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Chapter 1

Sets

Notation:
f: X=>Y AcCX BcCcY
f(A):={f(a) |[ac A} CY
fU(B)={r€ X | f(x) € B}

Note: 1 NaerVa) = Naerf (V)
f_l(uaelvoz) = UaEIf_l(Va)
f(PUQ) = f(P)U f(Q) but in general f(PNQ)# f(P)N f(Q)

Theorem 1.0.1 The following are equivalent (assuming the other standard set theory axioms):
1. Axiom of Choice
2. Zorn’s Lemma

3. Zermelo well-ordering principle

where the definitions are as follows.

Axiom of Choice: Given sets A, for a € I, Ay #0 = [[,c; # 0
(i.e. may choose a, € A, for each a € I to form an element of the product)

To state (2) and (3):
Definition 1.0.2 A partially ordered set consists of a set X together with a relation < s.t.
1. <z Ve e X reflexive

2 x<yy<z=>zx<z transitive



S r<yy<zr=z=y (anti)symmetric

Notation: b > a means a < b.
If X is a p.o. set:

Definition 1.0.3 1. m is maximal if m <z = m = x.

2. For' Y C X, an element b € X s called an upper boundfor Y if y < b Vy € Y. an
element b € X s called an lower boundforY ify >bVy €Y.

3. X is called totally ordered if Va,y € X, either v <y ory < x. A totally ordered subset
of a p.o. set is called a chain.

4. X is called well ordered if each Y # 0 has a least element. i.e. if VY # 0, Jyy € Y s.t.
Yo<yVyecy.

Remark 1.0.4 In contrast to “well-ordered”, which requires the element yq to lie in'Y, a “lower
bound” is an elt. of X which need not lie in'Y .

Note: well ordered = totally ordered (given z, y apply defn. of well ordered to the subset {z, y}),
but totally ordered # well ordered (e.g. X = Z).

Zorn’s Lemma: A partially ordered set having the property that each chain has an upper
bound (the bound not necessarily lying in the set) must ahve a maximal element.

Zermelo’s Well-Ordering Principle: Given a set X, 3 relation < on X such that (X, <) is
well-ordered.
Proof of Theorem:
2= 3:

Given X, let S := {(4,<4) | A C X and (A, <4) well ordered }

Define order on § by:

a<pd < a<yd Va,d €B

A<4)<(B,<g)if AC B and
(A=4) = (B, <p) i o {agb VacAbeB—A

(i) This is a partial order

Trivial. e.g. Symmetry: If (4, <4) < (B,<p) < (A,<4) then AC B C Aso A= B and
defns. imply order is the same.

(i) If C = {(A,<4)} is a chain in § then (Y := Uyec, <y) is an upper bound for C where <y
is defined by:



Ify,y/ €Y, find A, A €Cst.ye Ay € A.
C chain= A, A comparable= larger (say A) contains both y,y’.
So define y <y ¢/ &y <, v

To qualify as an upper bound for C, must check that Y € S. i.e. Show Y is well-ordered.
Proof: For 0 #W C Y, find Ag € C s.t. W N Ay # 0.

Ag € § = Ay well-ordered= W N Ag has a least elt. wy.
Yw e W, dA € C s.t. w € A.

C chain= Aj, A comparable in S.

If AC Ap then w € Ag so wy < w (wy = least elt. of Ap).

If Ay C A then wy < w by defn. of ordering on S.

Therefore wy < w Yw € W so every subset of Y has a least elt.

Therefore Y is well-ordered.

Hence (Y, <y) belongs to S and forms an upper bound for C.

So Zorn applies to §. Therefore S has a maximal elt. (M <u).

If M #X,let x € X — M and set M’ := M U {x} with x > a Va € M.
Then (M', <) £ (M, <). =«

Therefore M = X.

Hence <, is a well-ordering on X.

3= 1:
Well order U, A,. For each a, let a, := least elt. of A,. Then (ay)aca is an elt. of [], Aq.
O

Standard consequences of Zorn’s Lemma:
1. Every vector space has a basis. (Choose a maximal linearly independent set)
2. Every proper ideal of a ring is contained in a maximal proper ideal

3. There is an injection from N to every infinite set.



1.1 Ordinals

Definition 1.1.1 If W is well ordered, an ideal in W is a subset W' s.t. a € W', b<a= b€
w’.

Note: Ideals are well-ordered.

Lemma 1.1.2 Let W’ be an ideal in W. Then either W =W or W ={w e W |w < a} for
some a € W.

Proof: If W/ # W, let a be least elt. of W — W’. If z < a then x € W'.
Conversely if z € W':
Ifa<zthenaeW =«
Therefore x < a. g

Corollary 1.1.3 If I, J are ideals of W then either I C J or J C I.

Notation: Init, := {w € W | w < a} called an initial interval

Proof of Cor. If I = Init, and J = Init,, compare a and b. O

Theorem 1.1.4 Let X, Y be well ordered. Then
either a) Y = X
or b) Y = an initial interval of X
or ¢) X = an initial interval of Y

The relevant iso. 1s always unique.

Lemma 1.1.5 A, B well-ordered. Suppose ¢ : A — B is a morphism of p.o. sets mapping
A isomorphically to an ideal of B. Let f : A — B be an injection of p.o. sets. Then ((a) <
f(a) Va € A.

Proof: If non-empty {a € A| {(a) > f(a)} has a least elt. a.
((ag) > f(ao).
Since Im ¢ is an ideal, f(ag) = ((a) for some a € A.
C(ag) > ((a) = ap > a (¢ p.o set injection)
Choice of ay = f(ag) = ((a) < f(a)
=ar<a (f p.o. set injection)
==
Therefore ((a) < f(a) Va. O



Proof of Thm. From Lemma, if (;, {, are both isos. from A onto ideals of B (not necess. the
same ideal)
Va, G(a) < G(a) < Gla) = Gla) = G(a).
Therefore (; = (5. So uniqueness part of thm. follows.
Claim: X % an initial interval of itself
Proof: If g: X = I where [ = Init,,

I—1+ X and I 21+ X 2 I —1+ X map I isomorphically onto an ideal of X. (ie. If
b < jgjr = g(jx) € I then b € I since I ideal = b = g(y) some y. Then g(y) < g(jz) =y <
jr=yel=y=7jy),sobelmjgj.)

Therefore j = jgj (Lemma).

Impossible since jg(a) € Imj whereas g(a) € Imjgj (ie. a > jeVr € I = jg(a) >
79i(x) = jg(a) € Im jgj)

Therefore at most one of (a), (b), (c) holds.

Let ¥ := set of ideals of X which are isomorphic to some ideal of Y, ordered by inclusion.

(K :=3% = Urexl) is an ideal in X

For each I € X, let (; : I — Y be the unique map taking I isomorphically onto an ideal
of Y.

Therefore If J C I, (5 = (1.

So the (;’s induce a map ¢ : K — Y which takes K isomorphically to an ideal of Y. (i.e. If
y < ((K), find I s.t. k € I. Then (; iso. to its image = y = (;(I) for some [. Therefore Im ¢
is an ideal. And ( is an injection: Remember, given two elts. a € I, a’ € I’ either a < da’ in
which case a € I’ or reverse is true.)

Therefore K € ..

If (both) K # X and ((K) # Y, let z, y be least elts. of X — K, Y — ((K) respectively.
Extend ¢ by defining ((z) = y to get an iso. from K U {z} to the ideal ((K) U {y} of Y.
Contradicts defn. of K =<«

So either K = X or ((K) =Y or both, giving the 3 cases. |

Corollary 1.1.6 Let g : X — Y be an injective poset morphism between between well-ordered
posets. Then

either a) X 2Y
or b) X = initial interval of Y

(i.e. Y 2 initial interval of X in previous thm.)
Proof: If h:Y = initial interval of X then

f:Y — ", initial interval of X = Init(a) — X —2~Y is an injection from Y to Y.
Applying earlier Lemma with ( = 1y gives g < f(y) Yy € Y.
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But Im f C Init(g(a)) soy <gla)VyeY (ie. y < f(y) < g(a))
=<« (letting y = g(a)) O

Definition 1.1.7 An ordinal is an isomorphism class of well ordered sets.
(Generally we refer to an ordinal by giving a representative set.)

Example 1.1.8
1. n:={1,...,n} standard order
2. w:=N standard order

3. w+n:=NIIn with the ordering x <y if v € N and y € n and standard ordering if both
z,y € N or both x,y €n

Note: 11 := disjoint union (i.e. union of N with a set isomorphic to n containing no elts.
of N.)
4. 20=NIIN)
Note: For any ordinal gamma there is a “next” ordinal v 4 1, but there is not necessarily
an ordinal 7 such that v =7+ 1.

Transfinite induction principle: Suppose W is a well ordered set and {P(z) | z € W} is a
set of propositions such that:

(i) P(xg) is true where x is the least elt. of W

(ii) P(y) true for V y < x = P(x) true
Then P(x) is true V z.

1.2 Cardinals

Theorem 1.2.1 (Shroeder-Bernstein). Let X, Y be sets. Then
1. FEither 3 injection X — Y or 3 injection ¥ — X.

2. If both injections exist then X 2Y



Proof: 1. Choose well ordering for X and for Y. Then use iso. of one with other or with
ideal of other to define injection.

2. Suppose i : X — Y and 5 : Y — X. Choose well ordering for X and Y. If 3z € X s.t. X
is bijection with Init(z), let zo be least such . So in this case X is bijective with Init(zq) but
not with any ideal of Init(z¢). Replacing X by Init(zy) we may assume that X is not bijective
with any of its ideals. (And in the case where Az € X s.t. X is bijective with Init(z) then
this is clearly also true.) Similarly may assume that Y well ordered such that it is not bijective
with any of its ideals. Assuming X 2 Y, one is iso. to an ideal of the other. Say Y = Init(x).
The inclusion ¢ : X — Y induces a new well-order (X, <) on X. from that on Y. By earlier
Corollary, either 3 iso. ¢ : (X, <) = Y or Fiso. ( : (X <) — Init(y) for some y € Y. In the

former case we are finished, so suppose the latter. (X, <)) é Init(y) — Y = Init(z) gives
a bijection from X to an initial interval of X. (Note: Image of init interval under iso. is an init
interval, and an init interval within an init interval is an init interval.)

=<

Therefore X is bijective with Y. |

Definition 1.2.2 A cardinal is an isomorphism class of sets. (In this context “isomorphism”
means “bijection”.)

card X = card Y means 3 bijection from X to Y.

card X < cardY means 3 injection from X toY.

(Thus previous Thm. says: card X < cardY and cardY < card X = card X = cardY’)

1.3 Countable and Uncountable Sets

Definition 1.3.1 A set is called countable if either finite or numerically equivalent (i.e. 3 a
bijection) to the nature numbers N. A set which is not countable is called uncountable.

Example 1.3.2 1. Fven natural numbers
2. Integers

3. Positive rational numbers Q. Proof: Define an ordering on QF by a/b < c¢/d if
(a+b<c+dor(a+b=c+danda<c)) where a/b, c¢/d are written in reduced form.
e.g. 1,1/2,2,1/3,3, 1/4, 2/3, 3/2, 4, 1/5, 5, ...

For f e Q7, let S, =2 € Q" | x <r}. This set is finite for each r so define f(r) = ||S,|.

10



Proposition 1.3.3 A subset of a countable set is countable.

Proof: Let A be a subset of X and let f : X — N be a bijection. Define ¢ : A — N by
g(a) = [{be A] f(b) < f(a)}]. O

Proposition 1.3.4 Let g: X — Y be onto. If X is countable then Y is.

Proof: Let f: X — N be a bijection. For y € Y, set h(y) := min{f(z) | g(z) = y}. Then h
is a bijection between Y and some subset of N so apply prev. prop. ]

Proposition 1.3.5 X, Y countable = X XY countable.

Proof: Use diagonal process as in pf. that rationals are countable. (Exercise.) |

Theorem 1.3.6 (Cantor). R is uncountable.

Proof: Suppose 3 bijection f : R — N. Let ¢ : N — R be the inverse bijection. For each
n € N define

ay, 1=

1 if nth interger after decimal pt. in decimal expansion of g(n) is not 1
2 if nth interger after decimal pt. in decimal expansion of g(n) is 1
Therefore a, # nth integer after dec. pt. in the dec. expansion of g(n). Let a be the real
number represented by the decimal 0.aja9as3 -+ -. (i.e. a is defined as the limit of the convergent
series a1 /104 a3 /100 +a3/1000+. ..+ a,/(10™) +....) Let f(a) = m or equivalently g(m) = a.
Then a,, = mth integer after dec. pt. in dec. expansion of g(m), contradicting defn. of a,,.
==
Therefore no such bijection f exists. |

11



Chapter 2

Topological Spaces

2.1 Metric spaces

Definition 2.1.1 A metric space consists of a set X together with a functiond : X x X — RT
S.t.

1. dz,y) =0 x=y
2. d(z,y) = d(y,x)  Vr,y
3. d(z,z) < d(x,y)+d(y,2) Va,y, 2 triangle inequality
Example 2.1.2 Examples
1. X =R"
2. X = {continuous real-valued functions on [0, 1]}
d(f.9) = supyepo | f(t) — g(t)]
3. X = {bounded linear operators on a Hilbert space H}
d(f,9) = sup,ep ||A(z) — B(z)|| = [|A - B]|

4. X any

ey ={ ] 1

12



Notation:
N.(a)={r e X |d(z,a) <1} open 7-ball centred at a

N.a] ={z € X |d(z,a) <1} closed r-ball centred at a

Definition 2.1.3 A map ¢ : X — Y is continuous at a if Ve > 0 3§ > 0 s.t. d(z,a) < =
d(¢(z),¢(a)) < e. ¢ is called continous if ¢ is continuous at a for all a € X.

Equivalently, ¢ is continuous if Ve 3§ such that ¢(N;(a)) C Ne(é(a)).

Definition 2.1.4 A sequence (x;)i € N of points in X converges to T € X if Ve, IM s.t.
n> M = x; € N(T)

We write (x;) — .
Exercise: (z;) — x in X < d(z;,z) — 0 in R.

Proposition 2.1.5 If (z;) converges to T and (x;) converges to y then x = y.

Proof: Show d(z,y) < € Ve. |

Proposition 2.1.6 f: X — Y is continuous < ((z;) = = = (f(z:)) — f(2))

Proof: = Suppose f continuous. Let (x;) — Z.

Given € > 0,36 s.t. f(Ns(Z)) C Ne(2)

Since (z;) — @, IM s.t. n > M = z; € Ns(z) -.n > M = f(z;) € N(f()).
< Suppose that ((mz) - T = (f(xl)) — f(;i))

Assume f not cont. at a for some a € X. Then Je > 0 s.t. there is no 6 s.t. f(Ns(z)) C
Nc(z). Thus Je > 0 s.t. for every J there is an x € Ns(Z) s.t. f(x) € N(z) Therefore
we can select, for each integer n, an x, € Nyi/n(Z) st. f(x,) € N(Z). Then (z,) — x but

flan) # f(2). =<

Definition 2.1.7 An open set is a subset U of X s.t. Vo € U existse s.t. N, C U.
Proposition 2.1.8

1. U, open Va = UyerU, is open
2. U, openVa,|I| < 0o = Uye U, is open

Proof:

13



1. Let x € V = UuerU,. So x € U, for some a.
. N.c U, CV for some e.

2. Number the sets Uy, ..., U,.
Let z € V. =N7_,U;. So Vj Je; s.t. N (x) C Uj.

Let € = min{ey,...,e,}. Then N (z) C V.
i

Note: An infinite intersecion of open sets need not be open. For example, N,>1(—1/n,1/n) =

{0} in R.
Lemma 2.1.9 N,(z) is open Yx and ¥r > 0.

Proof: Let y € N.(x). Set d = d(z,y). Then N,_4(y) C N,(z) (and r —d > 0 since
y € N,(z)). i

Corollary 2.1.10 U is open < U = UN, where each N, is an open ball

Proof: < N, open Va so UN, is open. = If U open then for each x € U, Je, s.t. N, C U.

Proposition 2.1.11 f: X — Y is continuous <V open U CY, f~Y(U) is open in X

Proof: = Suppose f continuous. Let U C Y be open.
Given z € f~H(U), f(z) € U so Je > 0 s.t. N(f(z)) C U. Find 6 > 0s.t. f(Ns(z)) C
N.(f(z)). Then Nj(x) C f‘l(Ng(f(x))) C f Y (w).

< Suppose that the inverse image of every open set is open.

Let z € X and assume € > 0.

Then z € f‘1<N€(f(x))> and f‘1<Ne(f(x))) is open so 39 s.t. Ns(z) C f_1<NE(f(x))>
That is, f(Ns(z)) C Ne(f(z))

.. [ continuous at z. O

Note: Although the previous Prop. shows that knowledge of the open sets of a metric space
is sufficient to determine which functions are cont., it is not sufficient to determine the metric.
That is, different metrics may give rise to the same collection of open sets.

14



2.2 Norms

Let V be a vector space of F' where F' =R or F' = C.
Definition 2.2.1 A norm on V is a function V- — R, written x — ||z||, which satisfies
1. ||z|]| >0 and |z]| =0 <z =0.
2.yl < ]| + Tyl
3. ||azx|| = |af||x]| Vae F,x eV
Given a normed vector space V', define metric by d(z,y) = ||z — y||.
Proposition 2.2.2 (V,d) is a metric space

Proof: Check definitions. O

2.3 Topological spaces

Definition 2.3.1 A topological space consists of a set X and a set T of subsets of X s.t.
1.0eT,XeT
2. For any index set I, if U, € TVa € I, then UyerU, € T
3 0VeT=UnVeT.

Definition 2.3.2 Open sets
The subsets of X which belong to T are called open.

If x € U and U is open then U is called a neighbourhood of X.

If S C T has the property that each V' € T can be written as a union of sets from S, then
S is called a basis for the topology 7.

If S C T has the property that each V' € T can be written as the union of finite intersections
of sets in S then § is called a subbasis, in other words V' = U, (Ny,...i.Si.)

Given a set X and a set S C 2% (the set of subsets of X), 3! topology 7 on X for which
S is a subbasis. Namely, 7 consists of all sets formed by taking arbitrary unions of finite
intersections of all sets in S.

(Have to check that the resulting collection is closed under unions and finite intersections
— exercise)

In contracts, a set S C 2% need not form a basis for any topology on X. S will form a basis
iff the intersection of 2 sets in & can be written as the union of sets in S.

15



Definition 2.3.3 Continuous Let f : X — Y be a function between topological spaces. f is
continuous if U open in Y = f~YU) open in X.

Note: In general f(open set) is not open. For example, f = constant map : R — R.
Proposition 2.3.4 Composition of continuous functions is continuous.

Proof: Trivial O

Proposition 2.3.5 If S is a subbasis for the topology on'Y and f~1(U) is open in X for each
U e S then [ is continuous.

Proof: Check definitions. O

2.4 Equivalence of Topological Spaces

Recall that a category consists of objects and morphisms between the objects.
For example, sets, groups, vector spaces, topological spaces with morphisms given respec-
tively by functions, group homomorphisms, linear transformations, and continuous functions.
(We will give a precise definition of category later.)
In a any category, a morphism f : X — Y is said to have a left inverse if 4g: Y — X s.t.

gof=1x.

A morphism f: X — Y is said to have a right inverse if dg: Y — X s.t. fog = 1y.

A morphism g : Y — X is said to be an inverse to f is it is both a left and a right inverse.
In this case f is called invertible or an isomorphism.

Proposition 2.4.1
1. If f has a left inverse g and a right inverse h then g = h (so f is invertible)
2. A morphism has at most one inverse.
Proof:
1. Suppose go f =1, and foh = 1y.
Part of the definition of category requires that composition of morphisms be associative.

Therefore h=1xoh=go foh=goly =g.

2. Let g, h be inverses to f. Then in particular g is a left inverse and A a right inverse so

g=hby (1),
O

16



Intuitively, isomorphic objects in a category are equivalent with regard to all properties in
that category.

Some categories assign special names to their isomorphisms. For example, in the category
of Sets they are called “bijections”. In the category of topological spaces, the isomorphisms are
called “homeomorphisms”.

Definition 2.4.2 Homeomorphism A continuous function f : X — Y is called a homeo-
morphism if there is a continuous function g : Y — X such that go f = 1x and fog=1y.

Remark 2.4.3 Although the word “homeomorphism” looks similar to “homomorphism” it is
more closely analogous to “isomorphism”.

Note: In groups, the set inverse to a bijective homomorphism is always a homomorphism so a
bijective homomorphism is an isomorphism. In contrast, a bijective continuous map need not
be a homeomorphism. That is, its inverse might not be continuous. For example

X =10,1) Y = unit circle in R? = C

f:X =Y by f(t) = e,
2.5 Elementary Concepts
Definition 2.5.1 Complement If A C X, the complement of A in X is denoted X ~\ A or A°.
Definition 2.5.2 Closed A set A is closed if its complement is open.

Definition 2.5.3 Closure The closure of A (denoted A) is the intersection of all closed subsets
of X which contain A.

Proposition 2.5.4 Arbitrary intersections and finite unions of closed sets are closed.

Definition 2.5.5 Interior The interior of A (denoted ;21 or Int A) is the union of all open
subsets of X which contained in A.

Proposition 2.5.6 = E;H:) JU C A s.t. U is open in X and x € U.

Proof: = Ifzx 61(21, let U :;1.
< x €U C A. Since U is open, U CA, so x € A. O
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(e}

Proposition 2.5.7 (ﬁ)c =(A°)

Proof: Exercise ]
Corollary 2.5.8 Ifx & A then 3 open U s.t. x € U and UN A = (). |

Definition 2.5.9 Dense A subset A of X is called dense if A = X.

Definition 2.5.10 Boundary Let X be a topological space and A a subset of X. The boundary
of A (written 0A) is

{z € X | each open set of X containing x contains at least one point from A

and at least one from A}

Proposition 2.5.11 Let A C X
1. 0A = AN Ac = 9(A°)
2. 0A is closed
3. Ais closed < 0A C A

Proof:

1. Suppose z € 0A.
If v ¢ Athen Jopen Ust. x €U and UN A = ().
Contradicts z € 0A =<«
SOAC A
Similarly 0A C Ac.
SOAC AN Ae
Conversely suppose € A N A¢.
If U is open and x € U then
r€A=UNA#(and
reA=>UNA £
True V open U so = € 0A.
AN A C OA.
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2. By (1), 0A is the intersection of closed sets

3. = Suppose A closed
OA=ANAC A= A (since A closed)
< Suppose A closed.
Let © € A. Then every open U containing 2 containe a point of A.
If € A then every open U containing x also contains a point of A, namely z.
In this case v € 0A C A =«
S AC Aso A= Aand so A is closed.

2.6 Weak and Strong Topologies

Given a set X, topological space Y, S and a collection of functions f, : X — Y then there is a
'weakest topology on X s.t. all f, are continuous’:

namely intersect all the topologies on X under which all f, are continuous.

Given a set X, a topological space W and functions g, : W — X we can form 7T, the
strongest topology on X s.t. all g, are continuous. Define 7 by U € T < ¢;'(U) is open in
W Va.

Strong and weak topologies Given X, a topology on X is 'strong’ if it has many open sets,
and is 'weak’ if it has few open sets.

Extreme cases:

(a) T = 2% is the strongest possible topology on X. With this topology any function
X — Y becomes continuous.

(b) T = {0, X} is the weakest possible topology on X. With this topology any function
W — X becomes continuous.

Proposition 2.6.1 If 7, are topologies on X then so is NperTa-

Common application: Given a set X, a topological space (Y, S) and a collection of functions
fo : X — Y then there is a 'weakest topology on X s.t. all f, are continuous’. Namely, intersect
all the topologies on X under which all f, are continuous.

Similarly, given a set X, a topological space (W, P) and functions g, : W — X, we can
form 7 which is the strongest topology on X s.t. all g, are continuous. Explicitly, define T by
UeT < g, (U) is open in W Va.

Example: H = Hilbert space.
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B(H) = bounded linear operators on H
Some common topologies on B(H):
(a) Norm topology: Define
1Al = sup  [[A(z)]]

z€H,||z||=1

A norm determines a metric, which determines a topology.
(b) Weak topology: For each z,y € H, define a function f,, : B(#) — C by

A (Az,y)

The weak topology on B(#) is the weakest topology s.t. f;, is continuous Vz, y.
(c) Strong topology: For each z € H define a function g, : B(H) — R by

A |[A(2)]]
The strong topology is the weakest topology on B(H) s.t. g, is continuous Vz € H.

Definition 2.6.2 Subspace topology

Let X be a topological space, and A a subset of X. The subspace topology on A is the weakest
topology on A such that the inclusion map A — X is continuous.

Explicitly, a set V in A will be open in A iff V.=UN A for some open U of X.

Definition 2.6.3 Quotient spaces

If X is a topological space and ~ an equivalence relation on X, the quotient space X/~
consists of the set X/~ together with the strongest topology such that the canonical projection
X — X/~ is continuous.

Special case: A a subset of X. x ~y < z,y € A. In this case X/~ is written X/A.

For example, if X =[0,1] and A = {0, 1} then X/A = circle.

(Exercise: Prove this homeomorphism between X/A and the circle.)

Example 2.6.4 Examples

1. Spheres:

S"={z e R"" | |lzf| = 1}

2. Projective spaces:
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(a) Real projective space RP™: Define an equivalence relation on S™ by x ~ —x. Then
RP" = 8"/~

with the quotient topology.

Thus points in RP™ can be identified with lines through 0 in R™™Y, in other words
wdentify the equivalence class of x with the line joining x to —zx.

Similarly
(b) Complex projective space CP":

52n+1 C R2n+2 _ Cn+1

Define an equivalence relation x ~ Az for every A € St C C where \x is formed by
scalar multiplication of C on C"*t. Then

CP" = SZn—i—l/N
with the quotient topology. The points correspond to complex lines through the origin
in C+L,

(¢) Quaternionic projective space H™

S4n+3 C R4n+4 — Hn—H

Define x ~ \x for every A € S? C H where Az is formed by scalar multiplication of
H on H™H!.
HP" = S4n+3/N

with the quotient topology.

3. Zariski topology:
(This is the main example in algebraic geometry.)
R s a ring.
Spec R = {prime ideals in R}

Define Zariski topology on SpecR as follows: Given an ideal I of R, define V(I) ={P €
Spec(R) | I C P}.

Specify the topology by declaring the sets of the form V(I) to be closed.

To show that this gives a topology, we must show this collection is closed under finite
unions and arbitrary intersections.

This follows from
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Lemma 2.6.5
(a) V(I)UV(J)=V(1J)
(b) NaexV(1a) =V (X ok Lo

4. Ordinals:
Let v be an ordinal.

Define X = {ordinals 0 | 0 < v}, where for ordinals o and v, o < v means that the
well-ordered set representing o is isomorphic to an initial interval of that representing .

Recall the Theorem: For two well-ordered sets X and Y either X =Y or X = initial
interval of Y or'Y = initial interval of X. Thus all ordinals are comparable.

Define a topology on X as follows.
For wywy € X define Uy, wy, = {0 € X|wy < 0 <ws}. Here allow wy or we to be 0o.

Take as base for the open sets all sets of the form Uy, v, for wi,ws € X Note that this
collection of sets is the base for a topology since it is closed under intersection,

in other words Uy, wy N U1y, = Unmaxfw: ] jmin{ws,w)} -

Definition 2.6.6 Product spaces
The product of a collection { X} of topological spaces is the set X =[], Xo with the topology
defined by: the weakest topology such that all projection maps 7, : X — X, are continuous.

Proposition 2.6.7 In [[, X, sets of the form [[, Uy for which U, = X, for all but finitely
many « form a basis for the topology of X.

Proof: Let S C 2% be the collection of sets of the form [], U,.
Intersection of two sets in S is in S so S is the basis for some topology T

Claim: In the topology 7 on X, each 7, is continuous.
Proof: Let U C X, be open.
—1 _

Then Mo (U).— UXlotay Xa €SCT

L Ty, 18 continuous.
Claim: If 77 is any topology s.t. all 7, are continuous then § C T (and thus 7 C T7)
Proof Let V =U,, X Uy, X ... X U,, X Ha;«éal,...,an X, ES.

Then V = 7 'U,, N7, Usy N --- N, Uy, which must be in any topology in which all 7,
are cont.

.. T = weakest topology on X s.t. all 7, are cont. |
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Note: A set of the form [], U, in which U, # X, for infinitely many « will not be open.

Proposition 2.6.8 Let X =[] ,.; Xo. Then m, : X — X, is an open map V «.

acl o

Proof: Let U C X be open, and let y € m,(U).
So y = m,(x) for some x € U.
Find basic open set V = [[4 V5 (with Vieta = Xj for almost all 8) s.t. z € V C U.
Then y € V, = mo(V) C [1,(U).
. every pt. of [],(U) is interior, so [[,(U) is open.
.. T, 1S an open map. O

Proposition 2.6.9 If F, is closed in X, Vo then [, Fu is closed in [], Xa.

[ Fo = o (Fa % TTp0 X5)
Fy X []540 Xp is closed (compliment is Fg x [[5, Xa)-
=[], Fa is closed O

Theorem 2.6.10 X, Xy, ..., Xy, ... metric = X = [[, .y Xi metrizable

i€EN

Proof: Let z,y € X.
Define d(z,y) = > ", dn(Tn, Yn) /2"
Let X denote X with the product topology and let (X, d) denote X with the metric topology.
Clear that m, : (X,d) — X, is continous Vn.
o 1x 1 (X, d) — X is continous.
Conversely, let N,.(x) be a basic open set in (X, d).
To show N, (z) open in X, let y € N,(z) and show y interior.
Find 7 such that Nz(y) C N, (z).
Find M s.t. 1/2M-1) < 7,
y € U = [Tp<ns Nijam (Yr) X I nr X&, which is open in X
For z € U,

1 (1 1 1 1 B
dy.2) < g\t tow ) Yo Toam T <ot o = out <7

.U C Ni(y) C N.(X) so y is interior.
. N.(z) is open in X. O
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2.7 Universal Properties

x— 1 .y
x I
3!
X/~

A set function f making the diagram commute exists iff (a ~b= fla)=f (b))

Proposition 2.7.1 f is cont. < f is cont.

Proof: Check definitions.

3!
I1x. & X,

A function into a product is determined by its projections onto each component.

