Modules

Definition 2.4.1. Let R be a ring. A (left) R-module consists of an abelian group (M, +), together
with a function - : RX M — M s.t.

1. r+sym=rm+smV¥r,s e R,me M,
2. rm+n)=rm+rmN¥Nre R,m,ne M,
3. (rsym =r(sm)Vr,s € R,m € M, and
4. Im=mVme M.
If R is a field, an R-module is also called a vector space over R.
Definition 2.4.2. An R-module homomorphism [ : M — N is a function satisfying
1. f(a+b)= f(a)+ f(b)Va,b e M and
2. f(ra)=rf(a)Vr e R,a e M.

If R is a field, an R-module homomorphism is also called a linear transformation. A bijective homo-
morphism is called an isomorphism.

Definition 2.4.3. A submodule of M is a subset A which forms an R-module s.t. the inclusion A — M
is an R-module homomorphism. The R-module M is simple if its only submodules are M and {0}.

Example 2.4.4.
1. M = RwithRx M — M given by mult. in R. Submodules of R are left ideals.

2. R=7Zand M = abelian grp., with

n-x:=x+---+x, forn>0,and
(=n) - x:=—(n-x), forn2=D0.

Conversely, any Z-module is just an abelian group.

3. F a field, V a vector space over F, T : V w— V a linear transformation. Let R = F[x] and
M = V. Define
X vi=T"V) =TT ) VYveV

and extend linearly to an action of F[x] on V.
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If f: M~ N is an R-module homomorphism then ker f is a submodule of M and Imf is a
submodule of R. If M, N are R-modules, set

homg(M, N) := {R-module homomorphisms from M to N}.

homg(M, N) is an abelian group in general, and if R is commutative, it becomes an R-module via

(rf)m) = f(rm).

Let N be a submodule of M. On the abelian group M/N, define the action of R by r - m := 7 -m.
This is well-defined and produces an R-module structure on M/N.

Theorem 2.4.5.
1. First Isomorphism Theorem
Let f : M — N be an R-module homomorphism. Then M/ ker f = Imf.

2. Second Isomorphism Theorem Let A, B be submodules of M. Then
(A+B)/B=A/(ANB)
where A+ B={a+b|acA,b e B}, which itself forms a submodule.

3. Third Isomorphism Theorem Let A C B C M be R-modules. Then

M/A

4. Fourth Isomorphism Theorem Let N C M be R-modules. Then A < A/N sets up a bijection
between the submodules of M containing N and the submodules of M/N.

A sequence

f

0 A B C 0

of R-module homomorphisms s.t. j is injective, f is surjective, and ker f = Imj is called a short exact
sequence of R-modules. 1* iso. thm. = C = B/Imj.

Proposition 2.4.6. Let

0 A B

be a short exact sequence of R-modules. Then TFAE:
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1. ds: C— Bs.t. fs: Cw Cisan isomorphism.
2. Ar: B— As.t.rj: A Ais an isomorphism.
3. B=AaC.

Remarks:

1. The fact that the above are isomorphic as abelian groups was discussed in the section on semidi-
rect products, since for abelian groups, all subgroups are normal and semidirect products be-
come products.

2. As discussed in semidirect product section, 2 <= 3, even for nonabelian groups, but in that
situation, 1 = 2 or 3.

Given a set S, J an R-module M having the property that for any R-module M,

homg(M, N) = morphisms, (S, N).

sets

ie. An R-module homomorphism from M is uniquely determined by the images of the elts. of §.
Explicitly,
M=R =R
S

M is called the free R-module with basis S. An R-module which possesses a basis is called a free
R-module. An arbitrary elt. of a free R-module can be uniquely written as a finite linear combination

X = ZI",‘S[

where r; € R and 5; € §. When R = Z, the free Z-module on S is also called the free abelian group
on S, denoted F;(S).
Let M be a right R-mod. and let N be a left R-mod. Define an abelian group M ®; N (tensor
product of M, N over R) by
M®r N =Fu,(MXN)/ ~

where
1. (m,ny +ny) ~(m,ny) +(m,ny) Yme M,n;,n, €N,
2. (my +my,n) ~ (my,n)+ (my,n)VYmy,my € M,n € N, and

3. m-r,n)~(m,r-n)¥Yre R,me M,n € N.
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Write m ® n for the equiv. class of (m,n) in M ®; N. So an arbitrary elt. of M ®g N has the form

k

Z ci(m; ® n;)

i=1

where m; € M,n; € N, c; € Z.
Notethat Ry N=Nand M @ R= M.
M ®g N has the universal property: g is R-bilinear and given bilinear f: M X N — A,

MxN—Lo Mep N

El;
\%

A
f bilinear means:

f(my +my,n) = f(my,n) + f(my,n),
f(m,n; +ny) = f(m,ny) + f(m,ny), and

Sfmr,n) = f(m, rn)
If R is commutative then M ®; N becomes an R-module via
r-(mn) :=me(r-n).

More generally, if M is an R-bimodule (ie. has both a left and a right R-module action which commute
with each other) then M ®x N becomes a left R-module via

r-(men):=(-m)Qn.

Notice that R is an R-bimodule even if R is not commutative. (ie. Left multiplication commutes with

right multiplication — R is associative.)
More generally, let f : R — S be a ring homomorphism. Then S becomes an R-bimodule via

r-s:= f(r)s
s-r:=sf(r)

This induces a map from R-modules to S-modules given by N — S ®g N.
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Example 2.4.7 (Extension of Coefficients). Let N be a vector space over a field F. Let F — K be an
extension field. Elts. of N are finite sums
Z a;e;

where {e;}icr forms a basis for N. Then elts. of K @ N are finite sums

E ae;

where a; € K,i € T. (So {e;} forms a basis for K ®r N as a vector space over K.)

In general,
Mer (EDN) = (DM & Ny,

ieT ieT

S®R(€BR)E @(5 ®r R) = EBS.

ieT ieT ieT

N

Thus if N is a free R-module with basis T then S ®g N forms a free S -module with basis T.

Theorem 2.4.8 (Steinitz Exchange Theorem). Let R be a commutative ring. Let B and T be bases for
a free R-module N. Then CardB = CardT.

Proof. If g : R~ § is any ring homomorphism then S ®; N is a free §-module with both B and T as
bases. Letting g : R = R/M where M is a maximal ideal in R, we may reduce to the case where R is
a field.

Case I: At least one of CardB, CardT is finite. Say CardB < CardT and suppose CardB < oco. Write
B=1{by,...,b,}. Jt; € T s.t. when ¢, is written in the basis B, the coeff. of b, is nonzero (or else
by, ...,b, would span N). Then {t,,b,,...,b,} forms a basis for N. Inductively, Vj = 1,...,n,
find ¢ s.t. {t;,...,t,bjs1,...,b,} forms a basis for N. Then {#,,...,t,} forms a basis for N, so

T ={t,...,t,}
and |T| = |B|.
Case II: Both CardB and CardT are infinite. For each b € B, set
T, = {elts. of T occuring in the expression for b in basis T} € 27.

Then T} is finite ¥b. Define f : B — 2T by f(b) = T),. If X C T is finite with say |X| = n, at
most 7 elts. of B lie in the span of X. So [f~1(X)| < |X].
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(9]

5= |J r'w=J U re

XcT n=l xcr
X finite IX|=n

Since T is infinite, the cardinality of
{(XcT|IXl=n}
is equal to the cardinality of |T|. Since |f~1(X)| < |X],

CardB = Card O ) o

n=l xcr
X =n

< Card(U CardT)
n=1

= CardT.
Similarly, CardT < CardB.

O

Note: Once we reduced to the case of a division ring, we no longer needed the commutativity of R,
so the thm. also holds whenever R is a division ring, or indeed when R admits a homomorphism to a
division ring. However, we used commutativity of R to produce our map R — (division ring), since

R/2-sided max. ideal

need not be a division ring if R is not commutative.
If R is a commutative ring and N is a free R-module, the cardinality of any basis for N is called
the rank of N. If R is a field then every R-module is free and its rank is called its dimension.

Proposition 2.4.9. If ¢ : M — N is a surjective R-module homomorphism and N is a free R-module
then 3 an R-module homomorphism s : N — M s.t. ¢s = 1y. In particular, M = N @ Ker ¢.

Proof. Let S be a basis for N. For each x € §, choose m € M s.t. ¢(m) = x and set s(x) = m. Since N
is free, this extends (uniquely) to an R-module map. O
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An R-module P is called projective if given a surjective R-mod. homom. ¢ : M — P, 3 an R-mod.
homom. s : P — M s.t. ¢s = 1p. Equivalently, P is surjective iff Q0 s.t. P® Q = RN for some N.
Equivalently, P is projective iff

P
s | o
v
M / >N 0

d a lift s (not necessarily unique).
.. Free = Projective.

Example 2.4.10 (A projective module which is not free). Let R = M,,,(F) (nXn matrices with entries
in a field F), withn > 1. Let
« 0 --- 0

P=]: : :
« 0 --- 0
(matrices which are 0 beyond the first column). Then P forms a left ideal in R, ie. P is a left R-module.

Let
O k ee. S

Q=] : : :
0 = --- %
(matrices which are 0 in the first column). Then P ® Q = R, so P is projective. But P is not free,

because if P = R’ then, regarded as vector spaces over F, we would have

n=dimP = dimR® = sn’.

This is a contradiction since n > 1.

Definition 2.4.11. Let R be an integral domain. An elt. x in an R-module M is called a torsion
element if dr # 0 € R s.t. rx = 0. M is called a torsion module if x is a torsion elt. Vx € M. M is
called torsion-free if it has no torsion elements.

X,y torsion elts. = x + y is a torsion elt. If x is a torsion elt. and » € R then rx is a torsion elt.
Hence,
TorM := {x € M | x is a torsion elt.}

forms a submodule of M.
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The annihilator of x € M is the left ideal
Ann(x) :={re R | rx = 0}.
The annihilator of M is the 2-sided ideal

AnnM :={reR|rx=0Vx e Mj}.
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2.5 Localization and Field of Fractions

From the 4" isomorphism theorem we get:

Proposition 2.5.1. A left ideal I is maximal if and only if the quotient module R/I is a simple (left)
R-module.

Note: It is important to remember that R// (when [ is a left ideal) is a quotient module and not
(necessarily) a quotient ring.

Definition 2.5.2. A ring with a unique maximal left ideal is called a local ring.

While it appears initially that replacing “left ideal” by “right ideal” might give a different concept,
as we shall see, “left local” equals “right local”. That is, a ring has a unique maximal left ideal if
and only if it has a unique maximal right ideal. Note however that while, as we shall see, a unique
maximal left ideal must in fact be a 2-sided ideal, the existence of a unique maximal 2-sided ideal is
not sufficient to guarantee that a ring be local. For example, when n > 1, {0} forms a unique maximal
ideal for matrix rings M, x,(F) over a field F', but these rings are not local since they contain nontrivial
left ideals, as we saw in the previous section.

Theorem 2.5.3. Let R be a local ring with max. left ideal M. Then M is a 2-sided ideal.

Proof. Suppose y € R. Must show My Cc M. If y € M this is trivial since M is a left ideal, so assume
y¢ M. Letl, := {x € R| xy € M}. To finish the proof, we must show that M C I,.

Forr € Rand x € I, (rx)y = r(xy) € rM C M, using that M is a left ideal. Therefore I, is a
left ideal. Note that 1 ¢ I, since y ¢ M. Thus I, is a proper left ideal so I, ¢ M. Let y denote
the equivalence class of y in the quotient module R/M. Define ¢ : R — R/M by ¢(r) = ry. Then
ker ¢ = I, by definition of /,. Since M is maximal, R/M is a simple module, so Im¢ = R/M. Therefore
as left R-modules we have R/I, = Im¢ = R/M, which is simple and so /, is a maximal left R-module.
Thus I, = M. O

Corollary 2.5.4. Let R be a local ring with max. left ideal M. Then
1. x€ R— M iff x is a unit.
2. R has a unique maximal right ideal.
3. The unique maximal right ideal of R is M.
4. R/M is a division ring.

Conversely, if R is a ring with an ideal M s.t. x is a unit Vx € R — M then R is a local ring.
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Proof. Since no proper ideal can contain a unit, parts (2), (3), and (4) are immediate consequences of
part (1).

Given x € R — M, maximality of M shows that Rx = R so y € R such that yx = 1. Since M is a
2-sided ideal and x € R — M it follows that y cannot lie in M. Therefore the same argument applies
to y and shows that 4 z € R such that zy = 1. But then z = z(yx) = (zy)x = x, so y forms a 2-sided
inverse to x, establishing (1).

Conversely if every element of R — M is a unit, then the fact that no proper ideal can contain a unit
shows that R is a local ring. O

For the rest of this section, suppose that R is commutative.

A subset S C R containing 1 and s.t. 0 ¢ S, which is closed under the multiplication of R is called
a multiplicative subset. For example, let # C R be a prime ideal. Then R — % is a multiplicative
subset. Form a ring called the localization of R w.r.t. S, denoted S ~'R. As a set,

ST'R:=RxS/ ~,

where (r,5) ~ (', s") if Ar € § s.t. 1(rs” — r’s) = 0. Think of (r, s) as . Check ~ is an equiv. reln.:
If (r,s) ~ (¥, s’)and (', s') ~ (¥, s”) then
dreSsttrs —rs)y=0
and A e S s.t. ¥'(F's”" —1r’'s’)=0
Then

r_ 1S

sStt'rs” = t'r'ss” =tt'r"s's
ie. s'tt’'(rs” —r"’s) =0, (and s'tt' € S)so (r,s) ~ (", s").
Define addition by (r, s) + (r', s") = (rs" + r's, ss”). Check + is well-defined: suppose

7

', s~ ", s, sotr's” =ur's.

Is(rs’" +7r's,ss") ~(rs” +r’s,ss")?

/I s

Formally, s*tr's” = str”s’ so
t(ss”(rs’ +7's)— ss'(rs” +1r's) = t(s’r's” — s°r"s) = 0.

Define - by (r,s) - (7, s') = (rr,ss’) (easy to check - is well-defined). (S~'R,+,-) becomes a
commutative ring ring with identity (1, 1).
Define the ring homomorphism

w:R— SR

re (1)
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Note that ¢/(s) is aunitin S'R Vs € S. ie. (1, s)y(s) = (1, s)(s, 1) = (s, 5) ~ (1, 1).
¥ : R — S~'R has the universal property: If f : R — A is a ring homomorphism s.t. f(s) is a unit
inAVseS then

4

Proposition 2.5.5. If R is an integral domain then ¢ : R — S~'R is injective.
Proof. Suppose (r,1) = y(r) =0 = (0, 1). Then #(r — 0) = 0 for some t € S, sor = 0. O
Note: if R is an integral domain, we can define the equiv. reln. simply by
(r,s) ~(,s)iffrs’' =r's
Special cases:
1. R an integral domain, S = R — {0}. Then S 'R is a field called the field of fractions of R.

2. S = R — P where P is a prime ideal. Then () forms an ideal in S 'R and every element of
S 'R outside of (P) is invertible (quotient of images of elts. in S).
. S7'R is a local ring with max. ideal Y(P). S 'R, also written Ry, is called the localization of
R at the prime ?.
3. S =1—-1{0}, where [ is an ideal without O-divisors. S 'R is sometimes called R with [ inverted.
e.g. R=7Z,1=7Zp. Then
1
STR=Z[-]={= Q)
4 4
is “Z with p inverted” or “Z with [% adjoined”. Sometimes called the localization of Z away
from p.
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2.6 Noetherian Rings and Modules

Definition 2.6.1. An R-module M is called Noetherian if, given any increasing chain of submodules
MicM,c---cM,cC---

AN s.t. M,, = My Yn > N. The ring R is called a Noetherian ring if it is Noetherian when regarded
as an R-module.

If R is not commutative, notions of Noetherian, “right Noetherian”, and “2-sided Noetherian” do
not necessarily coincide.

Theorem 2.6.2. Let R be a ring and let M be a left R-module. Then TFAE:
1. M is a Noetherian R-module.
2. Every non-empty set of submodules of M contains a maximal element.
3. Every submodule of M is finitely generated (and in particular, M is finitely generated).

Proof.
1 = 2: Let £ be a nonempty collection of submodules of M. Choose M; € Z. If M, is not maximal in
¥ then AM, € ¥ s.t. M| & M,. Having chosen My, ..., M,_;, if M,_; is not maximal in ¥ then
AM, € X s.t.
My M, & o G My & M,

By hypothesis, no infinite chain of this sort exists, so eventually reach a max. elt.

2 = 3: Let N be a submodule of M. Let Z be the collection of all finitely generated submodules of N.
By the hypothesis, £ contains a maximal element N’. If N # N then pick x € N — N’. Then
(N’, x) is f.g. and properly contains N’, which is a contradiction.

N =N,soNisfg.
3 = 1: Suppose every submod. of M is f.g. Let
MycM,cM;C---
be a chain of submodules. Let N = [ J;2, M;. Then N ¢ M is a submodule, so
N ={aj,a,...,a,)

for some finite set a;,...,a, € N.
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Since a; € N, each a; € M, for some k. So 3K s.t. Mk contains all of ay,...,a,. But then
N C Mg, so
Mg =Mg,=-=Mgypy=---=N.

ie. M, = Mx V¥n > K.
O

Corollary 2.6.3. Let f : M +— N be an R-module homomorphism. Then M is Noetherian iff ker f
and Imf are Noetherian.

Proof.
=: Suppose M is Noetherian. Every submodule of ker f is a submodule of M, and thus is f.g., so
ker f is Noetherian.

If A C Imf then f~'(A) is a submodule of M, thus f.g. But then the images of the generators of
f71(A) generate A, so A is f.g.

&: Suppose ker f and Imf are f.g. Let B C M be a submodule of M. Let
A = f(B) C Imf.
Pick a set X, ..., x; of generators for A and let xi, ..., x; be pre-images in B.
Claim. B=<(ker f N B,xy,...,X).
Proof. Given b € B, f(b) € f(B) so

n

fb) = Z rix;, forsomer,...,r €R.

i=1

Then f(b - 3., rix;) = 0 so

b—Zrixl-ekerfﬂB.
i=1

ie. beker fNB,xi,...,X).
Butker f N B C ker f is f.g., so Bis f.g.

Corollary 2.6.4. Let R be Noetherian. Then R/I is Noetherian.

Proof. It follows from the preceding corollary that R/I is Noetherian when regarded as an R-module.
However an increasing chain of R/I-submodules of R/ is also a increasing chain of R-submodules
of R/I and so the corollary follows. O
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Theorem 2.6.5 (Hilbert Basis Theorem). Let R be a commutative Noetherian ring. Then R[x] is
Noetherian.

Note: The converse is trivial, since R = R[x]/R[x]x.

Proof. Let I C R[x] be an ideal. Let L C R be the set of leading coeflicients of elts. in /. That is,
L={aeR|ax"+c,. 1 X" '+ -+ cix+cg€l, for some ¢,_1,...,col
Then L is an ideal in R, so
L=(a,...,a,, forsomeai,...,a,.

For eachi = 1,...,n, choose f; € I s.t. leading coeff. of f; is a;. Let N := max{N,,...,N,} where
N; =deg f;. Foreachd =0,...,N -1, let

L, := {0} U {leading coefficients of elts. of I of degree d}.
Then L,; C R is an ideal, so

Li=®?,....bP), someb”,....b" el

> “ng > Y ng

Let fl.(d) be a polynomial of degree d with leading coeff. bgd). To finish the proof, it suffices to show:
Claim. [ is generated by

Proof. Let I’ be the ideal generated by this set. If I’ G I then f € I of minimal degree s.t. f ¢ I’. Let
e = deg f and let a be the leading coeff. of f.
Suppose e > N. a € L so

n
a= Zr,-a,-, for some ry,...,r, € R.
i=1

Then

n

Z rxNifer

i=1
has degree e and leading coeff. a. So f — Y, rix*™Nif; € I — I’ has degree less than e, which is a
contradiction.
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..e<N.HenceaclL,,so

ne
a= Z ribl(.e), for some ry,...,7,, €R.
i=1

Then ) r; fi(e) has degree e and leading coeff. a, so f— > r; fi(e) € [ - I’ and has degree less than e. This
is a contradiction, so I = I’ and [ is f.g. O
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2.7 Unique Factorization Domains

Note: For the remainder of this chapter, all the rings considered are integral domains, and in partic-
ular, are commutative.

x € R is called irreducible if x # 0, x is not a unit, and whenever x = ab, either a is a unit or b is
a unit.

Proposition 2.7.1. In an integral domain, prime = irreducible.

Proof. Let R be an integral domain. Let p € R be a prime and suppose p = ab. Then p | a or p | b.
Say p | a, so a = zp for some z € R. Thus p = ab = zpbso 1 = zb.
.. bis aunit. Similarly, if p | b then a is a unit. Hence p is irreducible. m|

Example 2.7.2. Let
R=Z[V-5]={a+bV=5|a,beZ} =Z[x]/(x* +5).
Claim. 2 is irreducible but not prime in R. To see 2 is irreducible, consider N : R +— Z given by
N(a+bV=5) = |a + bV=57 = & + 5b7,

(the “norm” map). N is not a ring homorphism but N(yz) = N(y)N(2).
S Af2 = af then 4 = N(@)N(B), so N(a) < 4 and N(B) < 4. The only elements with norm < 4 are
1,-1,2,-2, so

a,Befl,-1,2,-2}.

Since aff = 2, either « = 1 or § = %1, so 2 is irreducible.
However, in R/(2),
(1+ V5?2 =6+2V5=0

so R/(2) has zero divisors.
.. R/(2) is not an integral domain, so 2 is not prime. What are the primes in R?

Consider first y € Z* C R. If y is not prime in Z then y is reducible so it is not prime in R. We
already saw that 2 is not prime in R and since 5 = (- \/—_5)( \/—_5) is reducible, 5 is not prime in R.
Therefore suppose y is a prime p € Z* with p # 2 or 5. R/(y) fails to be an integral domain iff 3
nonzero s = a + b\=5 and t = ¢ + d V=5 such that

st = (ac — 5bd) + (ad + bc) V=5

is zeroin R/(y) = (Z/p)[ \/—_5]. That is, ac = 5bd and ad = —bc in Z/p. None of a, b, ¢, d can be 0 in
Z] p since otherwise these equations would imply either s = 0 or = 0 in R/(y). But then the equations
vield

a c

RoE T
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so if R(y) fails to be an integral doman than -5 is a square modulo p.
Conversely, if A z such that 7 = =5 (mod p), then

(z+ V=-5)z-V=35)=22+5=0

in R/(y) so R/(y) is not an integral domain. Thus y € Z is a prime in R iff |y| is a prime p # 5 in Z
such that =5 is not a square modulo p.
Now considery = a+bN-5withb # 0.

a® +5b° = (a—bV=5)y € (y)

50 R+ R/(a® + 5b*) —> R/(y). q is not injective since y ¢ (a® + 5b?).
If a*> + 5b? is not a prime in Z then we can see that y is not prime in R as follows. Suppose that
a* + 5b* = cd (c,d # +1) and suppose that y is prime in R. Then'y | cd so eithery | c ory | d. Say
y | c. Write c = Ay for some A € R. A is not a unit since application of the norm map shows that the
only units in R are +1, and ¢ # +y because c € Z, y ¢ Z. Letting X denote the complex conjugate of x,
we have
¥y =N(y) =cd = Ayd

s0y = Ad. Thusy = Ad and since A and d = d are not units, this shows that y is reducible and
therefore not prime.
If a> + 5b* is a prime p in Z then

¥+5=0 modp

has a solution x = a/b, so =5 is a square mod p. Set ¢ := a/b € Z/ p.
Define ¢ : R/(y) = Z/p = F, by ¢(V=5) = c and extending linearly. Then

¢(y)=a+bc=0 mod p

so ¢ is well-defined. |R/ (a* + 5b2)| = p? and q is not injective so |R/(y)| = p and ¢ is an isomorphism.
..y = a+bV-5 is prime in R whenever a* + 5b* is prime in Z.

Remark 2.7.3. The question of which primes p have the property that =5 is a square modulo p can be
solved with the aid of Gauss’ Law of Quadratic Reciprocity, which says that for odd primes p and g,
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p
where | — | is the Legendre symbol, defined by

q
* 3 1 if x is a square modulo p;
D ~|-1 ifxisanot square modulo p.
Therefore
-5 -1\(5 -1 p -1\(p
= = l=]=| = [ = =] = ||=].
p p)\p p 5 p )5
. -1 1 p=1 mod 4 p 1 p=lor4 mod35; -5 .
Since | — | = and - = ,weget| — | =1iff
» -1 p=3 mod 4, 5 -1 p=2o0r3 modS5, D
one of the following 4 pairs of congruences holds:
p=1 mod4 p=1 mod4 p=3 mod4 p=3 mod4

p=1 mod5 % p=4 mod5 % p=2 mod5 % p=3 mods.

By the Chinese Remainder Theorem, this is equivalent to saying that =5 is a square modulo the
prime piffp=1,3,7, 0or9 mod (20).

Definition 2.7.4. An integral domain R is called a unique factorization domain (UFD) if every
nonzero element can be factored into primes.

Lemma 2.7.5. In an integral domain, a factorization into primes (should one exist) is always unique
up to associates. ie. If x = py--- p, and x = q, - - - q; then k = n and 4 some renumbering o of the q’s
such that p;j and q,j, are associate primes ¥ j.

Proof. Suppose

Pr: Pn=4dq1" gk
and say n < k. Then p; | g; - - - qx s0 p; | g for some j. Renumber so that g; is g;.
.. ¢q1 = ap; for some a. But g, is a prime and thus irreducible, so either a or p; is a unit. Since p; is
prime, it is not a unit, so « is a unit. ie. p; and g are associates.
SPU o Pe =41 gk =apiqa G,
S P2t Pn = q5q3 - - g Where g = ag is associate to g,. Continuing, Vi = 1,...,n, after renumber-
ing g; associate to p;, eventually reach

=g

where ¢/ ., is associate to g,,. If k > n this is a contradiction since prime g, is not invertible. Hence
k = n. O
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Proposition 2.7.6. In a UFD, prime < irreducible.

Proof. Prime = irreducible in any integral domain, so must show irreducible = prime. Let x € R be
irreducible. Write x = p; - - - p, be a product of primes and suppose n > 1. Since x is irreducible, p,
is a unit or p, --- p, is a unit. But p; is not a unit since p; is prime and p; - - - p, is not a unit since
P2, .., Pn are primes. So this is a contradiction and thus n = 1 and x = p; is prime. O

Theorem 2.7.7. An integral domain is a UFD iff every nonzero elt. can be factored uniquely (up to
associates) into irreducibles.

Proof.
=: Suppose R is a UFD. Then prime <= irreducible and every nonzero elt. has a unique factor-
ization into primes.