Proposition 2.7.2 f is continuous < f, is cont. Vo

Proof: = f, —m,0 f so f cont.= f, cont. <= Suppose f, cont. Va.

~~~~~

Then
f_l(v) = f_lﬂczll(UCYl) M---N f_lTr_l(Uan> = f_l(UOél) M---N f_1<Uan) = open

Qn

Since S is a basis, this implies f cont.
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2.8 Topological Algebraic Structures

Definition 2.8.1 A topological group consists of a group G together with a topology on the
underlying set G s.t.

mult

1. multiplication G x G — G

2. inversion G — G
are continuous (using the given topology on the set G and the product topology on G x G)
Example 2.8.2
1. R™ with the standard topology (coming from the standard metric) and + as the group
operation
(x,y) — = +y is continuous
T — —x is continuous
2. G=S'CcR*=C.
Group operation is multiplication as elements of C
(a) St x S — St
(e, ™) s ) is continuous
(b) e s e~ is continuous
Similarly G = 3 C R* = H
S3 becomes a topological group with multiplication induced from that on quaternions
3. G = GL,(C) = { invertible n x n matrices with entries in C }

Group operation: matrix multiplication

Topology: subspace topology induced from inclusion into cr’ (with standard metric on
c™)

In other words, the topology comes from the metric

d(A, B) =) lai; — by’
‘7j
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mult

(a) G x G — @ is continuous since the entries in the product matrix AB depend
continuously on the entries of A and B

(b) the inversion map G — G is continuous since there is a formula for the entries of A~ in
terms of entries of A using only addition, multiplication and division by the determinant.

Similarly SL,(C), U(n), GL,(R), SL,(R) and O(n) are topological groups.
4. Let G be any group topologized with the discrete topology.

Lemma 2.8.3 If X and Y have discrete topology then the product topology on X XY is also
discrete.

For (z,y) € X x Y the subset consisting of the single element (x,y) is open (a (finite)
product of open sets).

Every set is a union of such open sets so is open.

Hence multiplication and inversion are continous. (Any function is continuous if the domain
has the discrete topology.)

Similarly one can define topological rings, topological vector spaces and so on.

A topological ring R consists of a ring R with a topology such that addition, inversion and
multiplication are continuous.

A topological vector space over R consists of a vector space V' with a topology such that the
following operations are continuous: addition, multiplication by —1 and

RxV >V

t,v — tv where R has its standard topology and R x V' the product topology.
Exercise: The standard topology on R™ is the only one which gives it the structure of a
topological vector space over R.
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2.9 Manifolds

A Hausdorff (see Definition 4.1.1) topological space M is called an n-dimensional manifold if 3
a collection of open sets U, C M such that M = UaE ; Uy with each U, homeomorphic to R".

This is usually known as a “topological” manifold. One can also define differentiable or C'*
manifold or complex analytic manifold, by requiring the functions giving the homeomorphisms
to be differentiable, C° or complex analytic respectively. (The last concept only makes sense
when n is even.)

Example 2.9.1 S” is an n-dimensional manifold.
Lemma 2.9.2 S~ {pt} = R".

Proof: Stereographic projection:

Place the sphere in R™*! so that the south pole is located at the origin. Let the missing point
be the north pole (or N), located at (0,...,0,2). (Note that we also introduce the notation S
for the south pole.)

Define f : S"~{N} — R™ by joining N to x and f(x) be the point where the line meets R™
(the plane where the z coordinate is 0).

Explicitly f(z) = x + M(a — a) for the right .

O=f(zr)-a=z-a+ANx—a)-a

SO

T-a
A=
(x—a)-a

Hence f(z) =x — (xf';‘)_a.(:c — a). This is a continuous bijection.

The inverse map ¢ : R" — S™ \ {N} is given by y — the point on the line joining y to N
which lies on S™*1.

Explicitly, g(y) = ty + (1 — t)a where t is chosen s.t. ||g(y)|| = 1.

Hence (ty + (1 —t)a) - (ty + (1 — t)a) =1 so0

2yl +2t(1 =)y - a+ (1 —t)*[al|* =1

The solution for ¢ depends continuously on y.
Write S™ = (S~ {N}) U (S™ \ {S}) which is a union of open sets homeomorphic to R".
O

Lemma 2.9.3 Vr > 0 and Vx € R", N,(x) is homeomorphic to R".
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Y

Proof: It is clear that translation gives a homeomorphism N,(x) = N,(0) so we may as-
sume r = 0.

Define f : N;(0) — R" by f(y) = ;=5 and g : R" — N,(0) by g(z) =
that f and g are inverse homeomorphisms.

. )
——2z. It is clear
1+|]2]]

Corollary 2.9.4 Let X be a topological space having the property that each point in X has a
neighbourhood which is homeomorphic to an open subset of R™. Then X is a manifold.

Proof: Let x € X. U, with x € U, and a homeomorphism h, : U, — V.

If V is open, 3r, s.t. N, (he(z)) C V.

The restriction of h, to h;'(N,(z)) gives a homeomorphism W, — N,(z).

(By definition of the subspace topology, the restriction of a homeomorphism to any subset
is a homeomorphism.)

Hence X = U,exW, and each W, is homeomorphic to N, (Z) for some Z which is in turn
homeomorphic to R”. O

Example 2.9.5 RP"

Let 7 : 8™ — RP" be the canonical projection.

Let x € S™ represent an element of RP"™.

Let U ={y € RP" | 77 }(y) N N, (x) # 0}

7 YU) = N.(x) U N,(—x) which is open. Hence U is open in RP" by definition of the
quotient topology.

Because r < 1/2, N.(z) N N,(—z) = 0.

So Vy € U m(y) consists of two elements, one in N,.(z) and the other in N,(—x).

Define f, : U — N,(z) by y — unique element of 7~!(y) N N,(x).
Claim: f, is a homeomorphism.
Proof: For any open set V C N,(z) 7= f (V) =V U -V which is open in S".

Hence f;'(V) is open in RP" by definition of the quotient topology.

Hence f, is continuous.

The restriction of 7 to N,.(x) gives a continuous inverse to f, so f, is a homeomorphism.

Let h, : S" \ {—2z} — R" be a homeomorphism. So h,(N,(z)) is open in R™. So we have
homeomorphisms

U 25 Ny (2) 2 by (N, (2)

giving a homeomorphism from U to an open subset of R".

Since every point of RP" is 7(z) for some x € S™ we have shown that every point of RP"
has a neighbourhood homeomorphic to a neighbourhood of R®. So RP" is a manifold by the
previous Corollary. O
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Definition 2.9.6 A topological group which is also a manifold is called a Lie group.

Examples: R", S S3 GL,(R).

To check the last example, we must show GL,(R) is a manifold.

Since the topology on GL,(R) is that as a subspace of R™, by Corollary 2.9.4 it suffices to
show that GL,(R) is an open subset of R"”.

Let M,(R) = {n x n matrices over R} with topology coming from the identification of
M, (R) with R"".

So by construction M, (R) is homeomorphic to R".

det : M, (R) — R is continuous (it is a polynomial in the entries of A).

det : A +— detA

GL,(R) = det " (R~ {0})
0 is closed in R so R ~ {0} is open. Hence GL(n,R) is open in R™. O
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Chapter 3

Compactness

Definition 3.0.7 A topological space X is called compact if it has the property that every open
cover of X has a finite subcover.

Theorem 3.0.8 Heine-Borel A subset X C R" s closed and bounded if and only if every
open cover of X has a finite cover.

Proposition 3.0.9 Given a basis for the topology on X, X is compact < every open cover of
X by sets from the basis has a finite subcover.

= Obvious

< Let U, be an open cover of X.

Write each U, as a union of sets in the basis to get a cover of X by basic open sets.

Select a finite subcover Vi, ..., V,, from these.

By construction Vj da; s.t. Uy, ..., U,, cover X O

Theorem 3.0.10 Given a subbasis for X, X is compact < every open cover of X by sets from
the subbasis has a finite subcover.

= Obvious

<« Consider the basis formed by taking finite intersections of sets in {U, }aecr. By Proposition
3.0.9, it suffices to show that any open cover by sets in this basis has a finite subcover.

Let {V,, } be such an open cover. So WLOG each Vj is a finite intersection of sets from
{U}.

Suppose {V3}ses has no finite subcover.

Well-order I and J.
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Define f : J — I as follows so that for each 3, Vi3 C Uy and {Uy(y) }y<p U { V5 }4>5 has no
finite subcover.

Step 1: Define f(jo):

Write Vi, = Uy, NUypy N+ N Uy, .

Claim 1: For somei=1,...,n, {U,} U{V,},>j, has no finite subcover.
Proof:  Suppose not. Then 3 a finite collection of the V, s.t. Vi X =U,, UV, U---UV, .
So

X = U, UV, U~ UV,
= (ﬂ?:lUUi)UV% U"'UV%«
:VJUUV%U"'UVYT'

This contradicts our earlier assertion that X does not have a finite subcover by a finite
collection of the V. O
Choose i such that {U,,} U {V,},j, has no finite subcover, and define

f(jo) = 04 (3.1)

Suppose now that f has been defined for all v < f.
Claim 2:

{Uf(v) }v<,8 U {V’Y}’YZ/B

has no finite subcover.
Proof: Such a subcover would contradict the definition of f(%) where 4 is the largest index
occurring in the sets {Ufy)} used in the subcover.

In other words, if Uygs,), ..., Usg,), Ve, - -+, Vp, 1s a subcover then it is also a subcover of
{Usn Fr<s, U{V4} 4>, }- This contradicts the definition of f(¥) where 4 = ;.

Write Vg = U,, N---NU,,.
Claim 3. For some i = 1,...,n {Uf) }y<p U {Us, } U{V,},>p5 has no finite subcover.
Proof: If not, we get a contradiction to the previous claim as in the proof of the definition of
f(Jo)-

So choose 7 as in the previous claim and set f(f) = o;.

Now that f has been defined,
Claim 4. {Uy(s)} has no finite subcover.
Proof: If Uy, U---UUyg,) is a subcover then it is also a subcover of {Uy(y) }y<g, U{V5} 5,
contradicting the definition of f(Sy).

But Claim 4 contradicts the definition of {U,}.

So {V3}ses has a finite subcover and thus X is compact.
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Theorem 3.0.11 (Tychonoff) If X, is compact for all a then [] ., X, is compact.

Proof: Sets of the form

Vo=Usx [[ X,
aact

(with U, open in X, ) form a subbasis for the topology of X.
Let {Vz}ges be an open cover of X by sets in this subbasis.
Suppose {V3} has no finite subcover.

Let Fﬂ = (V@)c.
Then

ﬂgF/j = (3'2>

but
N{any finite subcollectionFz} # () (3.3)

where Vg = Uay X [0, X5

Note that for any [, the image of each of the projections of Fj is closed. That is, if
Vi = Uay X [, 20, Xy then o Fg = (mq, V)¢ which is closed and for all other o, moFg = X,
which is closed.

So for any «, if Ng(maFs) = 0 then moF, N -+ Ny (Fp,) = 0 for some Sy, ..., B, since X,
is compact. This implies Fg, N---N Fp, = (). This is a contradiction to (3.3). So there exists
an r, € Nglly F.

This is true for all a. So let x = (z,).

Then = € NgFjs. This contradicts (3.2).

So {V3} has a finite subcover. Hence X is compact.
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Chapter 4

Separation

4.1 Separation Axioms; Urysohn’s Lemma; Stone-Cech
Compactification
Let X be a topological space.

Definition 4.1.1 X has the following names if it has the following properties:

1. X is Ty if Vo # y € X either 3open U s.t. x € U,y ¢ U x € U,y ¢ U or 3 open U s.t.
x¢UyelU

2. XisThifVe#£ye X Jopen U st. x €U, y¢ U and Jopen Vst. yeV,x ¢ V.
3. X is Ty or Hausdorfl if Vx £y € X Jopen U,V withUNV =0st. z€eUandy eV

4. X is T3 or regular if X is T} and given z € X and a closed set F' C X with ¢ F', 3 open
UandVst.zeU, FCVandUNV =0

5. X is Ty 101 completely regular if X is 77 and also given x € X and a closed set /' C X
withz ¢ F,3f : X —[0,1] s.t. f(z) =0 and f(F) = 1.

6. X is T, or normal if X is T} and also given closed F,G C X s.t. FNG =0 3 open U,V
st. FCU,GCVandUNV =0.

We say U and V separate A and Bif ACU, BCV and UNV = (.

Some reformulations:

Proposition 4.1.2
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1. X is Ty & the points of X are closed subsets of X

2. X is Hausdorff

(a) e{z}=(TU

Uopen
zeU

(b) < A(X) is closed in X x X (where A(X) means the diagonal subset {(x,z) |
reX}of X xX)

3. X is reqular < X is Hausdorff and given x € U, 3 open V s.t. €V CV Cc U
4. X is normal

(a) & X is Hausdorff and given x € U J open V s.t. FCV CV CU

(b) & X Hausdorff and given closed F,G with FNG = 3 open U,V s.t. F C U,
GCVandUNV =0.

Proof:
l: (=) XT1. Let x € X. Vy € X Jopen Vst. x ¢ V, and y € V. Hence X \ {z} = U,V
is open so {x} is closed.

(<) Suppose points closed. Let z,y € X. U = X ~ {y} is open. = € U,y ¢ U. Similarly
the reverse.

2a: (=) X is Hausdorff. Let z € X. Vy # = 3U,,V, s.t. x € U,y € V, and U, NV, = 0.
Uy c(V)=UCcV)=ye¢U,=y¢ [|U.

Uopen
zeU

(<) Letz#ye X. {z} = ﬂ U. Find open U s.t. z € U and y ¢ U. Let V = U¢, which

Uopen
zeU

is open.
2b: (=) Suppose X is Hausdorff.

If (z,y) € (A(x))* find U,V st. z€eUyeV,UNV =0

Then (z,y) € U x V but U x V C (A(X))". Since U x V is open, (z,y) € interior of
(A(X))®. This is true V(z,y) € (A(X))", so (A(X)) is open, and (A(X)) is closed.

(<) Suppose A(X) is closed.

If © # y then (z,y) € (A(X))". Since U x V is open, (z,y) € interior of (A(X))". This is
true V(z,y) € (A(X))", so (A(X)) is open, and (A(X)) is closed.

(<) Suppose A(X) is closed.

If v # y then (z,y) € (A.(X))® which is open so there exists a basic open set U x V s.t.
(r,y) €U xV C (A(X)). Hencezx € U,y € V, UNV = {).
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3: (=) Suppose X is regular. Then X is T} so points are closed. Hence given z # y € X let
F = {y} and apply defn. of regular to see that X is Hausdorff. Given x € U, N U° = () and
U¢is closed so Jopen V,W st. z € V, U C W and VNW = (.

reVcCcwecuU.

Since W€ is closed, V C W¢

(< ) Hausdorff = T3.

Let x € X, F C X withx ¢ F.

Then z € F¢, which is open, so 3 open U st. x € U C U C F°. Let V = (U)°. Then
FCcVandUNV = 0.
4a: < similar to (3.)
4b: (<) trivial

(=) Given closed F,G s.t. FNG =(. Then F C G¢so Jopen U s.t. FC U Cc U C G

Gc(U)¢sodopenVst. GCVcCVc((U:e

Hence UNV = 0. ]

Proposition 4.1.3 Let f,g : X — Y, with Y Hausdorff. Suppose A C X 1is dense and
f|A:g|A. Then f =g.

Proof: Define h : X — Y x Y by h(z) = (f(z),g(z)). Then h is continous (since its
projections are).

Let F={ze€ X | f(z) =g(x)}.

F =h7'(A(Y)) which is closed since Y is Hausdorff.

ACF=X=ACF

Hence f(z) = g(x) Vo € X. O

Theorem 4.1.4 metric = T)= T3% =T, =1, =T, = T,

Proof: T, = T} = T, is trivial. T3 = T, by definition, and part (1) of the previous
proposition.
T3y = Ts: Given x, Flet f: X — [0,1] s.t. f(X) =0, f(F) =1, as in the definition of T3. Set
U=f"([0,1/2)) and V = f7*((1/2,1]) which are open in [0,1]. Then U, V separate z, F in
X.
metric= Ty: Let F, G be closed in metric space X s.t. FNG = 0.

For x € F, let d, = infcc{d(x,v)}.

Claim: d, # 0.
Proof:
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If d, =0 then Vn Jy, € G s.t. d(z,y,) < 1/n.
Hence (y,) — . Hence z € G.

(Exercise: G closed, y, € G, (y,) > =z € G)
S

Let Y = UzepNa, j2(x) which is open with F' C U.
Claim: UNG = ()

Proof:

Let yc UNG.

Then 3 sequence (u,) — y with u, € U.

Vn find , € F s.t. u, € Ny, /2(2)

an < d(,y) < Al 100) + At y) < oy /2 + ).
Hence d,, /2 < d(un,y).

(un) = y = d(u,,y0) - 0=d, /2 — 0.

Hence d(z,,y) < ds, /2 + d(un, y) = d(xn,y) = 0= (z,) — y.
Soy e F =<.

Hence U NG = .

Solet V= (U)*DG.
Ty = Tg%: Corollary of

Theorem 4.1.5 (Urysohn’s Lemma) Suppose X is normal, and F and G are closed subsets
of X with FNG =10. Then 3f : X — [0,1] s.t. f(F)=0 and f(G) = 1.

Proof:
Apply 4(b) of Proposition 4.1.2 to F* C G°. Then 3 open Uy s s.t. F C Uyjg C Uyja C G“.
Two more applications of Proposition 4.1.2: B B
4(b) = 3 open U1/4,U3/4 st. F'C U1/4 C U1/4 C U1/2 C U1/2 C U3/4 C U3/4 C G-
Continuing, construct an open set U, for all ¢ of the form m/2" for some m and n. For

x € X define
fm:{o et (4.1)
sup({t|lx ¢ U} otherwise
It is clear that f(F') =0 and f(G) = 1. We show that f is continuous.
Intervals of the form [0, a) and (a, 1] form a subbasis for [0, 1].
f(z) < a < x e U for some t < a.
Hence f71([0,a)) = {z|f(x) < a} = U;~,U;, which is open.
Similarly f(x) > a < x ¢ U, for some t > a. which is true iff x ¢ U, for some s > a.
Hence f~!((a,1]) = Ussq (Us)°, which is open.
We conclude that f is continuous. O
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Lemma 4.1.6 Suppose X is Hausdorff. Suppose x € X and Y C X is compact s.t. x ¢ Y.
Then 3 open U,V separating x and Y .

Proof: VyeY Jopen Uy, V,st. 2 €U,y €V, and U, NV, =0. Y =U,eyV, is a cover of
Y by open sets in X so 3 a finite subcover V,,,...,V,, .

Let U=U, Nn---NU,, and V=V, U---UV,, . Then

()rxeclU,Vj=2cU

(i) Vyy,...,Vy, cover Y &Y C V.

(i) UNV = 0.

(Proof: If z € UNV then z € V,, for some j and z € U, Vj. But U, NV, = 0.

Contradiction.)
O

Corollary 4.1.7 A compact subspace of a Hausdorff space is closed.

Proof: Suppose A C X where A is compact and X is Hausdorff. By Lemma, Yy € A 34 open
Uy, V, separating y and A so y € U, C A°. Hence y is an interior point of A°. This is true for
all y so A° is open (equivalently A is closed).

O

Theorem 4.1.8 A continuous bijection from a compact space to a Hausdorff space is a home-
omorphism.

Proof: Let f: X — Y where f is compact and Y is Hausdorff. We must show that the
inverse to f is continuous, which is equivalent to showing that for any closed set B, f(B) is
closed. If B C X is closed, then by our earlier Theorem, B is compact, so by another earlier
Theorem, f(B) is compact. By a previous Corollary, this implies f(B) is closed. O

Theorem 4.1.9 A compact Hausdorff space is normal.

Proof: Suppose X is a compact Hausdorff space. Suppose A and B are closed subsets of X
with AN B = (. Since A and B are closed and X is compact, we conclude that A and B are
also compact.

By the Lemma, Va € A 3 open sets U,,V, s.t. a € U,, b€V, and U, NV, = (.

UsU, is a cover of A by open sets in X so by compactnss there is a finite subcover
Usjy -3 U, Let U=U, U---UU,, and V=V, U---UV, .

Then as in the proof of the Lemma

(i)AcCU

(i) BCV

(iii) UNV =0
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Proposition 4.1.10 Suppose A C X.
If X is T} for j <4 then so is A.
If A is closed and X is Ty then A is Ty.

Proof:
7 =20,1,2: Trivial

J=3: Let a € Aand let ' C A be closed in A with a ¢ F'.
Let F' denote the closure of F' within X.

Then a & F.
(Proof: F = ﬂ G. Therefore
GDF
G closed in X
(GNA)= ﬂ (GNA) = ﬂ G’ = (closure of F in A) = F.
G'OF G'OF
G’ closed in X G’ closed in X

Hencea € A, ¢ F = a ¢ F.) B
SodopenU,Vin Xst.acU, FCVandUNV = .
But then U’ =U N A and V' =V N A are open in A and satisfy:

()aceUNA
i) F=FNACVNA=V
1) U'nV' =0

sz%: Let a € F, F C A with F closed in A, a € F.

F = F N A with F as above.

Since, as above, a ¢ F, 3f : X —[0,1] s.t. f(a) =0, f(F) = 1.

The composition f: A —— X N [0,1] is continuous and satisfies f(a) = 0 and (F) = 1
(since F C F).
j=4: AC X closed.

Let F, G be closed in X. As in previous two cases, F = FN A and FN A = F since A is
closed in X. So F'is closed in X and similarly G is closed in X.

Therefore AU,V open in X separating F', G in X.
So UN A and V N A separate F, G in A. O

Proposition 4.1.11 Let X =[] ., X, with X, # 0 Va.
Forjg<4, X wsT; & X, isTj Va. X is Ty = X, is T;Vou.

Proof:
= Suppose X is T;. Show X, is 7}.
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For o # ay, select =, € X,. (Axiom of Choice)
a = qp;

To QF Q.

Define i : X, — X by ma(i(a)) = {

1

Xoy X

Teayg
Ix,,

Xay

Note: Provided X, is T} for a # ay, i(closed) =closed (since a product of closed sets is closed).
If a # b€ X,, then i(a) # i(b) in X.

j=0:1Ifi(a) € U, i(b) € U, find basic open U’ s.t. i(a) € U' C U. So i(b) & U’

But a = mayi(a) € ma, (U') (open since projections maps are open maps)
Claim: & 7o, (U’)
Proof: Since U’ basic, U' =[], ma(U’)

For a # o, ma(ib) = x4 = ma(ia) € mo(U').

Therefore ib € U’ s0 b = 7ayb & a0 (U’)
j = 1: Similar
j = 2: Begining with open U, V| separating ia, ib, find basic U’, V' separating ia, ib.
Claim: 74, (U’) and 7, (V') (which are open) separate a and b.
Proof: m,, 0i=1x, 50 a € 7, (U') and b € m,, (V).

If ¢ € Ty (U)o (U') then ic € U'NV’ since U’, V' basic and 7, (ic) = x4 € mo(U') N7 (V')
for a # «y.

Contradiction.

Jj =3: X,, is T1 by above.

Let a € X,,, B closed C X,, with a € B.

i(a) € i(B) (closed because (Tq)aza, i closed in a2, Xo by j =1 case and so i(B) =
B X [] 40, Xa=closed)

Find U, V separating i(a), i(B) in X/

Find basic U’ with i(a) € U’ C U.

Vz € i(B), d basicopen V, s.t. z €V, C V.

Let V = Usci(B)Tao (Vz) open in X,

Therefore B C V (ie. b€ may(Viw) )
Claim: 7,,(U’), V is a separation of a and B.
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Proof: ¢ € ma,(U') NV = ma,(ic) € oy (U') and ma, (ic) € mq, (V) for some z € i(B).
For a # ap, mo(ic) = x4 = ma(a) € 1, (U’) and 7,(ic) = x4 = ma(2) € 10 (Vz)
That is, ice U' NV, CcUNV. =<,
Therefore case j = 3 follows.

Jj= 3%: Xa, 18 T1 by above.
Let a € X,,, B closed C X,,, a € B.
i(a) € i(B) (which is closed) implies g : X — 0,1 s.t. g(ia) =0, g(oB) = 1.
Let f=goi.

Jj =4 X,, is T} as above. Find separating function as in previous case, using Urysohn.

< Suppose X, is Tj for all a.
First consider cases j < 3.
Let x,y € X with x4, # Ya, for some a.

j=0:If 2, € Uy, Yoy & Uq, then U = Uy x []
j = 0: Similar
Jj = 2: If Uy, Vy separate xy, Yo, in Xo, then U = Uy x []
separate x and y in X.
j = 3: By above X is T7.
Let 2 € U (open)
Find basic open U’ s.t. U' C U. Write U/iHa U, where U, = X, for a # ay, ..., a,.
For j=1,...,nfind V,, s.t. @, € Vo, C Vo, C Uy,
Let V = Vﬂ X oo X Vo X Ha;ml X, closed
Therefore V. C W.

Hencez e VCcVCcWcU CU
Therefore X is T5.

Xyisopenin X andz e U,y ¢ U.

aFag

X, andV:VOxHa#aoXa

aFap

] = 3%: A corollary of the Stone-Cech Compactification Thm (below) is

Corollary 4.1.12 X is completely reqular < X is homeomorphic to a subspace of a compact
Hausdorff space.

Proof of Case j = 31 (Given Corollary)
By Corollary, Vo, find compact Hausdorff Y, s.t. X, homeomorphic to a subspace of Y.
Hence X is homeomorphic to a subspace of Y :=[], Y.
By Tychonoff, Y is compact and by case 7 = 2, Y is Hausdorff. Hence X is homeomorphic
a subspace of a compact Hausdorff space so is completely regular by the Corollary.
Proof of Corollary:
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<: By earlier theorems, a compact Hausdoff space is normal and thus completely regular
and a subpace of a completely regular space is completely regular.
= Follows from:

Theorem 4.1.13 (Stone-Cech Compactification) Let X be completely reqular. Then there
exists a compact Hausdorff space f(X) together with a (continuous) injection X — (X)) s.t.

1. i: X — B(X) is a homeomorphism
2. X is dense in B(X)
3. Up to homeomorphism (X)) is the only space with these properties

4. Given a compact Hausdorff space W and h - X — W there is a unique h s.t. h = hoi
Definition 4.1.14 §(X) is called the Stone-Cech compactification of X.

Example 4.1.15 Let X = (0,1]. Let f : X — [-1,1] by f(x) = sin(1/x). Then f is a
continuous function from X to the compact Hausdorff space [—1,1], but f does not extend
to [0,1]. Thus although [0,1] is a compact Hausdorff space containing (0, 1] as a dense subspace,
it is not the Stone-Cech compactification of (0, 1].

Proof of Theorem: Let J = {f: X — R | f bounded and continuous}.

For f € J, let I; be the smallest closed interval containing Im(f). As f is bounded, I is
compact.

Let Z = [];c; Iy It is compact Hausdorft.

Define i : X — Z by (iz)f = f(x). Since X is completely regular, z # y = 3f : X — [0, 1]
s.t. f(z) # f(y). Thus i is injective.

Claim: i: X — i(X).
Proof: Use the injection i to define another topology on X — the subspace topology as a
subset of Z.

The Claim is equivalent to showing the subspace topology is equals to the original topology.

Since i is continuous (because its projections are), if U is open in the subspace topology
then U is open in the original topology.

Conversely suppose U is open in the original topology.

Let x € U. To show x is interior (in the subspace topology):

By definition of the subspace and product topologies, the subspace topology is the weakest
topology s.t. f: X — R is continuous Vf € J.

Because X is completely regular, 3f : X — [0,1] s.t. f(x) =0, f(U°) =1
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feJ= f740,1)) is open in the subspace topology.

f74[0,1)) C U since f(x) =1 Vz not in U.

Therefore z € Int(U) (in the subspace topology).

True Vx € U, so U is open in the subspace topology.

Let (X) = i(X).

Then B(X) is compact Hausdorff, as it is a closed subspace of a compact Hausdorff space
and X = ¢(X) is dense in S(X) by construction.

To show the extension property and uniqueness of (X)) up to homeomorphism,

Lemma 4.1.16
1. Gweng: X =Y, g:5(X)— B(Y) s.t.

9

X Y

2. If X is compact Hausdorff then X — B(X) is a homeomorphism.

Proof:
1. Uniqueness: Since B(Y') is Hausdorff and X is dense in S(X) any two maps from (X))

agreeing on X are equal. So ¢ is unique.

Ezistence: Let C(X) ={f: X — R | f is bounded and continuous}, and let C(Y') = {f :
Y — R | f is bounded and continuous}.

Let z € B(X).
To define g(z): For f € Cy, define II¢(§z) = Ilto4(2) Vo € X, and Vf € Cy. Each

projection is continous so g is continuous.

Ve e X and Vf e C(Y):

I (iygz) = f(g(z)) while mp(§ixz) = Tfog(ixz) = f o g(x). Therefore iy 0 g = Goix
which also shows that ¢(3(X)) C g(i(X)) Ci(Y) = B(Y).

Hence g is the desired extension of g.
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2. i: X — [(X) is continuous, and X is compact = i(X) is compact = i(X) is closed in
B(X) since 5(X) is Hausdorff.

But i(X) is dense in B(X) so i(X) = 5(X). Hence i is a bijective map from a compact
space to a Hausdorff space and is thus a homeomorphism.

Proof of Theorem (continued): Let A : X — Y where Y is compact Hausdorff. Then

h
X Y
’iX ’Lyg
BX) —— B(v)

So z';,l o h is the desired extension of h to B(X). If W is another space with these properties
then X = W by the standard category theory proof. O

4.2 1st and 2nd countability
Definition 4.2.1 X is called 2nd countable if 3 a countable basis for the open sets of X.
e.g. X = R"™. Basis = {N,(X) | r rational and all coordinates of X are rational }

Definition 4.2.2 X is called 1st countable if each x € X has a countable basis for its neigh-
bourhoods.

e.g. X = metric. {N,.(X) | r rational} is a basis for the neighbourhoods of X.
Definition 4.2.3 X is called separable if it has a countable dense subset
Proposition 4.2.4 2nd countable implies 1st countable and separable.

Proof: 2nd countable implies 1st countable is trivial.

Let {U,} be a countable basis of (non-empty) open sets. Vj, select z; € U;. Let A = {z,}.
A is countable. Any open set intersects A so A is dense. |
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Example 4.2.5 Compact subspace which is not closed.
Let X :=R as a set.
Specify the topology on X to be the one coming from the subbasis;

{UNQ | Uopen in standard topology on R} U

{V | Vis the complement of a finite set of rationals}

Observe: In corresponding basis, any basis set containing an irrational can be obtained only
by intersecting the second type of sets, yielding another set of this type. Therefore any open set
in X containing an irrational is the complement of a finite set of rationals.

Hence if S C X contains an irrational then S is compact because in any open cover of S at
least one set contains all but finitely many points of S, so S can be covered by that set together
with one set for each of the missing points. In particular, if y is irrational, QU {y} is compact
but not closed. (Its complement contains irrationals, so it can’t be open since any open set
containing an irrational contains all irrationals.)

4.3 Convergent Sequences

Definition 4.3.1 A sequence (x,) in X converges to x, written (z,) — x, if ¥ open U, IN
s,t, n >N =x,€U.

Proposition 4.3.2 X Hausdorff, (z,) — =, (x,) — y implies that x = y.

Proof: If x # y separate x, y by open sets and apply definition to give contradiction. |

Proposition 4.3.3 Suppose_A c X. If (a,) — = where a, € A ¥n then x € A. Conversely, if
X is 1st countable and x € A then 3 sequence (a,) in A s.t. (a,) — z in X.

Proof: Supppose (a,) — z. Then ¥V open U s.t. z € U, UNA# () so x ¢ A.
Conversely, suppose X is 1st countable and = € A.
Then any open neighbourhood of z intersects A.
Let {Uy,Us,...,Up,,...} be a basis for the open neighbourhoods of z.
Select aq € U, ay € UNUs, ..., a, € UyNUy---NU,, ..., witha, € AVn. Soa, € U,Vn > k.
Given open V s.t. x € V find basic open Uy s.t. Uy C V.
Then Vn > N, a, € Uy C V so (a,) — x. |
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Definition 4.3.4 If A C X and (a,) — = where a,, € A then x is called a limit point of A.

Thus previous proposition says that in a 1 countable space, as set is closed if and only if it
contains its limit points.

Proposition 4.3.5 Let f : X — Y be a (set) function. f is continuous if and only if (
(n) = & = f(zn) = f(z) ).

Proof Suppose f is continous and (x,) — x.

Given U s.t. f(z) € U then z € f~1(U) so AN s.t. nn > N = x,, € f~1(U).

Therefore n > N = f(z,) € U so f(z,) — f(z).

Conversely, suppose X 1st countable and ( (z,,) = = = f(x,) — f(z) ).

Let A CY be closed. Show f~!(A) is closed.

Let € f~1(A). Find sequence (z,,) in f~'(A) s.t. (z,) — .

Then for all n, f(x,) € A and hypothesis implies ( f (mn)) — f(x). So A closed implies
f(z) € A. Therefore z € f~1(A).

Thus f~1(A) = f~}(A) and hence f~*(A) is closed.

Therefore f is continuous. |

Definition 4.3.6 X is called sequencially compact if every sequence has a convergent subse-
quence.

Definition 4.3.7 Suppose X is Hausdorff and 1st countable. Then X compact implies X
sequentially compact.

Proof: Let X be Hausdorff, 1st countable and compact.

Let (z,) be a sequence in X. If any element appeas infinitely many times in (z,) then
(x,) has a constant (thus convergent) subsequence, so suppose not. Then discarding repeated
elements gives us a subsequence so we may assume that (z,) has no repetitions.

Claim: 3z € X s.t. V open U containing =, U N {x,} is infinite.
Proof: Suppose not. That is, suppose that Vz, 3 open U, s.t. x € U, and U, N {z,} is finite.

Then {U,} is an open cover so ha s a finite subcover US), U;EQ), - Uék).
Since Vj, UY) N {x,} is finite, {z,} is finite.
=<,

Choose z as in claim and let {Vi,V5,..., Vi, ...} be a basis for the neighbourhoods of z.
Choose z,1) € Vi N {x,}.
Choose zp2) € Vi N Vo N {xy, | n > n(1)}.
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Choose xpy € ViN---NViN{z, | n>n(k—1)}.

Then (1), Tn(2)s - - - Tn(k), - - -) 15 @ subsequence of (x,) and converges to x.
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Chapter 5

Metric Spaces

5.1 Completeness

Definition 5.1.1 Let (z,,) be a sequence in (X,d). Then (x,) is called a Cauchy sequence if
Ve >0 3N s.t. n,m > N = d(z,, z,) < €.

Proposition 5.1.2 (z,) — = = (z,) Cauchy.
Proof: Obvious.

Definition 5.1.3 A complete metric space is one in which ¥ Cauchy sequences (x,) 3 x € X
s.t. (x,) — x.

Definition 5.1.4 A complete normed vector space is called a Banach space.

Proposition 5.1.5 Suppose (X,d) is complete, and Y C X. Then Y is complete < Y is
closed.

Proof: Exercise.

Theorem 5.1.6 Cantor intersection theorem Let (X,d) be a complete metric space. Let
(Fy) be a decreasing sequence of nonempty closed subsets of X s.t. diam(F,,) — 0 in R. Then
N, F, contains exactly one point.

Proof: Let F = nN,F,. If F contains two points x and y then we have a contradiction when

diam(F},) < d(x,y). Hence |F| < 1.
Vn choose z,, € F,,. diam(F},,) — 0 = (x,) is Cauchy.
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Hence dz € X s.t. (z,) — x. We show that x € F,, Vn. If {z,} is finite then z,, = x for
infinitely many n, so that z € F), for infinitely many n. Since F,,.; C F,, this implies x € F}, Vn.
So suppose {z,} is infinite. Vm, (T, Tmi1,- -+, Tmak, - - - ) 18 & sequence in F,, converging to x.
Since {zy, }n>m is infinite, this implies « is a limit point of F,. But F}, is closed, so x € F,. O

Theorem 5.1.7 Let (X,d) be a metric space. Then 3! metric space (X,d) together with an
isometry 1 : X — X s.t.

1. (X,d) is complete.

2. Given any complete (Y,d") and an isometry j : X — Y, 3! isometry j: X =Y st

Note: An isometry f: X — Y is a map s.t. d(f(a), f(b)) = d(a,b) Va,b € X.
Definition 5.1.8 X is called the completion of X.

Sketch of Proof:
Let C' = { Cauchy sequences in X}.
Impose an equivalence relation (z,) ~ (y,) if d(xp,y,) — 0 in R.
Let X = C'/ ~. Define J((xn), (yn)) = limy, 00 d(Zp, Yn)-
Define 2: X — X by z — (z,z,...,z,...) Check that it works. (Exercise) O

Proposition 5.1.9 X is dense in X.

Proof: X is closed in X, so complete. It also satisfies the universal property of completion so
X =X. O

Definition 5.1.10 f: X — Y is called uniformly continuous if Ve > 0, 30 > 0 s.t. d(a,b) <
= d(f(a), f(b)) <e.

Proposition 5.1.11 f: X — Y is uniformly continuous, (x,) is Cauchy in X = (f(asn)) is
Cauchy in'Y.

Proof: Exercise.

Definition 5.1.12 Let (f,) be a sequence of functions f, : X — Y. We say f, converges
uniformly to f: X =Y if Ve > 0 3N s.t. n> N = d(f(z), f(y)) <eVz e X.

Proposition 5.1.13 Suppose f,, converges uniformly to f and f, is continuous Vn. Then f is
continuous.
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Proof: Let a € X. Show f is continuous at a. Given ¢ > 0, choose Ny s.t. n > Ny
= d(f(x), fa(z)) < €/3Vz € X.

Choose 6§ s.t. d(z,a) < 6 = d(fn,(2), fny(a)) < €/3. Then d(z,a) < § = d(f(z), f(a))
d(f(x), fno (@) +d(frne(2), fvo (@) +d(fr (), f(a)) <€/3+¢/3+¢/3 =

aIA

Example 5.1.14 Sequence of continuous functions whose pointwise limit is not continuous:

fo10,1] = [0,1], fa(z) =2". f(z) = {(1] zii

Notation: Let X be a topological space (not necessarily metric).
C(X,R), resp. C(X,C) are real-valued (resp. complex-valued) bounded continuous functions
on X.

Proposition 5.1.15 C(X,R) and C(X,C) are Banach spaces.

Proof: Let Y =C(X,R), or C(X,C).

For f € Y, setting ||f|| = sup,cx |f(z)| makes Y into a normed vector space. Let (f,,) be
a Cauchy sequence in Y. Then Va € X, (f,(z)) is a Cauchy sequence in R (resp. C) so set
f(z) = limy, o0 fu(z).

Must show f is bounded and continuous, and show (f,) — f in Y.

Given € > 0, find N s.t. n,m > N = ||fu — ful| < €/2.

Given z € X find n, > N s.t. |f,, (z) — fu(x)] < €/2.

Then n > N = |f(z) — fu(z)| < |f(2) = fo. (x)] + | fr. (x) — fu(x)] < €/2 + €/2 = € Hence
(fn) converges uniformly to f so f is continuous. ||f|| <||f — fnll + |/x]] < ||fn]]+€ < 0o so
f is bounded. Therefore f € Y, and {f} — f in Y since ||f — fn|| — 0.

Theorem 5.1.16 (Tietze extension theorem) Let X be normal and A C X is closed. Let
f:A—Ip,q|. Then there exists F : X — [p,q| s.t. F|la=f.

Proof: If p = ¢ then f is constant and the theorem is trivial so suppose p < q. Let ¢ =
max(p, q).

Claim: 3 h: X — [—¢/3,¢/3] s.t. |h(a) — f(a)| < 2/3c Va € A.
Proof: Set A_ = f'[—¢,—¢/3] and Ay = f'[¢/3,c]. By Urysohn, Jg : X — [0,1] s.t.
g(A-)=0and g(Ay) = 1.

Composing with a homeomorphism of [0,1] with [—¢/3,¢/3] gives a function h : X —
[—c/3,¢/3] s.t. h(A_) = —c¢/3 and h(A;) = ¢/3. If a € A then |h(a) — f(a)| < 2/3c.

Apply the Claim to f. This implies by : X — [—¢/3,¢/3] s.t. |f(a) — hi(a)] < 2/3c.
Apply the Claim to f — hy. This implies Jhy : X — [—2¢/3%,2¢/3%] s.t. |f(a) — hi(a) —
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ha(a)] < (2/3)%c. By induction, we apply the Claim to f — hy — -+ — h,_;. This implies

hy : X — [-2"71¢/3,2%¢ /3] s.b. | f(a) — ha(a) — -+ — hy_1(a)] < (2/3)"c.
Let G(z) =307 hy(x).
Ve e X,
Ga)] < S (@ € 3 1l | = e/3(1+2/3+ (/3 +..) = ef3(=g75) =

The partial sums of G are a Cauchy sequence in C(X,R).
Hence by completeness of C(X,R) their pointwise limit G : X — [—¢, ¢] is continuous.
Define F' by
G(x) ifp<G(x)
F(x)=(p ifG(x) <p
q ifG(x) > q
Fla = G|asince p < f(a) < ¢ Va € A. O

5.2 Compactness in Metric Spaces

Proposition 5.2.1 A sequentially compact metric space is complete.

Proof: Suppose X is sequentially compact, and (x,,) is Cauchy in X.

Some convergent subsequence of (z,) converges to x € X so since (x,) is Cauchy, with
(x,) — x. That is, given € > 0, IN s.t. m,n > N = d(x,,x,,) < €/2. Therefore since some
subsequence of (z,) converges, N¢o(x) contains x,, for infinitely many m, so Im > N s.t.
T, € Nejo(x) and therefore n > N = d(xy, v) < d(zn, o) + d(m, 7) < €/2+€/2 = €.

Definition 5.2.2 Given € > 0, a finite subset T' of X is called an e-net if {Nc(t) }rer forms an
open cover of X.
X s called totally bounded if Ve > 0, 3 an e-net for X.

Note: X totally bounded = diam(X) < diam(7") 4 2¢ and diam(7") < oo since T finite, so
totally bounded implies bounded.

Example 5.2.3 Suppose X is infinite with

R

Then X is bounded but # an € -net for any e < 1.
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Theorem 5.2.4 For metric X, the following are equivalent:
1. X compact
2. X sequentially compact

3. X 1s complete and totally bounded.

Proof:
(1) = (2)
Already showed: metric = first countable and Hausdorff
and first countable and Hausdorff and compact = sequentially compact.

(2) = (3):
Suppose X is sequentially compact.
We already showed this implies X is complete.
Given € > 0: Pick a; € X.
Having chosen ay, ..., a,_1 if Nc(a;) U... Nc(a,_1) covers X, we are finished.
If not, choose a, € X — (Nﬁ(al) u... Ne(an,l)).

So either we get an e-net {ay, ..., a,} for some n, or we get an infinite sequence (ay, as, ..., apy, ... ).
If the latter: By construction d(ax,a,) > € Vk,n so (a,) has no convergent subsequence.
This is a contradiction. So the former holds. a
(2) = (1):

Definition 5.2.5 Let {G,}acs be an open cover of the metric space X. Then a > 0 is called
a Lebesgue number for the cover if diam(A) < a = A C G, for some «.

Theorem 5.2.6 (Lebesgue’s Covering Lemma) If X is sequentially compact, then every
open cover has a Lebesgue number.

Proof: Let {U,}acs be an open cover.
Say A C X is “big” if A is not contained in any U,.
If P big subsets then any a > 0 is a Lebesgue number, so assume 3 big subsets.
Let a = inf{diam(A) | A big}
If a > 0, a is a Lebesgue number, so we assume a = 0 .
Hence Vn > 0, 3 a big B, s.t. diam(B,) < 1/n.
Vn, pick z,, € B,,. Find z s.t. a subsequence of (z,) converges to .
Find ag s.t. © € Uy,.
U, is open, so 3r > 0 s.t. N,.(z) C U,,.
For infinitely many n, x,, € N, /().
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Find N s.t. N > 2/r and x5 € N, /().

diam(By) < 1/N < r/2 and By NN, jo(x) # 0 <since r € ByNN,jo(2) ) so By C N,(x) C
U,,- This is a contradiction, since By is big.

Hence a > 0 so X has a Lebesgue number.
Proof that (2) = (1):

Given an open cover {U, }aes, find a Lebesgue number a for {U,}.

Let € = a/3 and using (2) = (3) from the above, pick an e-net T = {ty,ts,...,t,}. For
k=1,...,n diamN(tx) = 2¢ < a so N(tx) C U,, for some ay.

Since {Ne(t1), Ne(t2), ..., Ne(t,)} covers X (by definition of e-net), so does {Us,, ..., Ua, }-

3 = 2
Suppose X is complete and totally bounded.
Let SO = (z1,29,...,%m,...) be a sequence in X.

Since X is complete, to show S has a convergent subsequence, it suffices to show S(© has
a Cauchy subsequence.

Choosing an e-net for ¢ = 1/2, cover X with finitely many balls of radius 1/2. Since S©
is infinite, some ball contains infinitely many z,, so dlscard the x,, outside that ball to get a
subsequence S = (z §”,x§ a2l ..) with d(xm ,:17,(3 )) < 2¢ = 1 Vm,p. Repeating this
procedure with e = 1/4,1/6,...,1/(2n),. glves for each n a subsequence of S~

S = (xg ),xg ),...,xsn),.. ) s.t. d(xm ,3:1(, ) <1/n¥m,p.

Let S™ = (wgl),xgz), i )

If m,p > n then since S and S® are subsequences of 5™, d(xgn ) 2P )<1l/nsoSisa
Cauchy subsequence of S as desired. O

Theorem 5.2.7 If X and Y are metric spaces, and f: X — Y is a continuous function with
X compact, then f is uniformly continuous.

Proof: Given € >0, z € f~1(N.2(f(2)), so {fﬁl(Ne/z(f(a:))} is an open cover of X.

zeX
Let 0 be a Lebesgue number for this cover.

Va,b € X: d(a,b) < § = diam{a,b} < § = {a,b} C f~H(Nep2(f(z)) for some z. Hence
d(f(a),f(b)) < d(f(a), f(z))+d(f(z), f(b)) < €/24€¢/2 = €. Hence [ is uniformly continuous.
O

Corollary 5.2.8 A compact metric space is second countable.

Lemma 5.2.9 For metric spaces second countable < separable.
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Proof: Second countable = separable in general.

<= Suppose X is a separable metric space. Let {x1,...,2,,...} be a countable dense subset.
Then {N,(z;)| r rational } forms a countable basis for X. (That is: Given N,/(z), find z, s.t.
d(z,,z) < r'/3. Choose rational r s.t. » < 1'/3. Then N,(z,) C Nu(z). ) |

Proof of Corollary: Suppose X is a compact metric space. Show X is separable.
For each € = 1/n, choose an e-net T,, = {xgn),...,x,(;)}. Let S = U,T,. Then S is a
countable dense subset of X.
O

Example 5.2.10 Normal but not metric:

Let X =[],cp Iy where I, = [0,1] Vt. X is compact by Tychonoff and is Hausdorff so X is
normal.

If X were metric, then being compact, it would be second countable.

Let S ={U,...,Uy, ...} will be a countable basis.

Since R is uncountable, 3t, € R s.t. m,(U,) = I, Vn. But then S is not a basis. (e.g. The
set (1/4,3/4) X [, 1t s not a union of sets in S.

This is a contradiction. So X s not metric.
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Chapter 6

Paracompactness

Let {W, }aer be a cover of X. (We do not assume W, is open.)

Definition 6.0.11 A cover {Ts}scs is called a refinement of {Wytaer if V6 € J, Ja € I s.t.
Tg C W,.

Definition 6.0.12 A collection {W,}aer of subsets of X is called locally finite if each z € X
has an open neighbourhood whose intersection with W, is non-empty for only finitely many c.

Proposition 6.0.13 {W,}.c; is locally finite = U W = U W,

Proof: W, c U.W, = UW, C U, W,
Conversely suppose y & UW,,.
Find open U s.t. y € U and UNW, = 0 for a # ay, ... a,.
YEWay,..., W, .
Therefore y € V :i=U N (Wy, )N -+ N (W, )¢ open
VNWw, =0 Vo
Therefore V¢ C U, W, (since V¢ closed)
Therefore V N (U, W,,) = 0.
Hence y ¢ UW, O

Definition 6.0.14 A topological space X 1is called paracompact if every open cover of X has
a locally finite refinement.

Note: Compact = paracompact. (A subcover is also a refinement.)

Proposition 6.0.15 If A is closed C X and X is paracompact, then A is paracompact.
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Proof: Let {U,}acs be an open cover of A. For all a write U, = V,, N A with V,, open in X.
Then {V,} U {A°} is an open cover of X so it has a locally finite refinement {Wjs}se;.
Then {W3 N A}ser is a locally finite refinement of {U, }acy. O

Proposition 6.0.16 X paracompact Hausdorff = X normal

Proof:

First show that X is regular:
Let a € X and let B C X be closed with a € B.
Vb € B 3 open nbhd. Uy s.t. a € U, (X Hausdorff)
{Up}pep U B€ is an open cover of X.
Let {W, }aes be a locally finite refinement.
Let I ={a € J|W,N B # 0} Therefore {W,},c1} covers B.
Set V :=U,e/W, D B.
Va 3b € B s.t. W, C Uy, and so W, CUB:>a§ZW
Therefore @ € UpeWa = UaetWo = V.
Therefore X is regular.

Now given closed A, B, s.t. ANB =1

Vb € B3 open U, s.t. ANU, = 0.

{Up}vep U B covers X.

Let {W, }aes be a locally finite refinement.

Let I ={a € JW,N B #0}. Then {Wy}aer covers B. Set V' = UyeW,,.

For all a 3b € B st. Wo C Uy so Wy C Uy = ANW, = 0. Hence ) = AN (Uae/ W) =
ANUpe W, = ANV,

Hence X is normal. O

Definition 6.0.17 Let X be a topological space and let {U;};es be an open cover of X. A
partition of unity relative to the cover {U;};es consists of a set of functions f; + X — [0,1]
such that:

1 f7 « 1)) CU; VjeJ.

2. fj_l((O, 1])j6] is locally finite.

3. Zjejfj<x) =1 Vzx € X.

Note: (2) implies that if z € X, f;(x) = 0 for all but finitely many j so the sum in (3) makes
sense.
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{f;}jes is a partition of unity implies that { £ (o, 1])j€ J} is a locally finite refinement of
{U;}-

Hence if every open cover of X has a partition of unity then X is paracompact.

Conversely

Theorem 6.0.18 If X is paracompact Hausdorff, then for every open cover {Us}acs of X
there is a partition of unity relative to {Uq}acy.

Proof: Let {U,}acs be an open cover of X where X is paracompact Hausdorff.

Let {Vz}ger be a locally finite refinement.

Then d¢ : I — J s.t. Vg C Uy Vg e I.

Given a € J set W, = Uggg(8)=a} V3. Then W, C U,.

Claim: {W,} is locally finite.

Proof of Claim: Let x € X. Then 3U, s.t. U, NV = 0 for all but f,...,H,. Hence
U, N W, = 0 unless ¢(8;) = o for some j =1,...,n.

Therefore U, N W, = 0 unless ¢(53;) = o, some j =1,...,n.

ie. U, NW, =0 for all but ¢(B1),...,¢(S,) which is a finite set (although it might contain
duplicate entries).

Therefore {W,} locally finite. v/

Proof of Thm. (cont.) Suff. to show 3 partition of unity relative to {W,} since this
gives functions f, : X — [0,1] s.t. f=1((0,1]) € W, C U,.

Lemma 6.0.19 Let {Us}acs be a locally finite open cover of X where X normal. Then 3
locally finite open cover {V,}aes s.t. Vo CV, C U, Ya € J.

Proof of Thm. (concluded; given Lemma):

Apply Lemma to {W,}acs to get cover {Vo}aes st. Vo, C Vy, C W, Va.

{W,} locally finite = {V,} locally finite.

Do it again to get locally finite cover {Th}aes st. To C T, CV, CV, C W, V.

X paracompact Hausdorff = X normal = g, : X — [0,1] s.t. g.(T%) =1, 9o (V) = 0.

921(0,1] C V,, = ¢31(0,1] C V, C W,.

«

Define g(z) = ), ga(2) (finite sum since fo(x) = 0 unless = € V,, and {V,} locally
finite so x in only finitely many V,,)

Set fa(z) = ga()/g(x).

Then {f,}acs is the desired partition of unity.

Proof of Lemma: To help prove Lemma:
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Lemma 6.0.20 (Sublemma). Let X be normal. Suppose X =U UV U,V open.

open W s.t. WCW CU and X =W UYV.
Proof:(Exercise)

Proof of Lemma (cont.): Well order J.

X = Uj, UWj, where jo = least elt. of J and Wj, =, U;-
SubLemma = 3 open Vj, s.t. Vj, CV;, C U, and X =V}, UWj,.
Suppose that for all v < 8 we have found open V,, s.t. V, C 77 C U, and

x=JvulJu
J<y J>
Claim: X =J;_,V; UU,55Uj-
Proof of Claim: Let x € X.
If x € U; some j > (3, then x € RHS.

Otherwise, let M be max. s.t. x € Up. ({U;} locally finite = 3 such max.)
Since M < 3, applying induction hypoth. with v = M:

x=vulJu.
j<M i>M

x g€ U;any j > M sox € Vjsome j <M.
ie. x € RHS.

Proof of Lemma (cont.): By Claim, X = Ug U W3 where
we=JvulJU;
J<B i>p
SubLemma=> 3 open Vj s.t. V3 C Vg C Ug and X = VaUWj. ie.
x=JvulJu;.
J<B i>B

completing induction step.
Therefore 9 open V; s.t. V; C V; C U; and

x=JvyulJu

J<v J>vy
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Claim: X = U,;V}.
Proof:Given x € X find max. M s.t. x € Uyp,.
Apply above with v = M to see that x € V; some j < 7.

Proof of Lemma (concluded): V; C U; Vj, {U;} locally finite = {V;} locally finite.
{V;} is the required cover. O

Theorem 6.0.21 Let X be reqular. Suppose that every open cover of X has a countable re-
finement. Then X 1is paracompact.

Lemma 6.0.22 Let {Bg}ges be a locally finite cover of X by closed sets. Suppose {Eq}acr is
a collection of sets (arbitrary — not necessarily open, closed, ...) s.t. V3, Bg N E, = 0 for
almost all a. Then Yo € I we can choose open U, s.t. E, C U, and {U,} locally finite.

Note: {E,} must be locally finite.
ie. Vod@), s.t. @, intersects only finite many Bs and each such Bgs intersects only finitely
many F,,.

Proof of Lemma: Set Cy := Up, g, Bs-
{Bs | BsN E, =0} C {Bs} which is locally finite.
Therefore C,, = UBﬂmEa:@ B = UBﬂmEa:(z) Bz = C,.
Therefore C,, is closed.
Set
Us:=(Co)*= |J B§D Ea
BﬁmEa:O

&
EacBg

Show {U,} locally finite.

Let z € X.

Find open V s.t. 2 € Vand VN Bg =0 for § # B, ..., Bn.
Therefore V' C Bg, U...U Bg, .

Vj, B, N E, = ( for all but finitely many a.

Let {aq,...,ax} be the set of all such « for all j =1,...,n.

For a # v, ..., ag:
V CBg U...UBg, C UBgﬂEa:@Bﬁ =C,
Therefore VN U, = 0 for a # ay, ..., az. O

Proof of Thm. Let {U,};c; be an open cover of X.
Vo € X, x € Ujy for some j(z).
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X regular = 3W, s.t. x € W, C W, C Usj(x)

{W,} is an open cover refining {U, }ocs

Applying hypothesis to {IW,} gives a countable refinement of {I¥,} (thus a refinement
of {Uptaes) Vi, Vo, ..., Vi, ..., where V5 V; C VJ C Uy for some «(j)

Set _
E1 = ‘/1

Ey =V-W

En = Vn - U;L:ll V} C Vn - Ua(n)

For z € X:

dleast ns.t. x € V,.

r € E, for this n.
Therefore {E, } covers X.

£k >n, Vo) (Vi = UZ Via ) =0

Since FE, is the closure of V}, — Uf;ll Vi1 =0, V open = V,, N E, = 0.
Therefore { E;} locally finite (since each x € V,, for some n.)
{E)} is a locally finite refinement of {U,}.
Repeat procedure on cover {V,,} to get a locally finite closed refinement {Bg} of {V,,}.
By construction V3, Bz C V,, for some n so Bg N Ej, = ) for almost all k.
Therefore Lemma = Vk 3 open Wy, s.t. E, C W), and {W}} locally finite.
Set W,é =W, N Ua(k) C Ua(k) open.
E, Cc W, and E;, C Ua(k) = F, C WIQ
{E}} covers so {W/} covers.
Wi C Uapry = {W;} is a refinement.
W, C Wy, {Wi} locally finite = {W}} locally finite. |

Corollary 6.0.23 X regular and 2nd countable = X paracompact.

Proof: Let {U,} be an open cover of X.

Let Wy, Wy, ..., W, ... be a countable basis.

If # € X then x € U, some « so J basic open W, s.t. € Wy C U,.

Therefore {W,, ()} is a refinement of {U,} which covers X and is countable (subcollections
of a countable collection)

Therefore Thm. = X paracompact. O
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Chapter 7

Connectedness

Definition 7.0.24 A pair of nonempty open subsets A and B of a topological space X is called
a disconnection of X if ANB =0 and AUB = X.

Note: If A, B is a disconnection of X then A and B are also closed since A = B and B = A°.

Proposition 7.0.25 A subspace of R is connected < it is an interval. In particular R is
connected.

Proof: Exercise.

Proposition 7.0.26 Suppose f : X — Y is continuous. If X is connected then f(X) is
connected.

Proof: Exercise.

Proposition 7.0.27 Suppose f : X — Y is continuous. If X is connected then f(X) is
connected.

Proof: Assume there is a disconnection G, H of f(X). Then f~'(G), f~*(H) is a disconnection
of f(X). This is a contradiction, so f(X) must be connected. O

Proposition 7.0.28 Suppose A C X. If A is connected then A is also connected.

Proof: Suppose G, H is a disconnection of A. Then GN A, HN A is a disconnection of A.
(Note that GNA# 0 = GN A # (. Similarly for H.) O

Proposition 7.0.29 If X, is connected Vo, and Ny X, # 0, then U, X, 1s connected.
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Proof: Suppose G, H is a disconnection of U, X,. Then Va, X, = (GN X,) U (H N X,).
Hence either GN X, =0 or HNX, =0. f HN X, = 0, then X, = GN X, so X, C G.
Otherwise X, C H. In other words, each X, is in one of the sets G, H. Since N, X, # 0 and
GNH =0, each X, is in the same set, say G. But then U,X, C G so that H = G° = (), which
is a contradiction. Hence U, X, is connected. O

Lemma 7.0.30 Let X be disconnected. Then 3f : X — {0,1} which is onto.
Proof: Let A, B be a disconnection. Define f(z) =0,z € A and f(z) =1,z € B. O
Theorem 7.0.31 Let X HQGJ X.. Then X is connected < X, is connected Va.

Proof: (=) Suppose X is connected. Then X, = m,(X) is connected.

(<=) Suppose X, is connected Yo. Assume X is disconnected. Let f: X — {0,1} be onto.
Pick x, € X,. (The theorem is trivial if X, = @) for some a.)

For o € J and « € X, define 7, : X, = X by

Ta(lag (W) = w for a = ag

and
Ta(tag (W)) = 4 for a # ay.

Then .
Xop 22 X L5 {0, 1}

is continuous, so X,, is connected = fu,,(X4,) is connected.
Then f1,, must not be onto since {0, 1} is disconnected.
Therefore Yw € Xy, f 0 tag(W) = f 0 10y(T0a,) = f().
In other words, if z,y € X and x, = y, for a # g then f(z) = f(y).
This is true Yag so f(z) = f(y) whenever x and y differ in only one coordinate.
By induction, f(x) = f(y) whenever z,y differ in only finitely many coordinates.
Claim: Given z € X, {y € X|y, = 2, for almost all a} is dense in X.
Proof (of Claim): Every open set V' contains a basic open set U =[], U, with U, = X, for

almost all . Hence dy € U° s.t. y, = 2z, for almost all a. V
Since {0,1} is Hausdorff, f(y) = f(z) Yy in a dense subset = f(y) = f(z) Yy € X. Hence
f is constant. Since f is onto, this is a contradiction. So X is connected. a
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7.1 Components
Definition 7.1.1 A (connected) component of a space X is a mazximal connected subspace.

Theorem 7.1.2

1. Each nonempty connected subset of X is contained in exactly one component. In partic-
ular each point of X is in a unique component so X 1is the union of its components.

2. Each component of X is closed.

3. Any nonempty connected subspace of X which is both open and closed is a component.

Proof:
1. Let ) #Y C X be connected. Let C' = U A.
A connected,Y CA
Since Y C m A, this intersection is non-empty, so by the earlier Proposition, C'

A connected,YCA
is connected. C'is a component containing Y. If C” is another component containing Y then

by construction ¢’ C C' so C' = C' by maximality.

2. If C is a component then C' is connected by the earlier Proposition, and C ¢ C'so C = C
by maximality. Hence C' is closed.

3. Suppose () # Y with Y connected, and both closed and open. Let C' be the component
of X containing Y. Let A=CnNY and B=CnNY¢* Since Y and Y¢ are open, we must have
CNY*°=(sothat A, B is not a disconnection of C. Hence C =CNY soCCY. SoY =C
is a component.

O

Note: A component need not be open. For example, in Q the components are single points.

7.2 Path Connectedness

Notation: Let I = [0, 1].

Definition 7.2.1 X is called path connected ifVo,y € X Jw : [ — X s.t. w(0) =z, w(l) = y.
Proposition 7.2.2 Path connected = connected.

Proof: Suppose X is path connected. If X is not connected, then X has at least two compo-
nents C, Cy. Pick z € C1, y € Cy and find w : [ — X s.t. w(0) =z, w(l) =y. I is connected,
so w([l) is connected, so by an earlier Proposition, w([l) is contained in a single component.
This is a contradiction, so X is connected. O
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Example: A connected space need not be path connected.
Let Y = {(0,y) € R*}  (the y-axis)
Z ={(z,sin(1/x)) |0 <z <1} the graph of y = sin(1/x) on (0, 1]
X=YUZ.

(a) X is connected:
Proof: The map (0, 1] L, re given by t — (t,sin(1/t)) is continuous so Z = Im(f) is
connected.

Hence Z is connected.

0€Z But0 €Y soYNZ #( and Y is connected. Hence Y N Z is connected. But
Y NZ =Y N Z since the limit points of Z are in Y.

(b) X is not path connected:
Proof: Suppose w: I — X s.t. w(0) = (0,0) and w(1) = (1,sin(1)).

Let to = inf{t|w(t) € Z}.

t<ty=w(t) €Y and Y is closed so by continuity w(ty) € Y.

By definition of inf, V§ > 0i 30 < r > & s.t. w(to+7) = (a,sin(l.a)) € Z for some a. Then
mew(to, to + r| contains 0 and @ and is connected so it contains all z in [0,a]. In particular,
wlto, to+9) D wlto, to+1] contains points of the form (x,0) and points of the form (x,1). This is
true for all 4, so w is not continuous at ty. This is a contradiction, so X is not path connected.

O

Note that from this example, A C X is path connected does not always imply A is path

connected. (Let A = Z in the above example.)

Proposition 7.2.3 If f : X — Y is continuous and X is connected, then f(X) is path con-
nected.

Proof: Given f(z1), f(x2) € f(X) let w be a path connecting x; and 2. Then fow: [ =Y

connects f(z1) and f(z2).
O

Proposition 7.2.4
1. If X, is path connected Vo, then Na X, # 0 = U, X, is path connected.
2. 1, Xa is path connected < X, is path connected Vou.

Proof:
1. Let a € N, X,. Given z,y € U,X,, connect them to each other by connecting each to a.
2. Let X =]], Xa.
(=) Suppose X is path connected. Then X, = m,(X) is path connected.
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(«<=) Suppose X, is path connected V. Given = = (z,),y = (ya) € X, Va select w,, : [ —
Xo st wa(0) = 24, wa(l) = ya.
Define w : I — X by m, o w = w,. Then w is continuous since each projection is, and
w(0) =z and w(l) = v.
O

Definition 7.2.5 A path component of a space X is a mazimal path connected space.
Proposition 7.2.6 Fach path connected subset of X 1is contained in exactly one path compo-
nent. In particular each point of X is in a unique path component, so X is the union of its
path components.

Proof: Insert “path” before “connected” and before “component” in the earlier proof, since

it used only that N, X, # 0 with X, connected implies U, X, connected.
]
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Chapter 8

Local Properties

Definition 8.0.7 A space X is called locally compact if every point has a neighbourhood whose
closure is compact.

Example: R"” is locally compact, but not compact.
Proposition 8.0.8 If a space X is compact, then it is locally compact.
(The proof is obvious.)

Theorem 8.0.9 Let X be a locally compact Hausdorff space. Then 3 a compact Hausdorff
space X and an inclusion 1 : X — X s.t. Xoo N X is a single point.

Proof: Let oo denote an element not in the set X and define X, = X U {oo} as a set.
Topologize X, by declaring the following subsets to be open:

(i) {U |U € X and U open in X}

(ii) {V | V¢ C X and V¢ is compact}

(iii) the full space X,
Exercise: Check this is a topology.
Claim: X, is compact.
Proof: Let {U,} be an open cover of X,. If some U, is X, itself, it is a finite subcover so we
are finished. Suppose not. Find Uy, s.t. 0o € Uy,. Us, must be a set of type (ii) so US, is a
compact subset of X.

{Us N X} covers Ug, so there is a finite subcover {U,, N X,...,U,, N X}. But then
{UapsUays - -, Uq, } covers Xo..

I claim that X, is Hausdorff.
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Proof: Let x #y € X,. If x,y € X, we can separate them using the open sets from X, so
say y = 00.

Since X is locally compact, 3U s.t. x € U and U is a compact subset of X. Hence X, ~\ U
is open in X, and oo € X ~ U.

Definition 8.0.10 Given a locally compact Hausdorff space X, the space X, formed by the
above construction is called the one point compactification of X.

Example: If X = R" then X, is homeomorphic to S™. (The inverse homeomorphism is given
by stereographic projection.)

Corollary 8.0.11 Suppose X 1is locally compact and Hausdorff, and A C X is compact. If U
is open s.t. AC U and U # X, then 3f : X — [0,1] s.t. f(A) =0 and f(U°) = 1.

Proof: X is normal so 3 such an f on X, by Urysohn. Restrict f to X. O

Definition 8.0.12 A space X is called locally [path] connected if the [path] components of
open sets are open.

Proposition 8.0.13 X is locally [path] connected < Yz € X and ¥ open U containing x, 3 a
[path] connected open V s.t. x € V C U.

Proof: (=) Given z € U, Let V be the [path] component of U containing =.
(«<=) Let U be open. Let C be a [path] component of U and let x € C. There exists an
open [path] connected V' s.t. x € V' C U so by maximality of [path] components, V' C C.

Hence = ECO‘. This is true Vx € C' so C' is open. O
Note:

1. Locally [path] connected does not imply [path] connected.

For example, [0, 1] U [2, 3] is locally [path] connected but not [path] connected.

2. Conversely [path] connected does not imply locally [path | connected.
For example, the comb space

X ={(1/ny) [ n>1,0<y<1}U{(0,9) |0<y<13U{(0)[0<y<1)

X is [path] connected but not locally [path] connected.
Another example is the union of the graph of sin(1/x) with the y-axis and a path from the
y-axis to (1,sin(1)). Without this path, the space is not path connected.

Proposition 8.0.14 If X is locally path connected, then X is locally connected.
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Proof: VU and Vx € U 3 a path connected V s.t. x € V C U. But V is connected since path
connected implies connected. O

Proposition 8.0.15 If X is connected and locally path connected, then X is path connected.

Proof: Let C' be a path component of X. Hence C' is open (by definition of locally path
connected applied to the open set X).

Let z € C.

X is locally path connected = 3 a connected open set U containing z. (Apply the definition
of locally path connected to the open set X. The component of X containing x is open.)

r€C=UNC#0 = CUU is path connected.

So CUU = C (by maximality of components)

Hence z € U C C and therefore C' = C, in other words C' is closed.

Since C' is both open and closed, by theorem 7.1.2, C' is a connected component.

Since X is connected, C' = X.

Hence X is path connected.
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Chapter 9

CW complexes

9.1 Attaching Maps

Given A C X with f: A — Y, we define “the space obtained from Y by attaching X by means
of f7 (written X Uy Y') as
XUpY=(X1Y)/~

where a ~ f(a) Va € A.

a— .y
X X xupy

is a pushout in the category of topological spaces.
1y is always an injection.
jx is an injection iff f is.

Example 9.1.1 Y = % fiA—x
Then X Uy = X/A.
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Associativity: AC X, BCY.
f:A=Y g:B—Z.

Then
Xavynuz

~Y

X Ujyoy (Y Uy 2) = (X U Y) U,y Z =
Assume A is closed in X.

Proposition 9.1.2
1. In XUy Y, iy (Y) is closed, jx(X ~ A) is open.

2. (a) iylygiy(Y),
(b) jx : X NAZjx(X N A).

Proof:

L XU Y =iy (Y)Ujx(X N A) and iy (V) Njx (X N A) =0
T: XIOY - XU Y
T x(X NA) =X\ 4 openin XIIY
Therefore jx(X ~ A) open in X Uy Y
Therefore iy (Y) closed
2. (a) Show Y open in Y = iy (U) open in iy (Y)
Notice that iy (Y) =AU, Y C X Up Y
iy(U)) = fHU)IU open in AITY.
Therefore iy (U) open in AUy Y =i(Y)
(b) Show V open in X \ A = jx (V) open in jx(X)
' (jx(V)) =V  openin AIlY
Therefore jx (V') openin X Uy Y
Therefore jx (V') open in jx(X) (since it is even open in entire space)

O
From now on we think of Y as the subset iy (Y) of X U; Y.
Corollary 9.1.3 F C X Uy Y is closed & F Niy(Y) and F N jx(X \ A) are closed.
Proof: Since X Uy Y =iy (Y) U jx(X \ A) this follows from the fact that iy (Y) is closed.
O
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Proposition 9.1.4 If X and Y are compact, then X Uy Y is compact.

Proof: X, Y compact = X 1Y compact = X Uy Y = n(X 1Y) compact O

Proposition 9.1.5 If X and Y are normal, then X Uy Y is also normal.

Proof: Suppose B,C C X U; Y with BN C = ) where B, C are either closed or singletons.
(We don’t assume singletons are closed — have to show T3 as well)

Then BNY, CNY are disjoint closed subsets of Y so 3g : Y — [ s.t. ¢(BNY) =0,
g(CNnY)=1

Define h: jx'(B) U jx' (C)UA = I by hljzip =0, hliey =1, ha=go f.

This agrees on overlaps (which are closed) so yields a well-defined cont. function. Domain

_ (Tietze) .
of h closed in X, X normal === dH : X — [ extending h.

HlIlg
X1y 1

v

6.

- <= universal property of quotient
XUpY

¢(B) =0, ¢(C) =1,
Therefore 3 open sets separating B and C. Applied to singletons gives Hausdorff (thus 77)
and then applied again to closed sets gives normal. |

Proposition 9.1.6 IfY is Hausdorff and X is metric, then X Uy Y is Hausdorff.

Proof:
l.z#£we XA

Separation in X \ A gives a separation in X Uy A since X \ A is open.

2. XeX~AyecY
Find € > 0 s.t. Noe(z) C X N A

Then x € N(x) C N.(x) C X \ A, (where the closure can be taken either in X \ A or
in X Uy Y — it’s the same)

Then N (z), (Ne(x))c separate = and y.
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3. y1,52 €Y

Lemma 9.1.7 X metric. AC X. V open in A.
Then 3 open U in X s.t. UNA=V and UN A = closure of V in A

Proof:
See Problem Set I. O

Proof of Prop. (cont):

Let U’, V' be a separation of y1, y2 in Y (with y; € U, yo € V')

7 (U’) open in A. X metric so by Lemma, 3 open U in X st. UNA = f7(U), UN
A =closure of f~1(U") in A = f~1(U") (since A closed).

Let W= (xU)UU C XU Y

71 (any) = jx* (any) [T iy* (any)

Since j' (U U jx(U)) = f[FHU)YUU = U and iy' (U U jx(U)) = U' U (jx(U)NY) =
UUfUNA)=U weget 7' (W)=UIIU in XIIY so W is open in X U; Y.

Claim: W—j (U )UU’
Proof: c [7Y(f(B)) = B C f’l(m) = f(B) ¢ f(B) in general, and so W C
U/ij(U)CU/U]X(U) w.

Therefore sufficient to show that U’ U jx (U) is closed.

SubClaim: ji'(jx(UUU")) =U U j' (U)
Proof: U C jy'jx(U) so RHSC LHS.

Conversely, suppose that a €LHS.

If a € j'(U’) then @ €RHS and if a € U then a €RHS.

So suppose a € (jx'jxU)\U.

Then 3b € U s.t. jx(a) = jx(b). Since a # b this implies a,b € A. Hence b€ UN A =
closure of f~H(U’) in A.

If Z is a nbhd. of jx(b) then j'(Z) is a nbhd. of b, so j'(Z) contains pts. of V. Hence Z
contains pts. of jx (f~(U’)) C U’. True ¥V nbhds. of jx(b), so jx(a) = jx(b) € U

Therefore a € j'(U’) € RHS.

Proof of Claim (cont.): o
SubClaim = j' (jx(U)UU) =U U5 (U)  closed in X

i (ix @) UT) = (jx @ NY) U (@ NY) (9.1)
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ix(U)NY = jx(UNA) = f(UNA) = f(closure of f~(U") in A) C closure of f(f~'(U"))
inY cU'NY,andso (9.1) = iy (jx(U)UT’) = U'NY which is closed in Y.

Therefore we have shown that 7! ( Jx(U) U 7) = closed IT closed so jx (U U U’) closed, as
desired.
Proof of Prop. (cont.):

pel cw o

Show yo & W so that W, (W)¢ is the desired separation.

Suppose y, € W. Then yo € WNY =i,,) (W) CU'NY = closure of U in Y. But yp € V'
and V' N (closure of U' in Y) =0
=<

So y, € W, as desired.
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9.2 Coherent Topologies

Let X; C X5 C --- C X,, C be topological spaces.

Let X = U, X,

The coherent topology on X defined by the subspaces X, is the topology whose closed sets
are {A C X | AN X, is closed in X,, Vn}. (Clearly this collection is closed under intersections
and finite unions.) This is the weakest topology on X s.t. all the inclusion maps are continuous.

Notation: Write X = @Xn for U, X,, with this topology.

Proposition 9.2.1 Given f, : X,, — Y s.t. f”’Xk = fr fork <n, 3 f: X =Y st
f‘Xn = fu-

EI'

y ©
Proof: Let f be the unique set map on X restricting to f, on X,,. Given closed A in Y,
Y A) N X, = f,1(A) which is closed in X,,. Hence f~!(A) is closed in X. Therefore f is

continuous. 0

Proposition 9.2.2 Suppose Vn that X,, s normal and X,, is closed in X. Then X s normal.

Proof:
Vo € X, {z} N X, = {{z} or 0} = closed in X,
Hence {x} closed.
So X is 1.
Suppose A, B closed in X with AN B = 0.
Xjpnormal = 3¢g; : X7 = Ist. (X1 NA) =0, (X1NB)=1
Suppose g, : X, — I has been defined s.t. ¢g,(X,NA) =0, g.(X,NB) =1, g"‘xk = g;, for
k < n.
To define g,,11:
Define f,,: Y, == X, UAUB — I by f.(X,) = gn, [u(A) =0, and f,(B) = 1.
A, B, X,, closed and f,, agrees on the overlaps, so f, is continuous.
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Y, closed in X = Y, N X, closed in X,,,1, so by Tietze (using X,,+1 normal) 3g,,1 :
Xn11 — I extending leﬂX o

Hence gn+1}Xn = fann = On, gn+1(Xn+1 N A) = 07 gn+1(Xn+1 N B) =L

By universal property of lig, g : X — I extending g, Vn.

Then g(A) =0 and g(B) = 1.
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9.3 CW complexes

Motivation: Finite CW complexes:
A finite O-dimensional CW complex consists of a finite set with the discrete topology.
A finite (n + 1)-dimensional CW complex is a space of the form (]_[ae 7 D"H) Us X where
(1) X is a finite k-dimensional CW complex for some k£ < n
(2) D™ denotes [0, 1]**!. [[,o, D"*" has the “disjoint union” topology: U is open if its
intersection with each D"*! is open.
(3) f:]]OD™! — X, where S™ = gD"+! C Dt

Examples:
(1) I'=10,1]
(2) S™ which is homeomorphic to D™ Uy pt = D™ /0D™.

Definition of C'W complex which follows is more general and allows for infinite C'W-
complexes as well.

Terminology:
Spaces homeomorphic to D™ will be called m-cells.
Spaces homeomorphic to the interior of D™ will be called open m-cells.
m is called the dimension of the cell.

Definition 9.3.1 A CW-structure on a Hausdorff space X consists of a collection of disjoint
open cells {eq}acs and a collection of maps f, : D™ — X s.t.

1. X = Uges€a (disjoint as a set)
2. Va:

(a) fo

(b) fo(OD™) C {union of finitely many of the cells e, having dimension less than m }

o
o 1 DM e,
Dm

3. A C X is closed & ANe, is closed in e, for all o
A space with a CW-structure is called a CW-complex.

To see that this generalizes the above description:
Suppose Y = X U (HﬁeK Dg“) Ug X where X = Uqeyeq is a CW complex with dime, <

n Vo Write C = [[p Dg“ and 9C = [[ 5k 8Dg+1.
So O\ OC =[x D5

5



0C ——C

X ;ﬁ. Y
Let fg = j‘DnH : Dg“ — X. (So X is a union of cells having dimension < n + 1.)
5

Since Y = Uyes €q | Ugek €5 in the case of a finite CW complex (where the sets J and K
are finite) the third condition is automatic.

Terminology:
U{e, | dime, < n} is called the n-skeleton of X, written X ).
The restrictions f,|gpm are called the attaching maps.

Notice that we can recover X from knowledge of X(® and the attaching maps as follows:
Inductively define X+ by X+ = (LI . Dg“) Up X ™ where K, = {all (n+1)-cells}.

(Knowledge of a map includes knowledge of its domain so we know the set K, ,1.)

XO cxO .o cxm

Define X = U, X™ = U,c e, and topologize it by condition 3.
If IM s.t. XM = X then X is called finite dimensional.
X is called finite if it has finitely many cells.
Note: A space can have more than one CW-structure giving the same topology.

e.g.
2 _
= €p U eq

S2Z€0U60U€1U61U62U€2

Note: The open n-cells comprising X are not necessarily open as subsets of X. Only the top
dimensional open cells are actually open in X.