«: Suppose every nonzero elt. has a unique factorization (up to associates) into irreducibles. It
suffices to show that x is prime iff x is irreducible. ie. Show irreducible = prime.

Let x # 0 be irreducible. Suppose x | ab. Then ab = zx for some z. Let
a=a---a, and b=b;---b;
be the factorizations of a, b into irreducibles. So
x=a--ab b

is the factorization of zx into irreducibles, so by uniqueness, x is associate to some factor on the
RHS.

.. x1s assoc. to a; for some j, in which case x | a, or x is assoc. to b; for some j, in which case
x | b. Thus x is prime.

Proposition 2.7.8. In a UFD, every pair of elts. has a g.c.d.

Proof. Let R be a UFD and suppose x # 0,y # 0 € R. Factor x into primes and, replacing primes by
associate ones when necessary, write

x=upy - pr
where u is a unit and py, ..., p, are primes with p; not associate to p; for i # j. Similarly, write
y:vq‘il ...ql‘ik
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where, replacing by associate if necessary, we may assume that if g; is associate to p; for some i then
q; = pi. Letting z,, ..., 2, be the union {py, ..., ps,q1, ..., g} of all primes occurring, we can write

x=uzl' -z and y=vgll ool

for some exponents ey, ..., e, fi,..., fm = 0. Let

_ min{ej;,f;}
d= 1—[ Z .

Then d = (x,y). |
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2.8 Principal Ideal Domains

Definition 2.8.1. A principal ideal domain (PID) is an integral domain in which every ideal is prin-
cipal.

Proposition 2.8.2. In a PID, every nonzero prime ideal is maximal.

Proof. Let I # 0 be a prime ideal. Suppose I & J & R. Write I = (x),J = (y). Since I is a prime ideal,
x is prime. Since I C J, x € J so x = ay for some a € R. Thus x| aor x | y.

If x | a then a = bx for some b € R. Then x = ay = abxy = 1 = by, so yis aunitand J = R.

If x|ythenye (x) =1,s0J C I, contradiction / & J. Hence I is maximal. i

Example 2.8.3. Let R = Z[x]. R/(x) = Z is an integral domain but not a field. So (x) is a prime ideal
which is not maximal.
.. Z[x] is not a PID. In fact, I = (2, x) is an example of a non-principal ideal in R.

Theorem 2.8.4. Every PID is Noetherian

Proof. Every ideal in R is generated by a single element, so in particular, every ideal is finitely gen-
erated. By Theorem 2.6.2, this means that R is Noetherian. O

Theorem 2.8.5. Every PID is a unique factorization domain.

Proof. Let R be a PID and let x # 0 € R be a non-unit. Must show that x can be factored into primes.
(x) & R so 4 a maximal ideal M s.t.
(X) c M, G R.

Write M, = (p;). M, is maximal and thus prime, so p; is prime. x € (p;) says x = p;x; for some
x1 € R. If x; is a unit then p; x is a prime associate to p; and we are done, so suppose not. Continuing,
we get

Xn = PnXn+1 Yn.

S Xy € (Xp41) SO (X,) C (Xp41)- If X, 1s @ unit for some n then we have a factorization of x into primes.
If not, we get a chain of ideals
(Xc@)c-—-cx)cC---

Since R is Noetherian, AN s.t. (x,) = (xy) Yn > N. S0 xy41 € (xn) SO Xy41 = AXy = Apy41Xn41 SO that
1 = Apy+1 showing that py., is a unit, which is a contradiction.
So the infinite chain does not exist, so the procedure terminated giving a factorization of x. O

Proposition 2.8.6. Let R be a PID. Let a,b € R and let g = gcd(a, b). Then ds,t € R s.t. g = sa + tb.
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Proof. Letl = {a,b) = {xa+ yb | x,y € R}. Then [ is an ideal so I = (¢) for some ¢ € R. ¢ € I so

¢ = xa+ yb for some x,y.a€ Isoc|aand b € I soc | b. Moreover, if z| aand z | b then leta = az
and b = Bz for some a, 5. Then

¢ =xa+yb = xaz+)ypz = (xa +yB)z

and thus z | ¢. So ¢ = ged(a, b).
If g is another g.c.d. of a, b then g = uc for some unit u, so

q = (ux)a + (uy)b.
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2.9 Norms and Euclidean Domains

Definition 2.9.1. A Euclidean domain is an integral domain R together with a function d : R —{0} —
Zt={neZ|n>0}s.t

1. d(a) <d(ab)Va,b # 0, and
2. Givena,b#0e€R, t,rs.t. a =tb+ r where either r = 0 or d(r) < d(b).

Example 2.9.2.
1. R=7, dn) = |n|

2. R = F[x] where F is a field. d(p(x)) = polynomial degree of p.
Notice that if (R, d) is a Euclidean domain then so is (R, d") where
d'(x) = d(x) + ¢, forsome constantc € Z".

.. May assume that d takes values in N = {n € Z | n > 1}. Then extend d by defining d(0) = 0.

Definition 2.9.3. A Dedekind-Hasse norm on an integral domain R is a function
N:Rw— Z" st

I. Nx)=0iff x=0, and
2. Fora,b # 0 € R either a € (b) or A a nonzero x € (a, b) s.t. N(x) < N(b).

If (R,d) is a Euclidean domain then d (modified s.t. d(0) = 0) is a Dedekind-Hasse norm: given
a, b #0,
a=th+r

for some r and r, so either b | a (ie. r = 0) or r = a — tb € (a, b) with d(r) < d(b).
Theorem 2.9.4. Let R be an integral domain.

1. Ris a PID iff R has a Dedekind-Hasse norm. In particular, a Euclidean domain is a PID.

2. If R has a Dedekind-Hasse norm then it is has a multiplicative Dedekind-Hasse norm (ie. one

satisfying N(ab) = N(a)N(b).)

Proof.
1. =: Suppose R has a Dedekind-Hasse norm. Let I C R be a nonzero ideal. Choose 0 # b € [
s.t. N(b) is minimum. Let a € I. Then (a, b) C I so A nonzero x € (a, b) s.t. N(x) < N(b).
Hence a € (b). Thus I = (b).
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<: Suppose R is a PID. Define N : R — Z* as follows: N(0) := 0. If u € R is a unit, set
N(u) = 1. If x # 0 € R is a nonunit, write x = p; - -- p, where each p; is prime and set
N(x) = 2". Notice that N is multiplicative.

Suppose a,b # 0 € R. Ris a PID so (a, b) = (r) for some r € R, so b = xr for some x € R.
If a ¢ (b) then r ¢ (b) so x is not a unit, and thus

N(b) = N(x)N(r) > N(r),
ie. dr € (a,b) s.t. N(r) < N(b).

2. If R has a Dedekind-Hasse norm then by part 1, it is a PID, in which case it has a multiplicative
Dedekind-Hasse norm as constructed above.

2.9.1 Euclidean Algorithm
Let (R, d) be a Euclidean domain. Then R is a PID, so given a,b € R, ds,t € R s.t.

as + bt = ged(a, b).

The Euclidean algorithm is an algorithm for finding s and ¢ (and thus gcd(a, b)).
Procedure:

Say d(b) > d(a). Set r_; := b, ry := a. Write

r_y =q\ro+r;, someq,r; withd(ry) < d(ry),

Ficl = qjTj + Tjsy,  SOME gy, iy With d(rj ) < d(r;)
Sod(roy) 2 d(rg) > d(ry) > -+ > d(rj) > ---. Continue until r;,; = 0, some k. Set
So = 0
51 = 1
Sj = —¢j-15j-1 t Sj2
fh =1
=0
l‘j = _Qj—ltj—l + fj_z

Claim. r; = gcd(a,b) and r, = sa + tb where s = s34 and = f441.
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Proof. ris1 = 080 -1 = g 11 +0. Suppose by induction that ry | r; fori > j. Thenr; ) = g 1rj+7n
so ry | rj-1, concluding induction step.
~.r | rjVjandin particular, ry | ro = aand i | r—y = b.

Conversely, suppose z divides both a and b. Since rj.; = rj-1 — qj.17j, induction (going the other
way) shows z | r; Vj. In particular, z | r¢. So r, = ged(a, b). O

Also,
aso+bty=a-0+b-1=b=r_
asi+bty=a-a+b-0=a=r
as, + bty = a(—qys1 + So) + b(—qﬂ] + 1) = —qi(as; + bt)) + (asy + bty)

=—qirp+r1=n

as; + btj = a(—qj_lsj_] + Sj_z) + b(—qj_ltj_l + Zj_z) = —qj_l(asj_l + blj_l) + (ClSj_z + blj_z)
=—qj1Trj2+7rji3="rjq
By induction, as; + bt; = rj_; ¥ j. In particular, as + bt = asy,| + bty = r, = ged(a, b).
Remark: In Computer Science, the speed of the Euclidean Algorithm over Z is important. Estimate

of the number of steps required: The faster the r’s go down, the quicker the algorithm goes, so the
worst case scenario is when all the ¢’s are only 1. In this case,

rj_1:Fj+I"j+1.

ie. Worst case scenario occurs when a, b are consecutive terms of the Fibonacci Sequence. The
smallest possible numbers requiring N steps would be when:

ry=1 ry1=2 ry,=3 rys3=4---ry_j= j" Fibonacci Number

. 7o = N™ Fibonacci Number Fy. ie. N steps can handle all numbers up to Fy.

Fooa=F,+F,_ = % =1+ % Soif L = limn—><>o B then L =1+ % So

F
I>’-L-1=0
1+
- + 5
2
1 5
L= +2\/_:G

So F,, = GV, ie. for large N, the number of steps required is no worse than around log(rp).
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Lemma 2.9.5 (Gauss). Let R be a UFD and let F be its field of fractions. Let q(x) € R[x]. If g(x) is
reducible in F|[x] then q(x) is reducible in R[x]. Futhermore, if g(x) = A(x)B(x) in F[x] then in R[x],
q(x) = a(x)b(x) where A(x) = @ and B(x) = @ for some nonzeror, s € F.

Proof. Suppose g(x) = A(x)B(x) where the coefficients of A, B lie in F. Multiplying by a common
denominator we get
dq(x) = a’ ()b (x)

for some d € R and polynomials a’(x),b’(x) € R[x]. If d € R is a unit, we can divide by d to get
q(x) = 20 ().
.. Suppose d is not a unit. Write d = p; - - - p,, as a product of primes in R. Let

R[x] _ R
Rl ko = Gt
f(x) - f(x)

Reducing modulo (p;R)[x] gives 0 = a’(x) b’(x) in the integral domain (ﬁ)[x]. Hence a’(x) = 0 or
b'(x) = 0. Say @’(x) = 0. Then all the coeffs. of a’(x) are divisible by p;, so can divide dg(x) =
a’'(x)b’(x) by p; to get

a/(x) ’ n” ’
P2 pa8(X) = > b'(x) = a"(x)b'(x)
1
with a”,b” € R[x]. Continuing, eventually reach g(x) = a(x)b(x) with a(x), b(x) € R[x] and a(x), b(x)
obtained from a’(x), b’(x) by multiplying by nonzero elements of F. O

A polynomial whose leading coefficient is 1 is called monic.

Corollary 2.9.6. Let R be a UFD with field of fractions F. Let p(x) € R[x]. Suppose

ged{coeffs. of p} = 1.

Then p(x) is irreducible in R[x] iff it is irreducible in F[x). In particular, if p(x) is monic and irre-
ducible in F[x] then it is irreducible in R[x].

Proof. If p(x) is reducible in F[x] then Gauss implies p(x) is reducible in R[x].

Conversely, if p(x) is reducible in R[x] then the hypothesis on gcd = p(x) = a(x)b(x) where
neither a(x) nor b(x) is constant. Hence, a(x), b(x) are not units in F[x] so this factorization shows
p(x) is reducible in F[x]. O

Lemma 2.9.7. Let R be a UFD and let p(x) € R[x] be irreducible. Then p(x) is prime.
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Proof. Let F be the field of fractions of R.

RIx] F[x]
— .
(p(x)) (p(x))

.. To show p(x) R[x]/(p(x)) is an integral domain, it suffices to show that F[x]/(p(x)) is an integral
domain.

p(x) irreducible in R[x] = p(x) irreducible in F[x]. However, F[x] is a UFD (being a Euclidean
Domain). So p(x) is prime in F[x] and thus F[x]/(p(x)) is an integral domain. O

Theorem 2.9.8. Risa UFD < R|[x]is a UFD.

Proof.
&: Suppose R[x] is a UFD. Let r € R. Write r = p;(x)--- p,(x) as a product of primes in R[x].
Since deg r = 0 and R is an integral domain, deg p;(x) = 0 Vj, ie. p;j(x) = p; € R.

R
R[x]/(p;) = (—) [x]
by (pj)
. R/(p,) is an integral domain, so p; is prime in R.

Thus r = p; - - - p,, is a factorization of r into primes in R.

=: Suppose R is a UFD and let 0 # g(x) € R[x]. Let F be the field of fractions of R. Since F[x] is
a UFD, in F[x] we can factor g(x)

q(x) = p1(x) -~ py(x)

where p;(x) is a prime in F[x]. By Gauss’ lemma, in R[x] we can write

g(x) = pi(x)--- p(x)

where V¥ jds; # 0 € F such that p’(x) = s;p;(x).
. It suffices to show that p’,(x) can be factored uniquely into primes in R[x], as in the following
claim:
Claim. If p(x)is prime in F[x] and sp(x) = p’(x) € R[x] for some 0 # s € F then p’(x) can be
factored uniquely into primes in R[x].
Proof. Let

d = gecd{coefts. of p’(x)}.

Then p’(x) = dp” (x) where
gcd{coeffs. of p”(x)} = 1.
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In F[x], have p”(x) = % = 5p(x), which is prime in F[x] since p(x) is prime and 7 is a unit.

.. Cor. 2.9.6= p”(x) is irreducible in R[x] and thus prime in R[x] by the previous lemma. Since
d can be factored into primes in R and a prime in R is also a prime in R[x], p’(x) = dp”(x) can
be factored into primes in R[x].Uniqueness is easy to show. This concludes the proof of the
claim and thus concludes the proof of the theorem.
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2.10 Modules over PID’s

Note: In this section, and elsewhere, we will sometimes abuse notation and write R/p in place of
R/(p). (The notation Z/n is generally quite common).

Theorem 2.10.1. Over a PID, a submodule of a free module is free.

Proof. Let Rbe a PID. Let P = @je ; Rj be a free R-module with basis J (R; = R ¥ j), and suppose
M c P is a submodule.
Choose a well-ordering of the set J. For each j € J, set P; = @isj R; and P; = @iq’ R;, so
P;=P;®R.
Let f; be the composite
P,NM<— P;=P,®R~R.

Then ker f; = ﬁj N M. Imf; C R is an ideal, so let Imf; = (4;), some 4; € R. Pick ¢; € P; " M such
that f(Cj) = /lj. Let
J ={jeJ|a;#0}.

To finish the proof we show:

Claim: {c;};c; is a basis for M.

Proof. Check {c;} e, is linearly independent:
Suppose

Zakcjk =0, wherej <j<---<}j, (*)
k=1
Since ji < j, fork <m,cj, € I_Djn for k < n.
. Applying fj, to (*) gives

n
Zak -0+a,d;, =0,
k=1
whence a, = 0, since 4, # 0. Inductively,c;, =0Vk=n,n-1,...,1.
. {cj.}jer 1s linearly independent.
Check that {c;} ;e spans M:
Suppose not. Then 1 a least i € J such that P; N M contains an element a not in span{c;};c,. Must
have i € J’, since if not, f;(a) =0,s0a € P;, and thus a € P, for some k < i, contradicting minimality
of i.
sLieJ. fia) € (L), so fia =rA;, for some r € R. Set b := a — rc;. Since a = b + rc¢; cannot be
written as a linear combination of {c;}, neither can 5. But

fib=f@)—rf(c)=rdi=rd; =0
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so b € P, N M for some k < i, contradicting the minimality of i.
S Acj}jes spans M. O

Theorem 2.10.2. Over a PID, a finitely generated torsion-free module is free.

Proof. Let R be a PID and let M be a finitely generated torsion-free R-module. Let R <— K be the
inclusion of R into its field of fractions, and let

M =K®gM
be the extension of M to a K-vector space.

Let xy,...,x, € M be a generating set for M. The images of xi, ..., x,, generate M, so 7 a subset
Yi-..,y, whose images in M form a basis for M. Each x; can be written in M as a K-linear combina-
tion of yi, ..., y,, so clearing denominators gives that b;x; is an R-linear combination of y;,...,y, VJ.

Setb = by --- by, so that bx; is an R-linear combination of yi,...,y, ¥j.

.. bz is an R-linear combination of yy, ...y, Yz € M, since xy, ..., x,, span M. Since M is torsion-
free,

b-M—M
z bz

is injective. Hence,
M = M/ker¢ = Imb = bM.

However,
T ¢
EB yj—bM
j=1
Yi i
is an isomorphism (onto since bz is a linear combination of yy,...,y, Yz € M, (1-1) since yy, ...y, are
linearly independent in M).
S M = bM = a free R-module. O

Corollary 2.10.3. If M is a finitely generated module over a PID then R = Tor(M) & R" for some
neN.

Proof. M/Tor(M) is finitely generated and torsion-free. Hence,
M/Tor(M) = R", for some n.
R" free = M +— M/Tor(M) = R" splits, so
M = Tor(M) ® R".
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A torsion-free module over a PID which is not finitely generated need not be free:
Example 2.10.4. Let R = Z, M = Q. Clearly Q is torsion-free as a Z-module. Suppose M = R°. Then
as a vector space |Q we get

Q®:Q=MeQ
=R'®Q
= (R®Q)’
=Q°

Let

$:QezQ~Q
X®y > Xy,
y:Q-Q®zQ

x> x®1.

Clearly xy = lg. Yyp(x®y) = (xy) ® 1. Write x = §,y = 5—:. Then in Q ®; Q,

SY¢ = lgegg. Hence Q®; Q = Q, and thus Q = Q®; Q = Q°. So counting dimensions gives
CardS = 1.

ie. If Q is a free R-module then its rank as a Z-module is 1. So Q = Z as a Z-module. ie. g € Q
s.t. Q = Zgq; that is to say, Vx € Q dn € Z s.t. x = nq. This is a contradiction.

So Q is not a free Z-module.

We now consider decompositions of finitely generated torsion modules over a PID. Let R be a
PID (throughout this section). We will show that every finitely generated R-module decomposes as a
direct sum of finitely many R-modules with a single generator (called cyclic modules).

First consider torsion modules.

Notation: Forr € R, let u, : M — M be multiplication by r.
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Lemma 2.10.5. Let M be a torsion R-module. Write Ann(M) = (a) and suppose b € R such that
(a,b) = 1. Then multiplication by b,

I

M — M

is an isomorphism.

Proof. Since R is a PID, ds,t € R such that sa + tb = 1. Hence, for x € M,
X = sax + tbx = tbx,
Sbx =0 = x =0, so u, is injective. Moreover,
x = b(1x) = p,(tx)

SO Uy 18 surjective. O

Let M # 0 be a torsion module. Let Ann(M) = (a). Suppose a # 0. (Note: if M is torsion and f.g.
then a # 0 automatically.)
M # (0 = aisnotaunit. Write

— €l €k
a = upl PN pk
where u is a unit and p, ..., p; are distinct primes. Replacing a by u~'a, may assume
— €l €k
a _ pl e pk .

Let
M, :={x € M| pSx = 0 for some e}.

Lemma 2.10.6. M =M, ©---®M,,.

Proof. Vxe M,
el e

Py My (X) = pi'pst - pifx =0
SO Im,up;z.,,pzk - Mpl'
Since p3’ - - - pi* is coprime to Ann(M,, ), by the preceding lemma,

My ik,
is an isomorphism, so it splits the inclusion M,,, — M. Hence,

M=M, & kerupgz,,,p;k.
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Ann(ker ,up;z,_,pzk) = p5> -+ p;*. By induction,
kerypgz,,,pzk = M;,z S D M;k
where

’ = e e, e =
M, = {x e ker,upzz,,,pkk | plx = 0 for some e}

CM, ={xeM| pj.x: 0 for some e}.

4 — 4
However, M,,, C ker ...k SO M, c ij and thus M, = ij.

Hence M =M, &---& M

Pk u

In the finitely generated case, we now decompose M), into cyclic summands for each p;. ie. We
have reduced to the case where Ann(M) = (p¢) for some prime p.

Suppose M is a f.g. R-module with Ann(M) = (p¢). dx € M such that p*"'x # 0 (or else
Ann(M) = p*! rather than p°). Let x, my, ..., my be a generating set for M. Let M be the submodule

M;:={(x,my,...,mj).

Beginning with the identity map ry : M, — Rx, we inductively construct r; : M; — Rx extending
rj-1 : M = Rx to produce a splitting r : M +— Rx of the inclusion Rx — M.

Suppose by induction that r;_; : M;_; — Rx has been defined such that rj_i|g, = Ig,. M; is
generated by M;_; and m;. So to define r; extending r;_;, must define r;(m;) € Rx, ie. r;j(m;) = Ax for
the correct A.

Let (p*) = Ann(M;/M;_,), so p*m; € M;_. rji_1(p°m;) € Rx, so rj_1(p°m;) = ax for some a € R.

pax = pi(riap'my) = ria(pmy) = rji(0) = 0

so pfa = Ap° forsome A € R = a = Ap°.
Define rj(m;) = Ax and r;(y) = rj-1(y)Vy € M;_;. Then

ri(p'm;) = p*Ax = ax = r;_1|(p°m;)

so r;jis well-defined. Thus M = Rx® M’.
Applying the procedure to M’ gives

M=Rx®Rx ®&M".

Continuing, the procedure eventually terminates since M is Noetherian.
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.M = Rx, ® Rx; & - - - ® Rx,, for some x, ..., x, with Annx; = (p/) for some j. Notice that
l//'
R P—J)R.Xj

I"I—)}"Xj

is surjective with kery/; = Annx;. Thus Rx; = R/(p/).
Putting it all together, we get:

Theorem 2.10.7 (Structure Theorem for Finitely Generated Modules over a PID). Let M be a finitely
generated module over a PID R. Then

M =R/(p)®R/(py)®---©R/(p)") ® R,
where py,..., p, € R are primes (not necessarily distinct), si,...,s, € Nand k > 0.

Note that the generator of Ann(M) is lem{p}',..., p;}.
We now show that this decomposition is unique. k is the dimension of M ®; K, where K is the
field of fractions, so k is unique, and we need only be concerned with the torsion part of the module.

Theorem 2.10.8. Suppose

RI(P}®R/(p) @ @ RI(p)) = RI(g)) ® RI(gS) ® - ® R/(q).

with p1,...,Pusq1,-.-qx primes in R and sy, ...s,,t1,...ty € N. Then n = k and {qtl‘,...,qZ‘} is a
permutation of (associates of) {p}', ..., py'}.

Proof. Let
M =R/(p})®R/(py)® - ®R/(p;’) and
N =R/(g))®R/(q})® - ® R/(g}).

For any prime p, let

M, ={xe M| p°x =0, for some e},
N, ={x € N| p°x =0, for some e}.

If M = N then M, = N,,. Moreover,

M

= B R,

pj assoc. to p

N= P RIGH.

qj assoc. to p

IR
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- It suffices to consider one prime at a time. ie. We are reduced to the case where p; = g; = p V.
Suppose
M=R/(p")&---®R/(p™) and N =R/(p")&---&R/(p™).

For Z = R/(p*), 3 a short exact sequence
O pZ—Z—R/p—0,

ie. Z/pZ = R/ p, a field.
Since M = N,

@R/p ~ M/pM = N/pN = EBR/]).
n k

Since the dimension of a vector space is an invariant of the isomorphism class of the vector space,
n=k.
Also, M = N = pM = pN, that is:

R/Ip" '@ ---®R/p" ' =R/p" '@ ---®R/p"".

Ann(pM) has one less power of p than AnnM. So by induction on the size of Ann(M), the positive
elts. in the list {#; — 1,...,# — 1} is a permutation of those in {s; — 1,...,s, — 1}. ie. Information
about summands R/p has been lost, since p(R/p) = 0, so pM and pN have no record of how many
summands R/p there were in M and N. But they see all the remaining summands, showing that
entries in {t, ..., #} which are at least 2 are the same (up to a permutation) as those in {sy,..., s,}.
The remaining entries on each list are 1, and there are the same number of them on each list since
n = k and the entries greater than 1 correspond.

S At, ..., 4} 1s a permutation of {sy, ..., s,}. O

Thus, { p‘;'/ } is uniquely determined by (and uniquely determines) M. It is called the set of elemen-
tary divisors of M.

Example 2.10.9.
1. R =7Z. List all non-isomorphic abelian groups of order 16:

Zj16, Z/8®Z/2, Z/A®Z/4 Z/ASZ/2,®Z]2 Z2S®LI2SL/2SZ/2
(all non-isomorphic by the theorem).

2. Let F be a field, V a f.d. vector space |F, T : V +— V a linear transformation. Let R = F[x] (a
PID) and M =V with R-action

n

F@O) = (D) = ) a;T/W).

J=0
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Let
Ch(A) = det(T — Al),

the characteristic polynomial of T. Then Ch(T') = 0 (Cayley-Hamilton Theorem).
2. Ch(x)v =0Vv e V. ie. M is a torsion R-module and Ch(x) € Ann(M). Hence

M = F[x]/p1(x)" & -+ & F[x]/pi(x)™

for some primes pi(x), ..., pi(x) € F[x].

Suppose F is algebraically closed so that every poly. in F|x] factors completely as a product of
linear factors. Then the primes in F|[x] are the degree 1 polynomials. So mult. by a scalar to
make p; monic:

pi(x) =x-24;
for some A; € F. Then
M = ...@F[x]/(x_/lj)rj@...

implies that dv € V s.t. (x — A;) € AnnV. ie. (T — A;)v = 0. (And conversely, if (T — A)v = 0 for
some v then x — A = pj(x) for some j.)

SAA, . A} = eigenvalues of T.

Examine F[x]/(x—A4;)"7 more closely. Write A for A; and r for r;. As an F[x]-module, F[x]/(x—
)" is gen. by (x — A). Elts. can be written uniquely as

r—1

Dl - v

k=0

where ay € F. ie. Over F, F[x]/(x — A)" has dimension r with basis
Lx—A,x=-%...,(x=)""
Let B= B; CV = M be the image of F[x] = (x — A;)"" under the iso.

v P FR/ =) M

and let v; = y((x — )Y for j = 1,...,r be the F-basis for B corresponding to the basis
{(x =)'}
B is a F[x]-submodule of V so it is closed under the action of any f(x) € F[x]. For f(x) = x—A4,
by construction,

JX)-vij=vi j<r

f(x) v, =0.
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ie. when written in the basis vy, ...,v,, the matrix T — A is

0 0 0

1

0

0 0O 10

ie. T looks like

o --- 0
A

0

0 0 1 A

Therefore:

Theorem 2.10.10 (Jordan Canonical Form). Let T : V +— V be a linear transformation where V is a
f-d. vector space over an algebraically closed field F. Then 3 a basis for V in which T has the form

B, 0 - 0

0 B

S ()

0 -~ 0 B
where

A 0 - 0

A
Bj: 0
: w4 0
0O --- 0 1 A

J

Note: While Ch(1) € Ann(V), it does not necessarily generate the ideal Ann(V). Letting Ann(V) =
(M(A)), M(Q) is called the minimum polynomial of 7. ie.