Lemma 9.3.2 ¢, = f,(D™)

Proof: D™ compact = f,(D™) compact = f,(D™) closed as X is Hausdorff. (In fact X is
normal.)
ea = fo(D™) C fo(D™) = &4 C fo( D™).
Conversely f;'(es) = fil(eq) = Int




Corollary 9.3.3 &, Cc X(™,

Proof: o = fu(D™) = fu(D™) U fa(@D™) with fu(D™) = eq and fa(dD™) € XD, so
e C XM, O

Corollary 9.3.4 For any ag, €4, Ney = 0 for all but finitely many «.
Proof: By definition f,,(0D™) Ne, = 0 for all but finitely many a. a
Theorem 9.3.5 A compact C X = ANey, =0 for all but finitely many «.

Proof: X =U,cje,. Let I ={a € J|ane, # 0}.

For all a € I, choose y, € ANey. Set Y = {ya}taer-

Vi, {a | €5 Ne, # 0} is finite, so e NY is finite.

Suppose S C Y.

VB € J, SNeg is finite, thus closed in X, since X is 7.

Hence S is closed in X. (Property 3)

In particular, Y is closed in X and every subset of Y is closed in Y.

So Y has the discrete topology.

But Y C A, A is compact, and Y is closed, hence Y is compact. Therefore Y is discrete
implies Y is finite. Hence [ is finite. O

Corollary 9.3.6 If A is a compact subset of X, then A C X™) for some N.
Corollary 9.3.7 X is compact < X s finite.

Proof: = If X is compact then X intersects only finitely many e,. But X intersects all e,
so X is finite.

= Xt =, ., Uy X® where Cpyq = H,BeKn+1 Dntt,

If X is finite, then K, is finite, and so C),;; is compact, and hence X ™*Y is compact (by
induction).

If X is finite, then X = X for some N. a

9.3.1 Subcomplexes

Let X = Uyeseq be a CW complex. Suppose J' C J.
Y = Uyeyr €4 is called a subcomplex of X if e, C Y Va € J'.

Example: X ™ is a subcomplex of X Vn.

Proposition 9.3.8 Let Y be a subcomplex of X. ThenY is closed in X.
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Proof: For 8 € J show Y Neg is closed in eg.
{av€e J|eaNeg # 0} is finite, so €5 = €4, U+ U eg,.
The e, are disjoint so Y Ne, = () unless e, C Y.
Discarding those o for which Y Ne, = 0, write

YNeg =((YNea,)U---U(Y Ney,))Neg  witheq,,... 60, CY
c(YNne,)uU---U(YnNe,)) Nez
C (e, U---Ueg, )Neg
CYnes

using e,; C Y and applying the definition of subcomplex.
Hence Y Neg = (€5, U---Ue&,, ) Neg is closed in 5. Hence Y is closed in X. O

Corollary 9.3.9 A subcomplex of a CW complex is a CW complex.

Proof: Let Y C X be a subcomplex where Y = U,cy e, and X = U,e€,.

For a € J', fo(D™) = €, C Y (thus it is in finitely many cells of Y since X is a CW-
complex) so condition (2) is satisfied.

Check condition (3).

Suppose AN e, closed in e, for all o € J'.

Given g € J, write Y Neég = (€a, U--- UE,, ) Neg with ay,...,a, € J" as above.

Then ANes = ((ANeg)U---U(ANe,)) Neg.

ANeg, is closed in €4, thus compact, for j =1,...,r.
Therefore ANez = (compact) N ez =closed subset of &3.
Hence A is closed in X and thus closed in Y. ]

Corollary 9.3.10 X is closed in X Vn.

Corollary 9.3.11 X = ligy X,

Proof: X is closed in X for all n. If A C X satisfies A N X closed for all n, then Va,
(AN X™)Nez = ANeg closed, since &, C X™ for some n. O
Proposition 9.3.12 X™) is normal Ym.

Proof: Xt =, 4 Uy X® where Cpyq = HB D" is normal. Hence X is normal Ym
by induction. O

Corollary 9.3.13 X is normal.

There is a stronger theorem which we won’t prove which says

Theorem 9.3.14 (Mizakawa) X is a CW-complex = X is paracompact.
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9.3.2 Relative CW-complexes

Definition 9.3.15 A relative CW-structure (X, A) consists of a Hausdorff space X, a subspace
A of X, a collection of disjoint open cells {eq}acs and maps f, : D™ — X s.t.

1. X = AU, e €a
2. Va
(a) f(D™) C e, and f, S

(b) fo(OD™) C AU { union of finitely many of the cells e, having dimension less than
m}

= e,

3. B C X is closed < BN A is closed in A and BN (AUey) is closed in AUe, Y.
A pair (X, A) with a relative CW-structure is called a relative CW-complez.
Define X = AU g, <n €a- By convention, set X1 = A,
Proposition 9.3.16 Let (X, A) be a relative CW-complex.
1 X =lim X0
2. A is normal = X is normal.

3. X™ s closed in X Vn.
4. (X/A, %) is a relative CW complex.

9.3.3 Product complexes

Let X = Upeye® and Y = Ugeg € be CW complexes.
Then X XY =, p)csxr (€a X €5).

Note: If e, is an m-cell and eg is an n-cell then e, X eg is an (m + n)-cell.
Define f, 5 by D™ = D™ x D* 1205 x vy,
pmin — pmos pr I X v v s a homeomorphism from D™ to its image.

D™ = (9D™ x D™) U (D™ x OD") —— X x Y

fap(OD™™) C {((m — 1) —cells) x (n — Cells)} U {(m — cells) x ((n—1) — cells)} =

{(m+n—1) — cells}.
So X xY will be a CW-complex if condition 3 is satisfied. In general, it will not be satisfied.
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9.4 Compactly Generated Spaces
In this section, all spaces will be assumed to be Hausdorff.

Definition 9.4.1 A (Hausdorff) space X is called compactly generated (or a k-space) if it
satisfies A C X is closed < AN K is closed in K for all compact subspaces K of X.

Examples:
1. Compact spaces
2. CW-complexes

Given X we define a space Xy as follows.
As aset, Xy = X. Topologize Xy by: closed sets = {A C Xx|ANK is closed (in the original
topology) in K for every K C X which is compact in the original topology }.

Note: Since X is Hausdorff, A closed in K is equivalent to A closed in X.

A C X is closed in the original topology = A is closed in Xk.
Hence

Proposition 9.4.2 X, s X is continuous.

Thus the topology on Xy is finer. In particular Xy is Hausdorff.
Clearly X compact = Xy = X.

Proposition 9.4.3 f: X — Y continuous implies that f is continuous when considered as a
map Xx — Yik.

Proof: Suppose B C Y is closed. If K C X is compact, then f(K) is compact, so BN f(K)
is closed in Y’

This implies f~'(BN f(K)) is closed in X. Hence f~ (BN f(K)) = f1(B)Nnf~'(f(K)) D
fYB)NK. So f/YB)NK = f~Y(BN f(K))N K which is closed in K Hence f~!(B) is closed
in Xiy. O

Proposition 9.4.4 If A is closed in X, then Ay is the subspace topology from the inclusion
A— Xk.

Proof: A — X = Ay — Xy is continuous so the Ay topology is finer than the subspace
topology. Suppose that B C Ay is closed. So for all compact K C A, BN K is closed in K. We
show that B is closed in Xy. Suppose L C X is compact. A is closed, so AN L is a compact
subset of A. However BN L = BNANL,so BN L is closed. Hence B is closed in Xj. a
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Corollary 9.4.5 K is compact in Xy < K is compact in X.

Proof: K is compact in Xy = id(K) = K is compact in X.
If K is compact in X, then K is closed in X which implies that Ky is the subspace topology
as a subset of Xi. Hence K is compact when regarded as a subspace of X. O

Corollary 9.4.6 Xy is compactly generated.

Proof: Suppose A C Xy is such that ANK is closed for all compact K of Xj. {compact subspaces of Xy }
= { compact subspaces of X} so this implies A is closed in Xy. Hence Xy is compactly gener-
ated. a

Proposition 9.4.7 If X is compactly generated, then Xy = X. In particular (Xy)x = Xk.

Proof: If A is closed in X, then A is closed in Xy. Conversely suppose A is closed in Xj.
Then AN K is closed V compact K of X. Hence A is closed in X. a

Theorem 9.4.8 Let X and Y be CW complezes. Then (X X Y)x is a CW complex.

Proof: Write X = Uscseq, and Y = Ugereg. Soas aset Z =X XY = Uj ke, X €g. Since
D™ is compact, f,z(D™*™) is compact so its topology as a subspace of X is the same as
that as a subspace of X x Y. Hence f, g is continuous as a map from D™*" to Z and fa’B‘D 0

m+n

is still a homeomorphism to its image in Z, so property (2) in the definition of C'W-complex
is satisfied. For property (3): Suppose A Ne, X ez is closed for all o, 5. For any compact K,
71 (K) and 7y (K) are compact so 71 (K) C Uj—1,. r€q;, T2(K) C Up=1,.. €5,

Hence
K C Ulgzlly,‘.t.’:seaj X €,
C U]':1 ,,,,, r e% X €3,
k=1,...,s
Hence
ANK=AnN (Ujl ,,,,, rCa; X eﬁk> NK
k=1,....s
= (U j:1,m,rA N €q; X 65k> NK

k=1,...,s ’

which is closed. So A is closed in Z. O
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Chapter 10

Categories and Functors

Definition 10.0.9 A category C consists of:

E1) A collection of objects (which need not form a set) known as Obj(C)

E2)  For each pair X,Y in Obj(C), a set (denoted C(X,Y) or Home(X,Y)) called the

morphisms in the category C from X toY

E3) For each triple X,Y,Z in Obj(C), a set function o : C(X,Y) x C(Y,Z) — C(X,2)

called composition

E4) For each X in Obj(C), an element 1x € C(X, X) called the identity morphism of X

such that:

A1) Yfe C(X,Y), lyof=f and foly = f.

A2) fEC(X,Y), geC(Y,Z), he C(Z,W) = ho(gof) = (hog)of € C(X,W)

Examples:
H Objects ‘ Morphisms ‘ o ‘ id H
1. || Sets Set functions comp. of functions | identity set map
2. || Groups Group homomorphisms | ” 7
3. || Top. spaces | conts. functions 7 7

4. “Topological pairs”

An object in C is a pair (X, A) of topological spaces with A C X.
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Morphisms (X, A) — (Y, B) = { conts. f: X =Y | f(A) C B}
5. X p.o. set. Define C by Obj(C) = X.

set with one element if z < y;
C(r,y) = {

0 if y < x or x,y not comparable

6. C any category. Define C°P by

Obj C = Obj C.
C®(X,Y) = C(Y, X).

goco [ = [focy.

Definition 10.0.10 A functor F': C — D consists of:

E1) For each object X in C, an object F(X) in D

E2) For each morphism g in C(X,Y’), a morphism F(g) in D(F(X), F(G))
such that:

Al) F(1x) = lpx)

A2) F(go f)=F(g)o F(f)
Examples:

1. “Forgetful” functor F': Top Spaces — Sets
F(X) = underlying set of top. space X

2. Sets — k-vector spaces
S +— “Free” vector space over k on basis S
(S = TF(S)) — F(T)

3. Completely regular topological spaces and continuous maps — Compact topological spaces
and conts. maps

X — B(X)
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4. Top. spaces — Compactly generated top. spaces
X — Xk

Definition 10.0.11 If F' and G are functors from C to D, then a natural transformation

n: F — G consists of:
For all X in C, a morphism nx € D(F(X),G(G)) s.t. Vf € C(X,Y),

F(X) G(X)
F(f) G(f)
F(Y) —2~ G(Y)

commutes.

Example: C' =topological pairs
D = topological spaces
F:C—-D forget A. ie. (X, A) — X
G:C—D (X,A) — X/A
(X, 4) == (v.B)) — (x/4 L v/B).
n:F — Gbynx:F(X,A) — G(X,A) is the canonical projection, X — X/A.
Then (X, A) % (Y, B) yields

v _F
X/A i) Y/B.
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Chapter 11

Homotopy

11.1 Basic concepts of homotopy

1 1

/ —dz = / —dz
m % v2 %
1 1

/ —dz # / —dz.
Y1 4 Y3 z

Why? The domain of 1/z is C \ {0}. We can deform ~; continuously into v, without leaving
C ~ {0}.
Intuitively, two maps are homotopic if one can be continuously deformed to the other.
The value of f”/ %dz is an example of a situation where only the homotopy class is important.

Example:

Definition 11.1.1 Let X and Y be topological spaces, and A C X, and f,g : X — Y with
fla = gla. We say f is homotopic to g relative to A (written f ~ grel A) if IH : X x [ - Y
s.t. H|xxo=f, H|xx1 =9, and H(a,t) = f(a) = g(a) Ya € A. H is called a homotopy from

f tog.
In the example, X = 1, ¥ = C~ {0}, A = {0} U {1}, (0) = 9(0) = p, f(1) = g(1) =
Notation: For t € I, H; : X — Y by H(z) = H(z,t). In other words Hy = f, H, = g.

fggrelerH:f:grelAmeanHisahomotopyfromftog. We write f ~ g if A is
understood.

Example: Y =R", f,g: X = R". fla = g|la. Then f ~ g rel A.
Proof: Define H(x,t) =tg(z) + (1 —t)f(z)
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Proposition 11.1.2 A C X. j: A — Y. Then homotopy rel A is an equivalence relation on
S={f: X =>Y[fla=j}

Proof: (i) reflexive: given f € S, define H : f ~ f by H(x,t) = f(x) Vt.
(ii) Symmetric: Given H : f ~ g define G : g ~ f by G(x,t) = H(z,1 —t).
(iii) Transitive: Given F': f ~ g, G : g ~ h define H : f ~ h by

Hiz.0 F(x,2t) if0<t<1/2
a”’? = .
Gz,2t—1) if1/2<t<1

Important special case: A = pt g of X.

Definition 11.1.3 A pointed space consists of a pair {X,xo}. xo € X is called the basepoint.
A map of pointed spaces f: (X, z9) — (Y,yo) is a map of pairs, in other words f : X =Y s.t.
f(o) = vo.

Note: Pointed spaces and basepoint-preserving maps form a category.

Notation: X,Y pointed spaces. [X, Y] = { homotopy equivalence classes of pointed maps }.

Top (X,Y) is far too large to describe except in trivial cases (such as X = pt). But [X, Y] is
often countable or finite so that a complete computation is often possible. For this case under

certain hypotheses (discussed later) this set has a natural group structure.
def

Notation: ,(Y,yo) = [S™, Y] with basepoints (1,0,...,0) and yo respectively. In this
special case X = S™, this set has a natural group structure (described later). m,(Y, yo) is called
the n-th homotopy group of Y with respect to the basepoint .

m (Y, yo) is called the fundamental group of Y with respect to the basepoint yq.

11.1.1 Group Structure of m (Y, yo)
Notation: f,g:I — Y. Suppose f(1) = g(0).
Define f-g: 1 —Y by

) f(2s) if0<s<1/2
f'g(s)_{g@s—l) if1/2<s<1

Lemma 11.1.4 f,g: [ =Y st f(1) =g(0). A={0}U{1} C I. Then the homotopy class
of f-g rel A depends only on the homotopy classes of f and g rel A. In other words f ~ f’

andg~g = f-g~f~¢.
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F.f~f G:g~¢g
H:IxI—-Y
F(2s,t if0<s<1/2
sy =y 20 0SS
G(2s—1,t) if1/2<s<1.
H:f-g~f-4q. O

Let f,g € m(Y,vy0). So f,g:S' =Y.
Thought of as maps I — Y for which f(0) = f(1) = ¢g(0) = g(1) = vo.
Define f % g in m(Y, o) to be f - g.

Theorem 11.1.5 m(Y,yo) becomes a group under [f][g] := [fg].

Proof: The preceding lemma show that this multiplication is well defined.
Associativity:
Follows from:
Lemma 11.1.6 Let f,g,h: I — Y such that f(1) = g(0) and g(1) = h(0). Then (f-g)-h ~
f(g-h),

f(%) 4s <2 —t;
Proof: Explicitly H(s,t) = ¢ g(4s+t—2) 2—t<4s<3—t; Vv
h(#5E2) 3—t<ds.

Identity: Given y € Y, define ¢, : I — Y by ¢(s) = y for all s. Constant map.
Lemma 11.1.7 Let f: I —Y be such that f(0) = p. Then ¢, - f ~ frel({0} U{1}).
2s < t;
H(s,t) =47 | s=h 0
f(Z=h) 25>t

2—
Similarly if f(1) = g then f-¢, ~ frel A. Applying this to the case p = ¢ = yo gives that

[f1lev] = lew]lf] = [f]- Vv
Inverse: Let f: 1 — Y Define f~': T — Y by f~1(s) := f(1 —s).

Lemma 11.1.8 . f- f~!' ~¢,rel({0} U {1}).

Proof: Intuitively:
t=1 Go from p to ¢ and return.
0<t<1 Go from p to f(t) and then return.
t=20 Stay put.

) f(2st) 0<s<1/2;
His,t) = {f(?(l —s)t) 1/2<s<1.
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Applying the lemma to the case p = ¢ = yo shows [f][f 7] = [¢,,] in T (Y, v0), Vv
This completes the proof that (Y, yo) is a group under this multiplication. ]

Note: In general 7 (Y, o) is nonabelian.

Proposition 11.1.9 Let f : X — Y be a pointed map. Define fu : m (X, x0) = m(Y,v0) by
fulw] == [f ow]. Then fu is a group homomorphism.

(f is called the map induced by f.)

Proof:
Show that f4 is well defined.

Lemma 11.1.10 .
(W, A) == (X, B) —= (Y.C)

g/ h/

Suppose g ~ g'rel A and h ~ h'rel B. Then ho g~ h'o ¢ rel A.

Proof of Lemma:

Let G: g~ ¢ and H : h ~ I/ be the homotopies. Define K : W x I — Y by K(w,t) :=
H(G(w,t),t). Then K : hog~hog'rel A. (ie. K(w,0) = H(G(w,0),0) = H(g(w),0) =
g(w) and similarly K(w,1) = h'o ¢'(w) while for a € A, K(a,t) = H(G(a,t),t) = H(g(a),t) =
h(g(a)) = W (g'(a)).

Proof of Proposition (cont.) Thus fy is well defined (applying the lemma with W := S,

A=A{wy:=(1,0)}, B:={xo}, C:={w}, g:=w, ¢ :==w',and h = h' := f). v/
fo(w-y) = (fow)-(foy) Therefore fy([w][V]) = fu(lw-]) = [fo(w- )] = [(fow) (fory)] =
[fow]lf o] = fu([w]) fa(l7])- m

Corollary 11.1.11 The associations (X, o) — m (X, xo) with f — fu defines a functor
from the category of pointed topological spaces to the category of groups. |

To what extent does (Y, yo) depend on y,?
Proposition 11.1.12
1. Let Y’ be the path component of Y containing yo. Then m (Y, y0) =~ m1 (Y, o).

2. If yo and yy are in the same path component then m (Y, yo) ~ m (Y, v1)
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Proof:

1. Any curve of Y beginning at yo lies entirely in Y’ (since curves are images of a path
connected set and thus path connected).

2. Pick a path a joining y to 3. Define ¢ : m(Y,y0) — 7 (Y,y1) by [f] = [a™!- f - q]
(where a~! denotes the path which goes backwards along «).

Check that ¢ is a homorphism:

o([f]lg]) = [o~" folla~ga] = [a~ faa~ ga] = [a~!fga] since faa~'g ~ fe, g ~ fg.

Thus ¢([f][g]) = [o~" fga] = 6([f4]) Vv

Show ¢ is injective:

Suppose that ¢([f]) = e. That is [a ' fa] = [¢,]. Then a™'fa ~ ¢,. Hence f ~

Cyo S Cyo = aa™ faa™ ~ acy, a7t = aa”t ~ ¢y, Thus [f] = [e] in m (Y, yo). Vv

Check that ¢ is onto:

Given [g] € m (Y, y1), set f:=a-g-a~". Then ¢[f] = [a™" fo] = [a"taga™ o] = [g]. /
m|

In algebraic topology, path connected is a more important concept than connected. From
now on, we will use the term “connected” to mean “path connected” unless stated otherwise.

Notation: If Y is (path) connected, write 7 (Y") for m(Y,yo) since up to isomorphism it is
independent of yy. The constant function (X, z¢) — (Y, yo) taking x to y, for all x € X is often
denoted *. Also the basepoint itself is often denoted x.

If f ~ % then f is called null homotopic. So for f : S* — Y, f is null homotopic if and only
if [f] =ein m (Y).

Theorem 11.1.13 Let X =[[;.; X;. Let x = (z;)jer € X. Then m (X, *) = [[;c; m(Xj, z)).

JEI <V

Proof:

Let p; : X — X be the projection. The homomorphisms p;, : 71(X, *) — 71 (X}, ;) induce
Q= (pj#) s (X %) — Hjel T (X, z;).
To show ¢ injective:

Suppose that ¢([w]) = 1. Then Vj € I, 3 a homotopy H; : p; ow =~ c,;. Put these together
to get H : w >~ ¢,. (le. for z = (2;)jer € X, define H(z,t) := (Hj(zj,t))jel Hence [w] = 1
in m (X, *).
To show ¢ surjective:

Given (w;])jer where [w;] € m (X, z;):

Define w to be the path whose jth component is w;. (That is, w(t) = (wj(t))jel') Then
o([w]) = (lws])jer- H
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Definition 11.1.14 If X is (path) connected and 7 (X) = 1 (where 1 denotes the group with
Just one element) then X is called simply connected.

90



11.2 Homotopy Equivalences and the Homotopy Cate-
gory

Definition 11.2.1 A (pointed) map f : X — Y of pointed spaces is called a homotopy equiv-
alence if 3 (pointed) g Y — X s.t. go f ~ lxyrel* and fog ~ lyrel*. If 3 a homotopy
equivalence between X and Y then X and Y are called homotopy equivalent.

WewriteX:Yorf:Xi»Y.

Define the homotopy category (HoTop) by:
Obj HoTop = Topological Spaces
HoTop(X,Y) = [X,Y] (pointed homotopy classes of pointed maps from X to Y)

Examples of homotopy equivalences:
1. Any homeomorphism

2. R™ ~ x
Proof: : Let f:* — R" by % — a (where a is some chosen basepoint) and g : R" — %
by x + % for all z. Then go f = 1, and f o g >~ 1g» since any two maps into R" are
homotopic and furthermore can do it leaving the basepoint fixed.

3. Inclusion of ST into C \ {0} is a homotopy equivalence.

Proof: Intuitively widen the hole in C \ {0} and then squish everything to a single
curve. Explicitly,

i:S' = C~ {0} inclusion

Define r : C\{0} — S* by z — z/||z||. Then roi = 1,. To show ior ~ 1¢. o}, note that
irxz) = z/||z|]| and define a homotopy H : C~\ {0} x I — C~ {0} via (2,t) — T

Definition 11.2.2 A pointed space (X, xg) is called contractible if 1x ~ ¢, rel{zo}.

If (X, z0) is contractible as a pointed space then we say that the (unpointed) spaces X is
contractible to zq. (Note: It is possible that a space X is contractible to some point xy but not
contractible to some different point xj.)

Proposition 11.2.3 Suppose Y contractible. Then any two maps from X toY are homotopic.

Proof: 1y ~c¢,,. Hence Vf: X =Y, f =1y o f ~cyof =cy. |
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Proposition 11.2.4 X contractible < X ~ % O

Example: Any convex subset of R™ is contractible to any point in the space. Proof: Let xg
belong to X where X is convex. Define H : X x I — X by H(x,t) = tzg+ (1 — t)z, which lies
in X since X is convex. O

The two most basic questions that homotopy theory attempts to answer are:

1. Extension Problems:

A——m X

3

2. Lifting Problems:

3

X B

Lemma 11.2.5 f:S" =Y. Then f extends to f: D" =Y & f~c¢,.

Proof:

Sn Dn+1

S3f 7
Y

(=) Suppose f exists. f = f o D" is contractible (as it is a convex subspace of R"*1) =
1 %,

Hence f = four~ fox = x.

(<) Suppose H : ¢y~ f. H:S"x I =Y.
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Define

o fu 0< Jlaf| < 1/2
f@) {H(x/nxmuxu—l) 1/2 < |lefl <1

|

Corollary 11.2.6 Suppose f,g: 1 — Y s.t. f(0)=g(0), f(1) =g(1). If Y simply connected,
then f ~ grel(0,1).

Proof: To show f ~ grel(0,1) we want to extend the map shown on 9(1 x I) to all of I x I.
Up to homeomorphism, I x I = D? and O(I x I) = S*. By the Lemma, the extension exists <
the map on the boundary is null homotopic.

m(Y) =1 = any map S' — Y is null homotopic. O

Lemma 11.2.7 f:S" — Y. Then f extends to f : D""' =Y & f~c,.

Proof: (=) Suppose f exists. f = f o D"*!is contractible (as it is a convex subspace of
R = 4 ~ .

Hence f = four~ fox = x.

(<) Suppose H : ¢, ~ f.

Define

o 0< Jlaf| < 1/2
f@) {H<x/||m||,2\|x||—1> 1/2 < |lefl <1

|

Corollary 11.2.8 Suppose f,g: 1 —Y s.t. f(0) = g(0), f(1) = g(1). If Y simply connected,
then f ~ grel(0,1).

Proof: To show f ~ grel(0,1) we want to extend the map shown on 9(I x I) to all of I x I.
Up to homeomorphism, I x I = D? and 9(I x I) = S*. By the Lemma, the extension exists <
the map on the boundary is null homotopic.

m(Y) =1 = any map S — Y is null homotopic. O

Theorem 11.2.9 Suppose H : f ~ grel) where f,g: X =Y. Let yo = f(x0),y1 = g(x1). Let
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a be the path o(t) = H(zo,t) joining yo and y;. Then

ﬂ-l(Yu yo)
[
7T1(X7 x0> o, | =
g#
7T1<Y7 yl)

commutes, where ., denotes the isomorphism a,([h]) = [a" hal].

Proof: Let p: (S, %) — (X, zg) represent an element of 7 (X, z). We must show gop ~
a l-(fop) arel*.

gop

Cyl cyl
a”l (fop) a

Thinking of S* as I/({0} U {1}), show the map defined on 9(I x I) as shown extends to
I x I. Hence show the map on 9(I x I) is null homotopic. The boundary map under the
homeomorphism (1 x I) = S* = I /({0} U {1}) becomes [c,)' - - (fop)-a-c, -(gop)~'] =
@™ (fop)-a-(gop)']

X xI Y

p XTI

Stx T

(where, by convention, we sometimes write the name of a space to denote the identity map of
that space).
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H:f~g

Ho(px1I):fop~gop
By the Lemma, since the extension exists, a™! - (f op)-a-(gop)~t is null homotopic.
(]

Corollary 11.2.10 Let f : X — Y be a homotopy equivalence. Then fyu : m (X, z9) —
m (Y, f(z0)) is an isomorphism.

Proof: Let g : Y — X be a homotopy inverse to f. Let H : gf ~ 1x. Let a(t) = H(xo,t)

joining xo to g f(zo).
By the Theorem:

(X, z)

12

7T1(Xa IO) Ay

™ (X7 9f<550))

Hence g4 fs = (9f)# = o is an isomorphism. Similarly fgx is an isomorphism. It follows
(from category theory) that fu (and g4) are isomorphisms.
In other words,

Lemma 11.2.11 ¢ : G — H, ¢ : H — G s.t. ¢ and ¢ are isomorphisms. Then ¢ is an
1somorphism.

Proof: Let a = (¢¢)™' : G — G. Then avydp = 1g so gadyy = ¢lgyy = ¢ib. Right
multiplication by (@)~ gives pary = 1. ayd = lg, ¢parp = 1y = ar) is inverse to ¢ so ¢ is
an isomorphism. O

Corollary 11.2.12 X contractible = X simply connected.
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Proof: Let H :1x ~ c,,.

(1) Show X (path) connected.

Let 7 € X. Define I = X by w(t) = H(x,t). w joins zy to z1. So all points are connected
by a path to zy. So X is connected.

(2) Show (X, zg) = 1:

By earlier Proposition, X is contractible < X ~ x. Hence m (X, z9) =~ m(*,%) and it is
clear from the definition that (%, %) = 1. O
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Chapter 12

Covering Spaces and the Fundamental
Group

12.1 Introduction to covering spaces

Covering spaces have many uses both in topology and elsewhere. Our immediate goal is to use
them to help compute 7 (X).

Definition 12.1.1 A map p : E — X s called a covering projection if every point © € X
has an open neighbourhood U, s.t. p~'(U,) is a (nonempty) disjoint union of open sets each
of which is homeomorphic by p to U,. E 1is called the covering space, X the base space of the
covering projection.

Remark: 1t is clear from the definition that a covering projection must be onto.

Ezample: R 28 ST by t — €27t

exp N (Uy) =102 Vo
V, = U,Vn.

More generally: A (left) action of a topological group G on a topological space X consists
of a (continuous) map ¢ : G x X — X s.t.

1. ex =z Vx

2. 91(g27) = (9192)x Vg1, 92 € G, v € X.

Given action ¢ : G x X — X, for each g € G we get a continuous map ¢, : X — X sending
z to gz. Each ¢, is a homeomorphism since ¢,-1 = (¢4) "
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Note: Any group becomes a topological group if given the discrete topology. In the case
where G has the discrete topology, ¢ is continuous < ¢, is continuous Vg € G. (In general, ¢,
continuous for all g is not sufficient to conclude that ¢ is continuous.)

Suppose G acts on X.

Define an equivalence relation on X by z ~ gz Vo € X, g € G. Write X/G for X/ ~ (with
the quotient topology).

Remark: The notation is in conflict with the previously given notation that X/A means identify
the points of A to a single point. Rely on context to decide which is meant.

Preceding example: X = R, G = Z. ¢(n,x) = v +n. Then R/Z = S'. In this example
X happens to also be a topological group and G a normal subgroup so X/G also has a group
structure. The homeomorphism R/Z = S! is an isomorphism of topological groups.

Theorem 12.1.2 Suppose a group G acts on a space X s.t. Vx € X, 3 an open neighbourhood
Vi st. VongV, =0 for all g # e in G. Then the quotient map p : X — X/G is a covering
projection.

Proof: Given [z] € X/G, find V; as in the hypothesis. Set Uy = p(Vz). p™' (Up)) = Uyeq 9-Ve-
V, open = ¢V, open Vg = p~'(U};)) open = Uy, open.
91V N g2V, = () so the union is a disjoint union.
p : Vi — Up) is a bijection and check that by definition of the quotient topology it is a
homeomorphism.

1%

gVa

Ul
Both gV, and V, map to U under p, and the map p composed with g : V, — gV, equals
the map p : V; = Up,, which shows that p|sy, is a homeomorphism Vg.
Hence p : X — X/G is a covering projection.

Corollary 12.1.3 Suppose H is a topological group and G a closed subgroup of H s.t. as a
subspace of H, G has the discrete topology Then p: H — H/G is a covering projection.

Example 2: S™ — RP™ is a covering projection.
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Proof: RP" = S"/Zy where Zs = {—1,1} acts by lx = z,—1x = —z. Furthermore, the
hypothesis of the previous theorem is satisfied.

Similarly CP" = S§?"1/S1 and HP" = S%*3/SU(2), but these quotient maps are not
covering projections (since the group is not discrete).

What have covering spaces got to do with m (X)?

Return to the example R &% S1.

Let w be a path in R which begins at 0 and ends at the integer n. w is not a closed curve
in R (unless n = 0, where in this context “closed” means a curve which ends at the point at
which it starts) but exp(w) is a closed curve in S! joining * to *.

So exp(w) represents an element of m(S?).

We will show that the resulting element of 7;(S") depends only on n (not on w) and that
this correspondence sets up an isomorphism 7 (S*) & Z.

Terminology: Let p : E — X be a covering projection. Let U C X be open. If p~}(U) is
a disjoint union of open sets each homeomorphic to U, then we say that U is evenly covered.
If U C X is evenly covered, with p~'(U) = [[,T; with T; = U, then each T; is called a sheet
over U.

Theorem 12.1.4 (Unique Lifting Theorem) Let p: (E,eq) — (X, x0) be a map of pointed
spaces in which p: E — X 1s a covering projection.

Let f: (Y,yo) — (X,x0). If Y is connected, then there is at most one map f': (Y,yo) —
(E,e) s.t.

Remark 12.1.5 : For this theorem it suffices to know that 'Y is connected under the standard
definition, although in most applications we will actually know that Y s path connected, which
18 even stronger.

Proof:

Suppose f', 1"(Y,y0) = (E eo) st pf’ = fand pf" = f. Let A= {y € Y | /() = £'()},
B={yeY|f(y)# f"(y)}. Then ANB=0, AUB=Y.

It suffices to show that both A and B are open because then one of them is empty. But
A # () since yg € A, so this would imply that B = () and A = X, in other words f' = f”.
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To show A is open: Let y € A. Let U be an evenly covered set in X containing f(y). Let
S be a sheet in p~}(U) containing f'(y) = f"(y). Let V.= (f)71(S) N (f")~*(S), which is
open in Y and contains y. Vv € V, pf'(v) = f(v) = pf’'(v) = f'(v) = f"(v) (since p|s is a
homeomorphism). Hence V' C A, so y is interior. So A is open.

To show B is open: Let y € B. Let U be an evenly covered set containing f(y). f'(y) # f"(y)
but pf’'(y) = f(y) = f"(y) so f'(y) and f”(y) lie in different sheets (say S’,S”) over p~1(U).

Let V. = (f)7YS") n (f")~1(S"), which is open in Y. Since S'NS =0, (V) # f"(V)
Vv € V. Hence V C B. So y is interior. Therefore B is open. |

Theorem 12.1.6 (Path Lifting Theorem) Let (E,ey) 2 (X, x0) be a covering projection.
Let w: I — X s.t. w(0) =xg. Then w lifts uniquely to a path w' : I — E s.t. w'(0) = ey.

Proof: Uniqueness follows from the previous theorem (since I is connected).

Existence: Cover X by evenly covered sets. Using a Lebesgue number for the inverse images
under w in the compact set I, we can partition / into a finite number of subintervals [t;, ;1]
0=ty <ty <---<t,=1)s.t. Vi, w([t; t;11]) C U;. Note that U; is evenly covered.

Let Sy = sheet in p~*(Up) containing ey. plg, is a homeomorphism = 3 unique path in Sy
covering w([to, t1]). Let e; denote the end of this path. (p(e;) = w(ty))

Let S; = sheet in p~!(U;) containing e;.

As above, 3 unique path in S; covering w([t1, t2]).

Continuing: Build a path w’ in E beginning at ey and covering w. |

Remark 12.1.7 The procedure is reminiscent of analytic continuation. Notice that even through
w is closed (w(0) = w(1)), this need not be true for w'. e.g. Consider p =-exp: R — S' and let
w(t) =e?™ : [ — S'. Then ' is the line segment joining 0 to 1.

We will show that under the right conditions (e.g. R — S') elements of m (X, zo) can be
identified by the endpoint in E of the lifted representing path.
Need:

Theorem 12.1.8 (Covering Homotopy Theorem) Let p : (E,eq) — (X, x0) be a covering pro-
jection. Let (Y, yo) be a pointed space. Let f : (Y,yo) = (X, x0) and let f': (Y,yo) — (E,€ep)
be a lift of f. Let H:Y x I — X be a homotopy with H — 0= f. Then H lifts to a homotopy
H:YxI—E st H=f
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Before the proof, we examine the consequences.

Corollary 12.1.9 Let (E,eq) — (X x) be a covering projection. Let o,7 : I — X be paths
from xq to xy s.t. o ~ 7trel{0,1}. Let o', 7' be lifts of o, T respectively, beginning at ey. Then
o'(1) =7'(1) and o’ ~ 7' rel{0, 1}.

Note in particular that this implies that the endpoint of a lift of a homotopy class is independent
of the choice of representative for that class.

Proof of Corollary (assuming Theorem): Let H : 0 ~ 7rel{0,1}. Apply the theorem to
get H' : I x I — E which lifts H and s.t. H) = o’

The left vertical line of H' can be thought of as a path in E begining at ¢’(0) = ey and
lifting ¢,,. By uniqueness it must be ¢.,. Similarly the right must be c.,, where e; = o'(1).
Also, the top is a lift of 7 beginning at ey so it must be 7/. Thus H' : o/ ~ 7'rel{0,1} and
7'(1) = upper right corner = e; = o'(1). O

Proof of Theorem:
Technical remark: It is easy to define the required lift, but not so easy to show continuity.
ie. Giveny € I, H‘yx[ is a path in X beginning at f(y) so H’ ; 1s the unique lift beginning
at f'(y).
Step 1: Vy € Y, J open neighbourhood V,, and a partition 0 = ¢y < ¢, < ... <t, =1of
(depending on y) s.t. Vi, H(V, X [t;,t;+1]) is contained in an evenly covered set.
Proof: Given y:

Vt € I find evenly covered neighbourhood U; of H(y,t) in X.

Find basic open A; x B; C H Y(U;) C Y x I containing (y,t). Then U;c;B; covers I so
choose a finite subcover By,,...B;, ,. Set V,, := A, N---NA,, , NAyN A UseV, together
with the partition 0 < #; < ... <t,_1 < 1. Vv

}f’(y)x

Step 2: Vy, 3 continuous H, : V,, x I — E lifting H‘v and extending H’} = f" .
y X I Y1Vyx0 Vy
Proof: Use the same inductive argument as in the proof of the Path Lifting Theorem. Vv

Step 3: The various lifings H, from Step 2 combine to produce a well defined map of sets
H :Y xI—E.

Proof: Suppose (y,t) € (Vi, xI)N(V,, xI). The restrictions H,, ‘yxl and H,, |yX1
paths in E beginning at f'(y) and lifting H|y><I' So by unique path lifting, H, (y,t) = H,,(y,1).
Hence the value of H'(y,t) is independent of the set V,, used to compute it. ie. H' is well
defined. Vv

Step 4: The map H' defined in Step 3 is continuous.
Proof: Suppose U C FE is open.

each produce
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HA(U) = Uy () (U).

Vy € U, H}, : V, x I — E is continuous which implies that (H,)~'(U) is open in V,, x I.
Since V,, x I is open in Y x I, this implies that (H,)~"(U) is open in H'~Y(U). Hence H''(U)
is open and thus H’ is continuous. ]

Corollary 12.1.10 Let p: (E,eg) — (X, z0) be a covering projection. Then py : m(E, ep) —
m1(X, zo) is a monomorphism.

Proof: Let [w] € m(E, ep). wis apath in £ beginning and ending at ey. Suppose p4([w]) = 1.
Then pow ~ ¢,y rel{0,1}. By the Corollary 12.1.9, (p o w)" ~ ¢, rel{0,1} where (p ow)’, ¢,
are, respectively, the lifts of p o w, ¢,, beginning from ey. Clearly these lifts are w and c,,

respectively. Hence w ~ ¢, rel{0, 1}, so [w] =1 € m(E, ep). 0

Theorem 12.1.11 m(S') 2 Z

Proof: Let w: (S' ) — (S, %) represent an element of 7 (S', *). Regard w as a path which
begins and ends at *. By unique path lifting in exp : (R,0) — (S, %) we get a path w’ in R
lifting w beginning at 0. Hence exp(w’(1)) = w(1) = * so /(1) = n € Z. By Corollary 12.1.9
n is independent of the choice of representative for the class [w]. Thus we get a well defined
¢ : 1 (SY) = Z given by [w] — '(1).

Claim: ¢ is a group homomorphism.

Let 0,7 : (S', %) — (S, %) represent elements of 7(S'). Let ¢/,7" : I — R be lifts of o,
T respectively beginning at 0. Let n = ¢'(1) = ¢([o]) and m = 7/(1) = ¢([7]). Define 7" by
7"(t) = 7'(t) + n. Then 7" = lift of 7 beginning at n, ending at n + m. The path o' - 7”
in R makes sense (since ¢’(1) = n = 77(0)). o' - 7" begins at 0 and ends at n + m. But
exp(o’-7") = o -7 so it lifts o - 7. Hence ¢([o][7]) = ¢([o - 7]) = n+m = ¢([o]) + ¢([7]). Thus
¢ is a homomorphism. vV
Claim: ¢ is injective

Suppose ¢([o]) = 0. Let ¢’ : I — R be the lift of o beginning at 0. Then the definition of ¢
implies that ¢’ ends at 0 so ¢’ represents an element of 7,(R) and exp([o’]) = [o]. But R is
simply connected (71 (R) = 1) and so [¢’] = 1 which implies [o] = 1. v

Claim: ¢ is onto
Given n € Z, let w’ be any path in R joining 0 to n. Let w = expow’ : I — S'. Then w is
a closed path in S and ¢([w]) = n. O

Corollary 12.1.12 m(C - {0}) = Z

Proof: S' — C — {0} is a homotopy equivalence. O
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We wish to apply the method used above to calculate 7 (S?) to calculate 1 (X) for other
spaces X. For this, we need a covering projection £ — X, called the universal covering
projection of X with properties described in the next section. For reference, we note here the
properties of R — S which were needed in the calculation of m(S!).

1. Zactson R, Z x R — R, by (n,z) — n+ x s.t.

1y,
R R

exp exp

Sl
where T}, is the translation 7,,(X) = n + .
2. ™ (R) =1

We will return to this later. First some applications.

Theorem 12.1.13 Af : D? — S! s.t.

Sl
commutes.

Proof: If f exists then, since D? is contractible, applying m; yields

D2

71 (D?*) =0

N

This is a contradiction so f does not exist. |
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Corollary 12.1.14 (Brouwer Fized Point Theorem): Let g : D* — D?. Then dx € D?* such
that g(x) = x.

Proof: Suppose ¢ has no fixed point. Define f : D? — S as follows:
g(x) # x implies that 3 a well defined line segment joining g(x) to x. Follow this line until it

reaches S! and call this point f(z).
f is a continuous function of = (since g is) and if z € S! then f(z) = z. This contradicts
the previous theorem. Hence g has no fixed point. O
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12.2 Universal Covering Spaces

Definition 12.2.1 Let p : E — X and p/ : E' : X be covering projections. A morphism of
covering spaces over X consists of a map ¢ : B — E' s.t.

E ¢ E'

X

commutes.
A morphism of covering spaces which is also a homeomorphism is called an equivalence of
covering spaces.

Remark: Covering spaces over a fixed X together with this notion of morphism form a category.
An equivalence is an isomorphism in this category.

Definition 12.2.2 A covering projection p : X — X is called the universal covering projection
of X (and X is called the universal covering space of X ) if for any covering projectionp : E — X
3! morphism f : X — E of covering projections.

1.€.

X

commutes.

Remark: This says p: X — X is an initial object in the category of covering spaces over X.

Proposition 12.2.3 If X has a universal covering space then it is unique up to equivalence of
COVETING SPACES.

Proof: Standard categorical argument. O
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Theorem 12.2.4 (Lifting Theorem) Let p : (E,eo) — (X, o) be a covering projection and
let f:(Y,y0) = (X, 20) where Y is connected and locally path connected. Then 3 f': (Y, yo) —

(E, 60) hﬁmg f = f#ﬂ'l(Y, yo) C p#ﬂ'l(E, 60).

(E, 60)

Y

f' p

(Ya Z/oj —f’ (X, $o)

Remark: X connected = at most one such lift exists, by the Unique Lifting Theorem.
Proof: (=) Suppose f’ exists. Then fy = (pf')4 = pxfy. Hence Im fu C Im py.

(<) Suppose Im fu C Im py. For y € Y choose a path o joining yo to y. Then foo: I — X
joins zg to f(y). Lift to a path (fo)" in E beginning at ey and define f'(y) = (fo)'(1).
Claim this gives a well-defined function of y:

Suppose 7 : I — Y also joins yy to y. Then o - 77! represents an element of (Y, ) so
by hypothesis J[w] € 7 (E, ) s.t. [pow] = pu([w]) = fy(lo-77) = [fo(o-771)]. Since
pow =~ fo(o-771), lifting these paths to F beginning at ey results in paths with the same
endpoint.

But w lifts p o w and it ends at ey (it is a closed loop since it represents an element of
m(E,ey)). Hence the lift « : I — E of fo (o-77') beginning at ey also ends at e;. Let
er = a(l/2).

The restriction of « to [0,1/2] lifts o (beginning at eq, ending at e;).

The restriction of a to [1/2,1] lifts 771 (beginning at e, ending at e).

So the curve lifting 7 beginning at ey ends at e;. So using either o or 7 in the definition of
f'(y) results in f'(y) = e;. Hence f’ is well defined. Vv

To help show f’ continuous:

Lemma 12.2.5 Lety,z € Y and let v be a path in'Y from y to z. If the path f o~ is contained
in some evenly covered set U of X then f'(y), f'(z) lie in the same sheet in p~(U).

Proof: Let (f o) be the lift of f o~ beginning at f'(y).
Claim: (f o) ends at f'(z).

Proof of Claim: Use o o 4 as the path joining yo to z in the definition of f'(z). Then
(foa) -(foy) is the lift of fo(-0) which begins at ey, so f'(z) is the endpoint of (foo)'-(fovy),
in other words the endpoint of (f o~)’. vV

Let S be the sheet of p~1(U) containing f'(y).
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p|s is a homeomorphism, which implies S contains the entire path (f o~)’, so in particular
it contains f’(2). O
Claim: f’ is continuous.

Given e € E, let Upy C X be an evenly covered set containing p(e) and let S, be the sheet
in p~'(Up(e)) which contains e.

For an open set V C E, V = [J.o,(Se NV), so to show f” is continuous, it suffices to show
f~Y(W) is open whenever W C E is open in some S,.

Since p|gs, is a homeomorphism, p(WW) is open in X and is evenly covered (being a subset of
the evenly covered set Up)).

Set A := f‘l(p(W)) C Y. By continuity of f, A is open so its path components are open
by hypothesis.

(f)y~*(W) c A. Show (f")~'(W) is open by showing (f’)~'(W) is a union of path compo-
nents of A.

Write A = Ui€ ; A; where A; is a path component of A.
Claim: Vi, either A; N (f)"Y (W) =0or A; C (f")*(W).
Note: This shows (f')~!(W) is the union of those A; which intersect it, thus completing the
proof.
Proof of Claim: Suppose y € A; N (f)~1(W). Let 2 € A;. Show z € (f)~H(W).

Let v be a path joining y to z in A;. (A; is a path component so is path connected.)

Since A4; C A = f'(p(W)), f o~ is entirely contained in the evenly covered set p(W), so
by the Lemma, f'(y) and f’(z) lie in the same sheet of p~*(p(W)).

y € (f)"H(W) = that sheet is W so z € (f/)"H(W). O

Lemma 12.2.6 A covering space of a locally path connected space is locally path connected.

Proof: Let E % X be a covering projection, with X locally path connected.

Let V' be open in E, let A be a path component of V' and let a € A.

Let U C X be an evenly covered set containing p(A) and let S be the sheet in p~(U)
containing a.

Replacing U by the smaller evenly covered set p(S NV'), we may assume S C V.

Let W be the path component of U containing p(a). Hence W is open by hypothesis. p|g is
a homeomorphism, so B := p~ (W) N S is a path connected open subset in E.

B is path connected, and a € B, so B C A. Since B is open, a €A so A is open. O

Corollary 12.2.7 (of Lifting Theorem ): A simply connected locally path connected covering
space s a universal covering space.

Proof: Let p : (X,70) — (X, ) be a covering projection s.t. X is simply connected and
locally path connected. Let p : (F,eq) — (X, x¢) be a covering projection of X.
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(X, %) = 1 s0 the hypothesis pym (X, %) C pumi(F, eq) of the Lifting Theorem is trivial.
Hence 4f : X — E s.t.

The Unique Lifting Theorem shows f is unique. O

Corollary 12.2.8 (of Lifting Theorem:) Let W be simply connected and let (E,eq) %
(X, x) be a covering projection. Then [(W,wy), (E, eo)] — = [(W, wy), (X, x0)] is a set bijection.

Proof: Essentially the same as the proof of Corollary 12.2.7. O

12.2.1 Computing Fundamental Groups from Covering Spaces

Definition 12.2.9 Letp: E — X be a covering projection. A self-homeomorphism ¢ : E — E
1s called a covering transformation if

E E

commautes.
Remark: p¢ = p guarantees that Vo € X, ¢ is a self-map of p~!(z). p~1(x) is often called the
fibre over x.
{ covering transformations of F 50X } forms a group under composition.
Example 1: exp : R — S'. The group of covering transformations is Z.

Example 2: p : S® — RP". The group of covering transformations is Zs, because it is the
collection of maps sending x — = or x — —z (for z € S™).

Notice that in each case |G| = card (p~*(z)).
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Lemma 12.2.10 Let p: E — X be a covering projection with E connected. Let ¢,¢' : E — FE
s.t. pp =p, p¢ =p. If ¢p(e) = ¢'(e) for some e € E then ¢ = ¢'. In particular, a covering
transformation is determined by its value at any point.

Proof:
FE
¢7 ¢/ p
E—PY . x

Apply the Unique Lifting Theorem with yo = e and xzy = ¢(e) = ¢'(e).
O

Theorem 12.2.11 Let p : E — X be a covering projection s.t. E is simply connected and
locally path connected (thus a universal covering space). Then m(X) = group of covering
transformations of p.

(Since “simply connected” includes “path connected”, notice that p onto implies that X is
path connected, so m(X) is well defined, i.e. independent of the choice of basepoint.)

Proof: Let G be the group of covering tranformations of p. Define ¥ : G — 7;(X) as follows:
Given ¢ € G, select a path w, joining ey to ¢(ep).
pP(eg) = peg = g = p o wy is a closed loop in X so it represents an element of 7 (X, o).
Define (6) = [p o w,).
Claim: 1 is well-defined.
Proof: (of Claim:) If wj is another path joining ey to ¢(eg) then E is simply connected
= wy =~ wyrel{0, 1}.
Hence p o wy =~ p o wy rel{0, 1}. i.e. [powy] = [powy] in m (X).
Claim: ) is a group homomorphism.
Proof: (of Claim:) Let ¢1,¢2 € G. Pick paths wy,,w,, as above joining ey to ¢1(eg) resp. ,

¢2(eo). Then ¢ 0wy, is a path joining ¢1(eg) to @1 (d2(eg)) = Prd2(e). So we use wey, (¢1 0wg,)
to define 1) (¢p1¢2).

¢ is a covering transformation, so p o @1 0 Wy, = P O We,.

Hence (¢12) = [p o (wy, - (910 wg,)] = [powg,][po ¢10ws,]

~ [pows|[p o wg,|

= U(d1)Y(¢2).
Claim: 1) is injective.
Proof: (of Claim:) ¢(¢1) = ¢(¢2) = p o wg, =~ p o wy,. This implies the lifts of wy, and wy,
beginning at ey must end at the same point.
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Hence ¢1(eg) = ¢a(eg) which implies ¢ = .
Claim: ) is surjective.
Proof: (of Claim:) Let [o] € m (X, x0).
Lift o to a path ¢’ in F beginning at eq.
Let e = o/(1).
It suffices to show there exists a covering transformation ¢ : E — FE s.t. ¢(ey) = e.
Then we use ¢’ to define ¥ (¢) to see that (¢) = o.

(E,e)

R4

¢ p

(E, eoj P (X, )

Since E is connected and locally path connected and 1 = pum(E,e9) C puami(E,e), the
lifting theorem implies 3¢ s.t. po d = p and ¢(ey) = e.

It remains to show ¢ is a homeomorphism.

But we may apply the lifting theorem again with the roles of ¢y and e reversed to get
0:(E,e)— (E, e).

Then pofo¢p = p and 6o ¢(ey) = ey so by the previous Lemma, 6 o ¢ = 1p. Similarly
¢pof =1g. So ¢ is a homeomorphism. a

Remark: We already used this to show that 7 (S!) = Z. Later we will show that S™ is simply
connected for n > 2, so that the theorem applies to S™ — RP", giving 71 (RP"™) & Z, for n > 2.

Note: The preceding proof showed a bijection between covering transformations and elements
of p~1(xp). Each point corresponds to a covering transformation taking ey to that point.

12.2.2 ‘Galois’ Theory of Covering Spaces

Theorem 12.2.12 Let p : E — X be a covering projection s.t. E is simply connected and
locally path connected (thus a universal covering space). Then for every subgroup H C m(X),
3 a covering projection py : Exg — X, unique up to equivalence of covering spaces, such that

(pr)#(m(Ey)) = H.

Proof: {covering transformations of £} = m1(X) so H can be regarded as the set of covering
transformations of E. Hence H acts on E. Let By = E/H.

If € =hoefor h € H, since h is a covering transformation, p(e’) = p(e).

Hence p induces a well defined map py : E/H — X.
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For evenly covered U, of p : E — X, sheets p~!(U,) correspond bijectively to elements
of m (X).

py (U,) is what we get by identifying S, S” whenever S, S’ correspond to group elements
9,9 s.t. ¢ = gh for some h € H (in other words ¢’ and ¢ are in the same coset of G (mod H)).

Hence py is a covering projection (with U, as evenly covered set).

Also Theorem 12.1.2 implies LE /H is a covering projection. To apply the theorem we
need to know that Ve € E, 3V, s.t. V.N AV, = () unless h = 1. Set V, := the sheet over Up(e)
which contains e for some evenly covered U,y C X. This works since h is a covering translation
so hS is also a sheet and sheets are disjoint.

By inspection, the group of covering translations of fy = H = m(E/H). (In general, the
group of covering translations of Y — Y/G is isomorphic to G.)

By Corollary 12.1.10, any covering projection induces a monomorphism on 7.

Hence (py)y : H = m(En) — m(E).

In other words (pH)#(m(EH)) =H. O

12.2.3 Existence of Universal Covering Spaces

Not every space has a universal covering space.
Example: Let X =[], S
Proof: Let E, =[]/, Rx[[Z, 5"

It’s easy to check that p, =exp x --- X exp x1 is a covering projection.

H;?o:n-‘rl Sl
(In general a product of covering projections is a covering projection.)
Suppose X had a universal covering projection p: X — X.

Then Vn, we have

X In E,

Pn
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By uniqueness of f,,
En+1

fn+1

X En+1

X

where e,,+1 is exp on factor (n + 1) and the identity on the other factors.
Apply m; and use that py is a monomorphism to see that all maps on 7, are monomorphisms.

m(X) C - Cm(Engr) Cm(E,) C - Cm(X).

m(X) = Hm(sl) = HZ

and 7y (£,) is the subgroup [[72, ., Z. Hence m(X) C (N2, m(£,) = 0. So m(X) = 0.

Let U C X be an evenly covered set for the covering projection X — X.
Replace U by the basic open subset U; x Uy X -+~ x U, x St x St x ...
For j =1,...,n select u; € U;.

Define a : S — X by

Q= Cy; g=1...,n
an+1:151
aj = ¢y j>n+1

Notice that Im (o) C U. [a] = (0,...,0,1,0,...) € m(X) = [[;2,Z (where the ‘1" is in
position n + 1).

Let T be a sheet in p~(U).

Im () C U, p|r is a homeomorphism, so « has a lift o/ which is a closed curve in T.

So o represents a class in m; (X) and pu([o/]) = [a]. But 7 (X) = 0. This is a contradiction
since [o] = (0,...,0,1,0,...) #0.

Hence X has no universal covering space.

112



Definition 12.2.13 A space X is called semilocally simply connected if each point x € X has
an open neighbourhood U, s.t. iy : m(Uy,x) — m (X, x) is the trivial map of groups. (where
i: U, — X denotes the inclusion).

Notice that []°2, S* is not semilocally simply connected.

Theorem 12.2.14 Let X be connected, locally path connected and semilocally simply con-
nected. Then X has a universal convering space.

Proof: Choose zg € X.

For path «, 8 in X beginning at z,, define equiv. reln.: a ~ B if a(1) = B(1) and a ~
rel (0,1).

Let X = {equiv. classes} « (paths beginning at )

Define p: X — X.

[a] = «a(1).

Topologize X as follow: Given la] € X and open V C X containing a(1), define subset
denoted (o, V) of X by (a, V) = {[w] € X|[w] = [ - ] for some path § in V}. « (strictly
speaking mean Imp C V'.)

Note: (a, V) is independent of choice of representation for [a] used to define it.

Claim: {(a,V)} form a base for a topology on X.

Proof: Show intersection of 2 such sets is () or a union of sets of this form.

Suppose [w] € (o, V)N {a/, V') £

Suff. to show:
Claim: (w,V NV') C (a,V)N{a/, V")
Proof: Suppose v € (w,VNV')y - [7] =[w- 8] some Bin V € V',

[w] € (a, V) =36 in V s.t. [w] = [a- ]
[w] € (¢/, V') = 3By in V' s.t. [w] = [, Ba]

w' where w' = o’ - 8y ~ w.

Br-BinV, o] =la- BB =[y] €(a,V).
Similarly [v] € (o, V'). . (w, VN V") C {a, V)N {/, V")

Give X the topology defined by this base.
Let V C X be open.
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Then 5~1(V) = {[w] € X|w(1) € V} = (a, V)
B {ala(1)ev}
.. p cont.
For x € X find V s.t. iy : m(Vy, ) = m (X, @) is trivial. i : V, — X
Let U, = path component of V,, containing . open since X locally path connected.

(A): Show pY(U,) = I (o,U,).
{lalla(l)==}
1. D a(l) =z p(jw]) =w(l) € U,.
2. C Suppose [w] € X s.t. plw] € Us. i.e. [w] € p~H(U,)
Then 3 path § in U, joining = to w(1).
Let a =w- 7% [a- ] = [w- 7 f] = [w].

Lw) e, Uy) € U (o, Uy) < ((« ends where B begins — at x)
a(l)=z

3. union is disjoint Suppose [w] € (o, U,) N (¢, Uy)
@8] =[] =[a-5] B, & paths in U,

/// B \\\
\
X S w@,
X - I
/ \\ B //
a \\\ UX ///

U, CV, = path 8- 3! reps. elt. of m(V,,x) so choice of V, = [3- 8! = [c,] in
m (X, ).

Sl =g =l 5 =l 5 = )
(B) Show V [a] s.t. a(1) = x that p|(u,) : (o, Uy) = U, is a homeomorphism.
Any pt. in U, can be joined to x by a path in U,, hence ¢ is onto.
Claim: ¢is1—1.
Suppose [w], [w'] € (a, Uy) s.t. q([w]) = q([w']).
Find paths 8, " in U, s.t. [w] = [a- f], [w'] = [a - f'].
B, B each join z to w(1) = w'(1) in U, so as above 37! 3] = [¢,] in m (X, z).
Ll =la-pl=la-p- 7Bl =a- B =[w].

Claim: ¢! is continuous.
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Let (v, V) be basic open set with (v, V) C («, U,).
q((y,V)) = path component of  within V' N U, open since X locally path connected.

Note: ¢(v,V) = (v, path component of (1) within V). This implies we may assume V
is path connected.

q(w) = (1) where 8 in V, B(1) € U,, and $(0) = a(1) = z since § € (v,V) C (o, U,).
= q((7,V)) CcVNU,.

Conversely VN U, C q({v,V)) since endpt. of v can be joined to (1) by path in V.
¢! cont.

~.p: X = X covering proj.

.. Suff. to show:

(C) X is simply connected:
Pick Zo := [cy] € X as basept. of X.

1. X is path connected:
Given [w] € X, define T2 X by ¢y (s) = [w,] where w,(t) = w(st).

Wy = Cyy W1 = W.

" 9w(0) = [wo] = [cg] = To -
Hence

¢ joins T to [w].

(1) = ] = [w].
. X path connected.
Before showing m; (X, #) = 1 need properties of ¢,,.
(a) o du(s) = p([ws]) = ws[l] = w(s) = ¢y, is the lift of w to X beginning at .
(b) Claim: [w] = [y] = 0, ~ 0, rel (0,1).
Proof: Follows from Covering Homotopy Thm.
2. Show m(X, %) = 1. Let ¢ rep. an elt. of 71()2',:%0).~ Then po o is a path in X
joining z to itself. .". o, ¢po, are both lifts of po o to X beginning at Z. .". Unique

lifting = 0 = @por = 0(1) = Ppor(1) and Ty = o (1) because o represents an element
of 7T1(X, fo) 7T1(X, fo))
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Therefore in X, [po o] = [( 0 0)1] = Gpos(1) = To = [Cay)-
part (b) above

Therefore 0 = ¢por ~ erg = Cip 50 [0] = 1 in m (X, Zo).
Therefore X is simply connected. Vv
(So by Corollary 12.2.7, being a simple connected cover of a connected, path connected and
locally path connected space, X is a universal covering space.) O
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12.3 Van Kampen’s theorem

Theorem 12.3.1 (Seifert-) Van Kampen Let U and V' be connected open subsets of X s.t.
UUV =X and UNV s connected and nonempty. Let v, : UNV = U, iy : UNV =V,
J1:U — X and jo : V — X be the inclusion maps. Choose a basepoint in U NV

Let G =m(U), H=m(V) and let A=m(UNYV). Then

7T1(X) = G*AH

where x denotes the amalgamated free product defined below.

Definition 12.3.2 Amalgamated free product

If A,G,H are groups, a : A — G, B : A — H group homomorphisms, define G x4 H as
follows. The elements are “words” wy ... w, where for each j either w; € G or w; € H, modulo
relations generated by (ga(a))h = g(B(a)h)

(Thus every element can be written as a word alternating between elements of G and H.)

Group multiplication is by juxtaposition.
Remark: G x4 H is a pushout in the category of groups:

H

If A=1 then G x H is called the free product of G and H.
Proof: (of Theorem): Pick a basepoint 2 for X lying in U N'V. By the universal property,

there exists ¢ : G x4 H — m(X).
(Map G — m(X), H — m(X) and map a word in G 4 H to the product of images of the
elements of the word.)

Lemma 12.3.3 ¢ is onto.
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Proof: Let f: I — X represent an element of m(X). f~1(U)Uf~!(V) = I so by compactness
IN st. JC I, diamJ <1/N = JC f(U)orJC f(V). (ie.  is a Lebesgue number for
the covering f~1(U), f~1(V).) Partition I into intervals of length 1/N.

By discarding some division points, we may assume images of intervals alternate between
U and V, so the (remaining) division points are in U N V.

Pick path a; in UNV joining xg to the i-th division point. In m (X) [f] = [fi]...[f,] where
fi=aio fls,, oa . Vi, [f] € Gor[f] € H so [f] € Im¢.

Lemma 12.3.4 ¢ is injective.

Proof: Notation: A=V, U=V, V =V5.

Let w = wy...wy € G x4 H st. ¢p(w) = 1. For each i = 1,...,¢, represent each w; by a
path f; in either Vi or V5.

Reparametrize f; so that f; : [(i —1)/q,i/q] — Vi or V3 in X.

Let f: 1 — X by f‘[(iil)/q’l./q} = fi.

pw) =1 = f = xrel{0,1} so IF : I x I — X s.t. F(s,0) = f(s), F(s,1) = xy,
F(0,t) = F(1,t) = xq Vt.

By compactness 3 a Lebesgue number € s.t. S C I x I with diam S < € = either F/(S) C V}
or F(S) C Vs.

Choose partitions 0 = sg < s1 < - < s, =land 0=ty < --- < t, = 1of [ s.t. the
diameter of each rectangle on the resulting grid on I x [ is less than e.

Include the points k/q among the s;.

For each ij select A(ij) = 1 or 2 s.t. F(R;;) C V). (If F(R;; C both, take your pick.)

For each vertex v;;, V;; = intersection of V) over the 4 (or fewer for edge vertices) rect-
angles having v;; as vertex.

(So Vi, j, Vi = Vo, Vi or V5.)

Vi, j choose a path g;; : I — V;; joining o to F(v;) in V)(; ), using that V5, V3, and V5 are
path connected.

Choose these g;; arbitrarily except:

If s; = k/q choose gip = ¢4,

Choose go; = ¢z, and g1; = ¢4, VJ.

Choose g;1 = ¢, Vi.

Let Aij = Fai]., Bij = Fbij‘

A;;, B;; are not closed paths, but from them form closed paths o;; = ¢;—1; 0 A4;j o gigl,
Bij = gic150 Bijo g,

Vi, j either [a;;] and [5;;] € G, or [ay;] and [5;5] € H.

wy = [Aor -+ Agiy] = a1 -+ - i

(since goo = Go,i; = Ca, because the points s/q are among the s;).
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Similarly

Wy = [Ao(z‘1+1) Tt AO’iQ] = [ao(i1+1) ERN € 70778
wq = [Ao(lq-i-l) © e e e Aom] = [ao(lq-‘rl) ..... aom]
Therefore w = [agy - -+ - - Qom][ao1] - - - [oom] € G %4 H.

By Lemma 11.2.5, each R, ; gives A, j_1B;; ~ B;_1 ;A;jrel{0, 1}.

Hence «; j_16;; = Bi—1,jou; rel{0, 1}.

So the relation

[ j—1][Bi5] = [Bi=1,5][cvi;] holds in either G or H and thus in G x4 H.

Also [Bo;] = [Bmj] = 1 Vj (again for each j it holds in one of G, H) and [a,| = 1 Vi.
Hence Vj

[ 1] Jamg-1] = [ag 1] Joum,j-1][Bm,]
= [arj-1] - fam—1,j-1][Bm-1,5][ovm, 5]
= [Bollarg] - [om-14] 0y
= [ay ] [y jl[am, 5]
Hence wy ... wy, =[], g = ... =[[2, cu, = L. O

Corollary 12.3.5 If X can be written as the union of 2 simply connected open subsets whose
intersection is connected then X is simply connected.

Corollary 12.3.6 S™ is simply connected for n > 2.

Proof: Write S™ = slightly enlarged upper hemisphere U slightly enlarged lower hemisphere.
O

Example 1: 7 (RP") = Z, for n > 2.
(Our covering space argument to compute m1(RP™) required knowing that S™ is simply
connected for n > 2.)

Example 2: X is the figure eight. Then 7 (X) = Z * Z.

Proof: Circles comprising X are not open, but slightly enlarge to form U and V' .Then U = S!

and V = S, ]
The space X is denoted S'V S1. The wedge of pointed spaces (Y, *) and (Z, ) written YV Z

is the space formed from the disjoint union of Y and Z by identifying respective basepoints
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and using the common basepoint as the basepoint of Y vV Z. In other words, YV Z = {(y,2) €
Y XZ|y=xorz=x}

Y~Y =YVZxY'VZ

In particular, if W is contractible then Y VW ~ Y. So if X ~ Y V Z where 3 contractible
open x € U C Y and contractible open * € V C Y then m(X) = m (V) x w1 (2).
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Chapter 13

Homological Algebra

Introductory concepts of homological algebra

Definition 13.0.7 A chain complex (C,d) of abelian groups consists of an abelian group C,
for each integer p together with a morphism d, : C, — C,_y for each p such that d,_, od, = 0.
Maps d, are called boundary operators or differentials.

The subgroup kerd,, of C, is denoted Z,(C'). Its elements are called cycles.

The subgroup Imd,1 of C, is denoted B,(C). Its elements are called boundaries.

d,od,;1 =0 = B,(C) C Z,(C).

The quotient group Z,(C)/B,(C) is denoted H,(C') and called the p-th homology group
of C'. Its elements are called homology classes.

z,y € C, are called homologous if v —y € B,(C).

Definition 13.0.8 A chain map f : C' = D consists of a group homomorphism f, Vp s.t.
dp

C, Cpoy

fp fpfl

d
D, P~ D,

Notation: The subscripts are often omitted, so we might write d*> = 0 or fd = df.

Remark: The composition of chain maps is a chain map so chain complexes and chain maps
form a category.
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A chain map f : C' — D induces a homomorphism f, : H,(C) — H,(D) for all p, defined
as follows:

Let z € Z,(C) represent an element [x] € H,(C).

Then df (x) = fd(x) = f(0) = 0so f(x) € Z,(D).

Define f.([z]) == [f(x)].

If x,2’ represent the same element of H,(C) then z — 2’ = dy for some y € C,41(C).
Therefore fo — fa' = fdy = d(fy) which implies f(x), f(z’) represent the same element of
H,(D). So f, is well defined.

Definition 13.0.9 A composition of homomorphisms of abelian groups

x— I .y 9 .y
is called exact at 'Y if kerg =1Im f. A sequence
Xn fn Xn—l fnfl o Xl fl X(]
1s called exact if it is exact at X; for alli=1,...,n—1.

Remark: An exact sequence can be thought of as a chain complex whose homology is zero.
More generally, homology can be thought of as the deviation from exactness.

A chain complex whose homology is zero is called acyclic.

Definition 13.0.10 A 5-term exact sequence of the form

0 a—t g9 ¢ 0
18 called a short exact sequence.
Proposition 13.0.11 Let

0 At g9 ¢ 0

be a short exact sequence. Then f is injective, g is surjective and B/A = C.

Proof:
Exactness at A = Ker f =1Im (0 —» A) = 0 = f injective
Exactness at C' = Im g = Ker (C'— 0) = C' = ¢ surjective
Exactness at B = B/kerg 2 Img =C = B/Im f = B/A.
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Corollary 13.0.12

(a) 0 — A 5 B0 eract = f is an isomorphism.
(b) 0 - A — 0 exact = A = 0.

Definition 13.0.13
A mapi: A— B is called a split monomorphism if 3s : B — A s.t. st = 14.
A map p: A — B is called a split epimorphism if ds: B — A s.t. ps = 1p.
Note: The splitting s (should it exist) is not unique.

It is trivial to check:
(1) A split monomorphism is a monomorphism
(2) A split epimorphism is an epimorphism

Proposition 13.0.14 The following are three conditions (1a, 1b, and 2) are equivalent:

1. 3 a short exact sequence 0 — A LB%C 05t
la) i is a split monomorphism
1b) p is a split epimorphism

2. B2 AaCC.

Remark: The isomorphism in 2. will depend upon the choice of splitting s in la (respec-
tively 1b).

Lemma 13.0.15 (Snake Lemma) Let

7:/ 7://

0 A A A 0
I f 1"
-/ -/
0 o s P B" 0

be a commutative diagram in which the rows are exact. Then 3 a long exact sequence

0 — ker f" — ker f — ker f” 2 coker f' — coker f — coker f” — 0.

123



Proof:

Step 1. Construction of the map 9 (called the “connecting homomorphism”):

Let x € ker f”. Choose y € A s.t. i"(y) = x. Since j"fy = f"i"y = f"x =0, fy € kerj” =
Imj’ so fy = j'(z) for some z € B’. Define dz = [2] in coker f.

Show 0 well defined:

Suppose v,y € As.t. "y =z =1i"y.

i"(y—vy)=0=y—y =i(w) for some w € A’". Hence fy — fy = fi'w = j' f'w.

Therefore if we let fy = j'z and fy' = 52/ then j'(z — 2') = j/'f'w = 2z — 2/ = f'w (since j
is an injection). So [z] = [¢] in Coker f'. vV

Step 2: Exactness at Ker f”:

Show the composition ker f ™ ker 1 2 Coker f! is trivial.

Let k € Ker f. Then 0(i"k) = [z] where j'(z) = f(k) =0. So z = 0.

So d 01" = 0. Hence Im (i) C Ker 0.

Conversely let z € Ker 0. Let y € A s.t. "y = x. We wish to show that we can replace y
by a y’ € ker f which satisfies "y’ = .

Find z € B’ s.t. j'z = fy. So dx = [z]. 0x =0 = z € Coker f’.

Hence z = f'w for some w € A’

Set vy :=y —iw. Then "y = iy —i""'w =iy = x and fy = fy — fi'w = fy— 7' flw =
fy—3j'2=0.

Hence ' € Ker f.

The rest of the proof is left as an exercise a

Lemma 13.0.16 ( 5-Lemma)
Let

A B C D E

A B’ ' D' E'
be a commutative diagram with exact rows. If f,g,i,5 are isomorphisms then h is also an
isomorphism.

(Actually , we need only f mono and j epi with g and i iso.)

Definition 13.0.17 A sequence
05CL DS ESO
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of chain complexes and chain maps s called a short exact sequence of chain complexes if
0-C, %D, % E 0
is a short exact sequence (of abelian groups) for each p.

Theorem 13.0.18 Let
0-PLQSR—0

be a short exact sequence of chain complexes. Then there is an induced natural (long) exact
sequence

s Ho(P) B HN(Q) S Hy(R) S Hy o (P) D Hy1(Q) —

Remark 13.0.19 Natural means:

0 P Q R 0
0 P Q' R 0
implies
0
Hn(P) - Hn<Q> - HH(R) - nfl(P)
/ / / a /
Hn(P)_’Hn(Q)—’Hn<R)_’ nfl(P)—’
Proof:

1. Definition of 0:
Let [r] € Hy(R), r € Z,(R). Find q € Q,, s.t. g(q) =r.
g(dq) = d(qd) = dr =0 (since r € Z,(R)), which implies dg = fp for some p € P, ;.
f(dp) = dfp = d*>q =0 = dp =0 (as f injective).
So p € Z,_1(p). Define 0[r] = [p].
2. 0 is well defined:
(a) Result is independent of choice of ¢:
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Suppose g(q) = g(¢') = r.

9(g—q¢)=0=qg—q¢ = f(p") for some p" € P,.

Find p' s.t. d¢’ = fp'.

flo—p)=dlqg—¢)=dfp" = fdp" = p—p =dp" € B,_1(P).
So [p] = [p'] in H,1(P).

(b) Result is independent of the choice of representative for [r]:

Suppose 1’ € Z,(R) s.t. [r'] = [r].

r—r' =dr" for some " € R, 1.

Find ¢" € Q.11 s.t. g¢”" =1".

9dq" =dgq" = dr" =r —r"=g(q) — 1" = 1" = g(q — d¢").

Set ¢ :=q —dq" € Q,.

g9q' =1’ so we can use ¢’ to compute J[r'].

dq' = dq — d*q" = dq so the definition of 9[r'] agrees with the definition of 9[r].

3. Sequence is exact at H,_;(P).

To show that the composition H,(R) N H, 1(P) Iy H, 1(Q) is trivial:

Let [r] € H,(R). Find q € Q,, s.t. gg=r.
Then 0[r] = [p] where fp = dq.

So f.0[r] = [fp] = [dg] = 0 since dq € B,_1(Q).
Hence Im 0 C Ker f,.

Conversely let [p] € Ker f,.

Since [fp] =0, fp = dq for some q € Q,,.

Let r = gq. Then 0[r] = [p].

So Ker f, C Im 0.

The proof of exactness at the other places is left as an exercise. O

Definition 13.0.20 Let f,g: C — D be chain maps.

A collection of maps s, : Cp, — Dpyq is called a chain homotopy from f to g if the relation
ds+sd=f —g:C, — D, is satisfied for each p. If there exists a chain homotopy from f to
g, then f and g are called chain homotopic.

Proposition 13.0.21 Chain homotopy is an equivalence relation.

Proof: Exercise O

Proposition 13.0.22 f~ ', g~¢ = gf ~4'f .
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Show gf ~ gf"

Let s: f~ f'. s:Cp = Dpy1st. ds+sd= f' — f.

gos:C,— E,. satisfies dgs + gsd = gds + gsd = g(ds + sd) = g(f' — g) = gf" — gf.
Similarly ¢'f ~ ¢'f". O

Definition 13.0.23 A map f : C — D is a chain (homotopy) equivalence if 3g : D — C' s.t.
9f ~1c, fg~1p.

Proposition 13.0.24 f~g = f, =g.: H.(C) — H.(D).

Proof: Let [2] € H,(C) be represented by z € Z,(C). Let s: f ~g.
Then fx — gr = sdx + dsx = dsx € B,(C). So [fz] = [gz] € H,(D). O

Corollary 13.0.25 f: C — D is a chain equivalence = f, : H,(C) — H.(D) is an isomor-
phism. O

Proposition 13.0.26 (Algebraic Mayer-Vietoris) Let

An Bn Cnfl
o B 07 ! B o

-/ -/ a -/ -/
a—t gt . Ao~ L .o

be a commutative diagram with exact rows. Suppose v : C, — C! is an isomorphism ¥n. Then
there is an induced long exact sequence

. — A, . B, @A; — B7/7, _A’ Ay — B EBAln—l - B:lfl
where
pla) = (ia, aa)
q(b,a’) = pb—1i'd
A=0oyty

Proof: Exercise O
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Chapter 14

Homology

14.1 Eilenberg-Steenrod Homology Axioms

Historically:
1. Simplical homology was defined for simplicial complexes.

2. It was proved that the homology groups of a simplicial complex depend only on its geo-
metric realization, not upon the actual triangulation.

3. Various other “homology theories” were defined on various subcategories of topological
spaces. (e.g. singular homology, de Rham (co)homology, Cech homology, cellular homol-
ogy,...) The subcollection of spaces on which each was defined was different, but they
had similar properties, were all defined for polyhedra (i.e. realizations of finite simplicial
complexes) and furthermore gave the same groups H,(X) for a polyhedron X.

4. Eilenberg and Steenrod formally defined the concept of a “homology theory” by giving
a set of axioms which a homology theory should satisfy. They proved that if X is a
polyhedron then any theory satisfying the axioms gives the same groups for H,(X).

Definition 14.1.1 (Eilenberg-Steenrod) Let A be a class of topological pairs such that:
1) (X,A)in A= (X,X), (X,0), (4, A4), (A,0), and (X x I, A x I) are in A;
2) (x,0) is in A (where x denotes a space with one point).

A homology theoryon A consists of:

E1) an abelian group H,(X, A) for each pair (X, A) in A and each integer n;
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E2) a homomorphism f,: H,(X, A) — H,(Y, B) for each map of pairs
(X, A) = (Y,B);

E3) a homomorphism 0 : H,(X,A) — H,_1(A) for each integer n (where H,(A) is an abbre-
viation for H,(A,D) ),

such that:

A1) 1, =1;

A2) (9f)s = gufui

A8) 0 is natural. That is, given f: (X, A) — (Y, B), the diagram

[

H,(X,A) H,(Y,B)

0 0

H, ) L g )

commutes;
AJ) Ezactness:
e Hy(A) —— Hy(X) — Ho(X, A) —2
anl(A) _— nfl(X) _— nfl(X, A) —_ ...

is exact for every pair (X, A) in A, where H,(A) — H.(X) and H.(X) — H.(X,A) are
induced by the inclusion maps (A,0) — (X,0) and (X,0) — (X, A);
A5) Homotopy: [~ g = fi= g..

AG6) Excision: If (X, A) is in A and U is an open subset of X such that U C A and (XNU AN
U) is in A then the inclusion map (X N U, AN U) — (X, A) induces an isomorphism

H,(X~NUANU) =, H,. (X, A) for all n;

7 if n=0;

A7) Dimension: H,(x) = _
0 if n#0.
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Many homology theories also satisfy the following “Compactness Azxiom”.
A8) For each o € H, (X, A) there exists a pair of compact subspaces (X, Ag) in A such that
a € Im j,, where 5 : (Xg, Ag) — (X, A) is the inclusion map.

Remark 14.1.2

1. Some people include the 8th axiom (which is not on Eilenberg-Steenrod’s list) in their
definition, but many people would call anything satisfying the 1st 7 axioms a homology
theory.

2. Al and A2 simply say that H,( ) is a functor for each n.

Remark 14.1.3 Under the presence of the other axiom, the excision is equivalent to the Mayer-
Vietoris property, stated below as Theorem 14.2.34 and to the Suspension property, stated below
as Theorem 15.0.41.

14.2 Singular Homology Theory

Definition 14.2.1 A set of points {ag, a1, ...,a,} € RY is called geometrically independent if
the set

{a1 —ap,as —ag,...,a, —ap}
18 linearly independent.

Proposition 14.2.2 aq, ..., a, geometrically independent if and only if the following statement
holds: Y 7 jtia; =0 and Y t; = 0 implies t; = 0 for all i.

Proof: Exercise O