Ch() = [ Jar=27 but M(x) = lem{(x - 2,)"}.
J
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Reformulation of the Structure Theorem for f.g. torsion modules.
Let R be a PID and let a,b € R be relatively prime. Then Ra + Rb = 1 so the Chinese Remainder
Thm. applies:

R % R/(a)xR/(b)
and ker ¢ = (a) N (b) = (a)(b).
Claim. R aPID and gcd(a,b) = 1 = (a)(b) = (ab).

Proof. (a)(b) = (c) for some c. Since ab € (a)(b) = (¢), c | ab.
Conversely, (¢) = (@)N(b) C (a) so a | c and similarly b | c. Write ¢ = Ada and ¢ = ub. gcd(a,b) = 1
= ds,ts.t.sa+th=1. So
A= Asa + Abt
= sc + Abt
sub + Abt
= (su+ ANb
. (ab) = (¢). O

Thus

R/(ab) = R/(a) X R/(D).

By continual application of this iso. we can rewrite our decomposition thm. as follows:

Theorem 2.10.11. Let M be a f.g. R-module (R a PID). Then
M=R'®@R/(a)®R/(a) ®- - ®R/(ay)

where a, | a,_1 | --- | a; #0.

ai,...,a, are called the invariant factors of M.
Example 2.10.12. Suppose

M=Z/|8®Z2OZ/2®Z/9®Z/3Z/S.

Then
M=7Z/3600Z/667Z/2

The number of summands required is
max{r | some prime p occurs r times among the elementary divisors}.
Reformulation of Chinese Remainder Thm. over a PID. Suppose m, ..., my satisfy gcd(m;, m;) =

1 fori # j. Givenay,...,ar, Ix € R/(m;---my)st. x=a; mod mVj=1,... k.

101



Example 2.10.13. Find xs.t. x=2 mod 9,x =3 mod 5,x =3 mod 7.
Solution. m; = 9,I’I12 = S,H’I3 = 7, a) = 2, a, = 3,d3 = 3. Set 1 ‘= myms = 35. Then

yi:=z;' mod9
=8 mod9
= 8.

Likewise,

2o = mymy = 60

y;:=z,' mod5
=3"" modS5
=2,

3 = mmy = 45

ys:=z;' mod 7
=3"" mod7
=5.

Set x := ayy1z1 + a2y»222 + azyzzz mod (mympms). Then modulom;, 2, =0,z =0,y,z1 = 1,s0x = a;
mod my, etc. In our example,

x=2-8-35+3-2-63+5-3-45 mod (9-5-7)
=1613 mod 315
=38 mod 315.

In general, x = };a;y;z; where z; = my ---mj_ymj.;---m, and y; = zJ‘.l mod m;.
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Chapter 3

Galois Theory

3.1 Preliminaries about Polynomials and Fields

Proposition 3.1.1. Let FF C K be an extension of fields. Let f(x),g(x) € F[x]. Then a g.c.d. of
f(x), g(x) within F|x] is also a g.c.d. of f(x), g(x) within K[x].

Proof. Letd(x) € F[x] be a g.c.d. for f(x), g(x) within F[x]. Then ds(x), t#(x) € F[x] s.t.
s(0) f(x) + 1(x)g(x) = d(x) (1

Since F[x] c K[x], this eqn. holds in K[x] also.
d(x) | f(x) and d(x) | g(x) holds in F[x] and thus holds in K[x]. If A(x) | f(x) and A(x) | g(x)
within K[x] then (1) = h(x) | d(x) in K[x]. Hence d(x) is a g.c.d. for f(x), g(x) in K[x]. |

Proposition 3.1.2. The ideal (p(x)) in F[x] is maximal < p(x) is irreducible.
Proof. F[x]is aPID soin F[x], prime < irreducible <= maximal. O
Corollary 3.1.3. F[x]/(p(x)) is a field <= p(x) is irreducible.
Theorem 3.1.4 (Eisenstein Irreducibility Criterion). Let
fx) = apxX" + ap XL+ -+ ajx + ap € R[x]

where R is a UFD. Let p € R be prime. Suppose p | ag,p | ay,...,p | a,-1 but p ¥ a, and p* | ay.
Then f(x) is irreducible in K[x] where K is the field of fractions of R.

Proof. Tt suffices to consider the case where {ay,...,a,} has no common factor. Suppose f(x) is
reducible over K and thus (by Gauss’ Lemma) reducible over R. Write

f(x)=((bo+bix+---+bx")co+crx+---c,x°)
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in R[x], with r < n, s < n. Then ay = bycy. Since p | ay but p> £ ay, p divides one of by, ¢, but not
both. Say p | by, p 1 co. p can’t divide every b; since then it would divide a,, so let k be the least
integer s.t. p { b;. So

ay = byco + by_ic; + -+ + bicy_y + bocy.

plbo,....,br-ybut pt b and p 1 co = p 1 ax. This is a contradiction of one of the hypotheses.
.. f(x) is irreducible. O
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3.2 Extension Fields

Suppose F' C K, F, K fields. Then K is a vector space over F.

Definition 3.2.1. The degree of K over F, written [K : F] is the dimension of K as a v.s. [F. If
[K : F] < oo we say K is a finite extension of F.

Proposition 3.2.2. Suppose F C K C L finite extensions of fields. Then
[L:F]=[L:K]K:F].

Proof. Let [K : F] = n, and let wy,...,w, € K form a basis for K over F. Let [L : K] = ¢, and let

..........

1. Letf € L. vy,...,v, abasis implies
C=kivi+kowvy+---kv,
for some ky, ...,k € K. wy,...,w, abasis implies
ki= fiwi + fowa + - fiawy,

for some fj,..., fi» € F. Hence

C=fuiwv) + frowavy) + -+ + fia(w,vi) + for(wiva) + -+
+ farWav2) + -+ fawiv) + -+ fra(wyvy).

.. €1is a linear comb. of {w;v;} with coeffs. in F, so {w;v;} spans L.

.....

0= fiviwr + -+ fiaviwn + -+ fiywi + -+ + fuviwn
= (fuwr + fuwa + -+ fruw)dve o+ (fawn + fowa + - fuwa) vy

Since vy, ..., v, is a basis for L over K,
fj]W]‘l‘"“f‘fjan:O ijl,...,l.

Since wy,...,w,isabasisfor Kover F, f; =0Vj=1,...,t,i=1,...,n.

.....
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Corollary 3.2.3. If F C K C L with L a finite extension of F then [K : F]|[L : F].

eg. If [L : F] is prime then 7K lying strictly between F and L.
Suppose F' C K extension of fields. Let a € K. Let

F(a):ﬂ{MlMisaﬁeldwithaeMandFCMCK}.

Proposition 3.2.4. F(a) is a field.

.. F(a), the field obtained from F by adjoining a, is the smallest subfield of K containing both F
and a. Explicitly,

F(a) = {@ | p(x), q(x) € F[x],g(a) # 0in K}
q(a)

Proof. Let

M = {p(_a) | p(x), g(x) € F[x],q(a) # 0in K}.
q(a)

Let x = ’q% € M. Since F(a) is a field and a € F(a), field axioms = p(a) and g(a) € F(a). g(a) # 0

= $ € F(a), so x € F(a). Hence M C F(a).

It is easy to check that M is a field and clearly a € M, so F(a) C M. O
Definition 3.2.5. a € K is called algebraic over F if 3 a polynomial g(x) € F[x] s.t. g(a) = 0 in K.
We say that a satisfies the equation g(x) = 0 or say a is a root of g(x) if g(a) = 0 in K.
Definition 3.2.6. K is called algebraic over F if every element of K is algebraic over F.
Definition 3.2.7. Ifa € K is not algebraic over F then a is called transcendental over F.

Note:
1. We will show that a algebraic /F = [F(a) : F] < co. However, K alg. /F = [K : F] < co.

For example, let K = {x € R | x is algebraic over Q}. We will show later that K is a field, and
by construction, K is alg. over Q. But [K : Q] = co.

2. Existence of elts. x € R s.t. x is transcendental over Q is easily established by a counting
argument, because we will see that {x € R | xis algebraic over Q} is countable. However,
showing that any particular elt. of R is transcendental is not easy. eg. “r is transcendental” is
true but nontrivial to prove.
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Suppose a is algebraic over F. A polynomial g(x) € F[x] is called a minimum polynomial for a
over F if g(a) = 0 and Ag’(x) s.t. ¢’(a) = 0 with deg ¢’ < deggq.

Given a min. polynomial for a over F, dividing by the lead coeff. gives a monic min. polynomial
for a over F. A monic min. poly. of a over F is unique.

Proof. Suppose g(x), r(x) are two monic min. polys. of a. By minimality, their degrees are equal. But
then s(x) = g(x) — r(x) has smaller degree and s(a) =0 -0 = 0. O

.. We refer to “the min. polynomial of a”.
Lemma 3.2.8. The min. polynomial of a is irreducible.

Proof. Let p(x) be the min. poly. of a. If p(x) = g(x)r(x) with deg g < deg p and degr < deg p then
since p(a) = 0, either g(a) = 0 or r(a) = 0. This is a contradiction. Hence p(x) is irreducible. O

Theorem 3.2.9. Suppose FF C K, a € K. Then a is algebraic over F < [F(a) : F] < co. More
precisely, [F(a) : F] = degree of the min. poly. of a.

Proof.
=: Suppose [F(a) : F] = n < co. Consider

S ={l,a,d*,...,d"

IS|=n+ 1. Butdim F(a) = nasav.s. /F. So the elts. of S are linearly dependent.
ie. d relation
co+cra+cd+---c,d =0

where c; € F and not all ¢; are 0. Hence a satisfies g(x) = 0 where

g(x) = co + C1X + X% + -+ X

.. a is algebraic over F.

<: Suppose a is alg. over F. Let

n

pX)=po+pix+---+x
be the min. poly. of a over F.

Claim. B={l,a,d% ...,a"""} forms a basis for F(a) over F.

Proof. If B were linearly dependent then (as above) there would be a polynomial of degree n— 1
or less satisfied by a, contradicting defn. of p(x).
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Show B spans F(a): p(a) = 0 so

d"=-po—pia— -+ = pd
and thus, a, € spanB.
an+1 =a ‘Cl”
= —poa—p1a@® — -+ = Ppad = p,d"
= —poa — p1a@° — +++ — puad”™ = pui(=po—pra— -+ = pyia’)
€ spanB

etc. ie. By induction, a® € spanB Vs, so F[a] C spanB.

So to finish the proof;, it suffices to show:

Lemma 3.2.10. F(a) = Fla].

Proof. Fla] C F(a) is trivial. Conversely, let x € F(a), x = % where g(a), r(a) € Fla] and r(a) # 0.
p(x) 1 r(x) since r(a) # 0. Since p(x) is irreducible, this implies p(x), r(x) have no common factors,
ie. ged(p(x), r(x)) = 1. So, I polynomials s(x), #(x) s.t.

s(x)p(x) + t(x)r(x) = 1.

1 = s(a)p(a) + t(a)r(a) = t(a)r(a). Thus, @ = t(a) and

X = @ = g(a)t(a) € Flal].
r(a)

.. F(a) C Fla]. O

Corollary 3.2.11. Suppose F C K. Suppose a € K is algebraic over F and let g(a) € F|[x] be the
min. poly. of a over F. Then
F(a) = F[x]/(g(x)).

Proof. Let ¢ : F[x] — F(a) be given by
¢(p(x)) = p(a).

Since F(a) = Flal], ¢ is onto.
Claim. ker ¢ = (g(x)).
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Proof. Letker¢ = (¢'(x)) where ¢’ is monic. Then since g(a) = 0, ¢’(x) | g(x). But g(x) is irreducible,
so either ¢’(x) = 1 or ¢’(x) = g(x). Since ¢’(a) = 0, ¢'(x) # 1 so ¢'(x) = g(x).
Thus, by 1% isomorphism theorem,

F(a) = 3¢ = F[x]/ ker ¢ = F[x]/(g(x).

Theorem 3.2.12. Suppose F C K are fields. Let
M = {x € K| x is algebraic over F}.

Then M is a field.

Proof. Leta,b € M. Must show a + b,ab,a/b € M. Suppose [F(a) : F] =mand [F(b) : F] = n. So
b satisfies a degree n poly. p(x) with coefts in F C F(a). p(x) can be thought of as a polynomial in
F(a)[x], giving

[F(a)(b) : F(a)] < n.

Hence
[F(a)(b) : F] < nm.

Since a + b € F(a)(b),
F c F(a+b) c F(a)(b).

S [F(a+b) : F] < nm, and so a + b is algebraic over F. Similarly, a — b,ab,a/b € F(a)(b) so the
same argument applies. O

Notation: F(a,b) = F(a)(b). Observe that F(a,b) = F(b,a) is the smallest subfield of K containing
F,a,b.

Corollary 3.2.13. Suppose F C K C L. If K is algebraic over F and L is algebraic over K then L is
algebraic over F.

Proof. Let z € L. L algebraic over K = z satisfies p(z) = 0 where

P =x"+c X"+ e x+ ey

has coeffs. in K. So F' C F(cy,...,c,) C K C L. Since K is algebraic over F, each c; is algebraic over
F.
If m; is the degree of the min. poly. of ¢; over F then, as above,

[F(ci,...,cp) : F1<my---m, < co.
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Since z satisfies the polynomial p(x) whose coeffs. lie in F(cy,...,c,),
[F(ci,...,cn,2) s Fley,...,c,)] < o0,

S F(ety ..oy en,2) s Fl < oo, But F € F(z) € F(ey,...,¢,2) 50 [F(2) 1 F] < co. Thus, z is algebraic
over F.
This is true for all z € L, so L is algebraic over F. m]

Example 3.2.14. Let
M = {x € C| x is algebraic over Q}.

Our theorems show that M is a field, and by construction, it is algebraic over Q. However, in Q[x],
there are irreducible polynomials of arbitrarily large degree, and by definition, the roots of these
polynomials are in M. So [M : Q] is unbounded.
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3.3 Roots

Let F be a field and let p(x) € F[x]. p might have no roots in F.
Question.  Given p(x) € F[x], can we always find an extension field K D F in which p(x) has a
root?

Theorem 3.3.1 (Remainder Theorem). Let K be a field. Let p(x) € K[x] and let b € K. Then dg(x)
s.t. p(x) = (x — b)q(x) + p(b), and deg q(x) = (deg p(x)) — 1.
Proof. By division algorithm, p(x) = (x—b)g(x)+r(x) where degr < deg(x—b) = 1. ie. r(x) = r € K.

Setting x = b,

pb)=((b-b)qb)+r=r.

Comparing degrees of LHS and RHS, deg g(x) = (deg p(x)) — 1. |
Corollary 3.3.2 (Factor Theorem). a is a root of p(x) < (x — a) | p(x).
Proof. p(x) = (x —a)q(x) + p(a). If p(a) = 0 then p(x) = (x —a)g(x) so (x — a) | p(x). Conversely, if
p(x) is a multiple of x — a then p(a) = 0. |
Definition 3.3.3. The multiplicity of a root a of p(x) is the largest power of (x —a) which divides p(x).
Corollary 3.3.4. A polynomial of degree n over a field K can have at most n roots (counted with
multiplicity).
Proof. A polynomial of degree 1 has exactly one root, so the result follows from the Factor Thm. by
induction. O
Theorem 3.3.5. Let p(x) € F[x] be a poly of degree n where F is a field. Then 3 an extension field K
of F with [K : F] < nin which p(x) has a root.

Proof. Let g(x) be an irred. factor of p(x). Since any root of g(x) is a root of p(x) we will find an
extension field in which ¢(x) has a root. Let

K = F[x]/(g(x)).
q(x) irreducible = K is a field. F < K by ¢ — [c], so K is an extension field of F.
In K, g([x]) = [g(x)] = 0. So a = [x] is a root of g(x). Since g(x) is irreducible over F, g(x) is the
min. poly. of a over F.
.. K = F(a) and
[K: F]=[F(a): F]

= deg(min. poly of a)

=degqg

<degp =n.
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Example 3.3.6. Let F = F, = Z/27. (x*> + x + 1) is irred. in F,[x]. Let

__ Bl
(2+x+1)
Letw=[x]eK,sow +w+1=[x>+x+1]=0.

In K we have four elements: 0, 1,w,w + 1. Multiplication is as follows:
Mult. by 0 and 1 is obvious.

w=—-w-1l=w+l
wiw—D=w?+1l=w+l+w=1
w=12=w*+2w+l=w+l+1=w

L

Note L =w—1and
w w—1

= w (every nonzero elt. has an inverse).
K = F4
(finite field with 4 elements).

By induction on the previous result, we get

Corollary 3.3.7. Let p(x) € F[x] be a poly. of degree n (F a field). Then 1 an extension field K of F
with [K : F] < n! in which p(x) has n roots. ie. In K we can factor p(x) completely as

p(x) = Ax —a))(x —az)- - (x — ay).
Example 3.3.8.
1. F=Q p(x)=x*—2. Let Ey = F(23) Then [E, : F1 =3. In E,
p(x) = (x — 23)(x2 + 25 x + 27).
Let K = E\(V3i). Then [K : E\]1=2s0[K:F]=3-2=6.InK,

25(1 - \@i))(x+ 25(1 + x/§i))

p(x)z(x—2%>(x+ > >

2.F=Q, p(x)=x>—12x+8. Let M = -4 + 43i. Letz = M3 (that is, 7 is any one of the three
elts. s.t. 2 = =4 +43i). Leta=z7+7Z

So 23 =M and . ] |
2= (MM)3 = (16 +48)3 = 6435 =4,
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Thus

a=(z+2)°
=M+ M + 377+ 37
=M+ M+3(2)(z+2)
=M+ M +3zZa
- 8+3-4-a
=-8+12a

na’—12a+8=0. Let E; =Q(a), so [E: F]=3. Letb = ”22_8 € E,. Then

_c16—12a4+3'64c12—83

b3
8
3 (12a — 8)> — 24a(12a — 8) + 3 - 64a*> — 8>
a 8
169> — 12a + 4) — 24(12612 —8a)+3-64a> -8

8
= 184> — 24a + 8 — 364” + 24a + 24a*> — 64 = 6a*> — 56

2 _
12b—8:12(“ . 8)—8

= 6(a* - 8) -8
=6a> - 48 -8
= 6a* — 56

.. b> = 12b + 8 = 0. Note that this second root is already in E,. Let ¢ be the third root. Then
a+b+c = coeff. of x* in p(x) = 0.
.c=—-a—-beE,. Soall3roots liein E,. In E,, x> — 12x + 8 factors as (x — a)(x — b)(x — ¢).

Definition 3.3.9. Let p(x) € F[x]. An extension field K of F is called a splitting field for p(x) over F
if p(x) factors completely in K into linear factors

p(xX) = Ax —a)(x —az) - (x - ay)

and p(x) does not factor completely in any proper subfield of K.
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ie. K is a minimal extension of F' containing all roots of p(x). By an earlier theorem, a poly. of
degree n in F[x] has a splitting field K s.t. [K : F] < n!.

Proposition 3.3.10. Suppose F ¢ M C K. Let p(x) € F[x] and suppose that K is a splitting field of
f(x) over F. Then regarding p(x) as an elt. of M[x], K is also a splitting field of p(x) over M.

Proof. Trivial. |

Example 3.3.11.
1. px) =x*-2, F = Q. 25 is a root of p(x) but Q(Z%) is not a splitting field for p(x). K =
Q(Z%, \/gi) is a splitting field for p(x), and [K : Q] = 6.

2. p(x)=x*—12x+8 F=Q. a=z+Zwherez’ = —4+43i aisa root of p(x) and K = Q(a)
is a splitting field for p(x). In this case, [K : Q] = 3.

Proposition 3.3.12. Let K D F be a splitting field for p(x) € F[x]. Suppose that in K,
px) = Ax—a)(x—ax) - (x —ay),

where A € K. Then
K=F(a,...,a,).

Proof. By defn of ay,...,a, they lie in K so F(ay,...,a,) C K. However, if all of ay,...,a, lay in
some proper subfield of K then the factorization

p(x) = Ax—a)(x—az)---(x—a,)
would be valid in that subfield, contradicting the minimality of K. m|

Recall that if a € K is a root of an irreducible poly. p(x) € F[x] then
F(a) = F[x]/(p(x))

where the isomorphism ¢ : F[x]/(p(x)) s F (a) is given by ¥(x) = a. Suppose T : F s F'. T
extends to

71 F[x] — F'[x]
XH— X

fr—1(f) VfeF
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Theorem 3.3.13. Let p(x) € Flx] be irreducible. Let p' = T(p) € F’[x]. Let a,a’ be roots of
p(x), p’'(x) lying in extension fields of F, F’ respectively. Then T can be extended to an isomorphism

¢ F(a) — F(a')

s.t. pla) =a'.
Proof. We have
=] F[X] = - F’ [)C] =
F /F/ ’
@ =V — ey V@
Let¢p =y oFfoy. |

Example3.3.14. F= F' =Q 7= 1g, p() = p(x) =x* -2 a=235,a’ = 25 (1-;5"). Using a® = 2,

elts. of Q(a) can be expressed in the form « + Ba + ya?, a,B3,y € Q. ¢ : Q(a) — Q(a’) is given by
d(a + Ba+ya®) = a + Ba’ +y(a')*.

Theorem 3.3.15. Let p(x) € F[x]. Let p’ = T(p) € F’'[x]. Let E, E’ be splitting fields of p(x), p’(x)
respectively. Then T can be extended to an isomorphism ¢ : E — E'.

In particular, letting F' = F and T = 1 shows that any two splitting fields of p(x) are isomorphic,
by an isomorphism which fixes F.

Proof. Use inductionon [E : F]. If [E : F] = 1 then E = F so p(x) splits into linear factors in F'. But
then p’(x) splits into linear factors in F’" so E’ = F’, and use ¢ = 7.

Now let [E : F] = n > 1. Assume by induction that the theorem holds whenever [E : F] < n.
More precisely, assume that the following statement holds: let g(x) € M[x] be a poly. over a field M,
o:Mv— M, q = d(q). Let N, N’ be splitting fields of ¢, ¢’ respectively. If [N : M] < n then o can
be extended to an iso. ¢ : N — N’.

Let s(x) be a non-linear irreducible factor of p(x) in F[x]. Let degs(x) = r > 1. Letv € E be a
root of s(x). Let w € E’ be a root of 7(s). By prev. thm. Fiso. o : F(v) —s F'(w) s.t. o|r = T and
o(v) =w. Since deg s(x) =r, [F(v) : F] =r, so
[E:F] n

- <n.

B PO = e m = 7

From an earlier proposition, E is a splitting field for p(x) considered as a poly. in F(v)[x], and like-

wise, E’ is a splitting field for p’(x) considered as a poly. in F’(w)[x]. So by the induction hypothesis,
diso. ¢ : E — E’ s.t. &lrey = 0. Thus @l = 0| = T as required. O
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3.4 Characteristic

Theorem 3.4.1. Let R be an integral domain. Let H be the additive subgroup of R generated by 1.
Then either H = Z or H = 7/ pZ for some prime p.

Proof. Define ¢ : Z — F to be the group homomorphism determined by ¢(1) = 1. Then
H = Im¢ = Z/ ker ¢.

ker ¢ is an ideal in Z so ker ¢ = (n) for some n. If n = 0 then H = Z. Otherwise, H = Z/nZ (as
groups), and by replacining n by —n if necessary, we may assume n > 0.
Ifa,beZ,a,b > 0theninR,

a times b times ab times

da)ypb)=1+---+1)A+---+1)=(+---+1) = ¢(ab).

So H = Z/nZ as rings, and R is an integral domain, so p must be prime. O

Definition 3.4.2. If the additive subgroup of an integral domain R generated by 1 is Z/pZ, we say
that R has characteristic p, and denote char R = p. If this subgroup is Z, we say char R = 0.

If F is a field with char F = p, we can define

0:Z/pZ+— F
1—=1

as an inclusion of fields. If char F = 0, we can define

0:Q- F
11

s times t times

;H(1+---+1)/(1+---+1)

The image of 6 is a subfield of F (isomorphic to either Z/pZ = F,, or Q), called the prime field of F.

Proposition 3.4.3. Ifchar F = p thenin F,

(a+b) =a”" +b".

116



Proof.

pk k

ko . -l ko .
(a+ b)Y = Z( pl. )a’bf”‘-’ =" + " + Z ( pl. )a’b”k_’.
i=1

i=0

If 1 <i<pt-1then

Py P!
i) ik

PP =D it D)
1-2-3..+4

B P\ (pF-1\(p*-2 pr—i+1

W 1 2 i-1 )
For 1 < j < p*, the number of factors of p in j = the number of factors of p in p* — j. However, since
i < p*, p* has more factors of p than i does. Hence, the numerator has more factors of p than the

k
denominator. ie. p | ( ‘lz )for 0 <i < p*. Since char F = p,

p-1 k
51 oo

i=1
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3.5 Repeated Roots
Notation: For f(x) = a,x" + a1 X' + -+ + a1 x + ay, set
F1(x) = na, X+ (n = Dap X + -+ ay.

f'(x) is called the derivative of f(x).
Note: Ifchar F = p # Othen f'(x) =0 = f(x)is constant. For example, f(x) = x” has f'(x) = 0.

Theorem 3.5.1. f(x) has a repeated root (in some extension field of F) < f(x), f'(x) have a
common factor.

Proof. Let K be the splitting field of f.
Note that f(x), f'(x) have a common factor <= gcd(f, f’) # 1. Moreover, as seen before, the
g.c.d. is the same whether taken in F[x] or K[x].

=: Suppose f(x) has a repeated root. In K[x], f(x) = (x — a)*q(x), so
() =2(x — a)g(x) + (x — @)’¢'(x) = (x — )(2q(x) + (x — &)q(x)).
soged(f, f') # 1'in K and thus in F.

&: Suppose f(x), f'(x) have a common factor. If f(x) has no repeated root then by (WLOG) taking
f(x) to be monic, in K[x],

J)=(x-a)x—a) - (x—a)
where a; # a; for j # k. So

FE=)x—a)-(x—a)-(x - a).
i=1

If (x — «;) is also a factor of f”(x) then a; would be a root of f’(x) giving

0=] ] -a.