Definition 14.2.3 Let {ao,...,a,} be geometrically independent. The n-simplex o spanned by
{ao,...,an} is the convex hull of {ay,...,an}. Explicitly
o={zxeR"|z=>" ta; wheret; >0 and > t; = 1}.

For a given n-simplex o, each « € ¢ has a unique expression = )" t;a; with ¢; > 0 and
> t; = 1. The t;’s are called the barycentric coordinates of x (with respect to ay,...,a,). The
barycentre of the n-simplex is the point all of whose barycentric coordinates are 1/(n + 1).

ao, . . ., a, are called the vertices of o.

n is called the dimension of o.

Any simplex formed by a subset of {ay,...,a,} is called a face of o.
Special case:

ap = € := (0,0,...,0), a; = ¢ :=(1,0,...,0), ag = €5 := (0,1,0,...,0),

an, = €, :=(0,0,...,0,1) in R™ gives what is known as the standard n-simplex, denoted A".
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Definition 14.2.4 Suppose A C R™ is conver. A function f : A — RF is called affine if
flta+ (1 —=t)b) =tf(a)+ (1 —1t)f(b) Va,b e R™ and 0 <t <1 € R.

Let o be an n-simplex with vertices vg, . .., v,. Given (n+1) points py, . .., p, in R*, 3! affine
map f taking v; to p;.
Note: py, ..., pn need not be geometrically independent.
Notation: Given ag,...,a, € RY, let l(ag,...,a,) denote the unique affine map taking e; to a;.

Explictly, [(ag, ..., an)(T1,. .., 2y) = ao + Yoy (a; — ag)z;
Note: l(€g, ..., €, ..., €,) is the inclusion of the (ith face of A™) into A™.

Definition 14.2.5 Given a topological space X, a continuous function f : AP — X is called a
singular p-simplex of X.

Let S,(X) := free abelian group on {singular p-simplices of X }.
Wish to define a boundary map making S,(X) into a chain complex.
Given a singular p-simplex T, can define (p — 1)-simplices by the compositions

A homomorphism from a free group is uniquely determined by its effect on generators.
Define homomorphism

0 Sp(X) = Sp1(X) by O(T) == >0 ((—=1)'Tol(eg, ..., 6E...,€n).
Given g : X — Y, define homomorphism g, : S,(X) — S,(Y") by defining it on generators
by ¢.(T) :=goT. A Tox Sy

Lemma 14.2.6 ¢.0 = Jg,

(Thus after we show S,(X), S,(Y) are chain complexes, we will know that g, is a chain
map. )

Proof: Sufficient to check ¢,.0(T) = 0g.(T) VT. (Exercise: Essentially, left multiplication
commutes with right multiplication.) O

Lemma 14.2.7 S,(X) is a chain complex. (i.e. 9* =0)

Proof:
Special Case: X = o spanned by ao, ...,a, and T = l(ao, . .., ap).
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Then
oT = 0l(ag, ..., ap)

=2 o(=1)l(ao, -, ap) o l(€o, -, €, -, )
= o(=Dl(ao, ..., dj,...,ap)
Therefore ,
(92T = P (—1)38l(a0,...,dj,...ap)

j=0
= (1) (ZKJ.(—l)Zl(aO,...,di...,dj,...,ap)

Sy (1 0, ay))
(Note: removal of a; moves a; to (i — 1)st position)
=0

since each term appears twice (once with i < j and once with j < i) with opposite signs so
they cancel.

General Case: f: AP — X. Let I = 1a» = l(€g,...,€y) € Sp(AP). Then f = f.(I) € S,(X).
(special case)

So P = [.(8°]) =—=—== f.(0) = 0. o

Corollary 14.2.8 (Corollary of previous Lemma)
g: X =Y implies g, : Sx(X) — S.(Y) is a chain map. O

Definition 14.2.9 H, (S*(X),a) is denoted H,(X) and called the singular homology of the
space X .

Proposition 14.2.10 Singular homology is a functor from the category of topological spaces
to the category of abelian groups.

Proof: Requirements are 1, = 1 and (¢f). = g.f.. Both are trivial. |

Corollary 14.2.11 If f: X — Y is a homeomorphism then f. is an isomorphism. O

Let A be a subspace of X with inclusion map j : A —— X. Then j, : Si(A) — S«(X) is an
inclusion (S,(X) is the free abelian group on a larger set — in general strictly larger since not
all functions into X factor through A) so can form the quotient complex S,(X)/S.(A) (strictly
speaking the denominator is 7j, (S* (A)))

Definition 14.2.12 H,(S.(X)/S.(A)) is written H.(X, A) and is called the relative homology
of the pair (X, A).

Notice, if A = () then S,(A) = Free-Abelian-Group(f)) = 0 so H,(X,0) = H.(X).
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14.2.1 Verification that Singular Homology is a Homology Theory

A pair (X, A) gives rise to a short exact sequence of chain complexes:
0— Si(A) = Su(X) = Su(X)/S.(A) =0
in such a way that a map of pairs (X, A) — (Y, B) gives a commuting diagram:

0 0

Su(A) —— S.(X) — S.(X)/5.(A)

0 Su(B) — S.(Y) — S.(Y)/S.(B) 0

It follows from the homological algebra section that there are induced long exact homology
sequences

O L H(A) v Hy(X) e (X, A) 2y (A) o Hy oy (X)

O L H(A) —— H(X) — Hy(X, A) 2o Hy ((A) — Hyo(X) —— ..

making the squares commute.
This in the definition of a homology theory we immediately have the following: E1, E2, E3,
Al, A2, A3, A4.

Proposition 14.2.13 A7 is satisfied.

Proof: By definition, if p > 0,
Sp(x) = Free—Abelian—Group({maps from AP to *}) =7,
generated by T, where T}, is the unique continuous map from A? to *.
T, =5 (=1)'T,0l(ep,... 6. .., €p).

Tﬁ .
For p > 0, Tyol(co,. 6. ep) =Tyt Vi, soan:{ p=1 POVeL:

0 p odd.
Proposition 14.2.14 A8 is satisfied.
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Proof: Let o € H,(X,A). So a is represented by a cycle of S,(X)/S,(A) for which we choose
a representative ¢ = S n;T; € S,(X). Thus dc = Y27, m,;V; € S,(A).

Let Xo = (U, ImT;) U (Ul_; Im V;) and let Ay = (U_, Im V).

Since T; : A? — X and V; : AP71 - A<+ X, each of X, and A, are a finite union
of compact sets and thus compact. It is immediate from the definitions that a € Imj, :
H.(Xo,Ag) — H.(X,A) where j : (Xg, Ag — (X, A) is the inclusion map, since the chain
representing a exists back in S.(Xy)/S«(Ao). O

Theorem 14.2.15 Hy(X) = F,,({path components of X}).

Proof: Sy(X) = F,p({singular 0-simplices of X}).
S1(X) is generated by maps f: [ = Al — X.
Of = f(1) — f(0). Hence Imo = {f(1) — f(0) | f: I — X}.
Therefore
Ho(X) = ker@o/ Im@o = S()(X)/Imal
= F,p(points of X))/~  where f(1) — f(0)~0Vf:I — X
= F.p({path components of X}).

14.2.2 Reduced Singular Homology
Define the “augmentation map” € : So(X) — Z by €(d_,c; mixi) = D icp M-
If f is a generator of S1(X) with f(0) =z and f(1) =y then 0f =y —x so edf = 0.

s x)—2 8 1 (x) (X)) —2 e 8y(x) 0

0 0 0 Z 0

commutes.

The chain complex formed by taking termwise kernels of this chain map is denoted S, (X)
and its homology, denote H,(X), is called the reduced homology of X.

The short exact sequence of chain complexes defining S’*(X ) yields a long exact sequence

0— Hy(X) = Hy(X) = 0= ... 50— H(X) = H(X) = 0— Hy(X) = Ho(X) — Z — 0.
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H,(X > 0;
Therefore H,(X) = ¢ - (X) e
H(X)®Z n=0.

Consider the special case X = x.

L A ~ 0

ik

- ... — 0 —

o~
B —

Se(*) - Z
|
-+ 0 —

In this case € becomes the identity map so that e, : Hyo(x¥) — Z is an isomorphism. (We
already knew H,(X) = Z; just want to check that e, gives the isomorphism.)

Theorem 14.2.16 H,.(X) = H.(X, *).

Proof: We have a long exact sequence

€
Hoy(%) — Z

Therefore €,i = €, is an isomorphism so ¢ is an injection. It follows algebraically that 0 = 0

and that the short exact sequence

0 Ho(%) —— Ho(X) —» Ho(X, %) ——— 0

>~

€

7
splits and Ho(X) = ker € 2 cokeri = Hy(Xx). O
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Theorem 14.2.17 Let X C RN be convex. Then H.(X) = 0.

Proof: Let w € X be any point. Define a homomorphism S,(X) — S,-1(X) by defining it
on generators as follows.

Let T': A? — X be a generator of S,(X).

To define ¢(T) € Sp11(X): Let ¢(T) : AP — X be the generator of S,,1(X) defined as
follows: Given y € APT! we can write y = te, + (1 — t)z for some z € AP, ¢ € [0,1] (where
e, =(0,...,0,1) ). Let ¢(T)(y) =tw + (1 —t)T(2).

¢(dc) + (=1)P+le p>0

Lemma 14.2.18 Let ¢ € S,(X). Then 8(¢(c)) = { T 0
w—C —

where Ty, : A* = X by T,(x) = w.

Proof: It suffices to check this when ¢ is a generator. Let T : A? — X be a generator
of S,(X).
Ifp=0:
¢(T) is a line joining T'(x) to w so d(H(T)) =T, — T = €(T)T,, — T as required.
If p>0:
( (T )) ZPH( 1)i¢(T) o I; where [; is short for I(eg, ... €, ..., 6p).
If i = p+1, I; is the inclusion of A? into AP so ¢(T)ol,=¢o T‘Ap =T.
Ifi <p, ¢(T)ol;=¢(Tol(e,...,€,...,€)), extended by sending the last vertex to w.
Therefore

I(A(T)) =0 o(=1'6(Tolle, ... 6é ... ) + (=1)PF'T
(P (—1)'T o l(co, ... 6, r6p)) + (—1)PHT
¢(0T) + (=1)P*H'T

Proof of Theorem (cont.)

p=0:
Suppose ¢ € Sp(X). So €(c) =
d(p(c)) =0—cso[]=0¢€ ﬁ (X)

p>0:

Let c € Z,(X).

0(6(c)) = 6(0c) + (=1)"*'e = ¢(0) + (—=1)P* e = (—1)"* e,

Therefore [¢] = 0 in Hy(X) = H,(X). O
Corollary 14.2.19 H,(A") =0 Vp. O
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14.2.3 Proof that A5 is satisfied: Acyclic Models

Let f,g: X =Y st f2g.
X —= X x I -+ Y where i(x) = (x,0), j(z) = (z,1).

Thenj Ho = fand Hoj = g. Therefore f, = H, o1, and g, = H, o j,. Show to show f, = g.
it suffices to show that i, = j..

We show this by showing that at the chain level i, ~ j, : S.(X) — S.(X x I).

We will show that i, ~ j, by “acyclic models”.

Intuitively, acyclic models is a method of inductively constructing chain homotopies which
makes use of the fact that in an acyclic space equations of the form dxr = y can always be
“solved” for x provided dy = 0. (In general there will be many choices for the solution x.) The
method does not give an explicit formula for the chain homotopy but merely proves that one
exists. In fact, the final result is non-canonical and depends upon the choices of the solutions.
In the case of chain homotopy i, =~ 7, which we are considering at present, it would be possible
to directly write down a chain homotopy and check that it works without using acyclic models.
However we will need the method in other places where it would not be so easy to simply write
down the formula so we introduce it here.

The acyclic spaces (“models”) used in this particular application of the method are the
spaces A". Intuitively we make used of the fact that equations can be solved in A" to solve the
same equations in S,(X) using that elements in S,(X) are formed from maps A" — X.

Lemma 14.2.20 3 a natural chain homotopy Dx : i~ j : Su(X) — S.(X x I).
In more detail:

1. Vz and Vp, 3Dx : Sp(X) = Sps1(X x I) s.t. Ve € S,(X),
ODxc+ Dx0c = j.(c) —i.(c).

2Vf X Y,
5() 2% 5,0 (X x 1)
/. (f 1),
5,01) 2% 5 (v x 1)
commautes.
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Proof: Since S,(X) is a free abelian group it suffices to define Dy on generators and check
its properties on them.

If p <0, S,(X)=0so Dx = 0-map.

Continue constructing Dy inductively. The induction assumptions are for all spaces. More
precisely:
Induction Hypothesis: 3 integer p such that for all £ < p and VX we have constructed
homomorphisms Dy : Sg(X) — Sk1(X x I) s.t. Ve € Si(C)

1. Vo and Vp, 3Dx : Sp(X) = Spi1(X x I) s.t. Ve € S,(X),
ODxc+ Dx0c = jx * (¢) —ix * (c).

2.Vf: X =Y,
Sk(X) Dx Sk+1(X x I)
g (f x 1),
SL(Y) Dy, St (Y x 1)
commutes.

(We have this initially for p = 0.)

To construct Dy : Sp(X) — Sp41(X x I) for any X, consider first the special case (“model
case”):

Let X = AP and let ¢, = 1ar € S,(AP).

i,j: AP — AP x [,

Want to define Dar(tp) s0 that 9Dar(tp) = ju(tp) — ix(tp) — Dar(0ty).

That is, solve the equation 0x = j.(tp) — i.(tp) — Dar(0t,) for z and set
DAP(L,,) := solution.

Since AP x [ is acyclic, solving the equation is equivalent (except when p = 0: see below)
to checking O(RHS) = 0.

ORHS) = 07i(tp) — ix(tp) — Dar(0tp)
(chain maps

) . .
Jx(Otp) — 1 (Otp) — ODar ()
0J.(tp) — 0is(tp) — (JxOlp — 143,01, — Dar00L,)

(induction)
= 0.

Hence 3 solution. Choose any solution and define Dayr(*t,) = solution.
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Must do the case p = 0 separately, since Ho(A"xT) # 0. For the generator 1p0 : A = % — x,
set Dpao(z) := 17 € S1(I = A® x I) = Hom(A',I) = Hom(I,I). Then 0Dpo(z) := 91 =
J« (%) — 14(%) as desired.

Note: We could have avoided doing p = 0 separately by writing our argument using reduced
homology.

Now to define S,(X) — Sp+1(X) in general:
Let T : AP — X be a generator of S,(X). Define Dy (T) in the only possible such that (2)
is satisfied. That is, want

Dy
Sp(AP) =55 8,41 (AP x 1)

T, (T x 1),

Dx

Sp(X) 2+ Spia(X x 1)

Observe that T' = T.(v,) € S,(X) so we are forced to define Dx(T') by
Dx<T) = (T X 1)*DA:DLO.

Check that this works: .
AP

AP P Ap I A AP P AP AP x T
T T x1 T T x1
T T
X— 7 o xxI X X xI

anT = (’9(T X 1)*DApl/p
= (T X 1>*8DApr
= (T X 1)u(Jutp — ixtpy — DarOty)
= (T x1o0j)uty— (T x10d)u, — (T X 1), Dpr0t,
= 7.(T) —i.(T) — (T x 1),Dar0t,
((2) of induction hypothesis) .
J+(T) = is(T) = DxT.(Oy)

Jo(T) — i.(T) — Dx 0T},
= j.(T) —i,(T) — DxOT
Also, if f: X — Y then

(T. is a chain map)

(F % 1 Dx(T) S (£ x 1) (Tx 1), Dawty = ((f o T) % 1)_Danty Y9 Dy (foT) = Dy (£.T).
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This competes the induction step and proves the lemma. |

Theorem 14.2.21 Singular homology satisfies A5.

Proof: Let f,g:(X,A) — (Y,B) s.t. f~g.

ThenEIF:XxI—>YS.t.F:f:gandF’AX[:f}A—>9|A. Thatis,(X,A)i’,(Xx
j

I,AXI) . (Y, B) where i(x) = (x,0), j(z) = (2,1), Foi = f, Foj = g. Therefore, to
show f, = g, it suffices to show 7, = j,.

By (2) of the lemma, the restriction of Dy to A equals D,. (since the diagram commutes
and S,(A) — S.«(X) is a monomorphism. Thus there is an induced homomorphism on the
relative chain groups:

0 Sp(A) —— Sp(X) —— S,(X, A) 0
Dy Dx 'Dx . a
'
0 Spt1(A) —> Spi1(X) — Spa(X, A4) 0
with Dx 4 a chain homotopy between ¢, and j.. Hence i, = j, and so f, = g.. O

14.2.4 Barycentric Subdivision
(to prepare for excision:)

Definition 14.2.22 Let o be a (geometric) p-simplex spanned by p+ 1 geometrically indepen-

dent points vy,. . .,v,. The barycenter of o, denoted ¢ is defined by 6 =Y "_, ﬁvi.

(This is, the unique point all of whose barycentric coordinates are equal)

¢ = centroid of o.

Define the barycentric subdivision sd o of a simplex as follows.

Join & to the barycenter of each face of o to get sd o. (This includes joining & to each vertex
since vertices are faces and are their own barycenters.)

sd o writes o as a union of p-simplices.

Can then perform barycentric subdivision on each of these to get sd* ¢ and so on.
Notation: 7 < ¢ shall mean: 7 is a face of o.

Lemma 14.2.23 Every p-simplex of sdo is spanned by vertices 0y, 01, ..., 0, where oy <
01 <+ Op.
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Proof: By induction on dimo.

True if dimo = 0.

Observe: sdo is formed by forming sd(Boundary o) and then joining & to each vertex
in sd(Boundary o). Thus, of the (p 4+ 1) vertices spanning a simplex 7 in sd o, p of them span

—

a simplex 7" in Boundary o and the last is 6. By induction, 7" is spanned by dy, o1, ..., 5,21
where 0g < 01 < ---0p_; and so 7 has the desired form with o, = .

Lemma 14.2.24 Let o be a p-simplex and let d be any metric on o which gives it the standard
topology. Then e > 0, 3N s.t. the diameter or each simplex of sd” o is less than €.

Proof:

Step 0: If true for one metric than true for any metric.

Proof:

Let dy,dy be metrics on o each giving the correct topology. Then 1 : ¢ — ¢ is a homeo-
morphism so continuous and thus uniformly continuous by compactness of o. Therefore, given
€, 40 > 0 s.t. any set with d;-diameter less than § has do-diameter less then e. Thus if the
theorem holds for d; then it holds for dy also.

For the rest of the proof use the metric on R given by d(x,y) = max;—1__n |x; — y;|, which
yields the same topology as the standard one. Notice that in this metric:

1. d(z,y) =d(z —a,y — a)

2. d(0,nz) = nd(0,x)

3. d(0,z+y) <d(0,2) +d(z,z +vy) = d(0,z) + d(0,y)

4. For a p-simplex 7 spanned by vy, ..., v,, diam(7) = max{d(v;, v;)}

Step 1: If dim o = p then Vz € 0, d(z,6) < S5 diamo.

Proof:
First consider the special case z = vy.
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= diam o.
+1

Similarly d(v;6) < -t diamo V vertices of 0. Therefore the closed ball B diam o 0] contains
p
all vertices of o so, being convex it contains all of 0. Hence d(z,6) < £ diamo Vz € 0.

Step 2: For any simplex 7 of sd o, diam 7 < z% diamo.

Proof: By induction on p = dimo.

Trivial if p = 0. Suppose true in dimensions less than p.

Write 7 = 0y ... 0, where 0, = 0.

Then diam 7 = max{d(d;,d;)}. Suppose i < j.

If j < p then by induction: d(d;,d;) < ]J? diamo; < ]ﬁ diamo; < z% diam o since j < p
and 0; C 0.

If j = p then d(d;,0,) = d(d;,0) < Z%diama by Step 1.

Hence diam 7 < pﬁl diam o. O

Definition 14.2.25 Let X be a topological space. Define the barycentric subdivision operator,
sdx : Sp(X) = S,(X) inductively as follows:

sdx : So(X) — So(X) is defined as the identity map.

Suppose sdx defined in degrees less than p for all spaces.
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Recall: Given conver Y C RN and y € Y, in the proof of Theorem 14.2.17 we defined a
homomorphism Sy(Y) — Sg41(Y'), which we will denote T — [T, y], by

[T, yl(v) ==ty + (1 = 1)T(2)

+1 :
where v = teppy + (1 — t)z with z € AP, Recall that Jlc,y] = {[80, v+ (=D g >0
e(e)T, — ¢ q=0,
where T, : A° =Y by T,(x) =y.
We will apply this with Y = AP, y = 6 = barycenter of AP.
To define S,(X) o, Sp(X), first consider v, := identity map : AP — AP € S,(AP).
Define sdar t,) = (—1)P[sdar(0ty), 0] € Spr1(AP).
Then given generator T : AP — X € S,(X) for arbitrary X, define

sdy (T) = Ti(sdar (1)) = (=1)P[Ti(sdar(ds,)), T(6)].

Letting SD denote geometric barycentric subdivision, by construction, sdar(t,) = > £o;
where SD(AP) = U;7; and o € S,(AP) is the affine map sending €; to 7; where 7y, ..., 7, are
the vertices of 7;.

Lemma 14.2.26 sdx s a natural augmentation-preserving chain map.

SdX

Sp<X) - Sp(Y)
Note: Natural means I« f« commutes.

Sp(Y) —— 5p(Y)
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Proof:

Let € : So(X) — Z be the augmentation. If ¢ € Sp(X) then sdx(c) = ¢ so €(sd(c)) = €(c).
Hence sdx is augmentation preserving.

To show naturality:

fxsdx T = fiT,sdarty = (f o T).sdar b, = sdy (f o T).ip, = sdy fiT.

We show that sdy is a chain map by induction on p. Suppose we know, for all spaces, that
Osdx = sdx 0 in degrees less than p. Then in A? we have

Osdi, = (—1)P0[sd v, d]
(—=1)?[0sd Dup, 0] + (—=1)P(=1)Psd e, p>1

—€(sd 0u1) Ty + sd iy p=1
) (=1)P[sd 001y, 6] +sd 01, p>1
B —edu Ty +sd 0y p=1

04+sddy, p>1
O+SdaL1 p:l
= sd J,.

Now for arbitrary T' € S,(X),

turality of sd
9sAT = OT(sd1,) = Tu(@sd ) WErUraty of sd)

sd T,.0t, = sd 0Tyt = sd OT. O

Theorem 14.2.27 Let A be a collection of subset of X whose interiors cover X. LetT : AP —
X be a generator of S,(X). Then AN s.t. sdV T = > niT; with Im T, contained in some set
in A for each i. (Need not be the same set of A for different i.)

Proof: Since {Int A}ac4 covers X, {T'(Int A)} ac4 covers AP which is compact. Let A be a
Lebesgue number for the covering {T!(Int A)} 4c4 of AP. Choose N s.t. for each simplex o of
SDY AP, diamo < X (where SD denotes geometric barycentric subdivision).

Thus writing sd" ¢ = 3" n,0;, for each i 3A € A s.t. Imo; C T~ (Int A). (Each n; is 1,
but we don’t need this.)

By naturality sd™ 7' = " n,T(0;) and so Vi JA € As.t. InTo; C A |

Theorem 14.2.28 For each m, 3 natural chain homotopy Dx : 1 ~sd™ : S,(X) — S.(X).
That 1is,

1. ¥p 3ADx : Sp(X) = Spi1(X) s.t. IDxc+ Dx0c =sd™c— ¢ Ve € Sp(X)

144



2. Given f: X =Y,

5,(0) 2% 5,1(X)

I f« commutes.

Dy

Sp(Y) Sp1(Y)

Proof: By “acyclic models”. i.e. Dy is defined on all spaces by induction on p.
For p =0, define Dy =0: S.(X) — S1(X):

Since for ¢ € Sy(X), sd™(¢) = ¢, 80 0Dxc+ Dx0c = 00 + Dx0 = 0 = sd™ ¢ — ¢ is satisfied.

Now suppose by induction that for all £ < p and for all spaces X, Dx : Sp(X) — Sky1(X)
has been defined satisfying (1) and (2) above.

Define DxT first in the special case X = AP, T'= 1, : AP — AP € S,(AP).

To define Dxt, need to “solve” equation dc = sd™ ¢, — 1, — Dar(0t,,) for ¢ and define Dy,
to be a solution.

Since AP is acyclic, it suffices to check that O(RHS) = 0.

dsd™ v, — Oty — ODar(Oy) = 0sd™ v, — Oty — (sd™ Oty — Oy — Dar(901,)) = 0. Therefore
can define Dy, s.t. (1) is satisfied.

Given T': AP — X € S,(X), define DxT := T\ (Dg»(1p)). Then

aDXT = (9T*(Dapr)
= T*a(Dapr)

(induction)
= sd™ Tyt — Tity — Dan T, 00y,

=sd™T — T — DapdT,
=sd™T - T — DApaT

Also fxDx(T) = f*T*(DApr) = (f ¢} T)*(DApr) = Dy(f o T) = Dyf*(T) O

Let A be a subspace of X. Since sdy is the same as sdx restricted to A, 3 induced sdx 4 :
S«(X,A) — S.(X,A). By property (2) of Dx, restrcion of Dx to A equals D, so 3 an induced
homomorphism

0 Sp(A) —— Sp(X) —— S,(X, A) 0
D4 Dx ' Dx 4
|
0 Sp1(A) — Sp1(X) — Spi1(X, A) 0
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with Dx a0 1 ~sdy 4 Su(X,a) = S.(X, A).

Notation: Let A be a collection of sets which cover X.
Set Sy4(X) := free abelian group{T" : A — X | ImT C A for some A € A}.

S74(X) is a subgroup of S,(X).
Notice that if In7T C A then writing 0T = > n;T;, for each i ImT; C ImT C A so 9T €
Spt1(X). Thus the restriction of & to SyY(X) turns S;'(X) into a chain complex and the
inclusion map becomes a chain map.
Notice also that if T is a generator of S3'(X) then DxT € S7i,(X) because:

if Dar(tp) = > n;S; then DxT =T, (DAp/,p > oIS =Y ni(ToS;). But ImT C A for
some A€ Aand Im7T o S; CImT.

Theorem 14.2.29 Let A be a collection of subsets of X whose interiors cover X. Then
H, (Sf(X),@) — H., (S*(X),ﬁ) is an ismorphism.

Remark 14.2.30 The even stronger statement i, : SA(X) — S.(X) is a chain homotopy
equivalence 1s true, but we will not show this.

Proof: The short exact sequence of chain complexes

0= SAX) —— S,(X) — S.(X)/SHX) =0
induces a long exact homology sequence. Showing that 7, is an isomorphism on homology for
all p is equivalent to showing that H, (S.(X)/SA(X)) = 0 Vp.

Let gc € S.(X)/SA(X) be a cycle representing an element of H,, (S.(X)/S£(X)), where
¢ € Sp(X). That is, dgc = 0 or equivalently dc € St | (X).

We wish to show that there exists d € S, (X) s. t dqd = qc or equivalently c—dd € S2(X).

Since c is a finite sum of generators ¢ = > n;T}, find N s.t. we can write sd™ Tj = 3 n;; T};
where Vi, j 3A € A (depending upon ¢ and j) with Im7}; C A. Let Dx be the Chaln homotopy
Dx : 12 sd" for this N. Show ¢+ dDxc € S3(X) and then let d — —Dxec.

dDxc+ Dxdc =sd¥ ¢ —csoc+dDxe=sd" ¢ — Dyde.

By definition of N, sd" ¢ € SA(X). Also dc € S;',(X) as noted earlier and so Dx0x €
S7(X). Thus the requred d exists. Hence dc represents the zero homology class in H,, (S.(X)/S4(X)).

O

Let X, A be as in the preceding theorem, and let B be a subspace of X. Let AN B
denote the covering of B obtained by intersecting the sets inA with B. Write SA(X, B) for
SAX)/SLAP(B).

Corollary 14.2.31 SA(X, B) to S.(X, B) induces an isomorphism on homology.
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Proof:

0 — S78(B) — SHX) — S{X, B) 0
0 S, (B) —— S{X) —— 5,(X,B) 0
induces
—H (X, B) — H}'"”(B) — H(X) — H;(X,B) — H;'\’(B) — H!,(X) —

2
1%
I
1%

_>Hp+1<X7 B) - Hp<B) - Hp(X) - Hp(Xa B) - p*l(B) - p71<X) —

Since the marked maps are isomorphisms from the theorem, the remaining vertical maps are
also, by the 5-lemma. O

Theorem 14.2.32 (Ezcision) B
Let A be a subspace of X and suppose that U is a subspace of A s.t. U C Int A. Then
J (X NUANU) = (X, A) induces an isomorphism on singular homology.

Remark 14.2.33 Note that this is slightly stronger than aziom A5 which requires that U be
open in X.

Proof: Let A denote the collection {X — U, A} in 2%.

Int(X \U) = X ~U. Since U C Int A, the interiors of X — U and A cover X. Hence
SA(X, A) — S.(X, A) induces an isomorphism on homology. To conclude the proof we show
that S,(X N\ U, A\ U) = SA(X, A) as chain complexes.

Define ¢ : S,(X~\U) = S;{(X)/SAM4(A) by T+ [T'], which makes sense since InT € X —U
which belongs to A.

Every element of S5'(X) can be written ¢ = " m;S; + > n;T; where
ImS; € AViand ImT; € X N\ U Vj. Since Y m;S; € SF4(A), in SA(A)/SAM4(A), [] =
> nT;] = ¢(>_; Tj). Therefore ¢ is onto.

ker p = S,(X —U) N Sy (A).

Notice that ANA={(X~NU)NA, AN A} = {A— U, A} and since this colleciton includes
A itself, SAMA(A) = S, (A).
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In general S,(A) N S,(B) = S,(AN B) since a simplex has image in A and B if and only if
its image lies in AN. Hence ker ¢ = S,(X N U) N Sy (A) = S, (X N U)NA) = S,(AN ).

@
Thus S,(X NU,ANU) = S, (X —U)/S,(ANU) = S3H(X) /S +pA™4(A) = SAHX,A). O

Let X;, X5 be subspaces of Y, let A = X; N X5 and let X = X; U X5. Notice that
XoNA=X~X;. Call thisU. Thus Xo N U = A; X U = X;.

Theorem 14.2.34 (Mayer-Vietoris): Suppose that (X1, A) AN (X, X2) induces an isomor-

phism on homology. (e.g. if U C Int Xy. ) Then there is a long exact homology sequence

o oy (X) =2 Ho(A) = Hy(X3) @ H(Xs) — Hy(X) — H,_1(A) — ...

Remark 14.2.35 The hypothesis is satisfied of X; and X, are open since that U = U and
Int X2 = XQ.

Proof: Follows by algebraic Mayer-Vietoris from:

0
Hn+1(X17A) - Hn(A> - Hn(Xl) - Hn(leA) - nfl(A) -

>~ >~

0
— H, 1 (X, Xp) — H,(Xo) —— Hp(X) — Ho(X, Xp) — H, 1 (Xp) —

14.2.5 Exact Sequences for Triples

Suppose A —— B —— (.
0 — Si(B)/S.(A) — S, X/S.(A) — S.(X)/S«(B) — 0 is a short exact sequence of chain

complexes. Therefore we have a long exact sequence
oo Hy (X, B) —2 Hy(B, A) — Hy(X, A) — Hy(X,B) —2+ H,_1(X,A) > ...

called the long exact homology sequence of the triple. From

0 S.(B) Sy (X) S«(X)/S«(B)

0

Su(B)/S:(A) — S.(X)/S(A) — S) * (X)/S.(B)
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we get

Hy(X) — Hn(X, B) — H,1(B)

Hy(A) — H,(X,B) — H,_.(B, A)

s0 0 = jO which relates the boundary homomorphism of the triple to ones we have seen before.
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Chapter 15

Applications of Homology

First we need some calculations.

Z q=0,n

Theorem 15.0.36 Suppose n > 0. Then H, (S™) = .
0 otherwise.

Proof: By induction on n using Mayer-Vietoris. O

Corollary 15.0.37 S™ is not homotopy equivalent (and in particular not homeomorphic) to S™
for n #m. O

Corollary 15.0.38 R" is not homeomorphic to R™ for n # m.

Proof: If R™ were homotopy equivalent to R™ then R" \ {*} would be homeomorphic to
R™ \ {*}. But S" ' ~ R" \ {x} and S™! ~ R™ ~ {x}. O

Theorem 15.0.39 Af : D" — S"! s.t.

Sn—l Dn

commautes. O
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Corollary 15.0.40 (Brouwer Fized Point Theorem) Let g : D" — D™. Then 3z € D™ s.t.
g(x) = .

Proof: Same as proof in case n = 2. |

Definition and Notation:
Let X be a topological space. Define the (unreduced) cone on X, denoted CX by CX := XXX—T{é}.
CX is contractible VX. (H : CX x I — CX by H((z,s),t) := (z,st). )

Define the (unreduced) suspension of X, denoted SX, by SX := W. SS™ s

homeomorphic to S™*1

C and S are functors from Topological Spaces to Topological Spaces. e.g. Given f : X — Y,
3 induced S(f) : SX — SY given by (z,t) — (f(z),t) satisfying S(1) = 1 and S(go f) =
S(g) o S(f).

Theorem 15.0.41 (Suspension) 3 a natural isomorphism Hy(X) = Hy1(SX) Vq and VX

[

Hy(X) — Hya(SX)

Note: Natural means, Vf : X — Y, I+ Sf. commutes.

Y

Hy(X) — Hy1(SX)
Proof: Let CtX and C~X denote the upper and lower cones on X, within SX. Enlarge
them slightly to open sets. i.e. Replace them by

_Xx(%—e,l)

X x {1} X x {0}
Then we have Mayer-Vietoris sequences for C*X, C~ X, where C*TXUC~X = SX and CTXN
CX~X
0 0

[:[q+1(C+X) D ﬁqul(CiX) e ~q+1<SX) —— Hy(X) — [:[q(CJrX) 82 ﬁ[qH(CiX)

| (s1).| 7 J

Hy1(CTY) @ Hy2(CTY) —> Hya(SY) Y) — H(CYY) ® Hyr (CTY)

0 0

g

2

R

||zll>
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O

Remark 15.0.42 Under the presence of the other axioms, Suspension< Mayer-Vietoris< Excision.

Theorem 15.0.43 Let f : S* — S™ be the reflection (xq,...,7,) = (—=Z0,...,%n). Then
re: 2= H,(S™) — H,(S™) 2 Z is multiplication by —1.

Proof: Notice that if we denote r : S™ — S™ by r, then r,, = Sr,_;. Therefore by naturality
of suspension it suffices to prove the theorem in the case n = 0 when it is trivial. ]

Corollary 15.0.44 Let: S™ — S™ be the antipodal map = — —z. Then a, : H,(S™) — H,(S™)
is multiplication by (—1)"*1.

Proof: : Write a as the composition of the n + 1 reflections r; : S" — S™ given by
ri(zo,. .., xn) = (To,...,—xj, ..., Ty). O

Definition 15.0.45 Let f : S™ — S™. Then f, : Z = H,(S") — H,(S") = Z is multiplication
by k for some integer k. k is called the degree of f.

Theorem 15.0.46 Let f: S™ — S™. Suppose deg f # (—1)""1. Then f has a fived point.

Proof: If f has no fixed point then the great circle joining f(z) to —z has a well defined

shorter and longer segment. Contruct a homotopy H : f ~ a by moving f(z) towards —z along
(1=t) f(x)+t(==)

(1=t)f (z)+t(==2)||"
can be zero is if (1 —t)f(z) = tz which is doesn’t hold for ¢t = 0 or 1 and would otherwise
require that f(x) = tx/(1 — t) which doesn’t hold since f(x) is never a multiple of z.) Hence

deg f = dega = (—1)""!, which is a contradiction. |

the shorter seqment. Explicitly, H(z,t) = I (The only way the denominator

Theorem 15.0.47 Let f: S™ — S™. Ifdeg f # 1, then f(x) = —x for some z.

Proof: Since deg f # 1, degaf # (—1)"™!, so af has a fixed point z. i.e. z = af(x) = —f(z).
Hence f(z) = —x. O

Theorem 15.0.48 3 continuous nowhere vanishing “vector field” on S™ if and only if n is odd.
That is, if T(S™) denotes the tangent bundle to S™ then (3 continuous v : S™ — T(S™) s.t.
v(xz) #0 Ve e S™ ) if and only if n is odd.
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Proof:
«— If n is odd, then v(xg, z1,...,2ont1) := (=21, %0, ..., —Topi1, To, 1S @ nowhere vanishing
vector field on S™.
— Suppose 3 such a v. Define w : S™ — S™ by w(z) := v(z)/||v(z)}||. Then xz L w(x) Vo €
S™. In particular, w(z) # = Vo and w(z) # —z VYx. Thus w has no fixed point and hence
degw = (—1)"*1. But since Az s.t. w(z) = —x we also have degw = 1. Hence 1 = (—1)""1,
so n is odd.
An alternate more direct argument (not using the two preceding theorems) is as follows:
To get the conclusion 1 = (—1)"*! is suffices to show that both w ~ 1g» and w ~ a hold.
Define F' : 8™ x I — S™ by F(x,t) := wcos(tm) + w(z)sin(tr). Then Fy = 1, Fy; = w and
F| = a so F provides a homotopy from 1 to a. Therefore by the homotopy axiom 1 = (—1)"*1.
O
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15.1 Jordan-Brouwer Separation Theorems

Definition 15.1.1 Suppose A C X. We say that A separates X if X \ A is disconnected (i.e,
not path connected), or equivalently if H.(X ~ A) # 0.

Terminology: If B is homeomorphic to D* then B is called a k-cell.

Theorem 15.1.2 Let B C S™ be a k-cell. Then S™~ B is acyclic. (i.e. H(S"~B) =0V q.)
In particular, B does not separate S™.

Remark 15.1.3 B ~ % and S™ ~ {x} = R", but in general A ~ B does not imply that
XNA~X\B.

Proof: By induction on k.
k =0 is trivial since then B = % and S™ ~\ {*} = R".
Suppose that the theorem is true for (k — 1)-cells.
Let h: I*¥ — B be a homeomorphism.
Write B = By U By where By := h(I*7! x [0,1/2]) and By := h(I*7! x [1/2,1]).
Let C'= By N By; a (k—1)-cell.
Leti: (S"NB) = S"~\ By, j:(S"\B)—= (S"\ By).
Suppose 0 # a € H,(S™ \ B).

Lemma 15.1.4 Either i.(a) # 0 or j.(a) # 0.
Proof: S™~ Bj and S™ \. B, are open so they have a Mayer-Vietoris sequence.

(S"NB1)N(S"\By) =S"\B (S"NB1)U(S"\N By) =S"~\(B1NBy) =85"\C.

A i ‘*7 ‘*
H,(S" \ B) >(Z—j)>

Hyi1 (8" N C)
(by hypothesis)”
0
so either i, () # 0 or j.(«) # 0. O

H,(S" \ By) @ H,(S" \ B,)

Proof of Theorem (cont.): By the lemma, continuing to subdivide we obtain a nested
decreasing sequence of closed intervals [, s.t. if we let j,, : (S™ \ B) —— (S™ \ @), where

Q= h(I*! x I,), then j,,,a # 0.
By the Cantor Intersection Theorem, N,,/,, = a single point {e}.
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H,(S™ \ B) . H,(S™ < Q) . H,(S™ ~ h(I*" x {e}))
(induction) H
0

where we have used that E := h(I*7! x {e}) is a (k — 1)-cell. Since S™\ Q,, is open and nested
and S" N E=UX_(S" N\ Qn), H(S"\FE) = ligH*(S” N Q).

Therefore av +— 0 in H,(S™ \ E) implies that j,,(a) =0 in H,(S™ \ @,,) for some m, which
is a contradiction. Hence A nonzero oo € H,(S" \ B). O

Z 1=n-—k—1;

Theorem 15.1.5 Suppose h : S¥ «—— S™. Then ﬁi(Sn N h(S%)) = {O herwi
otherwise.

Proof: By induction on . . . .
If k=0, Hy(S" \ h(S°)) = H,(S™ \ {2 points}) = H,(R" \ {point}) = H,(S").

\/
Suppose that the theorem is true for £ — 1.
Let Eﬁ, E* be the upper and lower hemispheres of S*. Notice that by compactness, h is a
homeomorphism onto its image, so h(E%) and h(E*) are k-cells.
Also S™ \ h(E%), S™ \ h(E*) are open so Mayer-Vietoris applies.
(S" N R(ER)) U (S" N h(EY)) = (S" N h(EY NEY)) = (5™ < h(SF1))
(5™~ Rh(EY)) N (S™ N h(E®)) = (S™ N h(EX UEF)) = (5™~ h(S"))
0

I
H,(S™ ~ h(EY)) @ Hy(S" ~ h(EX)) = Hy(S" ~ h(S*1)) —= H,1 (S™ ~ h(S*))

> Hyo(S" N (EL)) & Hya (5" (EY))

I
0

O

Theorem 15.1.6 (Jordan Curve Theorem) Suppose n > 0. Let C' be a subset of S™ which
is homeomorphic to S"~ . Then S™ ~. C' has precisely two path components and C is their
common boundary. (Furthermore, the components are open in S™.)
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Proof: By the preceding theorem, Hy(S™ ~ C) = Z, so S” ~. C has two path components.
Denote these components W, and W.

C'is closed in S™ so S \.C'is open. Hence by local path connectedness of S, its components
W, and Wy are open. Thus W, C Ws.

If 2 € OW, = Wi~ W, then z ¢ Ws (sincex € Wy = W§) and z ¢ Wy. Sox € (Wi UW,)¢ =
C'. Hence oW, C C.

Conversely let x € C.

Let U be an open neighbourhood of . Show U N W; # ). Since U arbitrary, it will follow
that = is an accumulation point of W; so that x € W;. But z € C so z ¢ Wi, resulting in
e Wi~ Wy = 0Wh.

To show U N W; # 0:

U N C is homeomorphic to an open subset of S"~1 (since C' = S™~! by hypothesis) so it
contains the closure of an (n — 1)-sphere. Let C) be this closure. Under the homeomorphism
C =~ 81 () = N,[z] for some r and z. Thus C; C C is an (n — 1)-cell. Let Cy = C' \ C}.
Then C is also an (n — 1)-cell (up to homeomorphism it is the closure of the complement of
N, [z] in S*1) and C; UCy = C which is closed. By Theorem 15.1.2, Cy does not separate S™ so
3 path a in S™ N\ C; joining p € Wi to ¢ € Wa. (Ima) N (Wi ~\Wh) = a(a” ' (Wh) N a~'(Wh)). If
this is empty then a=(W;) = a1 (W;). However the equality of these open and closed subsets
of I means that either a(W;) =0 or o' (W;) = I. We know o' (W;) # () since 0 € o~ H(W)
(since p = a(0) € Wi). And 1 ¢ o~ '(W)) since ¢ ¢ W,. Therefore (Im o) N (W ~ W) # 0.

Thus Jy € (Ima) N (W; N V[L) C oW, C C =CyUC,. Since Ima € 8" N Cy, y ¢ Csy so

y€ Cy CU. Hence y € UNWh. Vv
So oW, = C'. Similarly OW, = C, as desired. |

Corollary 15.1.7 (Jordan Curve Theorem - standard version): Supppose n > 1. Let C be
asubspace of R™ which is homeomorphic to S"'. Then R" . C has precisely two components