JEi

But then a; — ; = 0 for some i, which is a contradiction. Thus, f(x) has a repeated root.

Corollary 3.5.2. Let f(x) € F[x] be irreducible. Then
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1. Ifchar F = 0 then f(x) has no repeated roots.
2. Ifchar F = p > 0 then f(x) has a repeated root <= f(x) = g(x”) for some g.

Proof. If f(x) has a repeated root then f(x), f'(x) have a common factor. But f(x) is irreducible and
deg f'(x) < deg f(x). Thus f'(x) = 0.
If char F = 0 then f"(x) = 0 = f(x) is constant, in which case, f(x) does not have a repeated root

after all.
If char F = p, let
f) =ag+arx+ -+ +apxl + apn ¥+ -+ a,x

Since f’(x) = 0, a; = 0 for every k which is not a multiple of p. So

fx) =a,x’ + aszz” + o= g(xP).
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3.6 Finite Fields

Proposition 3.6.1. Let F be a field with q elements. Suppose F C K is a finite extension with
[K : F] =n. Then K has q" elements.

Proof. As a vector space, K = F", so |K| = |F|" = ¢". O
Corollary 3.6.2. Let K be a finite field. Then K has p™ elements for some m where p = char F.

Proof. Let F be the prime field of K. Since K is finite, F cannot be Q, so char F' = p, a prime. Hence
K has p™ elements where m = [K : F]. O

Corollary 3.6.3 (Fermat). Let F be a finite field with p™ elements. Then a”" = a for all a € F.

Proof. If a = 0 then a”" = 0. If a # 0 then a € F — {0}, which forms a group under multiplication,
and
|F {0}l = p" - 1.

By Lagrange, a” ! = 1,s0a”" = a. O

Theorem 3.6.4. Let F be a finite field with p"* elements. Then in F[x], x”' — x factors as

- x= H(x—a).

aeF

Proof. By the previous corollary, every elt. of F is a root of x”' — x. Since deg(x”" — x) = p", and
F has p" elements, we have all the roots. O

Corollary 3.6.5. If F has p" elements then F is the splitting field of x"" — x over F,,.

Corollary 3.6.6. Any two finite fields with the same number of elts. are isomorphic.

Proof. Any two splitting fields of the same polynomial are isomorphic. O
Theorem 3.6.7. For every prime p and every positive integer n, 1! a field with p" elts.

Proof. We have already shown that 3 at most one field with p” elts. So, show that one exists.
Let K be the splitting field of f(x) = x" — x over F,,. Let

F={acK|d" =a).

f'(x) = —1, which is relatively prime to f(x). So the roots of f(x) are distinct, ie. F' has p" elts., and
it suffices to show that F is a field.
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Suppose a,b € F. Then
(@+b)Yf =a” +b" =a+b

soa+ b e F. Similarly, (a — b)"" = a - b.
(ab)”" = a’"b"" = ab
and similarly, (£)”" = 4. Hence F is a field. o

Theorem 3.6.8. Let G be a finite abelian group s.t. Yn € Z, there are at most n elts. of G satisfying
g" =e. Then G is a cyclic group.

Proof. By the structure theorem for finitely generated abelian groups, we can write
GG xXGy X - XGy

where |G| = p;j for some p; with p; # p; if j # j'. Since C, x C,, = C,,, when gcd(n,m) = 1, it
suffices to show that each G| is a cyclic group.
Pick j and write p for p; and ¢ for ;. Let a € G; be an elt. whose order is maximal. Then

lal | 1G;1 = p'

so |a| = p” for some r < t. Within G},

are the distinct roots of g#° = e, by construction of a. Since there are p” of them, by the hypothesis,
g” has no other solutions in G, and in particular, no other solutions in G;.
Now let b € G;. Then |b| = p* for some s < r.

s

b = (bpx)pr_ =el =e.

Thus, b € S, ie. b = @' for some i.
Hence G; is cyclic, so G is cyclic. O

Corollary 3.6.9. Let F be a field. Then any finite subgroup of the multiplicative group of F — {0} is
cyclic.

Proof. Since F is a field, a polynomial of degree n in F[x] has at most n roots in F'. O

Corollary 3.6.10. If F is a finite field then the multiplicative group F — {0} is cyclic.
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3.7 Separable Extensions

Definition 3.7.1. Suppose F C K is a finite extension. Then a € K is called separable over F if its
irreducible polynomial over F has no repeated roots. K is called separable over F if a is separable
over FYa € K.

Proposition 3.7.2. If char F = O then every finite extension of F is separable over F.

Example 3.73. Let E be any field with char E = p. Let F = E(2), the field of fractions of E [z Let

K = F(zl’) and let a = zl’ € K. Then the min. poly. of a over F is x’ — 7z = (x — a)’. Hence, zl’ is not
separable over F.

Theorem 3.7.4. Suppose F C K is separable. Then Iy € K s.t. K = F(y).

Proof.
Case 1: F is finite.
Since F' C K 1is a finite extension, K is also a finite field. Let ¢ be a generator for the cyclic
group K — {0}.
ie. K—{0}={c,c--,c" ' el

.. Any field containing ¢ contains all of K — {0}. .. K = F(c).
Case 2: |F| =

Since [K : F] < oo, let K = F(ay,...,a,) for some ay,...,a,. Using induction, it suffices to
consider the case n = 2. ie. Suppose K = F(a, b) and show that dc s.t. F(a,b) = F(c).

Let f(x),g(x) be the min. polynomials of a,b respectively. Let M be the splitting field of
f(x)g(x). In M,

fx)=x-a))---(x—a,) wherea; =a
gx)=(x=by)---(x—b,) whereb; =Db.
Since K is separable, a; # a; fori # jand b; # b; for i # j. Consider the equation
a; +/1bj = a +/lb1

where j > 1 and A4 € F. The solution for A is

a, —a

by —b;

A=

Since F is finite, chooseyertyi“ andy;ﬁ by 1foranyzand] Soa;+vyb; #a+vyb
unlessi = j = 1. Setc :=a+ yb.

Claim. F(a,b) = F(c).
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Proof. c € F(a,b) so F(c) C F(a,b). So show F(a,b) C F(c), ie. show a € F(c) and b € F(c).
Let h(x) = f(c —yx) € F(c)[x]. Then

h(b) = f(c —yb) = f(a) = 0.
By construction, ¢ —yb; # a; unlessi = j = 1. Soif j > 1 then ¢ — yb; # a; for any i and so
¢ —vb; is not aroot of f(x).

s Af j> 1then h(bj) = f(c —yb;) # 0. Hence b = b, is the only common root of g(x) and h(x).
ie. In K[x],

ged(g(x), h(x)) = x = b.
But g(x) € F[x] C F(c)[x] and h(x) € F(c)[x], so by an earlier proposition,

x —b = ged(g(x), h(x)) € F(c)[x].

In particular, x — b € F(c)[x]; that is, its coefficients lie in F(c). So b € F(c).

Similarly, using y # % for any 7 and j gives a € F(c). Thus F(a,b) C F(c) as required.

i
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3.8 Automorphism Groups
Definition 3.8.1. An isomorphism from a field to itself is called an automorphism. Explicitly, an
automorphism o : F v~ F must satisfy:

1. o is a bijection,
2. o(a+b)=0c(a)+ o), and
3. o(ab) = g(a)a(b).
Let Aut(F) denote the set of all automorphisms of F. This forms a group under composition.

Theorem 3.8.2. Let 0y, ...,0, be distinct automorphisms of F. Then o, ...,o0, are linearly inde-
pendent in the vector space homype, grps. (F, F).

ie.If a;,...,a, € F such that
ayo1(w) + ayo(w) + -+ a,0,(u) =0 YueF

thena; =a,=---=a, =0.
Note: This proof works equally well to show that distinct homomorphisms from a ring A to a field F
are linearly independent in the F-vector space homypei. grps.(A, F).

Proof. Suppose oy, ..., 0, are not linearly independent in homypey, grps. (F, F). Find a relation having
as few terms as possible. Renumber the o’s so that the terms appearing in the relation come first. So
the relation is

a1+ +ao, =0

with a; # O for j = 1,...,k, and no relation exists involving fewer than k terms. That is, for all u € F,
ajo(u) + -+ aqo () = 0 (D

If Xk = 1then ajo(u) = 0 Yu € K, so a; = 0 (since o1(v) # O unless u = 0), which is a
contradiction. Since oy # 0y, dc € F s.t. o1(c) # o(c). Then forall u € F,

0 =aio(cu) + - - - + aro(cu)

= ajo(c)o(u) + -+ - + aro(c) o (u) ()
Combining (1) and (2), forall u € F,
ay(oa(c) — oi(0)oz(u) + - - - + ar(oy(c) — o1 (c))or(u) =0

a; # 0 and o(c) — oi(c) # 0 so the last coefficient is nonzero. So this is a relation among oy, ...,0,
having fewer than k terms, which is a contradiction. Thus, o, ..., o are lin. indep. O
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Theorem 3.8.3. Let K be a field. Let S = {0 ,} be a set of automorphisms of K. Let
F={xeK|okx)=xVYoeSs§}.
Then F is a field.
F is called the fixed field of S in K, written F = K5.
Proof. Suppose a,b € F. ThenVo € §,
ola+b)=c0(@)+ob)=a+b.
s.a+beF.Similarly,a — b,ab € Fandifb # 0, § € F.
Notation: Suppose F' C K. Set
GK,F) ={c e Aut(K) | o(a) = a Va € F}.

G(K, F) forms a subgroup of Aut(K).
This gives us two functors:

Extension of fields ~»» Subgroup of automorphisms of larger field
Fc K~ G(K,F)

and

Field, subgroup of its automorphisms ~» Extension of fields
K.Gw K°cK

Are these inverse processes? In general, no. Given F' C K,
GK,F)={oceK|okx)=xVxeF}
S KOED = (x e K| o(x) = x¥o € G(K, F)} D F. But K¢®5 can be strictly larger than F.

Example 3.8.4.
1. K=C, F=R. Let o € G(C,R). o(x) = x Vx € R. So o is determined by o(i).

(i)’ = o(i®) = o(=1) = —1.
..o (i) = +i. So there are two elts. in G(C,R):
o1(i)=i= o(a+bi)=a+bi identity of G(C,R),

0,(i)) = —i = os(a+ bi)=a—-bi complex conjugation.
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.. G(C,R) = Z/2Z.
Conversely,
CG(C,R) — {Z I= C | O'(Z) =7 VO' € G(C, R)}

={z€eClz=01(r) =zandz = 03(2) = 2}
=R

In this case, we get our starting field back.

2. F =Q, K =Q(a) where a = 25, Leto € G(K, F). Since o(x) = xVx € Q, o is determined by
o(a).
o) = o(@®) = (2) = 2,

so o(a) is a cube root of 2. Since Q(a) contains only real numbers, it contains only one cube
root of 2, namely a. So o(a) = a and o is the identity. Thus,

G(Q(25),Q) = 1.

1
5 Q(23)0QCHY = Q(2%), which is strictly larger than Q.

Let f(x) € F[x] and let G = G(K, F) where K is the splitting field of f(x). Let ay,...,a, € K be
the roots of
f)=co+cix+---+c, X" (c;€F).

Let o € G(K, F), so o(c;) = ¢;. Then
flo(@)) = co + cro(a@;) + -+ - + cp(o (@)

=o(co+cix+---+c,x")

= o(f(a) = 0(0) = 0.

- o(a;) s also a root of f(x), ie. o(a;) = ay forsome i’ = 1,...,n. If i # j then o(a;) # o(a;), since
o is (1-1). So o permutes the roots of f(x). This map

o= O-l{a'] ----- apn}

is a group homomorphism G <= §,,.

Theorem 3.8.5. |G(K, F)| < [K : F].
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Proof. Let[K : F] =nandletuy,...,u,be abasis for K over F. Suppose G(K, F) has n+ 1 elements
o1,...,0,+1. Consider the system of equations

o1(up)x; + oa(u)xy + -+ -+ 01 (U)X =0

o1 (u2)x1 + o2(U2)xz + -+ - + i1 (U2)Xp1 = 0

o1 (Un)x1 + 02(Up) Xy + -+ + T (Un) Xns1 = 0.
This consists of n equations and n + 1 variables, so 1 a solution
X1 =4d1, Xp =4z, ..., Xpt1 = Ap4l,
withnot all a; = 0. So, forall j=1,...,n,
aro(u)) + a0 (u)) + - -+ + Apr1 011 () = 0.
Since uy, ..., u, form a basis,
(o1 + -+ a10,41)() =0 VteKk.

But then oy, ..., 0,4 are linearly dependent in homype. orps. (F, F'), contradicting an earlier theorem.
Hence, G(K, F) does not have n + 1 elements, ie. |G(K, F)| < [K : F]. O
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3.9 Elementary Symmetric Polynomials

Let F be a field.
Notation:

F(xi,...,x,) := field of fractions of F[xi,..., x,]
_ {p(xl,...,xn)

g, x)

p’qu[xl’---’xn],(]?fO}

This is called the field of rational functions in » variables over F.
Let K = F(xy,...,x,). Given o € §,, setting 6(x;) = X,(;) and 6(a) = a Ya € F determines an
automorphism of X s.t.
o€ G(K, F) c Aut(K).

In this way, S, becomes a subgroup of Aut(K).
Let S = K5 S is called the field of symmetric rational functions in n variables over F, and
S N Flxy,...,x,] is called the ring of symmetric polynomials in » variables over F.

Definition 3.9.1. Let
s =@+x)t+x):--(t+x,) € F[xy,...,x,][1].

Fork =1,...,n, the coefficient of " in s(t) is called the k™ elementary symmetric polynomial in n
variables, denoted si(x1, ..., x,).

For example:

S1(X1, ..., X)) =X+ X2+ -+ X,
S2(X1, .0y X)) = X1 X0+ X1 X3+ - F XXy F X X3+ XXy o X1 X
S3(X1,5 .00y Xp) = X1 X2X3 + 200+ X2 Xpo 1 Xy
Sn(xl’---’xn) = X1t Xy
In general,
Sk = Z Xiy Xiy * X
11 <ip<--<iy
Theorem 3.9.2.

1. S =F(sq,...,8,).

2. [F(x1,...,x,): 8] =nl
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3. G(F(x1,...,%x,),S)=8,.
4. F(xy,...,x,) is the splitting field of s(t) over S.
Proof. o(sy) = s VYo eS§,,s0 F(sy,...,s,) CS. Conversely, S, C G(F(xy,...,x,),S), s0
[F(x1,...,x,) :S]1 = |G(F(x1,...,%,),S8)| = 1|S,| =n!
.. To show 1, 2 and 3, it suffices to show
[F(xq,...,x,): F(sy,...5,] < n!
since this simultaneously shows

[S: F(sy,...8)]=1= 1.

and
[F(x1,...,x,):S]=n!>=> 2.
and
|G(F(x1,...,%,),8) =n! > 3.
The polynomial
s =@ +x)E+x) - (t+ x,)
factors linearly as shown in F(xy,..., x,). Butits coefficients are sy, ..., s,, which lie in S. s(#) cannot

split in any proper subfield of F(x,..., x,) since its roots are —xi, ..., —X,.
So F(xi,...,x,) is the splitting field of s(z) over F(sy,...,s,). By an earlier corollary, the degree
fo a splitting field extension of a polynomial of degree n is at most n!. Hence,

[F(x1,...,x,) : F(sq,...,8)] < nl.
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3.10 The Galois Group

Let F C K be a separable finite extension of fields. We observed earlier that F ¢ K&,
Definition 3.10.1. K is called a normal extension (or Galois extension) of F if F = K6&D),
eg. R c Cisnormal, Q C Q(Z%) is not.
Theorem 3.10.2. Let F C K be a normal extension and let H be a subgroup of G(K, F). Then
1. [K: K"] = |H|.
2. H=G(K,K").
Corollary 3.10.3. If F C K is normal then [K : F] = |G(K, F)|.
Proof of corollary. Let H = G(K, F). Then
[K : F] = [K : K% = |G(K, F)|.

Proof of theorem. No € H,x € K, o(x) = x. So H ¢ G(K, K™). Thus
[K : K" > |G(K, K™)| > |H|.

Since F C K is separable, so is K# ¢ K. Hence, Ja € K s.t. K = K"(a).
By an earlier theorem, the min. poly. of a has degree [K : K¥]. Let

H={oy,...,00}

where 0y = 1. Let
S101, o X))y e Sp(X1, e, X))

be the elementary symmetric polynomials in /4 variables. Let
aj = sioi(a),oa),...,o4a)) € K.
Let
p(x) = (x — o 1(@)(x — 02(@) ... (x —op(@) = X" —a X7+ x4+ -+ (=), € K[x].

In any group, left multiplication by any element permutes the elements of the group. By construction,
each «; is invariant under permutations of the o’s. So for all j, o(a;) = a; Yo € H, so a; € KH.
Hence p(x) € K"[x]. Since a = o1(a) is a root of p(x),

|H| = h = deg p(x) > deg(min. poly. of a over K™ =[K : K"].
o |H| = |G(K, K")| = [K : K¥], showing 1, and also H C G(K, K), showing 2. m]

130



Theorem 3.10.4. Suppose K is separable over F. Then F C K is a normal extension <= K is the
splitting field of some polynomial in F.

Proof.
=.

Suppose F' C K is a normal extension. K = F(a) for some a € K. Let
G(K’ F) = {0-1’0-2’ B O-n}’

where oy = 1. Let

(x = (@) (x = 02(a)) - - - (x = Tu(a))

" (D,

p(x)

X — X7+ apx
where a; = sj(0i(a),...,0.())) € K. As in the preceding proof, o(a;) = a; Yo € G(K, F), so
a; € K9*D = F,

by normality.

So p(x) € F[x] and p(x) splits in K. a = o(a) is a root of p(x). By defn. of F(a), a lies in
no proper subfield of K = F(a) which contains F. So p(x) does not split in any subfield of K.
Thus, K is the splitting field of p(x).

: Let K be the splitting field of some f(x) € F[x].

Lemma 3.10.5. Let p(x) € F[x] be an irreducible factor of f(x) and let a,...,a, € K be the
roots of p(x). ThenVj=1,...,r, do; € G(K, F) s.t. o j(a1) = a;.

Proof of lemma. By Theorem 3.3.13, 4 an isomorphism
T;: Flay) ¥ F(a))

s.t. Tj(@y) = a; and 7,(z) = z Yz € F. Hence, 7,(f(x)) = f(x).

K can be regarded as the splitting field of f(x) over both F(a;) and F(a;). So by Theorem
3.3.15, 7; can be extended to

oK K.

Since o ; extends 7;, 0; € G(K, F) and o j(a1) = a}, as required. o
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Proof of theorem (continued). ~ Assume by induction that if K, is the splitting field of some
polynomial f; € F[x] and [K; : Fi] < [K : F] then K| is normal over F;. If [K; : F|] = 1 then
K, = Fy is normal over F'|, to start induction.

So suppose [K : F] > 1. Then f(x) has a non-linear irreducible factor p(x). Let
deg p(x) =r> 1.
Let ay,...,a, € K be the roots of p(x). Regarding K as the splitting field of f(x) over F(a;),
induction implies that K is a normal extension of F(«;). Show K& = F,
F c F(ay), so G(K,F(a;)) € G(K,F). ie. 0 € G(K, F(a;)) = 0(2) = zVz € F(a;), and in
particular, 0(z) = z Vz € F. Thus,
KOKF)  gGEF@) — F(q)),

because F(a;) € K is normal.

Let z € K% We must show z € F. Since z € F(a)),

z=Ag+ Qi+ + /l,_lar_l,

for some Ay, ...,A,_; € F. For j=1,...,r,choose o; € G(K, F) s.t. o(a;) = a;. Then

r—1

z=0j@) =+ e+ + 0]

Let
q(x) = LoaxX Vo i+ (A — 2) € K[x]

Then a;isarootof g(x) Vj=1,...,r. Butdegq(x) < r-1and ay,...,, are distinct. This is
a contradiction unless all coefficients of g(x) are zero. In particular, z = 4y € F.

O

Definition 3.10.6. Let f(x) € F[x]. Let K be the splitting field of f over F and suppose that K
is separable over F. The Galois group of f(x) over F is G(K, F). This will sometimes be denoted
Gal(f(x)).

Theorem 3.10.7 (Fundamental Theorem of Galois Theory). Let f(x) € F. Let K O F be the splitting
field of f(x) over F. Suppose K is separable over F and let G = G(K, F) be the Galois group of f(x)
over F. Then the associations

M ~> G(K, M)
K «w~ H

set up a bijection between fields M s.t. F ¢ M C K and subgroups of G. It has the following
properties:
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1. M = KC&M,

2. H=G(K,K").

3. [K: M]=|G(K,M)|, and [M : F] =G : G(K, M) (the index of the subgroup G(K, M) in G).
4. M is a normal extension of F <= G(K, M) is a normal subgroup of G.

5. If M is a normal extension of F then G(M, F) = G/G(K, M).

Proof.
1. K is the splitting field of f(x) over F, so F can be regarded as the splitting field of f(x) over M.
So M c K is normal, ie. M = K¢&M),

2. This is just Theorem 3.10.2. 1 and 2 say that the associations are inverse bijections.

3,
IG(K, M)| = [K : K°®"] by Theorem 3.10.2
=[K:M] byl.
and [K:F] |G(KF)
(M:F]= =11 _ GG M.
[K:M] _ |G(K. M) (K, M)
4,

Lemma 3.10.8. M is normal < oc(M)c M Yo € G.

Proof of lemma.

=: Suppose M is normal. Let o € G. Let g(x) € F[x] be a polynomial whose splitting field is
M. Soin M,
qg(x) = (x —a)(x —az) - (x —ap).

By an earlier proposition, M = F(ay,as, ..., ;). Since o € G,
q(o(a)) = o(g(a;)) = o(0) = 0.

~.o(a;) is aroot of g(x). But M contains the full set of roots of g(x), so o(a;) € M. Thus,
o(M)c M.
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&: Suppose (M) ¢ M Vo € G. Let z € M°™F) and check that z € F. Let o € G. Since
oM)c M, ol|yeGM,F). So,

o(z) = olu(@) = z,

since z € MSMF) Soze M c K9 = F.

Proof of 4.
=: Suppose M is a normal extension of F. Let o € G, 7 € G(K, M). Then VYm € M,

o ro(m) = o1 (o (m))
= o 'o(m), since o-(m) € M and 7|y, = id

= m.

oo 'ro € G(K, M). Hence G(K, M) is a normal subgroup of G.

&: Suppose G(K, M) is a normal subgroup of G. Let o € G,z € M. Then V7 € G(K, M),
o 'ro e G(K, M), so
o lroz) =z

2. 70(2) = 0(2). Thus o(z) € KS&M = M (by 1). So (M) C M and M is normal over F
by the lemma.

5. Suppose M is normal over F. Given o € G(K, F), define ¥/(0) = oy. By the lemma,
o(M)c M,

soy(o) € GIM, F). If o € kery then oy = idy, ie. o € G(K, M). Hence, kery = G(K, M).
So by 1% isomorphism theorem,

G/G(K, M) = G/ kery = Imy C G(M, F).
But |G/G(K, M)| = [M : F] = |G(M, F)|, s0
G/G(K, M) = G(M, F).
O

Theorem 3.10.9. Let F C K be an extension field. Let f(x) € F[x]. Then the Galois group of f(x)
over K is isomorphic to a subgroup of the Galois group of f(x) over F.
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Proof. Let L be the splitting field of f(x) over K and E the splitting field of f(x) over F. Since f(x)
splitsin L, E c L. Letry,...,r, € E be the roots of f(x).

For o € G(L, K), o is determined by its action on ry,...,r;. Define ¥ : G(L,K) — G(E, F) by
Y(o) = olg. f Y(o) = Y(r) then olg = 7|, SO

o(rj)=1(r)) Vj.
..o = 1. Hence ¢ is a monomorphism. m|

Example 3.10.10. Let E be the finite field with p" elements, which was shown to be the splitting field
of x*" — x over F,,. Define ¢ € Aut(E) by

d(x) = xP.

Then it is clear that the automorphisms ¢, ¢>, ..., ¢" = id are distinct. But |G(E, F)l=[E:F,] =n,
and thus,

G(E,F,) = {¢,¢°,....¢").
In particular, this shows that G(E,F),) is cyclic.
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3.11 Constructions with Ruler and Compass

Let S ¢ C = R? be a finite subset. Let
S’ :={z € C| z can be constructed from the points of S using a ruler and compass}.

More precisely:

Let Sy = §. Using a ruler and compass, we can join pts. in S with lines or can construct circles
centred at a point in S, and passing through another point in S. Let S be the set of points which are
the intersections of these lines and circles.

LetS; =SoUS0,S2=5,US8,...,8,=5,.1US,;. Then let

s = Js
Let P =0=(0,0),P; =1 =(1,0). Let F = {Py, P1}. We say z is constructible if z € F'. Show
F is a field.
Proposition 3.11.1. Ifz,,z, € S’ then 452 € §'.

Proof.

Let ¢; := C,(z2), the circle centred at z; through z,, and let ¢, := C,,(z;). Let A, B be the two
intersection points of ¢; and ¢;. Then L(A, B), the line through A and B, intersects L(z;,z2) at “52. O

Proposition 3.11.2. Ifz,,20 € F thenz; + 2, € F.
Proof. C a2 (0) meets L (O, %) at 7; + 2o (and 0). O
Proposition 3.11.3. Ifz € F then —z € F.
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Proof. Intersect L(0, z) with Cy(2). O
Proposition 3.114. z = (x,y) € F < (x,0) € F and (0,y) € F.

Proof.
=: Suppose z = (x,y) € F. C,(0) meets L(0, P,) at (2x,0), so (2x,0) € F. By Prop. 3.11.1,
(x,0) € F. Hence also,
0,y) = (x,y) —(x,0) € F.

«: If (x,0),(0,y) € F then by Prop. 3.11.2,

(x,y) = (x,0) +(0,y) € F.

m]
Let
L := {lines joining two points in F}.
Proposition 3.11.5. Let L € L, A € F. Then the line parallel to L through A lies in L.
Proof. Let P, Q € F be distinct points lying on L. Let
R=P-Q+A€F.
Then the line parallel to L through A is L(A, R). O

Proposition 3.11.6. Let L € L, A € F. Then the line through A perpendicular to L lies in L.

Proof.
Case 1: A ¢ L. Let C be the other point where C4(B) meets L and let D = %. (If C4(B) happens to be
tangent to L at B then let D = B).
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Then D € F and L(A, D) is the line perependicular to BC through A.

Case 2: A € L. Since L has at least two points of F, let A # B € L. Let C be the other point where
C4(B) meets L.

[

B\ /C

Then A = % and the construction of Prop. 3.11.1 produces the line through A perpendicular
to L.

Proposition 3.11.7. Let z = re®. Thenz € F < r € F and ¢” € F.
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Proof.
=: Suppose z € F. Cy(z) meets L(0, P,) at (r,0), ie. r € F. € is the point where L(0, re’) crosses
Co(P,). Hence € € F.

&: Letr € Fand ¢ € F. Then re® is the point where L(0, ¢) meets the circle centred at 0 through
(,0).

Proposition 3.11.8. 3P, Q,R€ F 5.t. /POR =60 < ¢ € F.

Proof.
=: Suppose P,Q,R € F s.t. ZPOR = 0. Let

P=P-Q,R=R-Q¢cF

O P.=(1,0)
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Let A be the point where Cy(P;) meets L(0, R"). Let B be the point where the perpendicular to
L(0, P’) through A meets L(O, P’). Then

cosd =|0B| € F.

Also, letting z = A — B,
sind = |AB| = |z] € F.

Then the y-axis is in £ by Prop. 3.11.6, and i sin 8 is the point where Cy(sin #) meets the y-axis,
whence isinf € F. So
e’ =cos@+isinf € F.

&: Suppose e € F. Let
P=(0,1), Q=0, R=¢"%=(cosh,sinb).
Then /POR = 6.

Proposition 3.11.9. Let (cos 0,sin6) € F and (cos 1,sin7) € F. Then (cos(6 + 7),sin(6 + 7)) € F.

Proof. S =2R

(B + (-8))
=n—(T+9)
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Let P = (cos6,siné), so (cos6,0) € F. Let Q = (2cos6,0) € F. Let R be the point where L(Q, P)
meets the line joining O to (cos 7,sin7). Let § = 2R. Then Q,R,S € F and ZQRS =60+ 1. So

(cos(6 + 7),sin(6 + 1)) € F.

Proposition 3.11.10. Ifz,,z, € F then 71250 € F.

Proof. Letz; = r1e", zp re®. Thenz; € F = (r;,0)€ Fandz, € F = (1,,0) € F.

rr

12

O 1 r

2

The line joining (7, 0) to (0, r1r,) is parallel to that joining (1, 0) to (0, ), so it lies in L. Hence,
its intersection with the y-axis lies in F, ie. (0, r1r,) € F.
71 € F = (cosb,sinb)) € Fand 20 € F = (cosb,,sinb,) € F by Prop. 3.11.7. So by
Prop. 3.11.9,
P = (cos(6, + 6,),sin(6; + 6,)) € F.

L(0, P) meets the circle centred at O through (0, r;7,) at z;25. O
Proposition 3.11.11. Ifz € F then ! € F.

Proof. Letz = re®.
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B
O 1 B

1

z
As above, z € F = (0,r) € F = the line joining (1, 0) to (0, r) lies in L. So the line joining (%, 0)
to (0, 1) lies in .L, and thus, (%, 0)eF.

e’ € F,soby Props. 3.11.3 and 3.11.4, ¢ € F. By Prop. 3.11.10,

| S
—=—-e"€eF.
zZ r

Thus, F is a field.
Proposition 3.11.12. Ifz> € F thenz € F

Proof. 7z = (ﬂ)z — (Z_—l)z

2 2
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r'+1

[] B | A

O P=1 ) r'+1

. . 2
Letz = re™, soz” = r’¢™ € F. Then (*,0) € Fso A = (*,0)+ (1,0) e F. Let B=4 € F. Let C
be the point where Cg(A) meets the perpendicular to L(0, A) through (1, 0). By Pythagoras,

pci = 1B - e = () - (=L}
T T2 2 )

C=(,r)sorekF.
Let§ =21. r?e*" € F = " € F,ie. Q = (cos 0, sinf) € F. Let
S = Q - P1
= (cos2t — 1,s8in 27)
= (2cos> 1,2 cos TsinT)
= 2cosT1(cosT,sinT).
So, if cost # 0 then £P,0S = 7, ie. L(0,S) bisects /P;0Q. If cost = 0 then 7 = i’—zr and it is

obvious that a line with angle 7 is in L. The circle centred at 0 passing through (7, 0) meets this line
atre’™ € F. m

Theorem 3.11.13. F is the smallest subfield of C which is closed under square roots and complex
conjugation.

Proof. By earlier propositions, F' is closed under square roots and complex conjugation. Conversely,
let K be a subfield of C closed under square roots and complex conjugation. Since S = {0, 1} € K, if
we can show that K’ = K, it will follow that F C K.
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Lemma 3.11.14. The equation of a line joining two points in K can be written in the form
ax+by=c
where a,b,c € KNR.

Proof. Let L join P = (py, p2) to Q = (q1,4q2), where p1, p2,q1,92 € K NR. (Since K is closed under
complex conjugation, it is clear that this can be done for any elements P,Q € K). Then L has the
equation

(g1 — Py — p2) = (g2 — p2)(x — p1),

which has the desired form. |

Lemma 3.11.15. The equation for a circle centred at a point of K passing through another point of
K can be written in the form
¥+y +ax+by+c=0

where a,b,c € KN R.

Proof. Let C be the circle centered at P = (p, p») passing through Q = (¢, g2)., where py, p2,q1,g> €
K N R. Then the radius of C is

r= (2= p?+ (@ - p)? € KNE.

So C has the equation
(x=p)+QG-p)=r,
which has the desired form. m]

Proof of Theorem (continued).

1. The intersection of ax + by = c,a’x + b’y = ¢’ is the solution of the simultaneous equations,
which is given by a quotient of determinants involving a, b, c,a’,b’,c’. So the intersection is
z=(p,q) where p,ge KNR. Hence z = p + iq € K.

2. The intersection(s) of ax + by = cand x> + y* + a’x + b’y + ¢’ = 0:

— 2 _
x2+(c bax) +a'x+b'(c bax)+c’:O.

(consider b = 0 separately: exercise). This is a quadratic, so if there is a solution then by
quadratic formula, it lies in K N R. Similarly, the solution for y lies in K N R.
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3. Intersection(s) of x> +y> +ax+by+c=0and x> +y* +a’x +b'y+ ¢ = 0:
By subtracting the equations, get

(a-ad)x+b-b)y+c—-c =0

so the intersection pts. are the same as that of the line (a — a’)x + (b — b')y + ¢ — ¢’ = 0 and the
circle x> + y? + ax + by + ¢ = 0, which transposes into case 2.

Theorem 3.11.16. If 7 € F then 7 is algebraic over Q and [Q(z) : Q] is a power of 2.

Proof. By the last theorem, if z € F then we can create a field K s.t. z € K by a finite number of
extensions, each of which adjoins the square root of some element. That is,

QcQ@ ckK
where Q C K is a composition of some sequence of degree 2 extensions. So
[K:Q]=2
for some ¢, and [Q(z) : Q] divides 2/, so it is a power of 2. O
Example 3.11.17. It is impossible by ruler and compass to trisect 60°.

Proof. Using earlier techniques, we can construct equilateral triangles and thus cos 60°, sin 60° € F.
If 60° could be trisected, then @ = cos 20° would be in F.
In general,
c0s 36 = 4cos’ 6 — 3cos 6.

For 6 = 20°, cos 30 = cos 60 = % So
1
~— =40’ - 3a

2
or

8a’ —6a—1=0.
But 8x° — 6x — 1 is irreducible over Q, so
[Q(a) : Q] =3,
which is not a power of 2. Hence a ¢ F. So 60° cannot be trisected using ruler and compass. O

Example 3.11.18. It is impossible by ruler and compass to “double” the cube (ie. to construct a cube
whose volume is twice that of a given cube). (Historically, this was called “duplicating” the cube).

Proof. Suppose the volume of the original cube is 1. Then the length of the edge of the new cube
is 23, whose min. poly. is x* — 2. Since 3 is not a power of 2, 23 is not constructible, so we cannot
duplicate the cube. m|
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3.12 Solvability by Radicals

g(x) = ¥ +bx + ¢ = x = 22V S if h ¢ € Q, then we can form the splitting field of f(x) by
adjoining to Q the square root of some elt. of Q.

g(x) = x> + ax®> + bx + c. We shall see, 3 a formula where, by successively adding roots (cube
roots and square roots) to our field, we can produce the splitting field of g(x). 4 a similar formula for
quartics.

Given a field F and a polynomial p(x) € F[x], we say that p(x) is solvable by radicals over F if
we can find a sequence of fields satisfying:

FQ =F
Fi = Fo(w;) wherew)' € F, for some r;

F, = Fi(w;) where w} € F, for some r,

F,=F,1(w,) wherew € F,_; for some r,

such that p(x) splits in F,. (We do not require that F',, be the splitting field of p(x); it could be larger.
Thus, F,, might not be normal.)

Let F = K(ay,...,a,) be the field of fractions in n variables. The general polynomial of degree n
over K,

pX)=x"+a X"+ +a,_1x+a,

can be regarded as an elements of F[x]. Finding a “formula” involving roots for the general polyno-
mial of degree n over K means showing that p(x) € F[x] is solvable by radicals. We shall show that
that this is not true if n > 5.
Note: This does not mean that it is impossible for some specific 5 degree polys. in K[x] to be
solvable by radicals.

Theorem 3.12.1. Suppose char F' = 0. Let p(x) = x" — 1 € F[x]. Then F (e%) is the splitting field of
p(x) over F, and the Galois group of p(x) over F is abelian.
Proof. Letw = e . Then all roots of p(x) are powers of w, so F(w) is the splitting field for p(x) over
F.
Leto,7 € G = G(F(w), F). o is determined by o(w), since o(f) = f Vf € F. o(w) is a root of
x" =1, solet
o(w) =w’/, for some j.

Similarly,

(W) = wk,  for some k.
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So
ot(w) = a'(wk) = (O'(W))k = (wj )k =whk = To(w).

ie. ot = 7o So G is abelian. m|

Theorem 3.12.2. Suppose char F = 0 and suppose w = e € F. Let u be a root of p(x) = x"—a
lying in an extension field of F. Then F(u) is the splitting field of p(x) over F and the Galois group of
X" —a over F is cyclic, with order dividing n.

Proof. Let F C K be an extension s.t. u € K. Then the n roots of x" — a are
2 n—1

u,wu,wu,...,wu,

which all lie in F(u). So F(u) is the splitting field of p(x) over F.
Let G = G(F(u), F). Let o € G. Then o(u) is a root of p(x), so o-(u) = w’u for some j, and o is
determined by o («). Define ¥ : G — Z/nZ by

Y(o) =j whereo(u) = wiu.

If y(1) = k then

ot(u) = oc(Wu) = c(wWho(u) = wwiu = w*ku.

SY(otr) = j+k = y(o) + (1), so ¢ is a group homomorphism. If (o) = (1) then o(u) = o(7) and
thus o = 7. Hence  is a monomorphism. Thus,

G = subgroup of a cyclic group of order n,

so G is cyclic with order dividing n. O

Theorem 3.12.3. Let p be prime. Suppose dp distinct elts. 7y, . ..,z, € F s.t.

p_ .
;=1 Vi

Let F C E be normal s.t. G = G(E, F) is cyclic of order p. Then E = F(u) where u” € F.

Proof. Letc € E — F. Since [E : F] = |G| = p, there are no fields lying strictly between F and E, so
E = F(c). Let o be a generator of G. Let

c1=c,c=0(c),c3 ZO'(Cz),---,Cj =0'(Cj—1)-

Let

— 2 p—1
a; =c +C2Zj+C3Zj+"'+Cij .
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Then, using the fact that Z? =1,

a;
-2 -1 J

o(a) =crtezp++epd ol ==
Zj

a

|\. ~

So O'(Clj.)) =(o(a))yP =+ = a?. Thus, g(af) = a‘;.’ Vg € G, ie. a? € F. Letting

Zz

~%

-1
1z 2 z
1 2o 2 el
2 2
M = . ,
2 p-1
1l z, z, Zp
we have
C1 a
M = :
Cp ap

Since M has entries in F and

det M = r (zi—zj) #0,

i<j

we can write ¢ = ¢ as an F-linear combination of a,, ..., a,. Since ¢ ¢ F, not all a; are in F.
Letu = a;j st a; ¢ F. Then E = F(u) (by the same reasoning that showed E = F(c)) and
ul = af eF. a

Theorem 3.12.4. Let p(x) € F|[x] be solvable by radicals over F, where char F = 0. Then 1 a
sequence of field extensions
F=Ly,cL Cc---CcL,=1L

where Ly = L_1(a,), s.t. a;” € Ly for some s, and L is normal over F and contains the splitting

field of p(x).
Proof. By definition, 7 a sequence
F=KycK,c---CcK, =K
where K; = K;_1(w;) with w;j € K;_, for some r;, and p(x) splits in K.
Write K = F(a) and let L be the splitting field of the min. poly. of a over F. Thus L is normal over

F. Let
G=G(WL,F)={oy,...,0..1}, Wwhere|G|=rt.
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Since K = F(wi,wa, ..., W),
L=F(OgW|,01Wi, ..oy O W1, 00W2, oy O iW2y e oo s O0Wins v v v s O] Win).
Label these generators a,, ie. let @, = ojwj,; where
A=1=i+tj, 0<i<t-1, 0<j<m-1
Inductively define Ly := F, Ly = Ly_1(a,y) for 1 < A < tm.

Given A, write A — 1 =i+¢jwhere0<i<t-1,0<j<m-1. Then

i+l __ ri. _
1 =owi) =0y (w

Tj+1

a 7)€ oK) = F(omwi,....omw)) € L.

Thus, setting s, = r;,; satisfies the statement of the theorem. O

Theorem 3.12.5. Let F be a field with char F = 0 and let f(x) € F[x]. Then f(x) is solvable by
radicals <= the Galois group of f(x) over F is a solvable group.

Proof.
=: Suppose f(x) is solvable by radicals. Then 3 a sequence of field extensions

F=LycL c---clL,=1L

where L; = L;_(a)), s.t. a;’ € L;_; and L is normal over F and f(x) splits in L. Since L is
normal, L is the splitting field of some g(x) € F[x]. Let n = lem{ry, ..., r;} and let

2mi
w=enr.

Let G = G(L, F) and H = G(L(w), F). L is normal over F, so by the Fund. Thm. (part 5),
G = H/G(L(w), L).

G(L(w), L) is abelian, so to show G is solvable, it suffices to show that H is solvable.

Let
Hy = G(L(w), F)

and fori > 1,
H; = G(L(w), Li—1(w)).

Then Hy = H and Hy,; = {e}. F(w) is normal over F, and by Theorem 3.12.2, L;(w) is normal
over L;_;(w) for each i. So by the Fund. Thm. (parts 4 and 5), H;;; < H; and

H;/H; = G(Li(w), Li_i(w)),
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for i > 1, whereas

Ho/H; = G(F(w), F).
By Theorem 3.12.2, G(L;(w), L;_;(w)) is cyclic and thus abelian. G(F(w), F) is also abelian.
Hence, H is solvable, and so G is solvable.

<: Suppose that the Galois group of f(x) over F'is a solvable group. Let E be the splitting field of
f(x)over F. Let G = G(E, F) and let n = |G|. Let Fy = F and F| = Fo(w) where w = e Let
K = E(w). By the Fund. Thm. (part 5),

G(K,F)/G = G(E(w), E),
which is abelian, so G(K, F) is solvable. By Theorem 3.10.9, G(K, F;) is isomorphic to a
subgroup H of G(K, F), so it too is solvable.

So 1 subgroups
{e}=H,,1.<H. <«---<Hy<H =H

s.t. H;/Hj, is cyclic of prime order.
By the Fund. Thm., corresponding to this is a sequence of fields
FicF,Cc---CF,y

where F; = K% so that H i = G(K,F;). F;isnormal over F;.; with cyclic Galois group
of prime order p;. Since p; | |G| = n and e € F;, F; contains all the p?‘ roots of 1. By
Theorem 3.12.3, this implies that

Fi = Fia))
where ozfj € F';. Since F,,; = K contains the splitting field of f(x), f(x) is solvable by radicals
over F.
O
Theorem 3.12.6. The Galois group of p(x) = x* + a;x"*' + -+ + a,_1x + a, over K(a, .. .,a,)[x] is
S
Proof. Letry,...,r,be the roots of p(x) in some extension field M of K(ay, ..., a,). Then the splitting
field of p(x) is K(ry,...,r,), and
aj==+si(ry,...,r,) (the jth symmetric poly.).

.. The Galois group of p(x) is S, by Theorem 3.9.2. O

Corollary 3.12.7. The general n™ order polynomial is not solvable by radicals if n > 5.
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3.13 Calculation of Galois Groups: Cubics and Quartics

Let f(x) € F[x]. Let E be the splitting field of f(x) over F. Suppose E is separable over F. Let
G = G(E, F) be the Galois group of f(x) over F and let ay, ..., @, € E be the roots of f(x).
As noted earlier, each o € G permutes a4, ..., @,, and this association yields a homo.

GcS,.
What properties must this subgroup have?
Definition 3.13.1. A subgroup G C S, is called transitive if Vi, j do- € G s.t. o(i) = .

Example 3.13.2. {e,(1234),(13)(24),(1432)} CSyistransitive.
{e,(12),(34),(12)(34)} cS,isnot transitive.

If k < nthen §; C §, cannot be transitive. So, to have a chance for G to be transitive in S geg f(v),
f(x) must have distinct roots.

Theorem 3.13.3. Let n = deg f(x). Then G C S, is transitive <= f(x) is irreducible in F[x].

Proof.
&: Suppose f(x) is irreducible. Then by Theorem 3.3.15, for any pair of roots «, 8 of f(x), do € G
s.t. o(@) = B. So G is transitive.

=: Suppose G is transitive. If f(x) is reducible, write
f(x) = g(0)h(x)

where g(x) is irreducible. Let @ be a root of g(x). If B is any root of f(x), then find o € G
s.t. o(a) = B. Since g € F[x] and o fixes F, this means that S is also a root of g(x). This shows
that every root of f(x) is a root of g(x). But G transitive = the roots of f(x) are distinct, so
roots of h(x) are not roots of g(x), which is a contradiction. Hence f(x) is irreducible.

Let h(y1,...,y.) € Fly1,...,y.]. Let
H={oceS,|ch=h}
where o acts by permuting the variables, ie.

h-o= (U_lh)(Yl, ce V) = h(ycr(l), ce ,ya(n))-

H < §, is called the isotropy subgroup of 4.
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Example 3.134. n =4, h = y; + y,. Then H = {e, (1 2),(34),(1 2)(3 4)}.
Letd = h(ay,...,a,) € E.If c € GN H then () = 6, so
o € G(E, F(9)).
When is G(E, F(6)) =G N H?

Example 3.13.5.
1. n=3
h(y1,y2,¥3) = 1 = y2)(1 = y3)(2 — ¥3).

Then H = {e,(123),(132)} = As. Let f(x) be an irreducible cubic over F with roots ay, a;, as.
Assume char F # 2. Let
A = h(ay, @, a3).

Foro € G, ifo € Hthen o(A) = A. If o ¢ H then o(A) = —A # A. So
ocA)=A &< oceGNH.
~ GNH=GE,F(\)).
2. n=4,h=y, +y; Let f(x) = x* —x*> + 1 over F = Q. Then
H=1{e,(14),(23),(14)23)}.
Also,
f) =2 —2+1 = (P +1)* =322 = (P +1+ V302 +1- V3x) = (P + V3x+1)(x>— V3x+1).

So the roots are
~V3+V3-4 B3++V3-4
2 ’ 2 ’
—V3+i —V3—i V3 +i V3—i

5 , A2 = ) , A3 = 5

and with this numbering of the roots, H C G. So

Let

) =

0 =h(ay,ar,a3,a4) = a; + a4 = 0.

Consider complex conjugation o. o € G and acts on the roots as o = (1 2)(34), so o ¢ H. But
0(0) = 0. So in this case,

H=GNHG%G(E,F(0)) =G(E,F(0)) = G(E, F).
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More generally, suppose
5./' = hj(al, ce ,a,,) eE

for j=1,...,k, where hj € F[y,...,y,]. Define the isotropy subgroup by
H={ceS,|chj=h;¥j=1,...,k}L
In general:

Theorem 3.13.6. Let
51' = hj(al,.. .,a,,) e E

where hj(yy,...,yn) € Flyi,...,y,l. Let H C S, be the isotropy subgroup of {h;}. Suppose that for all
oc€G-H, qjs.t.0(6;) # 0. Then

G(E,F(61,...,0,))=GNH.

Proof. GNH Cc G(E,F(dy,...,0,)) in general. Suppose o € G(E, F(dy,...,0,)) € G(E,F) = G.
Then 0(6;) = 0; Vjso o € H, since if o ¢ H then dj s.t. o(6;) # ¢;. O

Note: It is often not so easy to check whether or not the condition 07(6) # 6 Yo € G — H is satisfied.

3.14 Cubics

3.14.1 Galois Theory of Cubics

Let
k(2) =7 +at+bz+c

be irreducible, a,b,c € F. Assume char F # 2,3. Letz = x — %‘ to get

f()=x+px+q

where p = 31’5“2,51 = 2“3‘92“7“27". This adds § to each root, but does not affect the Galois group since
2eF
3 .

Let E be the splitting field of f and let G = G(E, F) be the Galois group of f. Since G C §3, and
G is transitive, there are only 2 possibilities: G = ;3 or G = Aj.
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F(O<19<2):E

2 F(O< 1) =E
3
Either F(&) or
3 F
F
G=S, G=A,

ie. Depending on a, b, c, either F(a,) already contains a, and a3 so that E = F(a;) and G = A; or
it does not and we have a further degree 2 extension. How do we tell which?
Let

A= (a) — a)(a) — a3)(ay — @3).

f(x) is irreducible and char F' # 3 = the roots are distinct = A # 0.
H={e,(123),(132)}=A5CQ.

If o ¢ H then 0(A) = —A # A.. The theorem implies G(E, F(A)) = G N H = Aj. So in either case we
have:
E

F(A)
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If A € Fthen F(A) = F so
G(E,F) =G(E,F(A) = As.

IfA¢ Fthen[F(A): F]>1s0o[E:F]>3,50G =S5.
Note: o(A) = +A Vo € G so
o(A*) = A*Vo €G.

. A% € F in any case. (This also shows that if A ¢ F then [F(A) : F] = 2, confirming what we already
know from above).

G=A, G=S

E=Fl, o, )=F{ o )

E 2
3 2 2
3 E(e, (23»: F(O(l) E(e,us»: F(O(z) E{e,(lz)}: F(O(a)

E"=FQ)
3 3
F = F) 5 \\\\4fii;//§////

F
So, how to tell if A € F? For a general polynomial f(x) € F[x], let it factor in its splitting field as

fo =] |x-a.
i=1

Let

A= n(ai - a;).

i<j

The sign of A depends on our choice of the order of the roots. Set D = A%, Then D is fixed by
all permutations of {a;}, (since for each permutation o, 0(A) = +A). So D € F. D is called the
discriminant of f(x).

n=2: f(x)=x*>+bx+c;
b+ ViR —dc
- 2

A= —a, = Vb? —4cand D = b* - 4ec.

—b— Vb —4c
> .

(03] a =
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n=23: f(x) = x>+ ax*+ bx + c. As before, let x = y — 5 to get
gy =y +py+q
_1 _ 1
where p = $(3b — a*) and g = 5=(2a> — 9ab + 27¢).

g =0-a)y-BHly-v)

in an extension field.

si=a+p+v=0,
s> =af + By +ay=p,

3 = afy = —q.
Then
3y' +p =80
=0-a-H+0-a)-M+O-BHy-7)
L ga)=(a-B)a-y)
gP)=B-a)B-7y)
gy =@-a(y-p)
oo D=-g'(a)g' (B (y).
That is,

D =—-(3a” + p)3B* + p)(3Y* + p)
= —270°B%* - Ip(@*B* + &*Y? + B2) = 3pP(@? + B +yP) - PP
= —27s§ - 9p(s§ —285183) — 3p2(s% —28,) — p3
= =274 = 9p(p* - 0) - 3p*(=2p) - p’
= —4p* - 274
= —4a’c + a*b* + 18abc — 4b° — 272,

3.14.2 Solution of Cubics

0=2x" +px+qg=(x-—a)(x—a)(x—az).
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That is,

a)+ay +a3 = 0
a|ay + a1az + a3 = p
a3 = —q

Find a4, as, as.
Let

A= (a1 —a)(a —a3)(a, —a3) = V—4P3 -27q%.

27 : . .
Let w = e3 so that w® = ¥ = 1, ie. w satisfies

0=c’-1=(w-D)W+w+1.

Explicitly,
-1+ V-3
w=—,
2
Let
71 = a) + way + (,()20’3
2 = ) + Wras + was
3 =a1 +ay + a3 =0
ie.
21 a 1 w o
2 |=Al @ whereA=| 1 «? w
0 a3 1 1 1
aq 4|
If we can find z;,2, then| @, |=A7"| 2o | Explicitly,
a3 0

1
) = 5(21 + 22)

1 2
oy = —((.U 71 + (UZZ)

3

1
a3 = g((x)Zl + (1)222).
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To find z;, 25:

7 =a; + wa; + ') + 3wa @, + 30107

+3w’aia; + 3wlaia; + 3wlagas + 30 @as + 60 zas.
Using the facts that a? = —pa; - q,w’ =1, and w* = —w — 1, this becomes
3 _
{=—pay —4q—pa—q—pas—(q
+ 3 2 2 2 3 2 2 2 2 6
w(ajay + o105 + ara3) + 3w (@ a; + ajas + aras) + 6 ara;

=—pla; +a, +a3) —3qg — 3a)(a/% + a/lag + a§a3) + 3a)2(aqa/§ + a/%cy3 + azag) — 6g

—9¢g + 3wu + 3w’y

where
u=aja,+aai+aa; and
V= 0’10/% + CV%CL’3 + a’za’%.
Now,
0=( +ar +a/3)3
— 3. 3.3 2 2 2 2 2 2
=a; +a, + a3 + 3aja, + 3ajas + 3aya3 + 305 + a5 + 3azas + 6 aras
= —pay —q— pay —q— paz—q+3u+3v-06g
=—-9¢g + 3u + 3v.
Su+v=3q. Also,
A = (a1 — )@ — a3)(az — a3)

= Q%G’Z - CL’?CZ} - CZ]Q’% + ala% + a§a3 - G’zag

u-—v.

Using the equations u + v =3g and u — v = A, get

3 A
u—_ —_—
)
3 A
v==-q—-—.
29735
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So

7 = —9q + 3wu + 3wy

9 3
2 2
—q - w'=A
2172
9 3 9 9 3 3
=— — —A—w=qg—-=q—-w= —A
9q+w2q+w2A a)zq 2q w2A+2
27q 3
=——+3wA+ A
2 + ow +2

27q 3
= —7" +AQw+ 1)

__27q  3V3i
2 2

9 3
:—9q+w§q+w§A+w

A.

Similarly, we find
_5 27qg 33

R

L= (—277" + %@A)% and 7z, = (_qu - 3T‘E"A)%. This determines a, @», @3 in terms of p and gq.

To illustrate the Galois theory, we now find a formula for @, in terms of a;, that makes is obvious
that a, € F(a;) &< A€F.

A.

A = (a1 — @)1 — a3)(az2 — @3)
= (a1 — a)2a; + &)(a; + 2a3), sincea; +a; +az =0
=203 + 5aja; + 20105 — 20 — S5 - 2a;
=-2a1p—-2q+ 3ozfa2 - 3a1a§ + 2as0p + 2q
= 2ap+ 3&%&2 - 3a/1a§ + 2a;,p.
Also,
2 2 2 2
q=—aapa3 = CV](IQ(CV] + CZQ) =a|a + a1, = a1, = g —a|as.

So,
A= 2ap+ 3aﬁa/2 —-3qg+ 3&?&2 + 2a,p
= —2a,p + 6ata, — 3q + 2z p.
S 6aia; + 2aap = A+ 2a,p + 3q. This gives

_ A+2a1p+3q

TG+ p) )
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Thus, if A € F then a; € F(a;). Conversely, if @, € F(a;) then (*) = A € F(a;). But
[F(a)): F]=3

and A? € F, so this implies that A € F.

3.15 Quartics

3.15.1 Solution of Quartics

‘We want to solve
Hra+a?+azz+a,=0.

Let z = x — § to get the form
4+ pxt+gx+r=0.

Let the roots be ry, », 13, 74, SO
S1 :I"1+l"2+l”3+7'4:0
Sy =11y +rr3+rirg +rr3+nrry+rirg =p

S3 = I'\Ipl3 + Irfy + 1r3rg + rrsrg = —q

Sq4 = MIr3rg = r.
Suppose we can determine

(r1 +r)(r3 +1r4) =6,
(r+nr3)rp+ry) =6,
(r1 + 1r4)(ry + 13) = 65.

Then letting a = | + r5,b = r3 + 14, getab = @, and a + b = 0. So —a*> = ab = 6, so

a = \/—9], b:—\/—Gl,

where V-6, is one of the square roots of —6; in C.
Similarly,

ry +r3 = —0,, 7'2+}"4:—\/—92,
ratry = \/—03, rn+r3= —\1—93,
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for choices of v—6,, V—65. So

-0, + —92+\/—03:r1+r2+r1+r3+r1+r4
:21"1+I"1+l"2+7"3+7"4
:2}"1.

VO + N+ N
_ . ,

N

Similarly, we can solve for r,, 3, r4 if we know 6y, 8,, 65. So it suffices to find 6, 65, 65.
Consider the cubic equation

f(x) = (x=0))(x = 6)(x = 63) = 0.

If we can write the coefficients of this eqn. in terms of p, g, r, then we can use the soln. of cubics
to determine 6y, 6,, 65 in terms of p, g, r and thus write ry, 15, 13, r4 in terms of p, g, r.
Consider the action of S 4 as permutations of ry, r, r3, r4. Consider first the transposition o~ which
interchanges ry and r:
o(01) =601 0(6) =6 0(63) = 6s.

~oo(f(x) = f(0).

Similarly, o(f(x)) = f(x) for every transposition in S4. Since S, is generated by transpositions,
o(f(x)) = f(x) Vo € §4. That is, the coeffs. of f(x) are left fixed by all permutations of r, r,, r3, r4.
So the coeffs. of f(x) are symmetric polynomials in ry, r,, 3, r4, and so can be expressed in terms
of p, g, r. This gives:

Theorem 3.15.1. The coefficients of f(x) are polynomials in p, q,r.

To find the coefficients:

Method 1: Expand

f) == (r +r)(r3 + 1)) (x = (11 + 13)(ry + 1)) (x = (ry + r4)(r2 + 13))
= big mess

=poly. in p,q,r, x.
Or

Method 2: Geometric method using conics.
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3.15.2 Conics (over R)

Definition 3.15.2. A conic is a polynomial of degree < 2 in two variables (over R),
g(x,y) = ax* + bxy + cy* + dx + ey + f.
To conic ¢(x,y), associate the 3-variable quadratic form:
OX,Y,Z) = aX* + bXY + cY* + dXZ + cYZ + fZ°.

ie. 0(X,Y,Z) = Z*q(%, %). The associated matrix to g is

IS Q
N O IS
I

and this gives

X
OX.Y.2)=(X Y Z)Mq[ Y].
Z

M, is symmetric, so it is diagonalizable. ie. AU s.t.

4 0 0
0 4 0 ]

0 0 A4

X X’
Y |[=U| Y |.
Z A
Q' X,Y,Z)=LX"+ LY+ 1,27

det M, = A1 4,45. If det M, = O then Q = 0 degenerates into a product of lines.
e.g. Suppose A3 = 0. If 4;, A, have the same sign then Q' = 0 <= X’ = 0,Y’ = 0, giving one
line. If 4;, A, have different signs then

U'M,U =

This corresponds to change of variables

In the new basis,

0=0 =1,X*+ ,Y?

factors into linear factors, giving two planes. So g(x, y) degenerates when det M, = 0.
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Conversely, if g(x, y) factors as a product

q(x,y) = (@x + By + y)(0x + €y + ¢)

then Q factors as
(aX + BY +vZ)(0X + €Y + ¢Z),

and by inspection, this can only happen when one of the A;’s is 0. So ¢(x,y) is degenerate —
detM, = 0.
Consider the quartic
4+ pxl+gx+r=0.

Let y = x%. Then solving x* + px> + gx + r = 0 is equivalent to solving the system

g =y +py+qx+r=0,
g=y—-x*=0.

.. Look for the intersection of 2 conics.

Let the intersection points be
- 2 _ 2 _ 2 _ 2
Py =(ri,ry), Py=(r,ry), P3=(r3,13), Pi=(rs,717).

Consider the family of conics g; = g; —tg,. Then g,(P;) = O regardless of 7. Since M, is a 3 X3 matrix,
det M,, = Ois a cubic eqn. in 7. Let a, @, @3 be the roots of det M,,. We will show that ay, a», a3 are
61, 02, 6.
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For j = 1,2,3, det Mqaj = 0, 80 g, 18 a product of lines. We know that Py, P, P3, P, satisfy
q: = 0 V1 so they must lie on the lines. So the lines have to be those joining the points P;. Let L;; = 0
be the line joining P; to P;. Then (upon renumbering if necessary),
Goy = LiaLaas  Goy = Li3Loa,  Goy = LiaLo.

L, is

)

r —_—

2 2 1 2

y—r :(—r p )(x—rl)=(r2+r1)(x—r1):(r1+r2)x—r1r2—r1
2= T

Thatis, L1, 1Sy — (r; + rp)x + rirp = 0. Similarly, Lsg 1Sy — (r3 + r4)x + r3ry = 0.

To show a; = 6;:

q1 — @192 = {4q,
= (= (1 +r)x+rr)y—(r3 +r)x + rry)
= y2 —(n+rn+rs+ry)xy+( +r)(rs+ Fa)X2 — (F\PaFs + FiFaFs + FIT3Fs + FaF3ra)X

+ (riry + r31r4)y + 1112131y

= y2 + 91x2 +gx+(p—rir3s —riry —rry—rnry)y+r
=V 40X+ gx+py—(r +r)Is +r)y +r
:y2+€1x2+qx+py—91y+r
=q1 — 019>.

Soaq = 0;. Similarly, a, = 6, and a3 = 65. So to find 6, 6,, 65, we must solve det M, = 0

G=q—t@ =y +py+qx+r—ty—-x)=y +t’ +qx+ (p—y+r.

So
t 0 g
—1
detM, =0 1 &=
N i G
2 2
2 2
q (p—t
=tr———|—| ¢t
T 2
t 2 p2t+2pt2 £
=tr-— - — _ =
4 4 4 4
1
= Z(t3 —2pt + (p* = 4Pt + ¢)

SodetM,, =0 = 1" =2pr* + (p* = 4nt +¢* = 0.
Summary: To solve
Fra+a+az+a, =0,
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1. Letz = x — § to get the form
4+ px+gx+r=0.

2. Solve the cubic
£ =2pf +(p*—4nNt+4¢* =0

to get 61, 65, 65.
3. = —‘/__9‘“/?“/__93 for

the other roots.

some choice of square roots of —6,, —6,, —65, and similar formulae for

Notice that

Oy — 6 = (r1 + r2)(r3 + 1) = (r1 + r3)(ra + 13)
=13+ g+ 1raF3 + rafy — Fly — FFy — a3 — 1314

= —(r1 = ra)(ra = r3).
Similarly, 91 - 93 = —(7'1 - 7‘3)(7"2 - 7'4) and 92 - 93 = —(7"1 - 7‘2)(7"3 - 7'4). So
Dypic = 1—[(01 - 0]) = l—l(ri - rj) = Doriginal quartic-
i#j i#j
Thus

D = —4(=2p)’q* + (=2p)*(p* = 4r)* + 18(=2p)(p* — 4r)q* — 4(p* — 4r)’ = 27(¢*)°
=32p°q% + 4p* — 32p*r + 64p°r? = 36p°¢* + 144pg*r — 4p° + 48p*r — 192p%r* + 2561° — 274*
= 16p*r —4p°q> — 128p*r + 144pg*r — 274" + 2561°
= —128b%d* — 4a’g® + 16x*d — 4b*c* — 27a*d* + 18abc® + 144a*bd” — 192acd® + a*b*c* — 4a*b’d
— 6a’c*d + 144bc*d + 256d° — 27¢* — 80ab*cd + 18a’bed.

3.15.3 Galois Theory of Quartics

Let
f(x) = x4+px2+qx+r

be irreducible, char F' # 2, 3. Let E be the splitting field of f(x) over F. Let G = G(E, F) be the Galois

group.
G C S, is transitive. The transitive subgroups of S 4 are:

1. S4.
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2. Ay

3. The Sylow 2-subgroups, isomorphic to Dsg:

{e,(1234),(13)24),(1432),(13),(24),(12)(34),(14)23)},
{e,(1324),(12)34),(1423),(12),(34),(13)(24),(14)23)},
{e,(1243),(14)(23),(1342),(14),(23),(12)(34),(13)24)}.

4. Groups isomorphic to Cs:

{e,(1234),(13)(24),(1432)},{e,(1324),(12)(34),(1423)},{e,(1243),(14)(23),(1342)}.

5.{e,(12)(34),(13)24),(14)(23)}=C,xCr=V.

Let
g(x) = (x = O)(x — ) (x — 03) = X° = 2px* + (P> — 4r)x + ¢,
where
01 = (r1 + r)(r3 + 1),
0, = (r1 + r3)(ry + 1),
03 = (r1 + r4)(ry + 13).
Let

A= ]oi=r) =0 - 061 - 6562 - 63).

i<j

char F # 2 and f irreducible = roots are distinct, so A # 0. The discriminant is
D=A€eF

Let K = F(6,,6,,065) be the splitting field of g(x). 6; € E for j = 1,2,3 so K C E. Notice that
V = C, X C; is the isotropy group of
{61, 6,,05}.

ie. If o € V then o(6;) = 6}, butif o € §4 — V then for some j, 0(6;) # 6;. According to Theorem
3.13.6, this implies G(E,K) =G N V.
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GNnyv

G K=F(®.8.0,)

G

]

F
By the Fund. Thm.,

G,=GKK,F)=G/(GNYV).

We can calculate G, from the section on cubics. Will this determine G? By inspection:

G G/(GNYV)
1 Sy S3
2 Ay Cs
3 Dg C2
4 C4 ()
5V {e}

So G, = G/(GN V) will tell us G unless G, = C5, in which case it cannot distinguish between Dy
and C,.

Study G, = C, more closely to obtain a method of distinguishing. So assume G, = C,. Since g(x)
is a cubic and |C,| = 2, this means that one root of g(x), say 6, already lies in F. ie. In F, g(x) factors
as

g(x) = (x = 01)g1(x)

where g;(x) is an irreducible quadratic (with roots 6,, 65, which are not in F).
Suppose G = Cy.
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C. E"=F@,)=F0.6.8. )=K( )

F=F
Recall (r; + 1,)*> = =6, so [F(r; +12) : F] (§821)If ri+r, € F then r| + r; is fixed by all o € G. But
G = C, contains a 4-cycle, and no 4-cycle fixes r; +r;,. e.g. Say o = (1 23 4). Then o(r1+r;) = rp+rs.
Thus r; + r, ¢ F, and so
[F(ri + rp): F] =2.

C4 has a unique subgroup of index 2, so E has a unique subfield of order 2 over F. So
F(ri + 1) =E® = F(6,) = F(A).
Hence r; + r, = a + bA for some a,b € F.
—07 = (r; + r))* = @ + 2abA + b*A* = a* + b*D + 2abA

where D = A’ € F. So
2abA = -0, —a* - b*°D € F.

ButA ¢ F,soeithera=00rb=0.b#0,sinceb=0putsr; +r, =a € F,soa =0. Thus
—6, = b°D

. =0 .

S isasquarein F.

In conclusion, G = C;, = %l is a square in F.

Conversely, suppose %l = b? for some b € F. Then

(r1 + 1)? = b*D = b*A?

sory + 1y, =+bA € F(A).
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Suppose that G = Dg. Then by inspection, G contains 2 disjoint transpositions. (1 2) ¢ G,
since this contradicts r; + r, = +bA (any transposition applied to A produces —A). So, some other
transposition, say (1 3) lies is G (since G contains 2 disjoint transpositions, one of them must include

1).
rs+ry=(13)-(r + ) = (1 3)(xbA) = FDA.

So
—83 = (I’g + 1’2)2 = b2A2 = bZD eF.

This is a contradiction, so G # Dsg, and thus, G = Cy4. ie. G = C; < —% is a square in F.

Summary: To compute G,

1. Compute
glx) = X - 2px2 + (p2 —4r)x + qz.

2. Factor g(x) in F:

Case I: g(x) factors completely in F. Then G, = {e}, soG = V.

Case II: g(x) has one linear factor in F,
g(x) = (x — 0)g1(x).

(a) The factorization determines 6 € F.

(b) Compute D € F, the discriminant of g, by earlier formula.

(c) If —% is a square in G, then G = Cy; otherwise, G = Ds.
Case III: g(x) is irreducible over F.

(a) Compute D € F as above.
(b) If Dis a square in F then G, = C3 = A3, s0 G = A4. Otherwise, G, = S350G = S 4.
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For G = S 4:
ri +ry # 0, since 6; # 0 (g is irreducible when G = §4). Similarly, r; + r; # 0 Vi, j. So

r+r#r+r;
unlessi=1,j=2or j=1,i=2. Hence o(0;) # 0; if o € isotropy group of 6;, which is Dg. Thus,

G(E, F(6))) = Ds.

Let
H = isotropy group of r; + r, = {e,(1 2),(34),(12)34)} =C, X C,.
E
2 2
/ 3
C, ={e, (12)(34)} C3=<(123)> C, ={e, (34)}

E

/

=F(r.p)
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For G = Ay:
In this case,

V = G(E, F(6,)) = isotropy group of 6;.

E
/k
= F(t)

E = F(; +1)

E =F(, 2
E'=F(®,)
4 3
F=FQ)
For G = Dx:
E
/ ,
E<(34)>: F(rl) <(13)(24)>: F(rl +r3)
2 2 2
E<(12),(34)>: (rl +r2) EC4 E = F(A) = F@z ) = F@3 )
\2
F=F(®.)
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For G = Cy:
E

2

E"=FQ)=F(+)
=F(r+) = F(r+r )

2
F=F(.)
For G = C, X Cy:
E
2 5 2
<(12)(34)>: F(rl+r2 ) E (13)(24)>: F(I‘1+I'3 ) E<(l4>(23>>: F(I‘l+l’4 )

N

F=F®.8.0, )=F )
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3.16 Resultants and Discriminants

Let F be a field. Let f(x) = a,x" + --- + ap and g(x) = b, X" + - -- + by belong to F[x].
Let d(x) = ged(f(x), g(x)). Suppose deg d(x) > 0. Write

Jf(x) = b(x)d(x),
g(x) = a(x)d(x),

with deg b(x) < n, deg a(x) < m. Then
a(x)f(x) = a(x)b(x)d(x) = b(x)g(x).
Conversely, suppose Ja(x), b(x) s.t. deg a(x) < m, deg b(x) < n. and
a(x)f(x) = a(x)b(x)d(x) = b(x)g(x).
So £(x) | b(x)g(x). If ged(f(x), g(x)) = 1 then £(x) | b(x), contradicting deg b < deg f. Thus:
Proposition 3.16.1. f(x), g(x) have a common factor <= da(x), b(x) s.1.
a(x) f(x) = b(x)g(x),
with deg a < deg g and deg b < deg f.
Let a(x)f(x) = b(x)g(x) with
a(x) = ap + @ x+ -+ @ XL

b(x) = o+ Bix+ -+ B X",

(coeffs. aj,B; € F, possibly are 0). So

n+m—1{ k nim—1( k
> [Z ak_ja,-]xk = a()f(x) = b(x)gx) = [ ﬁk-jbj] i
=0

k=0 \j=0 k=0
That is,
k k
> ajaj= Y Pipj=0  fork=n+m—1ln+m=2,..,0.
= =0
Treat this as a system of n + m equations in the n + m variables {@,,_1, ..., @y, Bu-1, - - -, Bo}. Then the

existence of a common factor of f(x), g(x) is equivalent to the existence of a non-zero solution to this
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system.

.. Common factor exists <= determinant of this system is zero.

The determinant of the system is

Det =

Multiply by (—1)" and transpose to get:

Proposition 3.16.2. f(x), g(x) have a common factor

R(f,g) =

ap dp-1 -+ Ao
ay, ap
bm bm—l bO
by,

R(f, g) is called the resultant of f and g. Denote

a, dp-1 - do
a, ap
ay
bm bm—l bO
by,
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0
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—b,,
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so that R(f, g) = detR.

anxn+m—l + an_lxn+m—2 4o+ aoxm—l xm—lf(x)
X"+m_1 anxn+m—2 + an_lxn+m—3 4+ 4 aoxm—2 xm—zf(x)
xn+m—2 : :
R : = apx" + -+ ag = f& | ()
X bl 44 pox! X lg(x)
1 .

b, X" + -+ by g(x)
Let R be the matrix of cofactors of R. That is,

(R); ;= det ((n +m — 1) X (n + m — 1) matrix formed by deleting row j and column i from R).

So RR = RR = (detR)I. Apply R to (¥) gives

X" f(x)
xn+m—l xm_2f(x)
xn+m—2 . *
(detR) = R f(x) = :
X xn_lg(x) 1 * -1
| . YIX"T () + o+ Y f () + Vi1 XT(X) + e+ Yimg(X)
8(x)
where
* *
R =
Y1 o Ynim

Equating the bottom row gives
detR = r(x)f(x) + s(x)g(x)

for some polynomials r(x), s(x).

Let ry,...,r, be the roots of f(x) and let #,,...,1, be the roots of g(x). If r; = ¢; for any i and j
then in an extension field, f(x) and g(x) have a common factor, so detR = 0. For all i, j, r; — ¢; divides
det R in the splitting field of f(x)g(x). By comparing degrees, up to a scalar multiple A,

detR = [ [(ri=1)).
iJ
By comparing the lead coefficient, find A = a;'b,. Thus:
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Theorem 3.16.3. R(f, g) = detR = a,;'b,, [, (ri — ).

Since f(x) = a, [Ti,(x — r;) and g(x) = b, [T, (x — 1), we get:
Corollary 3.16.4.
1. R(f.8) = arby, TTiy T1 (i = 1) = @ TTy (b T (i — 1)) = @ TTE, 8(ri), and
2. R(f.g) = (=1y™b T (an [Ty (6 = 1) = (=1l Ty £(2)).
Let f(x) be monic and let g(x) = f'(x).

Fa) =) (=) =r) (=) (x = 1),
k=1

So
f(r) = n (ri — rj)-
{Jlj#i}
Hence

R(f. f) = ﬁf’(n) = ]—[ ﬂ (ri—r) = (=) n (ri—r)? = (-1 D,
i=1 {

il @pli<j
where D is the discriminant. So, -
D =(-1)"7 R(f, f").

Example 3.16.5.
n=2 f(x)=x>+bx+c.

D= (-1 = —(b* + 4c - 2b%) = b* - 4c.

S N =

b
b
2

c
0
b
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n=3: fx)=x+px+q.

S TO O
STRO RO
QRO O on

S — O n O

—_ o n o o
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SRR O
QOO on
S —~on O

o
|

SO O X
_QULO AUO
S /RO on

— O on O

SO X
S O on

— N O

SO X
_AU RO

— on O

SO X
Lo

— n O

SO X
S oo

— on O

SO X
/RO

— N O

2p*(=2p) + 99(-39)
= —4p* - 274%.
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3.17 Reduction Mod p

Theorem 3.17.1. Let f(x) € Z[x] be monic with n = deg f. Let E be the splitting field of f(x) over
Q. Let p be a prime not dividing the discriminant d of f. (In particular, d # 0 or no such p exists.)
Let f,(x) € F,[x] be the reduction of f(x) modulo p. Let E, be the splitting field of f,(x) over F,,.
Let R and R, be the set of roots of f(x), f,(x) in E, E, respectively. Let D C E be the smallest subring
of E containing R. Then

1. daring homo.  : D E,,.

2. Any such  gives a bijection R KN R,.
3. If Y,y are two ring homos. satisfying 1 then do € G(E,Q) s.t. ¥ = Yo
Proof. 1. In E, write
f)=@=r)-(x=ry)
with R = {r,...,r,}. The r;’s are distinct since d # 0. Let

D =Z[r,...,r,] = Z-linear span in E of elts. r{" - - - ;.

Since f(r;) = 0, r} can be expressed as a Z-linear comb. of ri with m < n; so we may use the
span of elts. of the above form with e; < n Vj. D is torsion-free, since D C E, and soitis a f.g.
torsion free Z-module. So

D=7Zu,&---®Zuy,
for some basis uy, ..., uy.

Claim. {u;} forms a basis for E over Q.

Proof. Any relation over Q among the u;’s gives, after clearing denominators, a relation over Z.
Hence {u;} is linearly indep. over Q.

Let
S =Qu; & D Quy.

S is a subring of E containing Q, and every elt. of S is algebraic over Q. So the inverse of each
elt. is a poly. in that elt. So S is a field. Since r; € § Vj, S = E.

Proof of theorem (cont.) By the claim, [E : Q] = N. Let

pD = Z(pu) ® Z(pus) & - - - ® Z(puy) C D,
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so p € Ann(D/pD). pD is an ideal in D and |D/pD| = p". Let M be a maximal ideal of D

containing pD. Then
D/pD

M/pD
so |D/M| divides p", and p € Ann(D/M). Thus the field D/M has characteristic p.

=~ D/M,

Zlr.....r]=D +——> D/M.

So D/M = (Z/p)lr1,...,r,], where r; := yr;.
L)) = (=) (e = 1)
is a factorization of f,(x) in the extension field D/M of F,. Hence D/M = E,,.

Lety : D — E, be a homomorphism. ¢z is reduction mod p, so
Fp(0) =¢(f(x0) = (x =) - (x = ¥(r)).

Hence {y/(r;)} are the roots of f,(x). That is, {¢/(r;)} = R,, so ¢ : R N R,.

Lety : D E,. Let o € G = G(E,Q). o permutes roots, so o : D — D. If o # ¢’ then o, 0’
are different permutations of the roots, so since ¥ is a bijection on roots, Yo # Yo”'.

Let
G:{O'l,...,O'N}.

Then ¢y = Yoy, ...,y = Yoy are N distinct ring homomorphisms. Suppose
W' :D—E,

is aring homo distinct from ¢y, ..., ¥y. Then {yr1, ..., ¥y, ¢’} are linearly independent in homgz(D, E )
(by Theorem 3.8.2).

Howeyver,

X1 (uj) + X (uj) + -+ + xyn(up) + Xy’ ) =0 1< j<N

forms a system of N equations in N+1 variables in E,, so it has a nontrivial solution (ay, . .., ay+1)
in E,. For an arbitrary element y = nyu; + nauy + - -+ + nyuy € D,

Yi(y) = myiuy + My + - -+ yiuy.
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San(y) + apa(y) + -+ ann(y) + an ' (0) = X5 2injabi(uy) = X ;n; - 0 = 0. Hence,
a +ayps + -+ ayyy +ayay’ =0

in homz(D, E,), contradicting the linear independence of {1, ..., ¥y, ¥’}
So ¢, ...,y is the complete list of ring homos. from D to E,,. ie. Any ring homo. ¢’ : D - E,
equals Yo for some o € G.

O

Theorem 3.17.2. Let f(x) € Z[x] be monic. Let p be prime s.t. p { discriminant of f(x). Suppose
that in (Z/p)[x], f,(x) factors as

Fr(X) =818 &
where g; is irreducible. Let nj = degg;, son =degf =ny +---+n,.. Thenin G = Gal(f(x)) C S,,
there is a permutation whose cycle decomposition (after suitably ordering the roots) is

(12 I’ll)(l’l1+1 n1+n2)(n1+n2+1 n1+n2+n3)---(n1+---+n,_1+1 l’l1+"'+l’lr).

Example 3.17.3.
1. Let f(x)=x*—2. Forp =5,

f5(x) = 2+ x)(4 + 3x + x%)
.. G contains (using some ordering of the roots) the permutation (1)(2 3), usually written
just (2 3). ie. G contains a transposition.

For p =17, f5(x) = x> +5, which is irreducible. So G contains (using some ordering of the roots,
not necessarily the same one as before) the cycle (1 2 3). ie. G contains a 3-cycle.

This identifies G as S 3 since no proper subgroup of S 3 contains both a 3-cycle and a transposi-
tion.

2. Let f(x) = x> — 12x + 8. For all primes, either f(x) is irreducible mod p (yielding a 3-cycle
(1 2 3) € G) or f(x) splits linearly (corresponding to the identity in G). For no prime does
it factor as an irreducible quadratic and a linear factor.

Proof. Let ¢ : E, — E, be the Frobenius automorphism ¢(x) = x”, as seen in Example 3.10.10.
Let ¢ : D — E, be a ring homomorphism. Then so is ¢y. By the preceding theorem, do- € G
s.t. ¢y = Yo

Restricted to R = {roots}, ¢ has an inverse, so we get
-1
o=y Y,
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when restricted to R. ie. The action of ¢ as a permutation on R corresponds to that of ¢ on R, under
the bijection ¢. So the cycle decompositions are the same. ¢ maps one root of each g; to another root
of the same g; (and its restriction to those roots is transitive, since ¢ generates Gal(E,,F,)). ie. The
cycle decomposition of ¢ is as shown, and therefore so is that of o. O

Example 3.17.4. Let f(x) = x> — 5x + 12. Since f is irreducible, G contains a 5-cycle.
Ffi(x) = x(2 + x + x°)(2 + 2x + x7).

.. G contains a product of 2-cycles, (1 2)(3 4) (in some ordering).

We can search for other primes which might give other decompositions, but we don’t find any
(except for complete factorizations into linear pieces, corresponding to e € G). How do we know when
to stop? According to Chebotorev Density Theorem, every decomposition that appears must appear at
least once for some prime < 70(log d)?, where d is the discriminant. In this case, 70(log d)* ~ 22616,
which by the Prime Number Thm. includes approximately the first 2256 ~ 10g(22616) primes. In fact,
the 2526™ prime is 22619 > 22616. So if we haven’t found any other cycle decompositions in the first
2525 primes then there aren’t any others. Since the only subgroups of S s containing only the 5-cycles,
products of two 2-cycles, and the identity are the copies of Ds, G = Ds for

f(x)=x>=5x+12.
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Chapter 4

Representations of Groups

4.1 Definitions and Elementary Properties

Let G be a group and K a commutative ring.
A (linear) representation of G consists of a K-module V and an action G X V + V satisfying

g-(av+bw)y=ag-v+bg-w VgeG, abek, vywe W.

Equivalently, a rep. is a group homomorphism G — Autg (V).
Another formulation: Define a ring K[G], called the group ring, as follows. As an abelian group,

K[G] = {free K-module with basis G}.

Multiplication is determined by g - h = gh (the left defines multiplication in K[G]; the right is multi-
plication in G). Then a rep. of G on V is a ring homomorphism K[G] +— Endg(V). This makes V a
left K[G]-module.
Note that as rings,
K[G x H] = K[G] ®z K[H].

K[G] is commutative <= G is abelian.
Let G be finite. For a conjugacy class C, let

Ne = Z x € K[G].

xeC

Definition 4.1.1. Let R be a ring. The center of R is

Z(R)={a€R|ax =xaVxeR)}.
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Proposition 4.1.2. If G is finite then Z(K[G)) is the free K-module
KN¢, @ ---® KNg,,

where Cy, ..., Cy are the conjugacy classes of G.

Proof. For g € G,and C = C},

g 'Neg=) g'xg= > y=Nc,

xeC yeg*ICg
since g7'Cg = C. Thus,
k
D knN; c ZKIG).
j=1

Conversely, let

x= ) a.g € Z(KIG)).

g€G

Zagg:x

geG

Then for all & € G,

=h'xh

= Z agh_lgh

geG

= Z ah,h-lt.

teG

S ag = apgp Y, g. ie. All elements of a given conjugacy class have the same coefficient in x. Thus,

X = ZafNCf

where a; = a, forany g € C;. So x € @];=1 KN;. .

4.1.1 New Representations from Old

1. Direct sum of reps.
Given reps.
GxVeV GxXWe W,
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form rep. of Gon V& W by
g-(v,w)=(g-v,g-w).
eg. If K is a field, n = dim V,m = dim W, then for g € G, p(g) € GL,(K),1(g) € GL,,(K). The
direct sum action is given by
( p) 0 )
0 @@ )

k times

. . /—/A
Note: Sometimes write kV for Ve --- @ V.

2. Tensor product of reps.
Given reps.
GxVeV GXW— W,

form rep of G on V ®¢ W determined by

g-(vew) =(g- (g w).
This is the tensor product of V and W in the Hopf alg. sense. ie. The action is

VeUW

KIGI®VeW +5 K[G1®K[Gla Ve W — K[GIe Ve K[Gle W 5 veWw,
where ¥/(g) = g ® g 1s induced by the diagonal map G — G X G.

Let R be a ring. Recall that an R-module V is simple if it has no proper R-submodules except 0.
In this context, such modules will often be called irreducible.

Definition 4.1.3. An R-module V # 0 is called indecomposable if A R-modules V, # 0,V, # 0 s.t.
V=V eV,

When R = K[G], we talk of “indecomposable reps.” and “irreducible” (or “simple”) reps.
Clearly, irreducible = indecomposable. The reverse is not true. eg. Suppose K is a field. If
the action of each elt. g of G has the form

(P(g) Q(g))
0 R )’

(where P(g) is n X n, Q(g) is n X m, R(g) is m X m), then 3 an n-dim. subrepresentation g — P(g), so
not irreducible. But it might still be indecomposable if Q(g) # 0. In particular, take G = Z,n =m =1,
let P(k) = R(k) = 1 and Q(k) = k for all k € Z.

Goal: Let G be finite, K a field.
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1. Show that there is (up to iso.) a finite list V, ..., V; of indecomposable K[G]-modules and find
them.

2. Given arep. V of G, show that the decomposition
VeViieVie ---eV!
into irreducible is unique, and give a method of determining the mult. n; of each V.
3. In particular, find the decomposition

K[Gl=V/'eVy e ---o V'

Question.  Given G, to what extent does this answer change with K? Does it depend on more that
just char K?
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4.2 Semisimple Rings
Note: Unless otherwise noted, module means left module.

Definition 4.2.1. An R-module V is called semisimple if it is a direct sum of simple modules. R is
called a semisimple ring if R is semisimple as a (left) R-module.

Proposition 4.2.2. If'V is a semisimple module and U C V then V = U & W for some W.

Proof. Consider
S = {submodules U’ c Vs.t. UNn U’ = 0}.

By Zorn’s lemma, let W C V be maximal s.t. UNW =0. f U® W ¢V, choose v ¢ U & W. Write
V=v;+---+v,, wherev; € V;and V; C V is simple. Thenv; ¢ U & W for some j. So

VinUeWw)gV;

and since V; is simple,
Vin(UeW)=0.

Butthen U N (W& V;) = 0, so W is not maximal. Thus, V=U® W. O
Definition 4.2.3. V is completely splittable if U c V = V = U @& W for some W.

So V is semisimple = V is completely splittable. Recalling Proposition 2.4.6, we see that V
is completely splittable <= whenever U C V,if i : U < V is the inclusion then 4o : V = U a
homo. s.t. oi = 1y; o is called a splitting of i.

Example 4.2.4. Let K be a field, R = M,x,(K),

x 0 - 0
V= :

* 0 - 0
Claim. V is a simple R-module.
Proof of claim. Suppose 0 ¢ W C V. Let

xt 0 -+ 0

O#x=[ : : S eEW,
x, 0 --- 0
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and suppose x; # 0. Then W contains

)Cj 0
0 1 0 0
x=| .
0 ... 0 0
By dividing by x;, W contains
1 0 - 0
0
0 0
Thus, W contains
0O --- 0
1 ,
0 --- 0
which is a basis of V. Hence W = V.
Now,
= 0 0 0 = O 0
R=|: : el ;o R
* 0 0 0 = O 0

So R is semisimple.
Proposition 4.2.5. Z(M,«,(K)) = KI.
Proof. Exercise.
Let R be aring, x,y € R. The commutator of x and y is
[x,y] :==xy—yx €eR.

The commutator subspace is
[R,R] = {[x,y] | x,y € R}.

Note: [R, R] is not an R-submodule of R, in general.
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Example 4.2.6. Let R = M,,(K). Then

0O - 00O 1 O -~ O 0O 1 0 -0
0 0 {0 O 1 10 0 1] 0
0 0JLoO 0 0 0J)LO
1 0 -~ 0
0 --- 0
— O —_—
0 --- 0
0 0
0 --- 0
3 0
0 --- 0

Similarly, denoting by €' the matrix with 1 in the (i, j)"* position and 0 elsewhere,

e’ e[R,R] Vi#j

Also,
1 0 0 0 0 0 0 0
) 1
0 1o 0
0 - 0 0o --- 0 0o --- 0 0
Similarly,
10 0
00
0
€ [R,R].
-1
0
0 0
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These matrices generate {M | TrM = 0} as a vector space. That is,
[R,R] =kerTr: R+ K.
In particular, dim[R, R] = n*> — 1 and dim(R/[R,R]) = 1.
Lemma 4.2.7. If V is completely splittable and U C V then U is completely splittable.
Proof. LetT c U. Then

14

do

T
Since V is completely splittable, o s.t. o o ji = 17, as in the diagram. So o o jis a splitting of i. O

Theorem 4.2.8. If'V is completely splittable then every submodule of V is semisimple.
Corollary 4.2.9. V is semisimple <= V is completely splittable.
Corollary 4.2.10. If V is semisimple then every submodule of V is semisimple.

Proof of Theorem. Let U C V. Consider sets {S;};c; of simple U-submodules which are “linearly

independent”, ie.
(S iier = @Si-

iel

By Zorn’s lemma, there is a maximal such set, {S ;};c;. Let

s =(PHs.
i€l
By the lemma, S is completely splittable, so A7 s.t. U = S @ T. If T # 0, pick 0 # x € T. By
Zorn’s lemma,

(T"cT|xe¢T’}
has a maximal element, 7). By the lemma, let 7'} be s.t.
T =Ty T,.

If T, is not simple then let 71 = A® B. x can’t be in both T ® A and Ty @ B since their intersection
is Ty. This contradicts the maximality of T, so T is simple.

But 7T can be added to {S;};c; to get a still-linearly independent set of simple submodules. This
contradicts the maximality of {S;};c;.

SoT=0andU =S =, S, is semisimple. O

iel
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Corollary 4.2.11. Let
0-U—->V->W->0

be a short exact sequence of R-modules. If V is semisimple then U, W are semisimple.

Proof. V=U@®W,so U c V and V has a submodule isomorphic to W. So by the theorem, U and W
are semisimple. m|

Theorem 4.2.12 (Maschke). If K is a field, G a finite group s.t. char K T |G| then K[G] is semisimple.

Proof. Write V = K[G], as a module over itself. Suppose U is a K[G]-submodule, and show that
there exists a K-module splitting p : V — U.

As vector spaces, AUy s.t. V = U @ U (U 1s not necessarily a K[G]-module). This yields a linear
map py : V = U (py is not necessarily a K[G]-homomorphism).

Define p : V — U by

1 -
PO) = D& potev).

geG
Then for g’ € G,

1
PV =1 > & polggv)

geG

1
=G 28 P

feG

|
=g — ) [ po(fv)
m; ’

= g'p().

So p is a K[G]-homomorphism.
Also, if u € U then

I v
P =iz D8 poleu)

geG

1
=G Z g '(gu)

geG

1
- S
=u.

geG

.. p 1s a splitting. O
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Note: If K is not a field then the same proof works, provided |G| is invertible in R and 3 an R-module
splitting po : V > U.
Let R be a semisimple ring,

RE@VZ'

iel

where each V; is simple.
Proposition 4.2.13. Ever simple R-module appears (up to isomorphism) as V; for some i.

Proof. Let W be a simple R-module and 0 # w € W. Then
R+ w
1 — w

1S not zero, so it is onto (since W is simple).
So W is a summand of R. Furthermore,

0 # ¢ € homg(R, W) = (1) homg(Vi, W),
iel

so homg(V;, W) # 0 for some i. But any non-zero homo. between simple R-modules is an isomor-
phism, so W is isomorphic to some V;. O

Proposition 4.2.14. Let R be semisimple, I C R a left ideal. Then 3 an idempotent e € R s.t. I = Re.

Note: If V is a simple R-module then Rv = V, for any v € V. Moreover, since R is semisimple,
R — Ry splits, so V is isomorphic to a left ideal of R.

Proof. Since R is semisimple, 3/ s.t. R=1® J. Write | =e + f wheree e I, f € J.
e €l = Re c I Conversely, givenx € I, x =xe+ xf. xf =x—xe € [ andsince f € J, xf € J.
Thus
xfelInJ=0= x=xe.

.. I = Re.
Now, x = xe ¥Yx € I, and in particular, e = €. ]
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4.3 Artinian Rings

Recall that an R-module V is Noetherian if for any chain
VocVic---CcV,cC---

of submodules, AN s.t. V,, = Vy ¥n > N. Likewise:

Definition 4.3.1. An R-module V is Artinian if for any chain
Voo ViD>---D2V,D---
of submodules, AN s.t. V, = Vy ¥n > N. R is an Artinian ring if R is Artinian as a (left) R-module.

Example 4.3.2. Z is Noetherian (in fact, it is a PID) but not Artinian, since we have:
2ZD4ZD>8Z > -+ D2"ZLD -+ .

When G is finite and K is a field, K[G] is both Noetherian and Artinian (by counting dimensions,
can’t have a strictly increasing chain longer than |G| + 1).

Proposition 4.3.3. Let
0-U->V-o>W-=>0

be a short exact sequence of R-modules. Then V is Noetherian (respectively Artinian) <= U, W are
Noetherian (resp. Artinian).

Corollary 4.34. If
v=v
i=1

then V is Noetherian (resp. Artinian) <= V; is Noetherian (resp. Artinian) Vi.

V:@Vi

iel

with V; # 0 and V is finitely generated then |I| < oo.

Proposition 4.3.5. If

Proof. Each generator has only finitely many non-zero components. O

Corollary 4.3.6. If V is finitely generated and semisimple then V is both Noetherian and Artinian.
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Proof. By the hypothesis,
V = @ Vi
i=1

where each V; is simple. So for each i, the only chain is O € V;. Thus V; is both Noetherian and
Artinian. o

Corollary 4.3.7. If R is semisimple then R is both Noetherian and Artinian.
Proof. As an R-module, R is generated by the single element 1. O

Proposition 4.3.8. Let G be finite, K Noetherian (resp. Artinian). Then K|[G] is Noetherian (resp. Ar-
tinian).

Proof. If K is Noetherian (or Artinian) then, as a K-module, so is K'°!, which is isomorphic, as a K-
module, to K[G]. But every K[G]-submodule of K[G] is a K-submodule, so if K[G] is Noetherian
(or Artinian) as a K-module then it has the same property as a K[G]-module. O

Lemma 4.3.9 (Schur). Let V be a simple R-module. Then:
1. Endg(V) forms a division ring.

2. If R is a finite dimensional algebra (eg. R = K[G] with G finite) over an algebraically closed
field K then Endg(V) = K.

Proof.
1. If f : V= Vis nonzero then Imf = V so V is onto. Also, since f # 0, ker f # V, so ker f = 0.
Hence f is an isomorphism, so it has an inverse. ie. Endg(V) is a division ring.

2. Let f € Endg(V), and show f = Al for some A4 € K. For any 0 # x € V, Rx forms a finite
dimensional subspace of V (its dimension is < dim R). Since V is simple, Rx = V, so V is finite
dimensional.

So 1 an eigenvector 0 # v € V for f, so that fv = Av. Since V is simple, Rv = V. Hence
YweV,w=rvso
fw) =rfv) = Arv = Aw.

ie. f=Al.
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4.4 Wedderburn’s Theorem

Let R be semisimple. Then
R = I’l]V] @IZQVQ@"‘@I’lka
where Vi,..., V, is the list of simple R-modules (one from each isomorphism class). (This is a finite

decomposition by Proposition 4.3.5)
For aring A,

A+ End,(A)
A — ¢,
¢a(b) = ba

is a bijection, since every endomorphism f is equal to ¢ ;). Then

Patp(1) = Pa(b) = ba = Ppa(1).

.. ¢ is a ring isomorphism
¢ : A°P > End,(A),

where A°PP is the ring with the same group structure as A but a(-opp)b = ba.
Set D; = Endgr(V;), a division ring. Then

R = (Endg(R))*™®
k

= (EndR(n jVj))Opp

- T

N

(M, (Endg (V)™
1

]» T

IR

(Mo (D)™
1

J

|

IR

Mn]XnJ(D(J)pp)
j=1

where on the last line, the isomorphism is given by the transpose map.
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Under this isomorphism, V; C n;V; C R corresponds to

homg(n;V;, V) =| ¢ b © My (D).

In particular, suppose R is an algebra over a field K and D; = K (eg. if K is algebraically closed).
Then:

1. dimV; = n; for each j.
2. dimR = ¥}, n’.

Example 4.4.1.
1. R=C(S,)
By Maschke’s Theorem, char K = 0 = K[G] is semisimple. Here,

2=1"+1?

and there are no other possibilities, so R has 2 indecomposable reps., each on a 1-dimensional
space.

They are: Let dimV = 1 with basis v. S, = {e, T}, with T? = e. The trivial rep. is:

e-v=yv,
v=yv
The sign rep. is:
e-v=y,
v=—v
2. R=C(S3)
Either

6=1>+1>+---+1° or 6=1>+1>+22

Easy to see that the trivial rep. and the sign rep. (o - v = (—1)*®"7v, sgn is the homomorphism
€:S5,— {l1,—-1}used to define A, in section 1.6.2) are the only possible reps. of Ron a 1-dim. V.
Hence R has 3 indecomposable reps.: trivial rep., sign rep., a 2-dim. rep.
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The 2-dim. rep. is:
umw‘l”)

U$H°1y

-1 -1 01 -1 -1
123)=12)(13)+ 0 1 )(1 O):( 1 0 )

3. R=C(S4)

24 =1+1"+@?*+---+()° ax>2.

Looking at congruence mod 4, need 3° (22,4% are divisible by 4, but 24 — 12 — 12 is not).
Hence, the only possibility is

24 =17+ 17 +22 + 3> + 3%,
ie. two 1-dim. reps., one 2-dim. rep., two 3-dim. reps.

Theorem 4.4.2. Let G be a finite group, K an algebraically closed field of characteristic 0. Then the
number of isomorphic simple K[G]-modules is equal to the number of conjugacy classes of G.

Proof. As seen earlier,

Z(K[G]) = Free K-module on {Z g | C aconj. class}.
geC
So the number of conjugacy classes is equal to dim Z(K[G]). Also,
k
KIG] = [ | My (K.
=1
Now, Z(M,,(K)) = KI, which has dimension 1. Thus,

dim Z(K[G]) = k = # nonisomorphic simple K[G]-modules.
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4.5 Changing the Ground Ring
Example 4.5.1. Let G = C3 = {e, t,1*}, K = R. Then using V = R?,

p : K[G] = M>(R)

2n s 2
( COS 3 sin 3 )

- 2 2%
sin 3 COS 3

(o is rotation by 23—” ) Then p is indecomposable. But if we use K = C, and p : C[G] — M,(C)
induced by the same representation, then p is decomposable since over C, we can change basis and

diagonalize:
e 0

in an appropriate basis.

Given f : R — S aring homomorphism, f induces a functor

{(left) R-mods.} — {(left) S-mods.}
Vio VS =S ®r V.

The map f makes S a two-sided R-module (and in particular, a right module), so § ®; V makes sense.
S ® V is an S -module via the action

S(s®v)=(s's)®v.

If
0-U->V-o>W-=>0

is a short exact sequence of left R-modules and M is a right R-module then
M@RU—>M®RV—>M®RW—>0

is exact, although the first map may not be injective. However, if M is a free R-module, M = R" then
M ®r N = N", and so
M@rU > MepV

in this case.
In particular, if f : R < S makes S into a free R-module then when

0-U—->V-osW->0
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18 exact, so is
O—>US%VS—>WS—>0,

ie. (V/U)S = Vs /Us.
In particular, if K C M is a field extension then M is a free K-module.
f : K — M induces K[G] — M[G], and thus

K[G]-mods. — M[G]-mods.
Vi VM

ie. (mg)(m’ ® v) = (mm’ ® gv), defines M[G]-action on V).
Note: Ifv =kv' thenm’ ® v =m'f(k) ® V', but then

mg(m’ ®v) = mm’ @ gv = mm’ @ kgy' = mm’ f(k) @ gv' = mg(m’ f(k) V'),
so the action is well-defined. Also,
gim(m’ ®@v)) = glmm’ ® v) = mm’ @ gv = m(m’ ® gv) = mg(m’ ®v),

so the action of g is M-linear.
If K € M is afield extension and n = dim V < oo,

p : K[G] = Endg(V) = M, (K)
then dim Vj; = n and for the induced map
P+ M[G] — Endy(Vi),
the matrix p(g) for the action of g is just p(g), regarded as a matrix in M (whose entries happen to lie

in K).
As we have seen, V simple & V), is simple.
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4.6 Composition Series

Let V be an R-module.

Definition 4.6.1. A composition series for V consists of a chain of submodules
0=V,cV,,,c---cVycVy=V
s.t. Vioy/Vjis simple¥j=1,...,n.

The composition series
0=V,c---CcVy=V

and
0=W,c---cWy=V

are called equivalentif n = mand do- € §, s.t.
Vil Vi = Woii1 /Wiy V5.

ie. the list of “composition factors” (including multiplicities) is the same, although the order may
be different.

Proposition 4.6.2. V has a composition series <= V is both Artinian and Noetherian. In this case,
any series can be refined to a composition series.

Proof.
&: Suppose V is Artinian and Noetherian. Let V, = V. Since V is Noetherian, V contains a maxi-
mal (proper) submodule, V; (by Theorem 2.6.2). Continuing, so long as V; # 0, get

VoRVi2 e 2V2
s.t. Vj, is maximal in V;, ie. V;/V,, is simple. Since V is Artinian, the chain must terminate.

=: Suppose
0=V,c---CcVy=V

is a composition series. Then we have the exact sequence
0>V, »>V->V/V -0

Since V; is simple, V; is Artinian and Noetherian. V/V; has a composition series of lengthn—1,
so by induction, V/V; is Artinian and Noetherian. Thus, V is Artinian and Noetherian.
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Finally, given any series
0=V, c---CcVp=V,

each V;_;/V; is Noetherian and Artinian, so it has a composition series. Using each of these series, we
may refine the given series to a composition series. O

Theorem 4.6.3. Any two comp. series for V are equivalent.

Proof. Let
0=V,c---cVy=V

and
0=W,c---cWy=V

be comp. series. For 1 <i<nand1 < j < m, set
V[j =V + (V,'_l N W,) and le‘ = W,' + (Wi—l N Wj)

Claim.
Vij-1 Viain Wi Wi

Vi~ (Vin Wi+ ViinW)) - Wi

Proof of claim. Consider

Vit (Vici N W) Vij-i

NnNW; = .
Vit (Vi 2 Vij

d:VinWi > Vi+(VoinW, =1 >

Vi C Vij, so every element of V; ;_; is congruent modulo V;; to one in V;_; N W;_;. ie. ¢ is surjective.

Clearly, Vioin Wj C Vija SO
V,‘_ij C kerqb.

Also, Vj N Wj_1 cV;,c Vij’ SO
Vin Wj—l C ker ¢

Hence,
Vioin W]) +((V;nN Wj—l) C ker P.

Conversely, suppose x € V;_y N W,_; lies in
ker¢ =V n Wj—l) N (V, + (Vi n W/))

Write x = y+zwhere y € V;and z € Vi,y N W;. Since x € W;_; and z € W; C W;_y, it follows that
y € Wj—l- So
X=y+z

exhibits x as an elt. of (V; N W) + (Vioy N W)). O
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Notice that since V;_;/V; and W;_;/W; are simple,

Vioin W
VinWi_)+VioinWy)

is either O or simple.
So we have

V=Vo=VpoVyo---oV,=Vi=VyDd:---2---2V,.1=VypD---DV,n=0. )
and similarly,
V:W():WloDWll:)"':)Wln:Wl:WzoD"'D"'DWm_l:WmoD"'DWngO. (**)

Notice that both chains have the same length, and by the claim, there is a bijection between the
quotient modules, each of which is either simple or 0. So by shortening the chains by deleting entries
which equal their predecessors, all the 0-quotient modules are deleted, and what is left are composition
series. The number of 0-quotients deleted is the same (they are paired), so the resulting comp. series
have the same length and same quotients, ie. they are equivalent.

But (*) reduces to

Vn c.---C V()

and (**) reduces to
Wm c:.--C W(),

since they are respectively refinements of these series, and you can’t refine a comp. series any further.
So these two comp. series are equivalent. O
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4.7 Characters

Let
p : K[G] — Endg(V)

be a rep. of K on a free K-module V. Define
X, : K[G] = K,

the character of p by X, = Tr(o(x)).

Since Tr(A + B) = Tr(A) + Tr(B), X, is determined by its values on the basis G for K[G], so some-
times write X, : G — K.

Recall that Tr is preserved under change of basis, since

Tr(A™'BA) = Tr(AA™' B) = Tr(B).

So, if h = x"'gx then
p(h) = p(x)~' p(g)p(x)
and thus, X,(h) = X,(g).

Proposition 4.7.1. Let
0-U—->V->W-=0

be a short exact sequence of K|G|-modules, each of which is free as a K-module. Then
Xy =Xy +Xw.

Proof. Since U is a K[G]-submodule, for all g € U, the matrix for p(g) has the form

o= (M0 )

ow(g)
O
Proposition 4.7.2. Xygw = XvXw.
Proof. Let {e;},{f;} be bases for V, W respectively. Then {e; ® f;} is a basis for V ® W, and
(A® B)(e; ® fj) = a;bjj(e; ® fj) + other terms.
S0, noon
Tr(A ® B) = Z Z ayb;; = (TrA)(TrB).
i=1 j=1 D
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Proposition 4.7.3. Viewing K[G] as a left K|G]-module,

|G, g=e,

X =
K[G](g) {O, gze

Proof. In the basis {g},ec for K[G], the action of any elt. of G is given by a permutation matrix. So,
by the definition of the trace,

Xkie1(8) = {x € G | gx = x}|

_JIGL g=e,
0, g Fe.
O
Corollary 4.7.4. Suppose
KG]lzV,®---@V,
and K is a field s.t. char K 1 |G|. Thus X ki) = Y- X; where X; = Xy,.
Lety = ) e 8 € K[G]. Then for any g,
6= = Zr:)(‘(yg‘l)-
=
Proof. Pick g € G.
y = Zchh = cgg+Zchh.
heG h#g
SY8 T = cge + Ypg cnhg™!. Applying X i) = X1 X,
D Xive™) =Xk (v8 ™)
i=1
= cXkg(e) + Z Xk (hg™)
h#g
= |Glc, + 0.
O

Set CFg(G) :={f : G = K | f(y"'xy) = f(x) Vx,y € G}. CFg(G) is a ring using addition and
multiplication of functions. It is called the ring of class functions.
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Rk (G) is the abelian group generated by iso. classes of f.d. reps. of G, with the relation
[Vl=[V1+[V"]
for every short exact sequence
0>V V-V >0

Define multiplication on Rx(G) by
[VIIW] = [Ve W].

Then the preceeding implies that

0 : Rx(G) — CFg(G)
[p] = X,
is a ring homomorphism.

Set Chg(G) = Imé, the “ring of generalized K-characters of G”, or simply the “character ring
of G over K.

Lemma 4.7.5. Let V, W be K[G]-modules and let f € homg(V, W). Define f : V +— W by

for= ) & flgv.

geG

Then f S homK[G](V, W)
IfV = W then Trf = |G|Tr(f).
Proof. For x € G,
fawy =2 g flgxw) = ) ™! f(hw) = xf ).

geG heG
Now suppose V = W. Then,
f=> MM,
geG

where M, represents the action of g on V. Hence,

TR(f) = ) Tr(M,' M)

g€G

= ) Tr(f)

= |GITr(f).
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Let K be a field.

Lemma 4.7.6. Let o : G — Autg(V), B : G — Autg(W) be non-isomorphic simple reps. Pick bases
Visosvpandwy, ..., wy for Vand W. Let [a;j(g)] and [B;;(g)] denote matrices for a(g),B(g) in these
bases. Then for any i, j,k,t, 1 <i,j<n, 1 <kt <m,

D Bie Hen(g) = 0.

geG

Proof. Let f : V — W be the linear transformation which in chosen bases for V and W is given
by the matrix E which is 1 in the (j, k) position and 0 elsewhere. By the previous lemma, f €
homg(V, W) = 0 (since V, W are non-isomorphic and simple). The (i, 1) position of the matrix for

fis
0= Z Zﬁir(g_l)Eisast(g)
geG r.s
= > Big Nau(e),
geG
since E,; = 0 except when r = j, s = k. O

Corollary 4.7.7. Let V, W be non-isomorphic simple K[G]-modules. Then

D Xu(gw(s™) = 0.

geG

Proof. Let a(g),5(g) be the matrices for the reps. Then

IRRTCREDIY Z @u(g)Bi(g™") = 0.

geG 8

O

Theorem 4.7.8. Let a : G — Autg(V) be a simple G-rep. If K is algebraically closed and char K = 0
then dim Z | |G| and
_ |G|
Z a/ij(g 1)C¥kt(g) = 5jk5izm-

geG

Proof. Let f : V = V be the linear transformation which in a chosen basis for V is given by the matrix
E which is 1 in the (j, k)™ position and 0 elsewhere. So f € homg;(V, V). Since V is simple,
homg(V, V) = K, and thus, homgy(V, V) = Z. That s, f = cl for some c € Z.
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As above, the (i, )" entry of the matrix for f 1S

Z ;g (g Hau(g).

geG

Now, Tr(f) = Tr(cI) = ¢dim V. On the other hand, by the earlier lemma, Tr( f) = |G|Tr(E). Thus,
cdimV = |G|Tr(E),
_ |GITx(E)
~ dimV
If j # k then Tr(E) = 0, so ¢ = 0. Also, if i # t then the (i, /)" entry of f is 0, regardless of c.
Hence,

Z @;j(g Naw(g) =0 unlessi=rand j= k.

geG
Wheni=rtand j =k, Tr(E) =1 so
G| _
Gy == Qg ().
geG
and in particular, dim V | |G]. O

Corollary 4.7.9. Let V be a simple K|G]-module where K is algebraically closed and char K = 0.
Then

D xv(evig™) = G,

geG

Proof. Let a(g) be the matrix for V. Set s := dim V. Then

> xvewvgh =) Z Z an(®ai(g™)

geG geG t=1 i=1

s N
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If char K = 0, can define an inner product on Chg(G) via
1
Ky, Xw) = G ZXV(g)XW(g_l)-
geG

If K is algebraically closed, have just shown that {X | V simple} forms an orthonormal set in Chg(G).
Since K[G] is semisimple, every rep. is a sum of simple ones, so this is in fact a basis.
In particular:

Corollary 4.7.10. If char K = 0 then
Rk (G) = Chy(G).

If K is algebraically closed, then
Chg(G) = CFk(G).

Proof. We have just shown that {¥y | V simple} is an orthonormal set in Chgx(G) C CFg(G) (the

inner product extends in the obvious way to CFg(G)). Thus, this set is linearly independent, so

0 : Rx(G) — Chg(G) is injective. By construction, Rx(G) — Chg(G) is onto, so Rg(G) = Chg(G).
Let Cy,..., C, be the set of conj. classes of G. CFg(G) has a basis {f; : G — K} where

1 gECj,

1i&) = {0 g¢C).

Hence, the dimension of CFg(G) is the number of conj. classes of G, which, we have seen, is the
number of simple K[G]-modules, ie. the dimension of Rg(G). O
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4.8 Change of Group - Induction and Restriction

Let H < G, so K[H] C K[G]. Let N be arep. of G, G X N — N. Restricting to H produces an action
H X N — N. Denote the resulting rep. of H by Ny.
Conversely, let M be a rep. of G. Define the induced representation of G, denoted Mg, via

M€ := K[G] ®km M.
ie. MC is generated as a K-module by
{g®@m|geG,me M}
where gh ® m ~ g ® hm. The G-action on MY is defined by
g'gem)=ggam.

Let g1,...,g- be a set of representatives for the left cosets {gH}. Then {g; ® m} generates MC. In
fact, if K is a field and m, ..., m; is a basis for M then

{gi®@mi |1 <j<r1<i<k}

forms a basis for M. In particular,

G

dim MO = ! dim M,

H|
whereas dim Ny = dim V.

This is a special case of a ground-ring change. A ring homo. f : R — § induces

{S -modules} i {R-modules}
N — N,

where N (on the right) is regarded as an R-module via the action through f. f also induces

{R-modules} |£> {S -modules}
M — M®p M.

Q and P are adjoint functors, ie.

homg(QM, N) = homg(M, PN) YR-mods. M, S-mods. N.
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To see this, givena : QM =S ®; M — N, define : M — PN = N by

B(m) = a(l @ m).
Then

Brm) = a(1 ® rm) = a(r ® m) = ra(l ® m) = rB(m),
.. B is an R-mod. homo.
Conversely, given 8 : M — PN, define « : QM +— N by

a(s ® m) = sp(m).

Then
a(s'(s®@m)) = a(ss’ @ m) = ss'B(m) = s'a(s ® m).

C.a1s an S -mod. homo.
In our special case,
homK[G](MG, N) = homK[H](M, NH)

This is called Frobenius Reciprocity.
Also, if A < B < C then
M€ = (M"©
and
Na = (Np)a.

Let (Xn)g := X, and (X3)¢ := X e denote the characters of restricted and induced representa-
tions. (Xn)g 1s the composite function

H—G |)ﬁ> K,
ie. (Xn)r = Xnlg. To describe (X)), let g1,. .., g, be a set of left coset representatives for GH and let
my, ..., my, be a basis for V, so that {g; ® m;} is a basis for MC.

For g € G,
g-(gi®m)) =ggi®m;= 8i, ® hm;,

where gg; = gi,h, h € H,i, = 1,...,r. Letting as(g) be the matrix representing the action of g on MC
and ay(h) be the matrix for the action of 4 on M, the contribution to Tra;(g) is:

0 lo #1
coeff. of (g;®@m;) in g(g; @ m;) = N
’ ! (a'H(h))jj lg = 8.
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Note that if i, = i then h = g7 'gg;. So

= 0 gi'sgi ¢ H
Y an(g7'88;) g 'ggicH

D (NS el

u(gi'gg)  gi'ggieH
= ZXM(gi_ g8i), using the convention Xy (x) =0ifx ¢ H

T ZXW g%).

xeG
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4.9 Examples

491 G=3S;
We have |G| = 6.
Conj. class ‘ # conjugates

A=03),(123) |2
A=02,1),12) 3
A= 1L1),e |1
We have 3 conjugacy classes, so 3 indecomposable reps. So our dimensions are determined:

6=1"+1>+2%
The reps. are:

o , G @ 6
1. Vi =trivial rep.,,dimV; = 1, x; = (1, 1,1

2. V, =signrep.,,dimV, = 1, X, = (1,-1,1).

3. V3 = natural rep., dim V3 = 2. By orthogonality of characters, X, = (2,0, —1). This representa-
tion is given on the space
(X1, X2, X3) /(X1 + X2 + X3)
by

o (X)) = Xo)-

I 1 1
xX=11 -1 -1 .
2 0 -1

492 G=Dg={a,b|a*=b*=¢e,bab™' =a 1)

|G| =8. Weview G C Syviaa=(1234),b=(12).
Conj. class # conjugates
a=(1324) 2

Altogether, our character table is

a=(1234) |1
b=(12) 2
ab=(13)24) |2
e 1
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The dimensions of the irred. reps. are determined:
8=17+12+17+ 17+ 2%
The 1-dim. reps. are given by hom(Dg, S ') where
S'={zeCl =1
We have

hom(Ds, S') = hom((Dg)u, S') = hom(C, x C, ') = hom(C,, S') x hom(C,, S ).

Dimension | Rep.
1 Vi trivial,
1 Vs a-v=-v,b-v=vy
1 Vs a-v=v,b-v=-v
1 Va4 a-v=-v,b-v=-v

: IGl, o=e
2 Vs Find character by X k(o) =

0, o #e.

Our character table (columns indexed by e, a, a?, b, ab) is:

1 1 1 1 1
1 -1 1 1 -1
X=|11 1 1 -1 -1
1 -1 1 -1 1
20 -2 0 O
Set IC, := (TrivCy,)P*, that is, the 2-dimensional representation of Dg obtained by induction

from the trivial representation of the cyclic subgroup generated by a. If v is a basis for the 1-
dimensional vector space V for the trivial 1-dimensional vector representation of C,, then a basis
for VP = K[Dg] ®kpay V 1s given {1 ® v, b ® v), since 1 and b are a set of coset representatives. Since
left multiplication by e, a, or a* preserve the cosets, in IC, they are mapped to the identity matrix,
while left multiplication by b or ab switches the cosets. Thus the traces are 2 and 0 respectively so
Xic,, = (2220 0). Comparing this with the character table gives IC,, = V| + V3.

Let ! denote the natural 3-dimensional representation of S 4 on (xy, Xp, X3, X4)/{X] + X3 + X3 + X4).
a!p, splits as W & o'|p,/W, where W = (w) where w = x; + x,.. Since a-w = x3 + x4 = —w
and b-w = x, +x; = w, W = V,. and, it is easy to see (using characters or otherwise) that
W@6¥3’1|D8/W = Vs, so (1’3’1|D8 =V, + Vs.

212



493 G=Hs

Hg is the group of Quaternions. It consists of 8 elements,
+i,+j, +k, +1

such that (-=1)?> = 1, —1 € Z(Hy) and

Conj. class | # conjugates
i~—i 2
J~=J 2
k~—k 2
-1 1
1 1

The dimensions of the irred. reps. are determined:
8=1"+1"+ 1"+ 1>+ 2%
Hg/{—1) = C, x C, is abelian, so (Hg),;, = C> X C,, and thus,
hom(Hs, S') = hom(C,, S ") X hom(C,, S ).

Dimension | Rep.
1 Vi trivial
1 Vs ["v==v,j-v=v
1 Vi [*V=V,j-v=—V
1 V4 iv==v,jv=—y

) |G, o=e
2 Vs Find character by X k(o) =

0, o #e.

Our character table (columns indexed by 1, -1, 1, j, k) is:

1 1 1 1 1

1 1 -1 1 -1

X=11 1 1 -1 -1

1 1 -1 -1 1

2 -2 0 0 O
The “natural” representation of Hg on W = (xi, x;, xj, x¢) is given by i - x| = x;, i - x; = —X,
i-Xj = X, i-Xx = —xj, etc. By inspection yw = (4 —4 0 0 0), which, from the character table is

recognized as 2Vs. The subspace (x; + x;, x; + x) C W is closed under the action of Hg and provides
a natural description of Vs.
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494 G=C;xCi={a,b|d =e,b’=e,bab”! =d?)

Conj. class | # conjugates
a 3
a’ ~a! 3
b 7
b* 7
1 1

Gab = C<b> = C3, and thUS,
hom(G, S') = hom(C;, S !).

yielding three 1-dimensional representatives.
The dimensions of the irred. reps. are determined:

210 =12+ 17+ 12+ 3% + 3%

Let w = ¢¥™/3,
Dimension | Rep.
1 Vi trivial
1 Vs a-v=v,b-v=uwv
1 V3 i-v=v,b-v=0w
3 V4
3 Vs
Our character table (columns indexed by 1, q, a’, b, b*) looks like:
1 1 1 1 1
1 1 1 w &
=11 1 & w
3 x y s t
3 xl yl S/ t/
for some x, y, s, t, x', ¥, ', t’.
G|, =
Using Xxrer(@) = 407 7= wefindthat ¥ = —(x+ 1),/ = ~(y+ 1), ' = =5, ¢ = —1.
0, o #e,

Orthogonality of X; and X, gives 7(s + t) = —3 — 3x — 3y while orthogonality of the pairs X», X4
and X3, X4 give 7(ws + w*t) = =3 — 2x — 3y and 7(w*s + wt) = =3 — 2x — 3y respectively. Thus
(s + 1) = T(ws + w*t) = T(w*s + wt), from which we deduce that s = t = 0 and so (x +y + 1) =
—%(s + t) = 0. The inner product of X, with itself gives |G| = 21 = 9 + 3xy + 3xy, which combined
with x +y + 1 = 0 gives x> + x + 2 = 0, which determines x. Notice that the solution of x> + x+2 = 0
satisfies x = £ + 72 + ¢4, where = e/ and 1 —x = 3+ 2 + (9,
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Thus our character table is Our character table (columns indexed by 1, a, a’, b, b*) looks like:

where x =+ 2+ andy =03+ 20 + 26,

The representation V is given explicitly by a — (

-

20 0
0 2 0
0 0 &

o

0 01
1 00
010

].

WO WO = et

1
1
1
X
y

PR T T S Y
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1 1
w W
W w
0 O
0 0
0 0

0 0
00 &

o

0 0 1
1 00

0 1

0

] while Vs is given by



4.10 Symmetric Polynomials

For a free K-module V, let
TE(V) := @ ver,
n=0

called the tensor algebra on V. Multiplication is defined on TX(V) by

(x1®---®xk)(xk+1®---®xf)=x1®---®xk®xk+1®---®xg.

S, acts on V®" by permuting factors (called the position action), ie.
- (X1® - ®Xxp) = X1y ®*** ® Xgr(y).-

Let
SV)=TV)/ ~

where (x; ® ---® x,) ~ 0 - (X ® - - - ® x,,). This is called the polynomial (symmetric) algebra on V.
Example 4.10.1. If x,, ..., x,, form a basis for V then
S(V) — K[x1, ..., Xy
X, ®---Qx; B> X 00X, .
Likewise, the exterior algebra on V is
AWV):=TV)/ ~

where
X1 ®---Q®x, ~ (—I)Gxg(l) ®:---® Xo(n)-

If xi,..., x, 1s a basis for V then §,, acts on V (on the right) by
Xj 0 = Xa-—l(j).
.. Get induced action of S,, on T(V), S (V), and A(V). This is called the internal action. Let
(V) =Fix*(S(V)) ={ae S(V)|la=a-oc Vo€ S,,}.

When K is a field, the isomorphism S (V) = K[x,..., x,] takes (V) to the ring of symmetric poly-
nomials over K, as defined in Section 3.9. Recall the definition in that section of the elementary

symmetric polynomials sy, ..., Sy:
Sk = Z xilxiz---xik.

i1 <ip<-<ik

By identifying S (V) with K[x;, ..., x,], we have s; € (V) V.
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Theorem 4.10.2. (V) = K[sq,..., Syl
If rankV = m, write 2X[m] = ZX(V).

Klxi,...,xpe1]l = Klx1, ..., X0]
Xj—>x; j<m
xm+1'_>0

induces the map

Pms1 = X[m + 1] > X[m]
Sk(xla e xm+1) = Sk(xla e xm)‘
SetX .= li;nZ[m], the inverse limit of graded rings. That is,
X = {(am € Z[m])rono:] |pm+l(am+l) =dnm vm}

[Se]

2 is a graded ring; the elements of X, are sequences (f[m]);_,,

poly. in m variables, and

where f[m] is a degree n symmetric

fIml(x1, ..., xn) = flm+ 1](x1,..., X, 0).

.. flm] determines f[k] for all k < m. However, since each f[m] is of degree n, f[n] determines
fIm] Vm. ie. Given

fInl = p(s1(X1s .y X))y e oy Su(X15 e 05 X)),

we then have, for any m > n,

fIm] = p(s1(X15 oy Xy e e s Su(Xpy e vy X)),

Equivalently, f[m] is obtained from f[n] by “symmetrizing over the m variables”.

So, we may identify the sequence (f[m]) with the single element f[n]. ie. Z, has a basis consisting
of the symmetric polynomials of degree n in n variables. (Alternatively, X, has a basis consisting of
the symmetric polynomials of degree n in m variables, for any m > n.) So

I K[Sl,Sz,...,Sk,...].
Definition 4.10.3. A partition of n is a sequence A = (A, ..., A,) of non-negative integers s.t.
n=A4;+ -+ 4.

A +—n means that A is a partition of n.
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Pick n > 0, let K be a field and let V be the free module with basis xi, ..., x,. For an unordered
partition A = (4,,...,4,) of n, set V* to be the K[S ,]-submodule of V" (position action) generated
by

®1
WU Q. @ Aot

That is, V4 is the subspace of V®" with basis
{xi, ®---®ux;, | {i1,...,1,} contains A; copies of j}.

Given A C V®" a subspace, the characteristic polynomial of A is

Ch(A) := Z dyx

A+n

where d; = dim(A N V4) and x* = x{" ... x".
It is clear from the definition that

Ch(A @ B) = Ch(A) + Ch(B)
Ch(A ® B) = Ch(A)Ch(B).

If A is closed under the internal action of S, on V then Ch(A) is symmetric.
Let P be a projective K[S,]-module, so that P = K[S,]e for some idempotent ¢ € K[S,]. For any
right K[S ,]-module N,
N = Ne®d N(1 —e)

as vector spaces. Applying this in particular to V®" with the position action,
Ve = Ve @ V(1 - e).
Set P(V) := V®e. Then

K-vector spaces — K-vector spaces
Vi P(V)

is a functor.

Example 4.10.4. Suppose p 1 n!. Then letting P be the trivial 1-dimensional rep. of S ,, P is an inde-
composable proj. module with idempotent

1
ez;Za’.

" oeS,
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We have:

1 n
PV) = span{; Z Vo) ® @ Vo | Vis. ooy Vn € V} c V&

toes,
= S(V).
LetV = (xy,...,Xxn),1e. V is the vector space with basis xi, ..., x,,. Then Ch(P(V)) is a symmetric
polynomial in xy, ..., x,, of degree n. In fact, if we let

Plm] = Ch(P({x1, ..., X))
then

(X1 e s X)) 2 X5 ey X)
Xj—Xx; j<m

Xm+1 P 0

induces by functoriality a map

P((x15. s Xme1))) B PUX1, -, X))
so by applying Ch(-), we get

Plm + 1] > P[m]
Xj—>Xx; j<m

Xm+1 P 0.

ie. (P[m]) forms an elt. of % (symmetric polys. with coeffs. in Z). We write Ch(P) for this elt. of ZZ.
It is determined by the degree n symmetric polynomial Ch(P(V)) in n vars. obtained from

V= (.X],...,Xn>.
For an arbitrary K[S ,]-module P, we can write

P:anpj

where each P; is an indecomposable proj. module and n; > 0. Set Ch(P) := } n;Ch(P;).
More generally, elements of Ky(K[S,]) are sums

anPj
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with n; € Z. So by extending the definition to this case via

Ch(Y " n;P) = > nCh(P;)
yields a homomorphism
Ch : Ko(K[S,]) — Z%[n].
We shall show, for char K = 0, that Ch(P) determines P.
Forn > 0, set

R, := Underlying group of the representation ring R(S )
= Ko(K[S ]
= span,{simple K[S ,]-modules}
= span,{simple characters of S ,}
and set R = @ R,. The map Ch : R, — X for each n yields Ch : R, — X%
Define a ring structure on R as follows: Let M be a K[S ,,]-module, in R,,, and N a K[S ,]-module,

in R,. Set
M . N — (M ® N)Sn1+11 e Rm+n.

ie. M ® N is a (§,, X §,)-module in an obvious way, and S,, XS, C S,.4n; M - N is the induced
S nen-module.

Theorem 4.10.5. Ch : R — X is a ring isomorphism.

Proof. We know that Ch(M @ n) = Ch(M) + Ch(N). We must show that Ch(M - N) = Ch(M)Ch(N).
It suffices to consider the case where M is a simple K[S,,]-module and N is a simple K[S,]-module.
Write M = K[S,,] e, N=K[S,]- f. Thene® f € K[S,]®K[S,] = K[S,, xXS,], and

M®N=K[S,, XS,] (e®f).
Now K[S,, X S,] € K[S ,,+»] and so
M -N =KI[S sn] - (e® f).
For any V,

Ch(M - N(V)) = Ch(VE"™™ . (¢ ® f))
= Ch(V®" - e®@V®" . f)
= Ch(V®" . ¢)Ch(V®" - f)
= Ch(M(V))Ch(N(V))
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.. Ch(MN) = Ch(M)Ch(N). Thus, Ch is a ring homomorphism.
Since X = Z[sy, $2,...], to show Ch is onto, is suffices to show that s, € Im(Ch) ¥Yn. Let P be
the one-dimensional sign rep. of S .. ie. P = (w) with o - w = (—1)**""w. Then P = K[S,] - e with

1
_ __1)\sgno
e= p} E (-1)*" 0,

toeS,

an idempotent. For any vector space V,
P(V) = (V®) - e = A(V).

.. Ch(P(V)) = Ch(A(V)) = s,. Thus, Ch is onto.
Claim. For each n, R, and Z, are free abelian groups whose rank equals the number of partitions
of n (into positive integers).

Proof of claim. The rank of R, is equal to the number of non-isomorphic simple K[S ,]-reps, which
is equal to the number of conjugacy classes in S,. Each conjugacy class is determined by its cycle
type, which is a partition of n (by Corollary 1.6.3). Moreover, it is obvious that every partition of 7 is
the cycle type of some element in S,,. Thus, the rank of R, is equal to the number of partitions of .
For X, this follows from the fact that ¥ = Z[sy, 55, ... ] and the degree of s; is k. ie. A basis for X,
consists of monomials in {s;} of total degree n, and since deg s; = k, each such monomial corresponds
to a partition of n via
(Ayyeees Ady) & Sy o080,

r

Since Ch is one-to-one, this claim shows that Ch is also onto, whence an isomorphism. O

4.10.1 Other Bases for X,

There are 6 bases for 29 in “common’ use, of which 5 form bases in Z%. All bases are indexed by
partitions A of n.

1. Elementary Symmetric Functions
Sy = S350, Sa,-

r

eg.
2
S@2) = X1X2, Sa2) = (x1 + x2)".
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2. Monomial Basis
2
1

1,42 Ay
x2 cee X

m, = symmetrization of x .

eg.
_ 2,2 _
mp) = X7 + X3, ma 1) = X1Xo.

3. Homogeneous Functions

Let
hy = Z monomials of degree k.
k
Then
I’L,1 = h/llh/lz tee h/lr-
eg.

2 p 5
h(z) = x|+ XX + X3, h(l,l) = (x] + x)”.

4. Power Functions

Let
pe=x v X
Then
Ya=yYada, ¥,
eg.

2 2 2
Yo = xi + X Y = (x1 + x)”.

5. Schur Functions
For p = (uy, ..., un), with ; > 0V, let

—_ _1\sgno M1 Hn
V= Z( 1) (1) xfr(n)

TS,
xﬁ]ll .xlllZ xl]ln
_ det xlzl] x}242 xlzln
x;;u x,;,:z xf,‘

In particular,

Vi-1n-2,..10 = n(xi - X)),

i<j
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called the Vandermonde determinant. For the partition 4 = (4y,.

allowed),

eg.

Note:

Vitn=1....1.0)
Fypi= ——-,
Vin-1...1.0)
x o1
xn 1
Foy=Foo =
X1 1
X 1
3.3
X1~ X
X1 — X2
= X0+ XX + X,
X% X1
X% X2
Fay =
X1
X2 1

2 2
XX T XX

X1

= X1X3.

.., Ay) of n (with 4; = 0

(@) x;=x;= V, =0. Thus, Vy,-1,.1,0) 18 divisible by V(,_; 10, and so F; is a polynomial.

(b) Interchanging x;, x; multiplies both numerator and denominator by —1, so F, is symmetric.

6. Forgotten Basis
Let m; = p(sy,.

eg. For 1 = (2),

Ja=p(hy, ...

m?2) = x% + x% =(x + x2)2 —2X1xy = sf — 259,

f(z) = h% - 2]’12 = (Xl + X2)2 — Z(X% + xX1xp + X%) =
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2 2



For 4 =(1,1),

ma,) = X1X2 = 52

. _ 2 2
C ﬁl,l) = I’lz = X] T XX + X5

We know that 1 forms a basis for £2 and it is trivial to see that 2 does. We have to prove that the
others do.
Note: {¢,} does not form a basis for 2. eg. s, = %(1//(1,1) — Y2 in 0';,02, SO

$2 € ZIY1,¥2, 43, ... ]

Generating Functions for s,, /1, ¥,
The first three of our bases are defined as monomials in some other symmetric functions. Set

[59)

S(t) := Z 51"
n=0

H®) := i h,t"
n=0

Y1) := i Ut
n=0
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By expanding and examining the coefficient of #*, we see that

Thus,

(1) implies that

S(1) = l—[(l + x;t),
J=1

H(t) = n(1+xjt+x§t2+x§;3+...):
j=1

CEPWITE

d
= — log(H(1)

dt
_H(»)
;0O
S(HH(=1) = 1
H/
W(r) = H((:))
CH(D S
Y= H TS0
Soho =1

n

D15 ;=0 n>0

J=0
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Define w : A* = Z[sy, 52,...1 = AZ by w(s;) = h;. Since (1) is symmetrical in A, s, we get that w
is an isomorphism. In particular, A = Z[hy, h,, ... ], and so the homogeneous functions form a basis.
Applying w to (1’) gives

0= Z(—l)jhjw(hn_ b,
Jj=0
= > (=1"hy_jeohy)
Jj=0
= (=1 Y (=D whph,; n>0.
Jj=0

Comparing with (1°), we see that w(h,) = s,, ie. w* = 1 (w is an involution).

By (2),
Z I’lhntn_] = Z Z l//jhn_jtn_]
n=1 n=1 j=1
Z Wh_; = nh, Vn. 2’)
j=1
Similarly,
D =Dy, =ns; V. 3)
j=1
Using (3’), each s, can inductively be written as a polynomial in Q[¢, . . ., ¥,], so the power functions

form a basis for A2
Since w interchanges £, s, comparing (2°) and (3°) gives

W) = (=1)"",.

.....

symmetric polynomials of degree k in n variables. Then we have an isomorphism

At Ay
e 1V,

Since {F,V,} is the “monomial” basis for A, Q) (ie. the basis obtained by skew symmetrizing each
monomial), {F;} forms a basis for A,,.
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