(one bounded, one unbounded — known as the “inside of C'” and “outside of C'” respectively)
and C is their common boundary.

Proof: Include R™ into S™, writing R” = S™ = {P}. Then S™ \. C is the union of two
components W7, W5 whose common boundary is C'. One of the components, say W; contains P
so Wi~ {P}, Wy are the components of R" \. C' and their common boundary is C. O

Theorem 15.1.8 (Invariance of Domain): Let V' be open in R™ and let f : V — R" be
continuous and injective. Then f(V') is open in R™ and f:V — f(V) is a homeomorphism.

Remark 15.1.9 Compare the inverse function theorem which asserts this under the stronger
hypothesis that f is continuously differentiable with non-singular Jacobian, but also asserts
differentiability of the inverse map.
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Proof:

Include R™ into S™. Let U be an open subset of V. Let y € f(U). We show that f(U)
contains an open neighbourhood of y.

Write y = f(z), Find € s.t. NJz] C U. Set A := Nz] \ N(z). So A is homeomorphic
to S"71. Since f ‘ N © U is a homeomorphism (an injective map from a compact set to
a Hausdorff space), f(A) is homeomorphic to S™~*. Therefore f(A) separates S™ into two
components W; and W5 which are open in S™.

N.(z) is connected and disjoint from A, so f(N(x)) is connected and disjoint from f(A).
Thus f(Ne(z)) is contained entirely within either Wy or Wa. Say f(N(z)) C Wi.

SN FA) N fF(Ne(z)) = S" N F(AUN(2)) = 5™\ f(Ne[z])

(which the later argument will show is equal to S™ \ W5 = W5). Since f(N,[z]) is an n-cell, it
does not disconnect S, i.e. S™\ f(N[z]) is connected. Because f(N[z]) C Wi C W5 which
is equivalent to Wa C 5™\ f(Ne[z]), we get Wy = S™ . f(N.[z]) (as remarked earlier), since
W, is a path component of S™. Hence f(Ne[x]) = W§ = W,. Thus f(Ne(x)) = Wi. (e If
z € Wi\ f(Ne(z)) then z € 5™\ f(A) N f(Ne(z)) = 5™\ f(Nelz]) = S \ W€ = Ws, which
contradicts Wiy N W, = (.)

Therefore we have shown that 3 an open set Wy s.t. y € Wy C f(U) and thus f(U) is
open. Applying the above argument with U := V gives that f(V) is open. It also shows that
f:V — f(V)is an open map, so it is a homeomorphism. O
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Chapter 16

Homology of C'W-complexes

Let X be a CW-complex.

If T:A, = X € S,(X) is a generator, then Im T is compact so Im7 C X® for some p.
Therefore S,(X) = U,S.(X®).

How does this tell us H,(X) in terms of the H,(X®)’s?

16.1 Direct Limits

Definition 16.1.1 A partially ordered set J is called a directed set if Vi,j € J Ik s.t. i < k
and 57 < k.

Definition 16.1.2 Given a directed set J, a directed system of abelian groups indexed by J
consists of:

1. An abelian group G; for each j € J;

2. For each pair i,j € J a group homomorphism ¢;; : Gy — Gj; s.t. ¢;; = lg, and

Ok, © Pji = Dri-
Examples

1. J=17%; G, = M, (k) (n X n matrices over a field k )

b Mi(k) = M;(k) by A s (§ 8>.

2. J = {finite subcomplexes of a C'W complex X, ordered by inclusion}
Gy = Hy(Y) (where Y is a finite subcomplex of X)
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3. X topological space; J = {open subsets of X ordered by inclusion}
Gy = H,(U).

4. J =77, G, =17, Gji:Z—ZLbyl—p~

Definition 16.1.3 The direct limit of the direct system {G,};es consists of an abelian group G
and homomorphisms ¢; : G; — G s.1.

G, O3 G,
& commutes Vi, j
;
G

2. G is univesal w.r.t. property (1). i.e., given H and homomorphisms ¢, : G; — H s.t.
?pi o ¢j,i = w]’, 410 : G — H s.t. V/L,j

1.

We write G = lim {G}}.
Note: By the usual categorical argument, a direct system has at most one direct limit up to
isomorphism. As we shall see, every direct system of abelian groups has a direct limit.

Observe that if ¢;, is an inclusion map Vi, j then G = U;jc;G; is the direct limit of the
system.

Theorem 16.1.4 FEvery direct direct system of abelian groups has a direct limit.
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Proof: Let H = ©;c;G; with a; : G; — H the canonical inclusion.

Let G = H/~ where «;(g) ~ a;(g) Vi, j and Vg € G;. More precisely, G = H/H' where H’
is the subgroup of H generated by {a;(g) — «;¢;:(g)}-

Let m : H — G be the quotient map.

Define ¢; to be the composite G Y.g-t.q

Then Vi, j and Vg € G, ¢;0;:(9) = ma;0;i(9) = mai(g) = ¢i(g)-
Also, given k and maps ¢; : G; — K s.t. ¥; 0 ¢;; = 1;: The maps v; induce a unique map

0 : H — K (by the universal property of direct sum). Furthermore, since v; o ¢;; = ;, 0], is
the trivial map so by the universal property of quotient
H K
T
’,
G
O

Remark 16.1.5 The definitions make sense and this proof still works even if the poset J is not
a direct system. There is a more general notion called colimit when the poset J is not directed.

From now on we will omit the inclusion maps «;.

Notice: Any element of G has a representative of the form ¢, (g) for some g € Gj.

Proof: Let X = (g;);jes represent an element of G. Since x has only finitely many nonzero
components, the definition of direct system implies that 3k € J s.t. j <k Vjs.t. g; # 0. Then
adding ¢y ;(g;) — g; to x for all j s.t. g; # 0 gives a new representative for z with only one
nonzero component. (i.e. for some k, z = ¢(g) with g € Gy.)

Lemma 16.1.6 If g € Gy s.t. ¢)k(g) =0 then ¢mi(g) =0 for some m.

Proof:
Notation: For “homogeneous” elements of @, G, (i.e. elements with just 1 nonzero compo-
nent) write |h| = « to mean that h € G,, or more precisely that the only nonzero component
of h lies in G,,.

or(g) =0=g€c H =

9= Z ¢jt7itgt — Gt where g; € Git (161)
t=1
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Find m s.t. k <m and i, <m and j, < m Vr. Set ¢ = ¢ 9.
Adding ¢’ — g = ¢m.1g — g to equation 16.1 gives

g = Z ®jric9t — gt where go =g (16.2)
t4+0

Note that for any a < m, collecting terms on RHS in G, gives 0, since LH S is 0 in degree .

Among S := {ig,...,in,Jos---,Jn,m} find o which is minimal. (i.e. each other index
occuring is either greater or not comparable) Since j; i;, « is one of the i’s so this means
J —t # «a for any t.

For each t with |g¢| = o, add g¢ — ¢y, 4,19+ to both sides of equation 16.2.

As noted above, Z{t”gt|:a} gt = 0 so Z{t”gt‘:a} ®m,|g.|9¢ 1S also 0 and so we are actually

adding 0 to the equation. However we can rewrite it using:

(Ig¢|=i¢) -
¢jt,itgt — Gt + gy — ¢m,‘gt|gt - ¢jt7itgt - ¢m7|gt|gt gbjt,itgt - qu,jtqut,itgt - gbm,jtgt Where

Gt = —¢j,i,9t- Therefore we now have a new expression of the form ¢ = > ¢;,:,9)t — g1;
however the new2 set S is smaller than before since it no longer contains « (and no new index
was added).

Repeat this process until the set S consists of just {m}. Then no i’s are left in S (since
iy < m Vt) which means that there are no terms left in the sum. That is, Equation 16.1 reads
g =0, as required. O

Notice that from the construction: If J is totally ordered and IN s.t. ¢, is an isomorphism
Vk,n > N (in which case we say the system stabilizes) then the direct limit is isomorphism to
the “stable” group Gy.

Remark 16.1.7 Above can be dualized by turning the arrows around: That is, define

Inversely directed system = poset J s.t. Vek,n e J dj € J s.t. j <k, 5 <n.

Define an inverse system of abelian groups to be a collection of abelian groups G; and “com-
patible” group homomorphisms ¢y ; indexed by the inverse system. The inverse limit, @J Gy,
of the inverse system is defined as an abelian group which has the property that there exists a
“compatible” collection of homomorphisms ¢y, @J G; — Gy, and such that given any group H
with the same properties 3! 0 : Hlim G making the diagrams commute. The construction of

a group satisfying this definition is given by @J G ={(z;) € [1,c; G | Prjz; = i}

Theorem 16.1.8 (“Homology commutes with direct limits”)

Let C = hﬂ(C’J)* Then H(C) = lim | H.(C;).

Remark 16.1.9 Even if ligj Cj is just a union, {H.(C;)} may be a non-trivial direct system.
(Homology need not preserve monomorphisms.)
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Proof: Let ¢;; : (C;)« = (C;)« be the maps in the direct system lim  Cj. Definition of maps
Dji = (Vji)

H(C;,) H(Cjx)

Claim 6 is onto:
Given [z] € H(C), where x € C, find a representative xj € Cy, for z. (That is, = = ¢xy).
Since x represents a homology class, dx = 0. Hence 90x, = OYpxr = Ox = 0. Replacing
Zp by Xy, = ¢y for some m, get a new representative for x s.t. dx,, = 0. Therefore z,,

represents a homology class [z,,] € H(C),.) and
[Tm]  H(Crn) hﬂ H(Cj)
J

>

[z]  H(C)
shows € Im 6.
Claim 0 is 1 — 1:
Let y € lim; H(C;) s.t. 0(y) = 0.
Find a representative [xy| € H(Ck,) for y, where zy € Xy.. (That is, y = ¢p(xy).)

(4] ]

wk* ‘9



Since 0y = 0, [Yrxr] = 01in H(C). That is, Jv € C s.t. dv = Y.

May choose [ s.t. v = ¥.(wy).

Find m s.t. k,I < m. Then replacing xz, w; by their images in (C),). we get that x — dw,,
stabilizes to 0 so that Im’ > m s.t. [x,] = [Qw,] = 0. Hence y = 0. O

=i (»)
Theorem 16.1.10 H,(X) hﬂpH*(X )

Proof: Every compact subset of X is contained in X™) for some N, so by A8, S,(X)
UpS(X®)) = hﬂp S, (X®). Therefore H,(X) = ligp H,(X®). -

Theorem 16.1.11 If X = U°,V,, where V,, open in X and V, C V,i1 then H.(X) =
liy H.(V,).

Proof: Sufficient to show that S,(X) U2, S.(V,).
If T'e S.(X) is a generator then Im 7" is compact.

{V.} covers X so ImT C V,, for some n (since V,,’s nested).
Hence T' € S.(V},) for that n. O
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16.2 Cellular Homology

Let X be a CW-complex.

By convention X® = () if p < 0.

Let D,(X) = H,(X® XF-1),

Define dp : D,(X) — D,_1(X) to be the connecting homorphism from the exact sequence
of the triple (X® X~ X@=2)) Therefore dp factors as

Hp(X(p%X(pfl)) 2, Hp_l(X(pfl)) I, Hp(X(pfl),X(p*Q)).

Hence 9%, = 0 since

0 0

H (X(p)7X(p71)) 7, p,l(X(pfl)) LN pil(X(pfth(pf?)) 7, p72(X(p72)) LN Hp72(X(p72)7x(p73}

p

contains the consecutive maps H, ;(X®1) LN H, ;(XP=D X(P=2) 2. (X P72)

which is 0 from the exact sequence of the pair (X®~D X (#=2)),
Therefore (D.(X),0p) forms a chain complex called the cellular chain complex of X. Its
homology is called the cellular homology of X, written H!(X).

Fap{p —cellsof X} ¢=0p

Lemma 16.2.1 H, (X® XF~D)~ _
0 otherwise

Proof: In each p-cell of X, select a point x;.

Notice that X®V U (e} — 2;) ~ X~V That is, X®~D U (¢! — z;) is the subspace of X®
formed by attaching D? to X"~ along 0DP. X =D (e} — ;) is formed by attaching DP — {x}
to X®=1 along 9DP. But using the homotopy equivalence DP — {*} ~ ODP can construct a
continuous deformation of X®~1 U (ef — x;) back to X (=1 (i.e. gradually enlarge the hole.)

XP-D ~ XDy ( U (ef {:BJ})>
p—cells of X
Note: If A <+~ B C X where Jj is a homotopy equivalence then H,(X, A) . H, (X, B) using

- Hq(A) - Hq(X) - Hq(Xa A) — q—l(A) - q—l(X> -

1
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and the 5-lemma. (This avoids using the homotopy axiom directly, which would require a

homotopy equivalence of pairs.)
Therefore

H*(X(p),X(p_l)) ~q, (X(p)jx(p—l) U ( U (e? ~ {J;]})>)

p—cells of X

Notice that X*~1 U < U (ef N x])> = X < (U{z;}) which is open.
p—cells of X
By excision

H*(X(p),X(pl)U< g <e§\{xj}))) %H*(( U @).( U @~ih)

p—cells of X p—cells of X p—cells of X
~ p P .
- EB H.(¢f, ¢f ~ {x;})
p—cells of X

where we have excised the closed set X ®~Y from the open set X® (U{x]})

Z q=p
0 otherwise

since

Up to homeomorphism, e? =DP and H, (D”, Dr \{*}) = {

o

Hy(DP ~{}) — Hy(DP) — Hy(DP, D" ~{#}) —= Hy (D —{x}) — Hy1(D") —

| I
0 Hq—l<sp_l)

Hence

1%

Hq(X(P)7X(p—1)> = § p—cells of X

B z itqg=p; {Fab{p—cells of X} ifq=p;
0 otherwise

H, (X <n:
Lemma 16.2.2 Hq(X(n)):{ J(X) q<mn;
0 q>n.

Proof:
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Ifg>n:

Hy (X)) Hypy (X0, X00) o H(X0) S H,(X0) e (X0, X0)
I I
0 0
So Hy(X™W) >~ H (X(nY)y>~ >~ H (XY)~H,/(0) 0.
Similarly if g < n:

Hyy (XD, X ) — Hy(X0) — Hy (X)) — H (XD, X™)

I
0 0

So Hy(X™M) =~ H (X)) =~ =~ H (X®) vp,
Therefore H,(X) = 1i_n>1Hq(X(P)) — H,(X™). -

Theorem 16.2.3 H(D.(X)) = H.(X).
Proof: From the triples (XD, X X #=2)) and (X®), X1 X("=2)) we have

Hn+1(X("+1),X(")) A_, Hn(X(”),X("_2)) . Hn(X("+1),X(”_2)) . Hn(X(”+1),X("))
0 by Js
H,(X™ H,(X™ x®=-1) D,
dp
Hn_l(X("_Q),X("_l)) S Y

J«ix 1s induced by the canonical map of pairs (X(”), @) — (X(”), X(”*l)) SO J.A = 7,i,0 =
Ip.
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The diagram shows that ker(dp), = H. ,
m(dD), = Hn(X("),X(”‘l))/ImA = H, (XD, X(=2),

D
Therefore H, (D.) = ker(0D),,/

Hoy (X)) — H,(X") — H, (XD X0=2)) — (X )

I I
0

Thus H,(D,) & H, (X", X0=2) = g (X)) = H, (X) o

16.2.1 Application: Calculation of H,(RP") (for 1 <n < o0)

p:S"— RP" p = quotient map (covering projection)

Want to find “compatible” C'W-complex structures on S™ and RP™ (i.e. such that p is a
“cellular” map).

St =ey Uey Uef Uey U...Uel Ue, where e = {(zg,...,z;) € S | 2; > 0}.

Let e; = p(e]) C RP™.

p’ﬂ+ is a homeomorphism. In fact, e; = p(e;r) = p(e; ) is an evenly covered open set in RP"

with pj_l(ej) = e Uej. So e; is an open j-cell and RP" = egU ey U... Ue, is a CTW-complex
structure on RP™ (and p is a cellular map).

We define RP*® := U,RP" = ey Ue; U...Ue, U... and topologize it by declaring that
A C RP" shall be closed if and only if AU®, is closed in €, for all n. Thus by construction
RP> is also a CW-complex.

p induces a map of cellular chain complexes p, : D.(S") — D.(RP™).

D;(S™) = Fap{j-cells of S"} = Z B Z D;(RP") = Z

ZOZ ZoL AY/ 707
| I e
0 —— Du(S") — > Dy1(S") — ... —— D;(S") — ... —— Dy(S") —— 0
\ JP* 5 lp* 5 5 \p* a 5 lp*
0 — D,(RP") = D,,_{(RP") —> ... —> D;(RP") = ... — Do(RP") — 0

To determine 0 : D;(RP™) — Dj_l(]RP") first determine 0 : D;(S™) — Dj_l(S"*I).
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Let a : 8™ — S™ denote the antipodal map a(z) = x.

a respects the cellular structure of S™: a(ej =
so it induces a chain map a, : D.(S™) — D.(S™).

We pick generators for D,(S") = Z @& Z as follows.

In the summand Z C Dy(S™) corresponding to ed pick one of the two generators and call it
fo". Then a.(f,") will be a generator for the other Z summand in Dy(S™) so set f; = a.fy .

) =¢; ale;) =e;

Lemma 16.2.4 f — f; generates Im 0.

Proof: a induces the identity on Hy(S™) (any self-map of a connected space does), so [f, ] =

a.lfy ] = a.lfd] = [f]- Hence [fy] — [f5] is the zero homology class so f;" — f, € Im .
Since D,(S™) is a complex whose homology gives H,.(S™) and we know Hy(S™) = Z, we

conclude that fi — f; generates Im 0. O

Pick a generator of the Z summand of D;(S™) corresponding to ef and call it f;". So
oft = m(fy — fi) for some m. Replacing f;" by — f;" if necessary, we may assume that m > 0.
Let fi =af{". Then 0f; =m(afy” —afy) =m(fy —af) =m(fy = fo) = -m(fg = fy)-
Since 0(D1(S”)) is generated by df;” and df;, the only way it can be generated by f;" — f;
isif m = 1.

off =fi —fo  ofi =—(fo — fo)

Therefore ker 9y : Di(S™) — Dy(S™) is generated by f;” + f;. But since H;(S") = 0,
ker 0; = Im 0,.

Pick a generator f,” € Dy(S™) corresponding to ey . Then df; = m(f;” — f;) for some m,
and as above we may assume m > 0. Let f, = a.fy". Then df, = m(f; + f;) and so as
above we conclude that m = 1.

ofy = fir + fr Ofy = fi7 + fi Therefore ker d, is generated by f;” — f; . As above,
pick fi and fy st f; = aufi, Off = fi — fy and 0fy = —(fi — fy)-

Continuing, get f;” and f;” for j =0,...,nst. f; = a.f;" and Of; =0f; = f71 — f;i,
when j is even, while 0f;" = f;", — f;_, and 0f; = —(f;", — f;_,) when j is odd.

For each j, f; := p.(f;) = p«(f; ) € D;(RP") since p.a. = p..

Ji-sit+ fjm1=2f;-1 J even;

Therefore 0f; = fii—fii=0 j odd
J— =L '

D.(RP™) A e Y/ Y/ Y/ Y/ 0
n even: n odd:
Z q=20 Z q=0,n
Hy(RP") =< Z/(2Z) qodd, g<n H,RP")=<{7Z/(2Z) qodd,q<n
0 gevenorqg>n 0 g even or q > n.
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Z n (if n odd)
0 4
That is, H,(RP") = 7.)(27) 3
0 2
Z)27) 1
Y/ 0.

\

16.2.2 Complex Projective Space

Regard S?"*1 as the unit sphere of C"*!,

An action S' x §?"*1 of S* on "™ is given by (A, (20, ..., 2)) = (Az0, ..., Az,). Note that
Ao+ .o+ Az P= A2+ 4 |2a]?) =11 =150 (A2, ..., Az,) € ST

Define as the orbit space CP™ := §2n+1 /81,

The inclusions C"* —— C"*', (29, ..., 2zp_1) — (20, ..., 2n_1,0) respects the S! action so i
induces CP"! «—— CP".

Proposition 16.2.5 CP" has a CW -structure: e Ue? U ... Ue*"

Proof: Suppose by induction that we have given CP"~! a C'W-structure with one cell in each
even degree up to 2n — 2: CP" 1 = ¢y U2 U... U L

Let z = (2q,...,2,) represent a point in CP". Then z lies in CP"! if and only if z, = 0.
By multiplying by a suitable A € S! we may choose to new representative for z in which z,
is real and z, > 0. Unless z, = 0, z will have a unique representativve of this form. Writing
z; = xj +x; + iy, (with y,, = 0) we have z = (20, Yo, - - -, Tn—1, Yn—1, Tn, 0) With z,, > 0.

Let E2" = {(wo, ..., wa,) € S | wy, > 0}. E?" is a 2n-cell.

Define f?" to be the composite E" —» S?" — §2n+1 awotien cpr, (That is, (wo, . . ., way,) —>
[(wo + dw1, wa + 1w3, . .., Wan—2 + iWap_1, Wap)].)
e = {wy, ..., wy € S?* | wy, > 0}. By the above, the restriction of fy, to 2" is a bijection.

It is also an open map (by definition of quotient topology a set map is open if an donly if its
inverse image is open and the inverse image of f**(U) is Uyeg1 A - U) so it is a homeomorphism.
Therefore CP" = CP* ' Ue? =’ Ue? U...Ue? is a CW-complex.

(Note: By compactness, the 3rd condition is automatic when there are only finitely many
cells.) O

Can define a CW-complex CP> by CP* := U,Cp" =" Ue*U...Ue* U... topologized
by A C CP® is closed if and only if AN e2n is closed in €, for all n.
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Z qeven, q <2n

Theorem 16.2.6 H,(CP") =
0 qodd, g>2n.

Proof:
0 — D5, (CP") — Dy, 1(CP"™) — Dg, 1(CP") — ... — D;(CP") — Do(CP") — 0
I I I | I
Z 0 A 0 Z
Every 2nd group is 0 so the boundary maps are all 0. Therefore H,(CP") is as stated. |

Remark 16.2.7 Using the same ideas as above, one can define quaternionic projective space HP"
by HP™ := S4F3/S3 where we think of S® as the unit sphere of the quaternions H and S*+3
as the unit sphere in HP™ ! with quaternionic multiplication as the action. n this case we get
that HP" is a CW -complex of the form HP™ = e Ue* U...e*. We can also define HP> =

Z q=0(4),q < 4n;

UHP" =e®Ue*U...e". ... As above we get ~ H,(HP") =
0 q#0(4), or g > 4n.

(Details left as an exercise.)
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Chapter 17

Cohomology

Definition 17.0.8 A cochain complex (C,d) of abelian groups consists of an abelian group CP
for each integer p together with a morphism dP : C? — CP~! for each p such that dP* o dP = 0.
The maps dP are called coboundary operators or differentials.

Aside from the fact that we have chosen to number the groups differently, the concept of
cochain complex is identical to that of chain complex. (Given a cochain complex (C,d) we could
make it into a chain complex by renumbering the groups, letting C, := C?, and vice versa.)
So we can make all the same homological definitions and get the same homological theorems.
A summary follows:

ker dP™! . CP — CP™! is denoted ZP(C). Tts elements are called cocycles.

ImdP : CP~!' — C? is denoted BP(C'). Its elements are called coboundaries.

HP(C) := Z7(C)/B?(C) called the pth cohomology group of C.

A cochain map f : C — D consists of a group homomorphism f? for each p s.t.

1
CP d’t Cp+1
fP frrt commutes.
1
DP dp+ Dptl
Proposition 17.0.9
A cochain map f induces a homomorphism denoted f*: H*(C') — H*(D). O

Theorem 17.0.10 Let 0 — P — Q — R —) be a short exact sequence of chain complezes.
Then there is an induced natural (long) exact cohomology sequence

... = H"(P) = H"(Q) — H"(R) ——~ H™Y(P) —» H"'(Q) — ...
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Let (C,0) be a chain complex. Form a cochain complex (@), d) as follows.
QP := Hom(C,,Z).
Notation: for ¢ € C,, f € QP = Hom(C,Z) write (f,c) for f(c).
Define § : QP — QP! bu (6f,¢) := (—=1)P"1{f, dc) where c € Cpy ;.
0% = 0 implies §%2 = 0.

Remark 17.0.11 Changing one or more boundary maps by minus signs has no affect on ker-
nels or images so it does not affect homology. The sign convention (—1)P*1 chosen above makes
the signs come out better in some of the later formulas. This is the convention used in Dold,
Milnor, Mac Lane, and Selick. An explanation of the intuition behind it can be found in Dold
(page 173) or Selick (page 30). Notice Dold’s convention on page 167 chosen so that when
n =0, df = 0 implies f is a chain map. There are also other sign conventions ((—1)P or
no sign at all) in the literature (e.g. Greenberg-Harper, Eilenberg-Steenrod, Munkres, Spanier,
Whitehead) but they lead to less aesthetic formulas in several places and/or diagrams which
only commute up to sign.

Let [c] and [f] be homology and cohomology classes in C., @, respectively. Then ([f],[c])
has a well-defined meaning since if ¢ is another representative for ¢ then for some d, (f, ' —c) =
(f,0d) = £(0f,d)+(0,d) = 0 and similarly if f — f = dg for some g then (f — f',¢) = (dg,¢) =
+(g,0c) =0

(, ) is often called the Kronecker product or Kronecker pairing.

Any chain map ¢ : C' — D induces, by duality, a cochain map ¢* : Hom(D,Z) — Hom(C, Z).
(¢"(9), ) = (g, Ppe)-

If C'is a free chain complex (i.e. C, is a free abelian group Vp) then there is a formula, called
the “Universal Coefficient Theorem” giving H*(Hom(C,Z)) in terms of H,.C(). An immediate
corollary of the Universal Coefficient Theorem is that if ', D are free chain complexes and
¢:C = Dst. ¢.: Hy(C) — Hy(D) is an isomorphism Vp, then ¢* : H?(Hom(D,Z)) —
Hr (Hom(O, Z)) is an isomorphism Vp. We will not get to the Universal Coefficient Theorem
in this course but we will give a direct proof of this corollary now.

From algebra recall:

Theorem 17.0.12 If R is a PID and M 1is a free R-module than any R-submodule of M is a
free R-module. In particular: letting R = 7Z: A subgroup of a free abelian group is a free abelian
group. |

Proposition 17.0.13 Let C be a free chain complex s.t. Hy(C) =0V q. Then H1(Hom(C,Z)) =
0Vgq.
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Proof: C,/kerd, =21Imad, = B,_;.

Since H,(C) = 0, kerd, = Imd,4; = B,. Thatis, 0 — B, — Cp —2+ B, | — 0
is a short exact sequence. Since B,_; C C,_; is a free abelian group, the sequence splits:

9
0— B, - C,—B,1 — 0. ie. 3 a subgroup U, := Ims of C, s.t. 9U, = B,_; and

C, = B, ® U, with 9(b, u) = (0u,0).
0 0 0 0

C ] } }
g (Bp+1@Up+l) - (Bp ® Up) - (Bp—l@Up—l) -
so dualizing gives a similar picture in Hom(C,Z). That is, letting U? := Hom(U?,Z) and
VP := Hom(B?,Z):
Hom(C,Z) 1_1 | l+1
OBV — (7 @ V) — (0P V) —

So H*(Hom(C,Z) = 0. O

Corollary 17.0.14
¢

«

Let 0 — C D E — 0 be a short exact sequence of chain complexes. Suppose
that F is a free chain complex. If ¢, : H,(C) — H,(D) is an isomorphism Vg then so is
¢* : H*(Hom(D, Z) — H*(Hom(C,Z) = 0..
Proof: Since E, is free Vp, D, = C, ® E, and thus

Hom(D,,Z) = Hom(Cp, 7)® Hom(Ep, Z) Thus in particular,

0 — Hom(FE,Z) —— Hom(D,Z) . Hom(C,Z) — 0 is again exact (a short exact
sequence of cochain complexes). To show that ¢* is an isomorphism on cohomology, by the
long exact sequence it suffices to show that Hom(E,Z) = 0 Vq. But H,(E) = 0 Vq by the

long exact homology sequence of 0 — C' D%+ F —0so the corollary follows from the
previous proposition. O

Note: The hypothesis that E be free is really needed. 0 — Z LI/ Z](2Z) — 0 is short
exact but

0 Hom(Z/(2Z) — Hom(Z, Z) — Hom(Z,Z)

I I I
0

Z Z

0

1s not.

Theorem 17.0.15 (Algebraic Mapping Cylinder) Let C, D be free chain complexes and let
¢ : C — D. Then 3 an injective chain homotopy equivalence j : D —= D (with chain
k
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homotopy inverse k) and an injection i : C — D s.t. ¢o=koi,i>~j0o¢, and [)/ Im j is free,
and D/Imi is free.

Corollary 17.0.16 Let C, D be free chain complexes. Suppose ¢*C — D such that ¢, :
H,(C) — Hy(D) is an isomorphism ¥q. Then ¢* : H(Hom(D,Z)) — H?(Hom(C,Z)) is an

isomorphism Vq.

Warning: To use this theorem to conclude that ¢ is an isomorphism for some particular p, we
must know that ¢, is an isomorphism Vg, not just for ¢ = p. However it will follow from the
Universal Coefficient Theorem that it is sufficient to know that ¢, and ¢,_; are isomorphisms
to conclude that ¢P is an isomorphism.

Proof of Corollary (given Theorem.):

Previous lemma applied to 0 — D . D (D/Imj) — 0 shows 5% is an isomorphism
Vg, which implies that (¢ o j). is an isomorphism, which implies that i, is an isomorphism.
(Exercise: f ~ g = f* ~ g*.) Applying the lemma to 0 — C LI ) R (D/Imi) — 0 shows
that ¢ is an isomorphism Vq. Therefore ¢? is an isomorphism Vq. |

17.0.3 Digression: Mapping Cylinders

Let f: X — Y. If fis an injection then 3 relative homology groups H,(Y, X)) which “measure
the difference” between H,(X) and H.(Y) and this is often convenient. What if f is not an
injection? Then we can replace Y by a homotopy equivalent but “larger” space 17, called the
mapping cylinder of f, such that

homotopy commutes (j o f ~ i) with ¢ an injection. The construction is as follows: Y =
(X x I)Up Y where f': X x {0} =Y by (a,0) — f(x).
X ——Y by z+ (z,1). Y can be “homotoped” to Y by squashing the cylinder.

Proof of Theorem 17.0.15:
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17.1 Cohomology of Spaces

For a simplicial complex K we define the simplicial cochain complex of K by C*(K) :=
Hom(C.(K),Z). Its cohomology is written H*(K) and called the simplicial cohomology of K.

For a topological space X we define its singular cohomology by H*(X) := H* (S (X )) where
5*X := Hom(S,(X),Z).

And for a C'W-comples, its cellular cohomology is defined as H* (D*(X )) where D*X =
Hom(D.(X),Z).

From the isomorphisms on homology we get immediately H*(X) = H*(|K|) and H*(D*(X)) =
H*(X).

Can similarly define relative and reduced cohomology groups. e.g.

H*(X,A) := H*(5*(X,A)) where $*(X, A) :== Hom(5.(X, A),Z)
Definition 17.1.1 (Eilenberg-Steenrod) Let A be a class of topological pairs such that:

1) (X,A) in A= (X,X), (X,0), (A, A4), (A,0), and (X x [,AX I) are in A;
2) (*,0) is in A
A cohomology theoryon A consists of:
E1) an abelian group H™(X, A) for each pair (X, A) in A and each integer n;
E2) a homomorphism f*: H"(Y,B) — H"(X, A) for each map of pairs
f(X,A) = (Y,B);
E3) a homomorphism 6 : H*(X, A) — H""Y(A) for each integer n
such that:
A1) 1, =1;
A2) (gf) = I"9";
A3) 9§ is natural. That is, given f: (X, A) — (Y, B), the diagram
(f [ a)

H(B) P (4)
) 1)
Hyt(V.B) o (X, )

commutes;
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A}) Exactness:
— H"YA) — H"(X,A) — H"(X) — H"(A) — H""'(X,A) —
is exact for every pair (X, A) in A

A5) Homotopy: f~g= f*=g".

A6) Excision: If (X, A) is in A and U is an open subset of X such that U CA and (X-U,A—
U) is in A then the inclusion map (X N~ U, AN U) — (X, A) induces an isomorphism

H"(X,A) — HYX ~U,A~U) for all n;

Z if n=0;
A7) Dimension: H"(x) = {O ?f " 2 07
if n+#0.

Theorem 17.1.2 Singular cohomology is a cohomology theory.

Proof: For exactness, observe that because all the complexes are free, the fact that 0 —
Si(A) = Su(X) — S«(X,A) — 0 is exact (and thus S.(X) = S.(A) & S.(X,A) ) implies
that 0 — S*(X,A) — S*(X) — S*(A) — 0 is exact. Everything else is immediate from the
previous theorem and the corresponding statment for homology (and, of course, we get the
slightly stronger version of excision, not requiring that U be open, since singular homology
satisfies that).

The following theorems also follow easily from the homological counterparts:

Theorem 17.1.3 (Mayer-Vietoris): Suppose that (X, A) I (X, Xs) induces an isomor-
phism on cohomology. (e.g. if X; and Xy are open. Then there is a long exact cohomology
sequence

o Ho 1 (A) =2 HY(X) = HM(X)) ® HY(Xs) — HY(A) —2 H™(X) = ... O
Theorem 17.1.4
() = ) n>0
HY(X)®Z n=0.
Also H1(X) = H1(X, %) |

Z q=0,n

Theorem 17.1.5 H(S") =
0 ¢g#0,n
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Proof: Use celluar cohomology. Write S=e” U e".

D.(S™) 0 Y/ 0 e 0 Y/
nth pos. 0th pos.
D*(S™) 0 7 0 e 0 Z
Oth pos. nth pos.

Theorem 17.1.6

n even: n odd:

Z q=20 Z q=0,n
HY(RP") =< Z/(2Z) qeven, q<n HY(RP") =< Z/(2Z) qeven, q<n

0 qgoddor g >n 0 q odd or ¢ > n.

Theorem 17.1.7
Z qeven, q < 2n

Hi(CP”) = q odd, g > 2n.
cmpny )L a=0(4);
HOHEPT) = {0 q # 0(4).

Proof: Write CP" =2 Ue?U...e2". Write HP" =2 U et U ... e*".
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17.2 Cup Products

From the last section (and the Universal Coefficient Theorem), we know that H*(X) is com-
pletely determined by H.(X), so why bother with cohomology at all? In any potential appli-
caiton, why not just use homology instead? One answer is that there is a natural way to put a
multiplication called the “cup product” on H*(X) so that H*(X) becomes a ring. This might
be used, for example, in a case where the H*(X) and H*(Y') to show that X 2 Y if it should
turn out that the multiplications on H*(X and H*(Y) were different.

Let f € SP(X) and S4(X). Define f U g € SPT(X) as follows.
For a generator T': AP*? — X of S, ,(X) we define
(fUg,T):=(=1)P(f,Tol(eo,...,)){g.Tollep,...,€p1q)) €L

l(eg,...,¢€ T
where AP 0@ pprae Ty
(Since g has moved T o (e, ..., ¢€,), the sign convention is in keeping with the convention

of introducing a sign of (—1)?? whenever interchanging symbols of degree p and q.)

Notation: Let 1 € S°(X) be the element defined by (1,7) = 1 for all generators T' € Sp(X).
(Thus as a function in Hom(Sy(X),Z) = Z, 1 = € = a generator.)

The following properties follow immediately from the definitions:

L fU(g+h)=(fUg)+(fUh)
2. (f+9Uh=(fUg)+(hUg)
3. (fUug)Uh=fU(gUh)

4. 1Ug=gUl=g

So U turns S*(X) into a ring (with unit). It is called a graded ring with S?(X) being the p
gradation where:

Definition 17.2.1 A ring R is called a graded ring if 3 subgroups R, s.t. R = ®,R, and the
multiplication satisfies Ry, - Ry C Rpyq.

Lemma 17.2.2 Let f € SP(X) and g € SYX). Then 6(fUg)=4dfUg+ (—1)Pf Udyg.

Proof: Let T': APTl — X be a generator of Sy, 411(X).
(6(fUg),T)
= (=1)P(5f, T ol(e, ..., e)){g. T oll€p, ... Eprgr1))
= (—1)Prra(—1)PFL(f, 0T o l(eo, ..., ) ){g, T 0 lep, ..., Eprqr1))
= (—1)patpratl Zf:g(—l)%f, Tol(eo, .- €. e)){g. Tolley,... epqt1))
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Similarly
(=1)PfUdg

= (=1)P(—1)patpratl ZP’LQH( )=P(f, Tol(eo,...,)){(q, T oll€p, ... € ... €psqs1))

= (—1)patrtatl ZerqH( D(f,Tol(eo, ..., )9, T ol€p, .- 6 €piqit))-

Notice that the term of (0f U g,T) corresponding to i = p + 1 equals that of (—1)?(6(f U
dg),T) corresponding to ¢ = p except that the signs are opposite so they cancel when we form
(0fUg, T)+ (=1)P(6(fUdg),T). On the other hand,

(6(fUg).T)
= (1 U 89, O)
= (—1)ptat! Z <ng,Tol(eO,...,A ..,€p+q+1)>
_ (a1

<f To 1(60, . ,EAl' .. ,€p+1)><g,TO l(Eerl, .. .,EAi ... 7€p+q+1)>
p

— (_1)pq+p+q+1 Z(_1>i

=0
<f,T o l(Eo, ceey EAZ ce 7€p+1)><g,T o l(€p+1, e EAZ . 7€p+q+1)>
pt+q+1
+ (_1)PQ+P+q+1 Z (_1)i
1=p+1
(f,Tol(eo,--- €. eps1)){g. T o ll€pp1,. . € . Eprgr1))
=(0fUg+(=1)"fUdg,T). O

Corollary 17.2.3 If [f] € H?(X) and [g] € HY(X) then [f] U [g] is a well defined element
of HPT1(X).

Proof:

If f =0 and 6g = 0 then 6(f U g) = 0 by the lemma.

Also, if f— f' = 6h then §(hUg) = dhUg+ (—=1)P" hudg = (f— f)Ug+0= fug— f'Ug.
Hence [fUg] = [f'Ug].

Similarly if [g] = [¢'] = 0h then [f U g] = [f U d]. O

Proposition 17.2.4 61 =0

Proof:
Let T': I = Ay — X be a generator of S;(X).
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Corollary 17.2.5 H*(X) is a graded ring with [1] as unit. O

From now on we will write 1 for [1] € H°(X).

Proposition 17.2.6 Let ¢ : X — Y. Then ¢* : S*(Y) — S*(X) and ¢* : H*(Y) — H*(X)
are ring homomorphisms.

Proof:
<¢*(ng)7T> = <(ng>7¢*T> = (_1>pq<f>¢*ToZ(EO"~7€p)> g7¢*Tol(€p""€p+q)> =
(=1PU@* f, T ol(eo. . ) {0°g, T olley. .., ep1q) ) (0" (f) U™ (9), T) O

Definition 17.2.7 A graded ring R = @®,R, is called graded commutative if for a € R,,
be R,, ab=(—1)Pba.

Theorem 17.2.8 H*(X) is graded commutative.

Remark 17.2.9 It is note true that S*(X) is grade commutative. Instead, ab — (—1)P%ba =
d (something).

Proof:
Define 6 : S.(X) — S.(X) as follows. For a generator 7' : A? — X € S,(X) define

O(T) = (—1)2PP DT 0 l(e,, €p1,. .., €1, €) € Sp(X).
Write A, := (—1)zP@+D),

Lemma 17.2.10 6 is a chain map.

(The factor A, was included so that this would be true.)

Proof: For a generator T' € S,(X),

I0(T) = NOT ol(ep, ... .€0) =Ny bt o(=1)P""Tol(ep,....6,..., €).

00(T) =0 (D5 o(—1)'T ol(en, - €irevny€p)) = Ap1 b o(=1) T 0 l(€p, ..., €, ... €).
However A\, (—1)P~ = X\ (—=1)7 = (=1)2p(tD+i=p — (_1)a "2+ — (_1)i)\ | O

Lemma 17.2.11 0 ~ 1

Proof: Acyclic models.
If you examine the proof that sd ~ 1 you discover that the only properties of sd use are:

1. VfIX%Y,fOSdX:SdYOf
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2. Sd() =1: S[)(X) — So(X)

Since 6 satisfies these also, the proof can be repeated, word for word, with 6 replacing sd.
Proof of Theorem (cont.):

Since § =id : H.(X) — H. (X, 0* =id : H*(X) — H*(X).

Let [f] € HP(X), [g] € HY(X). For a generator T' € S, ,(X):

(0" (fUg),T) =((fug).0T)
= >‘p+q<(f g) QTOZ(EP-H]""?EO»
= Mg (D)PU(f, T o l€prq, .- €9)){g, T ol(eq, ..., €))
= Aprq(—1)P1 f MOT 0 U(eq, ..., €pig) )9, AT 0 l(€0, - - ., €))
= ApigMpAg(— pq<9*f 0T o l(eq, i) (079, T o (e, . .., €))
= AprgMp A (0F f U0 g, T)

So 0 (f U g) = ApsgApAgfg U " f.
Hence [fUg] = [0*(fUg)] = /\p+q)‘p/\q[0*g] o f] = )‘p+q)‘q/\q[g] U [f].

However ) )
p+q) (p+g+1)+5p(p+1)+549(g+1)

p?+2pg+q>+p+q+p?+p+a?+q)

= N= D=
—~ ~

5 (2p%+2pg+2¢%+2p+2q)
P?+pa+q*+p+q
pq(_l)p(p+1)(_1)q(q+1) = (—1),

This is a “real” sign: does not depend upon the sign conventions.

17.2.1 Relative Cup Products

Let j: A—— X.

0—>S(A);*>S( ) — S.(X,A) = 0.

0 — S*(X, A) = S*(X) L+ §*(A) — 0.

Let f € SP(X) and let g € SI(X, A).

J* is a ring homomorphism, so S*(X, A) is an ideal in S*(X). i.e. fUc*g € SPTI(X, A).

Write fUg for fUc*g) € SPT(X, A) C S*(X). That is, ¢*(f Ug) := f Uc*g. (Explicitly,
observe that j*(f Uc*g) = j/ Uj*c'g=7*fU0=0s0 fUc*g € Imc* and therefore it defines
an element of SPT? which we are writing as f U g.) In computer science language, we are
“overloading” the symbol U, meaning that its interpretation depends upon its arguments.
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Similarly if f € SP(X, A) and ‘g € S9(X) we can define an element of SP*7(X, A) denoted
again fUg by ¢*(fUg) = fUc"g.

If §f =0and dg = 0 then ¢*§(fUg) = dc*(fUg) =0(fU?) =0, and so §(f Ug) = 0 since
¢* is a monomorphism. Therefore [f] U [g] € HPTI(X, A).

Check that it this is well defined:

If f— f"=dhthen ¢*§(hUg) = 0(hUc*g) = 0hUc*g = fUc*g— f'Uc*g =cx(fUg— f'Ug).
Therefore §(hUg) = fUg— f"Ugso [fUg]=[f Ug]. Alsoif g — ¢ = dk then ¢*§(fUk) =
S(fuck)==x(fuc(g—g¢)) ==+c(fUg— fUg). Hence 6(f Uk) =+(fUg— fUg) so
[fUg]l=[fUg]in H' (X, A). Therefore f U g is well defined.

Lemma 17.2.12 Let ¢ : (X, A) — (Y,B) be a map of pairs. Let f € SP(Y) and let g €
SUY, B). Then ¢*(f Ug) = (¢6°f U ¢g) € S9(X, A).

*

0 S*(Y,B) B+ §*(Y) — S*(B) 0
¢* o) o
0 $*(X, A) A 5% (X) —— §*(A) 0
cao"(fUg) =¢"cp(fUg)
definiti f rel.
(de nition of re cup) 5 (f U chg)
“ring h .
(¢*ring homom ) o F UG
= ¢ fUchoy
definiti f rel.
(de nition of re cup) e (6 f U 6g)
Since ¢ is a monomorphism. ¢*(f U g) = ¢*f U ¢*g). |

17.3 Cap Products

Given g € S9(X) and = € S,44(X) define g Nz € S,(X) by (f,gNz >= (fUg,z) for all
f e sP(X).
Note: This uniquely defines g N« (if it defines it all; i.e. 3 at most one element satisfying this
definition) since:

Given an abelian group G, write G* Hom(G,Z), If G is free abelian then the canonical map
G — G** is a monomorphism.
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Proof: The corresponding statement for vector spaces is standard. Since G is free abelian, can
choose a basis and repeat the vector space proof, or:

Let V = G ® Q. Since G is free abelian the map G — V given by g — g® 1 is a
G>—V

monomorphism so \ T shows G — G** is a monomorphism.
G** V**

Remark 17.3.1 Even in the vector space case, V- — V** is not an isomorphism unless V' 1is
finite dimensional.

Explicitly, for a generator 7' : APT? — X of S,,,(X), the above “definition” for g N x is
becomes gU T = (=1)7%(g, T o l(ep, ..., ep1q))T 0 l(eq, ..., €)

(This formula shows that there does indeed exist an element satisfying the above definition.)

Proof: Vf € SP(X),
(1" £.(g.Tolleys . pa)) T o llew, )

= (—1)pq<f,T ol(eg, .- ,ep)><g, Tol(ep,... ,ep+q)> =(fugT)
Lemma 17.3.2 If g € SUX), x € Sp14(X) then d(gNz) =dgNa+ (—1)4(gNdx).

Proof: Given f € SP7}(X)

—1)Pra(6(f U g), x)

—1)Pr(0fUg+ (=1)P~' fUdg), x)
—1)PFSf U g) + (=1)17H(f U dg), x)
—1)Prof, g Ny + (=17 (f,dg N x)
—1)PH(=1)P(f,0(g Nx)) + (=1)(f,dgNx.)

Therefore gNdx = (—1)790(gNx))+(—=1)7"16gNz) or equivalently d(gNx) = dgNa+(—1)4(gN
oz). |

It follows that if [g] € HY(X), [z] € Hpyy(X), then [g] N [z] is an element of H,(X). (Proof
that it is well defined left as an exercise.)

There are also two versions of a relative cap product:
Let j: A= X.
0— Sy(A) <L 5, (X) —=» 5, (X, A) — 0.
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0— S*(X,A) ““v S*(X) —L+ S*(A) — 0.

Let g € S9(X) and let x € SPT(X, A).

Define gz € S,(X,A) by (f,gNa) = fUg,z > for f € SP(X,A) (where f U g is the
relative cup product).
Or: If g € SUX,A), z € Sp4(X,A) can define gNx € S,(X) by (f,gNzx) = fUg,z > for
f € SP(X) (where again f U g is the relative cup product).

In each case, whenever g and x represent homology classes, [g]N|[x] is a well defined homology
class of Hy(X, A) or H,(X) respectively. (Exercise)

Lemma 17.3.3 Let ¢ : (X,A) — (Y,B). Let g € SUY,B) and let v € Spq(X,A). Then
d(P g Nx) =gN oz in Sy(Y).

Proof: Let € SP(Y). Then

= (¢"f, ¢"gNx)
= (¢p*f U p*g, ) (where U is the relatively cup product)
(lemma 17.2.12)

= (¢*(fUg) )

= (fUg, d.x)
= (f.gN ¢.x)

50 ¢ (P gNx) =gN . |
Lemma 17.3.4 Suppose Y C X. SupposeY =Y, UY;5 and X = XU X, where Y, and X, are

open in X. Let A = X1 N Xy, B=Y,NY5. Suppose also that X, UY, = X fore=1,2. Let
[v] € H,(X, B). Then the following diagram commutes Vq < n:

HI\(X,B) — 2 H9(X,Y)
> (excision)
A[o] HYA,ANY)
]
Ho gt (X) — 2 H,y(4)
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where:

[] [v']
Ho(X,B) — Ho(X,Y) ~———— H, (A, ANY)

(excision)

defines [v’] and A, and A* are the connectiing homomorphisms from the Mayer-Vietoris se-
quences
A*

A*
o Hoga(X) > Hoo(4) = Hog(X0) & Hog(Xa) = Hog(X) = ..
. HTY(X,B) =~ HY(X,Y) = HY(X,Y;) ® HY(X,Y,) = HI(X,B) == ...

Proof: By definition of A, and A* they factor as show below:

A* \
o 5*

HIH(Y, V) —— HY(X,Y)

H* (X, B) — H""'(Y1, B)

(excision)
N[v] commutes? HY(A,ANY)
N[v']
-~ 0,
Hn—q-i—l(X) ~— lln—g+1 (X7 Xl) (excision) Hn—q-i—l(Xl» A) - Hn—q(A)
A,

where 0, and 0* are connecting maps from long exact sequences.
The open sets {X; N Ys, Xo MY, A} cover X because:

= (XiNY2) U (XoN (YU X))
= (Xi1NY)UX,
=

XUX)N(YLUXe)=XNX =X

Therefore by corollary 14.2.31 (used in the proof of excision,) [v] has a representative u € S,,(X)
where u = uy +ug +u with uy € S,(X1NY3s), us € S, (XoNY7), v € S,(A), and Ou € S,,_1(B).
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That is, by corollary 14.2.31, SA(X, B) — S,(X, B) induces an isomorphism on homology,
where A = {X; NY,, X, MY, A}. Therefore 3 a representative @ of [v] lying in S7'(X, B) which
means that if we take a preimage u of @ back in SA(X) then u = u; + ug + v/ as above with
8y S Sn_l(B)

Notice that since uy,us € S,(Y), then their images in S, (X,Y’) vanish so that the image
of [v] under H,(X,B) — H,(X,Y) is represented by the reduction of v/ mod S,(Y"). Hence
[v'] = [v/] mod S,(Y).

Left-bottom image of [f] € H* (X, B) is

AL(f Nu) = Au(f Nug] + A(f Nug] + As(f Nl

However U, € S,,(XoUY]) C S, (X3) and v’ € S, (A) C S, (X2).

Therefore f Nus € Sp—g+1(X2) and fUW € S,_g41(X2). (More precisely, if jo : Xy —— X
then jo,(j5f Nug) = f N jous = f N ug, identifying uy with its image under the monomor-
phism js,. So fNuy € Im jo,. )

Hence f Nuy and f N’ die under the map S,_1:1(X) — Sp—g+1(X, X2), (which is part
of A,) and thus A.[f Nu] = AL[f Nwy].

Notice that A,[f Nui] = 9[f Nwuy] because as above fNu; € S,(X;) and so its reduction
mod S.(A) gives the image under the excision isomorphism and thus it serves as a suitable
pre-image of the reduction to be used when computing the connecting homomorphism 0.

Finally, O[f Nw] = [0f Nwy] + (=) f NOwy| = (—1)7 [ f N Ouy], since f is a cocycle.

To summarize, the left-bottom image of [f] is (—1)7[f N Ouy|

To compute the other way around the figure:

The image of [f] under H"}(X,B) — H?Y'(Y,, B) is represented by the restriction of
f to S;-1(Y2). The image under the excision isomorphism is represented by a cocycle f' €
S7=1(Y,Y;) whose restriction to Y5 is homologous to f}sq,l()@) within S?971(Y3, B). That is,
Je ST B) st fly (V) = f], | (¥2) + 9.

We modify [’ so as to eliminate d¢g as follows:

g € S172(Ys, B) is defined on S, 5(Y3). Extend it to a ¢’ defined on S, 5(Y3) by defining
it to be zero on all generators of S, o(Y) lying outside S,—2(Y2). (We are using, in effect,
that S,_o(Ys) —— S,2(Y) splits.) Let f” = f' — g’ € ST1(Y). Then f” is still a cocycle,
[f"] = [f'] and f//|sq,1(y2> = f|sq,1(Y2>‘ Extend f” to an element f € S7'(X) (for example,

by setting it to be zero on generators outside S,_1(Y"). Note: f need no longer be a cocycle.) f
is thus a pre-image of f” under the surjection S971(X,Y;) — S971(Y]Y,) and so is a suitable
element for computing 6*[f”]. That is 6*[f”] = [0]. (It needn’t be the 0 homology class because
f ¢ SUX,Y): it isn’t zero on S,(Y). ) So A*[f] = [6f].

Thus the top-right image of [f] is [0.f] N [v'] = [6f N /] (where, more precisely, we should
write the restriction of 6 f to S, (A) rather than §f. )
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Since u' € S.(A), fnu e S.(A), so [O(f N u')] =01in S, _((A4).
Afnu)y=d0fnu+ (=) fnou so [0(f Nu')] = —(=1)77[f N o).

Therefore it remains to show that [ fn ou'l = —[f N Ow].

However fNou' = fNou— fNou — fNous.

ou € S,_1(B) C S,-1(Y1) and ug € S, (X2 NY)) C S,1(Y1) and so duy € S,,_1(Y2).
Similarly 0U; € S,_1(Y3).

) But f|s*(y) = f/:‘s*(y) and f‘s*(yg) = [ S.(Ya) f}s*(n)' Hence fNou = f"N0u,
fﬂ@uz :f”ﬂﬁug, fﬂaul :f”ﬂﬁug. _
The first two terms are zero, since f”‘yl = 0. Thus [f Nou'] = —[f NJuy], as desired. |
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Chapter 18

Homology and Cohomology with
Coefficients

18.1 Tensor Product

Let R be a commutative ring and let M and N be R-modules.
The tensor product M ®@r N is the R-module with the universal property

Mx N R bilinear X

3.

M ®r N

Explicity, M @ g N = F,(M x N)/~ where
(m,ny +ng) ~ (m,ny) + (m,na)
(my1 +ma,n) ~ (mq,n) + (mz, n)
(mr,n) ~ (m,rn)
with the R-modules structure f(m,n) := (rm,n) = (m,rn),
[(m,n)] in M ®g N is written m ® n.
Thus elements of M ®z N are of the form ) _._,. m; ® n,.
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18.2 (Co)Homology with Coefficients

Let C be a chain complex and let G be an abelian group. Define a chain complex denoted C® G
by C'x G), := C, ® G with boundary operator defined to be d x 1¢ : C, ® G — C,_; ® G, where
d is the boundary operator on C. Similarly if C' is a cochain complex, can define a cochain
complex C' ® G by C' ® G)P := CP ® G with boundary operator d ® 1.

There is a version of the Universal Coefficient Theorem which gives the homology (resp.
cohomology) of C'® G in terms of the homology (resp. cohomology) of C' whenever C is either
free abelian or G is free abelian. However we will now give a direct proof that if C, D are
free chain complexes and ¢ : C — D s.t. ¢, : H(C) — H.(D) is an isomorphism then
0« RG: H(C®G)— H.(D® G) is an isomorphism.

Proposition 18.2.1 Let C be a free chain complex s.t. H,(C) = 0Vq. Then H,(C®G) = 0 Vq.

Proof: As in the proof that H9(Hom C,Z) = 0, we can describe C' as follows:
0 0 0 0

C o } !
g (Bp+1@Up+l) - (Bp ® Up) - (Bp—l@Up—l) -

where C, = B, ® U, with 9, : U, = B,,_;.
Therefore

C®G
a@lg a@lg

> (Bpy1 ® GBUp1 @ G) —— (B, @ GaU, ® G) —— (Bp-1 @ GoU,_1 ® G) —
so H,(C) =0 Vp. O

Proposition 18.2.2 Let0 — C . DS E —) be a short exact sequence of chain complexes

s.t. E is a free chain complex. If ¢. : H,(C) = H,(D) VYq then ¢, @ G : H(C ® G) —
H,(D ® G) is an isomorphism Vq.

Proof: Since E, is free V p, D, = C, ® E, and thus D, G=C, 9 G E, ®G.

Hence 0 —» C ® G 2% p ® G—— FE® G — 0 is again a short exact sequence so
H,(F)=0Vq= H)(F®G) =0V¢ = ¢, ® G is an isomorphism Vq. O

Without the freeness condition, 0 — Z —— Z — Z](2Z) — 0 is exact but tensoring with
G =17/(2Z) gives 0 — Z/(2/Z) 2. Z](2/27Z) — Z/(2Z) — 0 which is not exact.
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Theorem 18.2.3 Let C, D be free chain complezes such that ¢, is an isomorphism on (co)homology
Vq. Then ¢. ® G is an isomorphism on (co)homology ¥ q.

Proof: The homology case follows from the preceding propositions, given the earlier theorem
on existence of algebraic mapping cones. This also proves the cohomology statement, since a
cochain complex is merely a chain complex with the groups renumbered.

For a simplicial complex K, we define the simplicial homology of K with coefficients in G,
denoted H,(K;G) by H.(K;G) := H, (C’*(K) ® G). Similarly if X is a topological space, its
singular homology with coefficients in G is defined by H.(X;G) := H,(S.(X)® G) and if X
is a C'W-comples, its cellular homology with coefficients in G is H, (D* (X)® G). Can likewise
define H*(K;G) := H,(C*(K)® G). H*(X;G) := H,(5*(X) ® G) and cellular cohomology of
a C'W-complex X as H* (S* (X)® G). We can also define relative and reduced homology and
cohomology groups with coefficients in G.

From the preceding theorem we get H.(K;G) := H.(|K|;G) and H*(K;G) := H*(|K|; G)
and H,(D(X);G) = H.(X;G and H*(D(X);G) := H*(X;G. It is also immediate that
H.(X;G) and H*(X;G) satisfy all the axioms for a homology (resp. cohomology) theory
except for A7 which has to be replaced by

Hp(*;G)Z{g p%g; Hp(*;G)Z{g p#g
p=0; p=0.

Similarly Mayer-Vietoris works, Also H,(X;G) satisfies

H(X;G) n > 0;

Ha(X3G) = {HO(G) oG n=0;

and H,(X;G) = H,((X,*);G). The cohomology versions work also.

If G — H is a homomorphism of abelian groups, then it induces a (co)chain map C ® G —
C' ® H for any (co)chain complex C' and thus induces H.(X;G) — H.(X; H) and H*(X;G) —
H*(X; H) (notice that the direction of latter arrow does not get reversed).

If G happens to have an R-module structure for some commutative ring R (with 1) then for
any abelian group A, A® G becomes an R-module by defining on generators r(a® g) := a®rg.
In this case, for c € C)j g € G-

r(@(c@g)) =r(0c®g) = 0c®rg = 0(c®rg) = 8(r(c®g)). That is, the boundary operator
on C'® G becomes an R-module homomorphism, so ker 9 and Im 0 are R-modules and so their
quotient, H,(C' ® G) inherits an R-module structure.

Suppose now that G is a ring R (commutative, with 1) and C' is a free chain complex.
The Kronecker product induces a bilinear pairing between C' ® R and Hom(C,Z) ® R with
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values in R, which is again called the Kronecker product. Explicitly, given generators f ® r
of Hom(C,Z)®@ R and c® 1’ of C® R, (f @ r,c®71’) := rr(f, c), where the multiplication takes
place in R after taking the image of the integer-valued Kronecker prduct (f, ¢) under the unique
ring homomorphism Z — R (sending 1 € Z to 1 € R). This results in a bilinear R-module
pairing (also called the Kronecker product) between the homology and cohomology groups as
well.

We can also define cup products on cohomology with coefficients in R. Namely, for gen-
erators f @ f € SP(X;R) and g ® f' € SUX;R) define (f ® f)U (¢ ® 1) € SPT(X;R) by
(feflu(ger) = (fUg)®@rr;. Thus S*(X; R) and H*(X; R) become graded rings (with 1)
and H*(X; R) is graded commutative. If A — R is a ring homomorphism then it follows im-
mediately from the definitions that S*(X; A) — S*(X; R) and H*(X; A) — H*(X; R) are ring
homomorphisms. (Note the special case were A =7Z — R given by 1 — 1).

Given generators ®@r € S9(X; R) and z ® 1’ € S,44(X), can define cap product by (g ®@r)N
(x®@7r'") := (¢gNz)@rr. Similarly one can define the relative cup and cap products.

Remark 18.2.4 In practice, there are sometimes advantages to having a field as coefficients.
Thus, besides Z, the most common coefficients are Z/(pZ) and Q. Sometimes R = Z,), R, or
C are also useful.

Theorem 18.2.5

R q=0,n; R q¢q=0,n;
ACETIES S H(S" Ry = 0
0 q#0,n 0 q¢#0,m
< 2n; < 2n;
H,(CP": R) — R qeven, g < 2n; H(CP™: R) = R qeven, q < 2n;
0 qoddorq>2n; 0 qoddorgq>2n;
Proof: Use cellular (co)homology. e.g.
D.(CP"® R) R-0—-R—-0—-R—.. R—-0—-R—0 O
Theorem 18.2.6
7./ (27 <n;
m,®P:3/(22) = | /P A=
q>n;

HY(RP™Z/(2Z)) = {?/(QZ) Z i:

Q g =n when n is even, or g = 0;

H,(RP™" Q) = HI(RP™" Q) = {

0 otherwise.
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Proof: Use cellular (co)homology.

D.(RP") Z—Z ... ——7-227-"+7-0
Therefore
D.(RP"® Z/(2Z))

7)(2Z) = Z)(2Z) — ... —— T)(27) == 7./ (2Z) ——~ 7./ (2Z) — 0

Thus H,(RP"; Z/(2Z)) = {?QZ) 1 i &
q->n,

D,(RP"® Q) Q—-Q—.. 2 Q—2+2Q0-2 Q=0

Since 2 : Q — Q is an isomorphism (with mult. by 1/2 as inverse), H,.(RP™; Q) is as stated.
Similarly one gets the cohomology results.

Remark 18.2.7 If R is a field, then it follows from the Universal Coefficient Theorem that
H*(X;R) = HomR_mOdS(H*(X, R), R).
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Chapter 19

Orientation for Manifolds

Recall

Definition 19.0.8 A (paracompact) Hausdorff space M is called an n-dimensional manifold
of for each x € M 3 open neighbourhood U of x s.t. U is homeomorphic to R™.

U is called an open coordinate neighbourhood. (If the neighbourhoods are diffeomorphic
to R™ then M is a called a differentiable manifold. Similarly can define C* manifolds, etc.)

Let M denote an n-dimensional manifold. Given open coordinate neighbourhood V' of x,
can choose smaller open neighbourhood U of x s.t. the homeomorphism of V' to R™ restricts
to a homeomorphism of U with an open ball of radius 1. Thus U is also homeomorphic to R"™.
From now on whenever we pick a coordinate neighbourhood U of x we shall always assume
that we have chosen one which is contained in a larger coordinate neighbourhood V' as above
sothat U C Vand V ~\ U ~ "1,

Proposition 19.0.9 Vz € M,
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Proof: Let U be an open coordinate neighbourhood of z. Then M \ U = M~\U C M —{z} =
Int(M ~\ {x}) so
(excision)
Hy(M, M ~A{x}) = Hy(U, U~ {z})
= Hy(R, R~ {x})

(long exact sequence) _
= Hy 1 (R~ {})

= ﬁqﬂ(*sm_l)
~ )L qg=n
10 g#n

O

Definition 19.0.10 A choice of one of the two generators for H,(M, M \ {x}) = Z is called
a local orientation for M and x.

Notation: Given z € A C K C M, let j&: (M, M ~ A) — (M, M — ~{z}) denote the map of
pairs induced by inclusions. If A = K = M, just write j, for j2.

Lemma 19.0.11 1. Given open neighbourhood W of x, 3 open neighbourhood U of x s.t.
ucw (mdjg* cH (M, M\U)— H.(M,M ~ {y}) is an isomorphism Vy € U.

2. Let ¢ € Hy(M, M ~W). Let U be any open neighbourhood of x satisfying part (1) (i.e.
gy, iso. Yy € U.) If a € H,(M,M \U) s.t. j. (a) = 3j," (C) for somey € U then

3V (@) =4 () Yy e U.

Proof: Within W find a pair U C V of open coordinate neighbourhoods of x (as outlined
earlier) s.t. V \ U ~ S""!. Then Vy € U

¢
H,(M, M~ W)

. W
Jx jy *

(67 U

H, (M, M~ U) Ty H, (M, M~ {y})

[ )

>~ | (excision) > | (excision)

~

H,(V,V\U) H V.V~ A{y})

(homotopy)
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Therefore jg* is an isomorphism as required in (1). If yg € U s.t. jl%(oz) = ];jg(() then the
diagram with y = yo shows that j7.({) = a. Hence the diagram with arbitrary y € U gives
Jy (@) = 3y (C). o
Theorem 19.0.12 Let K be compact, K C M. Then

1. H(M,M < K)=0 qg>n

2. For (€ H,(M,M \K) zfjf(g) =0, then ¢ = 0.

Proof:
Case 1: M = R", K compact convex subset.
Then for z € K, R" ~ K = R" \ {z}, so (1) and (2) are immediate. V

Case 2: K = K; U K5 when theorem is known for K;, K5, and K; N K.
Apply (relative) Mayer-Vietoris to open sets M ~\ Ky, M ~\ Kj.
(MNEK)N(MNEK) =M\ (KTUK) =M\ K

0
I
e Hot (M, M~ (Fy N Ky)) —2 Hy (M, M N K
Ho (M, M~ Ky) @ Hy(M, M~ Ky) — H, (M, M~ (K, N K))
(1) follows immediately. For (2):
Vo € K,

) (Jry 50K )
_ >

H,(M, M ~ K) I H, (M, M ~ K

H,(M,M ~\ {z})

Hence jX (]Kl(O) = jK (¢) = 0. So (since true Vx € K, by the theorem applied to K
gives jr, () = 0. Similarly jg, ({) = 0.

But by exactness, ker(jg,, ji,) = 0so ¢ = 0. V
Case 3: M =R", K = K; U...UK, where K; is compact and convex.

Follows by induction on 7 from Cases 1 and 2.
Note: Intersection of convex sets is convex. To prove the theorem for, say, K; U Ky U K3 will
have to know it already for (K; U K5) N K3. This will be done by a subsidiary induction. It can
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best be phrased by taking as the induction hypothesis that the theorem holds for any union of
r — 1 compact convex subsets).
V-

Case 4: M = R", K arbitrary compact set.
(This is the heart of the proof of the theorem.)
(exactness)

H,(R",R" \ K) = H, 1 (R"\ K).

Given z € H, (R" — K), by axiom A8, 3 compact set (depending on 2) L, ~2+ R" \ K
s.t. 2z = 1,(2) for some 2’ € H,_1(L,).

Given As.t. K C AC (L,)",

Z/ Hq—l(Lz)

U

a, qul(Rn AN A)

H, 1 (R" \ K)

shows z = i/ (a,) for some a, € H,_1(R — A).

Will also use a, and z to denote their isomorphic images under H,(R", R~ A) = H,_;(R" \
A), etc.

Wish to select A, s.t. A, is a finite union of compact convex sets and K C A, C (L,)°".

Cover K by open balls whose closures are disjoint from L, (using normality). By compact-
ness can choose a finite subcover and let A, be the union of their closures. By Case 3, the
theorem holds for A,.

If ¢ > n, by (1) of the theorem applied to Az, A, = 0 so z = 0. Hence (1) holds for K.

To prove (2):

Suppose z = ¢ where j,5(¢) = 0 Vo € K. It suffices to show that jfc*(ag) =0Ve e A
since we can apply (2) of the theorem for A to conclude that a; = 0 so that ( = 0. (It is
immediate that jgfc*(ac) =0ifre K C A¢. )

Write Ac = By U... B, where B; is a closed n-ball s.t. B; N K # () (using defn. of A¢).

Given z € A¢, suppose x € B; and find y € B; N K.
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H,(R",R" < B)) H,(R", R” < K)

+(B; convex) —» = ik
H,(R,R < {z}) H,(R,R~ {y})

Since j,° (¢) = 0 by hypothesis, 5, 7.(ac) = 050 7.(a¢) = 0so that jfg*(ag) =jBi (a;) =0
Thus jfg*(ag) =0, as desired. vV
Case 5: K C U C M, where U is an open coordinate neighbourhood.

(excision)
Follows immediate from Case 4 since H,(M, M \ K) = H.(U,UNK). vV

Case 6: General Case

By covering K with coordinate neighbourhoods whose closures are contained in larger co-
ordinate neighbourhoods, write K = K; U ... K, where for each i, K; C U; with U; is an open
coordinate neighbourhood. Then use Case 5, Case 2, and induction on 7. ]

Theorem 19.0.13 For each x € M, let o, be a generator of H,(M, M ~ {x}). Suppose that
these generators are compatible in the sense that Yx 3 open coordinate neighbourhood U, of x
and Jay, € H,(M, M\U,) s.t. j,= = a, Yy € U,. Then given K C M, 3lay € H,(M, M\ K)
s.it. Ji (ak) =a, Vy € K.

Proof: Unique is immediate from the previous theorem. To prove existence:
Case 1: K C U, for some x

Use ax = j«(ay,) where j, : H,(M,M \U,) - H,(M.M \ K).
Case 2: K = K; U Ky where ag,, ak, exist.
Hyor (M, M~ (Ky O Ky)) — Hy(M, M~ K) 250752

H, (M, M~ Ky) @ Hy(M, M~ Kp) 225 H, (M, M~ (K0 Ky)) —

For any r € KN Ky, jgﬁlmfﬁ(ﬂk - j:)(O‘KUO‘fQ) = jﬁl(afﬁ) - ]'é?(CYKQ) =a; —a; =0

Therefore by the previous theorem applied to K1 UK, (5. —j7)(ak,, @k,) = 0 so from the exact
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sequence Jag € H, (M, M\ K) s.t. jk,(ax) = ak, and jg,(ax) = ak,. Then ay satisfies the
conditions of the theorem. (To check it from y, find € € K, and use naturality.)
Case 3: General case

Write K = K; U...U K, with each K; C U, for some x by covering K with open sets each
having its closure in some U,. Now use Cases 1, 2 and induction on 7. O

Remember: j, means jM.

Definition 19.0.14 Suppose M is a compact n-dimensional manifold. If 3¢ € H,(M) s.t.
Jz. (€) is a local orientation for M at x for each x € M then M is called orientable and ¢ is
called a (global) orientation for M.

If M is not compact than such a global orientation class will not exist. (Consider, for
example, M = R"™). More generally we define:

Definition 19.0.15 An orientation for M consists of a family of elements {(x}rxcm with
(k € Hy(M, M\ K) such that JX(Cx) is a local orientation for M at x Vx € K, K compact
and furthermore if v € Ky N Ky then 51 (Cx,) = jX2((k,)-

Of course, this second definition works equally well in the compact case, since a global class
can be restricted.

The preceding theorem says that if M has a “compatible” collection of local orientations at
each point then M is orientable.

Corollary 19.0.16 Let M be orientable and connected. Then any two orientations of M which
induce the same local orientation at any point are equal.

Proof: Let {oy,}yem and {B,},em be the sets of local orientations induced by the two orien-

tations {Cxcnmr and {Cyepy-

By earlier lemma, if the orientations agree at x then they agree on an open neighbourhood
of £ (3U s.t. J - HW(M.M \U) = H, (M, M~ {y}) isiso. Vy € U ) so A= {z | ap = B} is
open.

On the other hand, if a, # (., then o, = —f, (there are only 2 generators of Z and they
are related in this way) so by the same lemma 3 open set U containing = s.t. a, = —f, Yy € U.
Hence B = {z | a,, # (.} is also open.

Since AUB = M and AN B = (), by connectivity of M one of A, B is (). By hypothesis
A#(0soB=0and A= M. Hence a, = 3, Vo € M, which by earlier theorem says that
(k = VK. O
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Corollary 19.0.17 If M is connected and orientable then it has precisely 2 orientations and
a choice of orientations at one point uniquely determines one of the orientations. O

Theorem 19.0.18 Let X be a connected nonorientable (compact) manifold. Then there is a
2-fold covering space p: E — X s.t. E is a connected orientable (compact) manifold.

Proof: Let E :={(z,a,) | x € X and «, is a local orientation for X at x}. Set p(z, ay) := x.

Topologize E as follows.

Given open set U C X and element ay € H,(X, X \U) s.t. j¥ (ay) is a generator of
H,(X,X ~{z}) forall z € U, let (U, ay) = {(z, Y, (av))} C E.

To show that these sets form a base for a topology:

Suppose (U, ay) N (U, ay) # 0. Let (z,a,) € (U,ay) N (U, ay). By earlier lemma 3 open
nbhd U of z, U C U' NU” s.t. j¥, is an isomorphism Yy € U. Let ay = (jY);'(a,). Show
(U,ap) C (U, Yay N{U”, ay”).

Let (w,jY,(ow)) € (U,ar). To show (w,jY, (av)) € (U, a}) we must show jU (o) =
35" (awr). However jU (ay)) = jU,(ap)), so by part 2 of the lemma that produced U, we
have jU (o) = 4" (awr) for all y € U and in particular for y = w. Therefore (w, jY (av)) €
(U, ;) and similarly (w,jY, (av)) € (U7, 7).

So {{U, ay)} forms a base for a topology.

By (1) of the Lemma, X can be covered by open sets U s.t. jg* is an isomorphism for all
yeU.

For such sets

p_l(U) = <U7 ,0> nl <Uv _P>

where

(,—CE€H, (X, X\U)= H,(X, X\ {y}) =Z

are the two generators and the restrictions p : (U, () — U and p : (U, —() — U are homeomor-
phisms. So p is a 2-fold covering projection.

Therefore F is a manifold.

X is compact, so F is compact since a finite cover of a compact Hausdorff space is compact.

(Proof: Cover the base with evenly covered open sets. By normality, we can find another
open cover in which the closures of the sets are contained in evenly covered open sets. Take
a finite subcover. Then the inverse images of the closures of these sets under the covering
projections write the total space as a finite union of compact sets.)

To show E is orientable:

Given (7,a;) € E, by (1) of the Lemma, there is an open neighbourhood U, of x s.t. j, =
is an isomorphism for all y € U,.
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Let ay, = (%) *(as). So < Uy, > is an open neighbourhood of (z,a,) s.t. the
restriction of p to < U,, oy, > is a homeomorphism.
So

Hn(E,E\{(m,ozI)}) & Hn(<Ux,ozUx>, <Um,aUx>\{(a:,oz$)}) ~ H, (U, U~{x}) = H, (X, X~{z}) =2 Z.

Let B(za,) € Ho(E, E N {(2,04)}) correspond to o, under this isomorphism.

By (2) of the Lemma (and naturality of the above isomorphism), we see that these local
orientations (3, are “compatible” in the sense of the earlier Theorem. The required open neigh-
bourhood is (U,, ay,). Note that jéﬁ’i%> is an isomorphism for all (e, a.) € (U,, ay,) to get
the required homology class.

So by that Theorem, the classes ((;,,) determine an orientation so that F is orientable.

Finally, to show E is connected:

If £ had two components (as a 2-fold cover of a connected space, it can have at most 2),
each would be a covering space of X (a component of a covering space of a connected space is
a covering space). So each would be a 1-fold cover and thus a homeomorphism.

But then each component would be nonorientable (since X is) which would mean that F is
nonorientable. This is a contradiction. So E is connected.

Corollary 19.0.19 If M s simply connected, then M is orientable. (More generally, if w (M)
does not have a subgroup of index 2 then M is orientable.)

Proof: M has no 2-fold covering space.

19.1 Orientability with Coefficients

Let R be a commutative ring with 1/ We can make the same definitions of orientability using
homology with R-coefficients (e.g., a local orientation is a generator of H,(M, M \ {z}) = R)
although the theorems might not all work. In practice, besides Z the only useful coefficient ring
for the purpose of orientations is R = 7Z/(27). In that case there is only one generator so all
compatiblity conditions are automatic. This means that every manifold is (Z/(27Z)-orientable.
Sometimes theorems which hold (using Z-coefficients) only for orientable manifolds can be
extended to non-orientable manifolds if (Z/(27Z)-coeffiecients are used.

Example 19.1.1 Consider RP2. It is a 2-dimensional manifold.

Z q=0 Z/(2Z) q=0
H®PY) = 7)) q—1 H,(RP%Z/(22)) = 1 2/(2Z) ¢ -1
0 q=2 Z)(2Z) q=2
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Examining the Z-coefficients, since Hy(RP?) = 0 there can be no global orientation class, so
RP? is non-orientable. Notice that there is a candidate for a global Z/(2Z)-orientation calss,
and since every manifold is Z/(27Z)-orientable it must indeed be a Z/(2Z)-orientation class.
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Chapter 20

Poincaré Duality

Let M be an oriented n-dimensional manifold and let {¢ K}( Kem ) be its chosen orienta-
L compact

tion, where (x € H,)M, M ~ K). If M is compact, let ( = (y;.
(The following also works in M is non-orientable provided Z/(2/Z Z)-coefficients are used.)
Consider first the case where M is compact.
Let D : H{(M) — H,_,(M) by D(z) = zn (.

Theorem 20.0.2 (Poincaré Duality) D : H (M) — H,_;(M) is an isomorphism Vi.

In the case where M is not compact:

For each compact K C M, define Dy : H (M, M ~\ K) — H,_;(M) by Dy (z) = 2N (k.

If K C L C M, K,L compact, then by theorem 19.0.12 jk (¢) = (x where j§ : (M.M ~
L) — (M, M~ K).

Therefore
H'(M,M \ K)
Dk
]IL(* Hn—i(M)
Dy,
Hi(M, M~ L)
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lemma 17.3.3 .;«
= JK

commutes since Dy (z) = 2N (x = 2N jk (Cr) 2N ¢y = Dpjk™(2). Thus the

various maps D induce (by universal property) a unique map

D: lig H'(M,M ~ K) — H,_;(M)
KCM
K compact

where the partial ordering is induced by inclusion.

Notation: Write H;(M) = lim H'(M,M \ K).
K cgr%%act

HY(M) is called the cohomology of M with compact support. An element of H*(M) is
represented by a singular cochain which vanishes outside of some compact set. Of course,
if M is already compact then each element in the direct system maps into H'(M) so that
H{(M) = H(M) in this case.

Theorem 20.0.3 (Poincaré Duality) D : H:(M) — H,,_;(M) is an isomorphism Vi.

Proof:
Case l: M =R

Lemma 20.0.4 Let B C R" be a closed ball. Then Dp : H(R,R . B) — H,_;(R") is an
1somorphism Vi.

Proof: H,(R,R~B) = H,(R,R~{x} = H, ;(R*~{*}) = H,_ ,(S*"). Similarly HI(R", R"~
B) = H971(S"1). Thus if i # n the lemma is trivial since both groups are 0.
For i=n:

The groups are isomorphic (both are Z). Must show that Dp is an isomorphism.

(p is a generator of H,(R,R~\ B) = Z. Find generator f € H"(R",R"\ B) s.t. (f,(g) = 1.
To see that one of the two generators of H"™(R", R"™ \. B) must have this property, examine the
Kronecker pairing of H,_;(S™!) with H"~'(S"~!). Using the cellular chain complex 0 — Z —
0... — 0 makes it obvious that the Kronecker pariting gives an ismorphism H,_;(S"!) =
Hom(l:ln_l(Snfl), Z) = Z and that the ring identity 1 € H°(R") is a generator. Thus

(1, Dp(f)) = (1, fN¢p) = (1U f,¢s) = (f.Cp) =1

so that Dp(f) must be a generator of Hy(R"). Hence Dp is an isomorphism.

Proof of theorem in case 1: Let a« € H(R") = lim H'(R", R"\ K). Pick a represen-

KCR"
Kk compact

tative f € H'(R", R"\ K) of « for some compact K C R". Let B be a closed ball containing K.
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Replacing f by jE*(f) gives a new representative for a lying in H*(R™ R™ \. B), and by def-
inition of D, D(a) — Dg(f). Since Dp is an isomorphism by the lemma, if D(a) = 0 then
f=0and soa=0. Hence D is 1 — 1. Conversely, given x € H, ;(R"), 3f € H'(R",R" \ B)
s.t. Dp(f) = z and so the element o of H!(R") represented by f satisfies D(a) = Dp(f) = .
Hence D is onto.

(In effect, there is a cofinal subsystem which has stabilized. Therefore the direct limit map
is the same as the map induced by this stabilized subsystem.) vV

Case 2: M =U NV where U, V are open subsets of M (thus submanifolds) s.t. the theorem
is known for U, V,and W :=UNV

Proof: Let K, L be compact subsets of U, V respectively. Let A= KNL, N = KUL. Then
we have a Mayer-Vietoris sequence

HI(M, M~ A) = HI(M, M~ K)® HY(M, M~ L)=HI(M, M~ N) = H™" (M, M~ A)

12

> | (excision) 2 | (excision)

H (W, WA — H(UUNK)® H(V,V NL) -HY(M,M ~N) — Hq+1(W,W\A)
Lemma 20.0.5
Hq_l(M,M\N) — HI (W, WA - H({UUNK)® HY(V,VNL)— H/(M,M ~ N)

Dy @D  Da @ Dk @ Di ® Dy
A,
Hn—q+1(M) Hn—q(w) — Hn—q<U) ® Hn—q(v> — Hn—q(M)
commutes.
Proof:

For square 2 Let 5% : (W, W~ A) — (U, U \ A) denote the inclusion map of pairs. (It induces
an excision isomorphism.)
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A

Fe H(U,U~ A) 22 HU,U ~ K)
Jw |=

Fe H(W, W~ A) 24 gU, U~ K)

DA ? DK

U*

Hy W) —2 H, ,(U)

Let f € HI(W, W ~ A).

By the excision isomorphism, 3f € HI(U,U ~ A) s.t. j&."(f) = f.

Let ¢§ € H,(U,U — A) be the restriction of (;, to A. i.e. ({ :=jK (x. By compatibility of
orientations, j¥ (Ca) = C{ (where (4 means (7).

JY.Daf = 3%.(F N Ca)
(lemma 17.3.3) ~
= f i .Ca
= fndy
= fNi5.Cre
(map of pairs is (U, U \ K) — (U,U ~ A) whose restriction to U is 1)
(lemma 17.3.3) .. =
= gk
= Drji [
so the diagram commutes. Get the same diagram with V replacing U, so square (2) commutes.
Similarly, doing the same arguments with the pairs (M, U) replacing (U, W) and then (M, V)

replacing U, W), we get that the third square commutes.
For square (Ix
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*

HY (M, M ~. N) HY(M, M ~ A)

D 7 HY(W, W~ A)
D4
A,
Ho g (M) H, (V)
apply lemma 17.3.4
1 A*
H7 (X, B) HY(X,Y)
= (excision)
N[v] HY(A,ANY)
N[v']
A,
H, g (X) H,y(A)

in the case:
X =M; X, :=U; Xo:=V; YV =M\ A Y =M\ K; [v]:=(n.
(Thus A=UNV =W and B=Y,NYs = M~ (KUL) = M~ N. Note: X;NY; =

UN(M~N K)= M since K CU.) V

Proof of Case 2 (cont.): Passing to the limit gives a commutative diagram with exact rows
(recall the homology commutes with direct limits so exactness is preserved)
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*

A
HIW) — HIU)@ HA(V) ——— HIY (M) — HIP(W) — HIYU) @ HIY(V)

[

1%
1%

D| (D & D) |~ D D

Ho (W) S H, o) & Hy (V) 2 Hy (M) Hy g (W) (0) 8 Hy g (V)

so by the 5-lemma, D : HI(M) — H,_,(M) is an isomorphism. vV

Case 3: M is the union of a nested family of open sets U, where the duality theorem is known

for each U,.
Since M = U,U, and U, is open, S,(M) = U,S.(U,) so H,(M) = liga H.(U,).

Similarly each generator of S¥(M) vanishes outside some compact K, where S¥(M) =
lim  S"(M, M~ K). Since homology commutes with direct limits, HZ (M) = H(S¢(M)).

KCM

x compact
Find U,, s.t. K C Uy, s.t. K C Uy,. Then f € Im S¥(U,,). Thus again S} (M) = Uysi(Uy)
and so H:(M):@QH:(UQ). v

Case 4: M is an open subset of R”
If V' is a convex open subset of M, then the theorem holds for V' by Case 1. (i.e. V is
homemorphic R™.)
If V., W are converx open then so is V N W so the theorem holds for VU W by Case 2.
Hence if V =V, U... UV, where Vj is convex open, then the theorem holds for V.
Write M = U2, V; by letting {V;} be
{N,(z) | N.(z) C M,r rational, z has rational coordinates} (which is countable).
Let W; = UX_|V;. Then by the above, the theorem holds for W}, Vk, {W}} are nested, and
M = U2 Wy, Therefore the theorem holds for M by Case 3. Vv

Case 5: General Case

By Zorn’s Lemma 3 a maximal open subset U of M s.t.the theorem holds for U. If U # M,
find x € M ~ U and find an open coordinate neighbourhood C of x. Then by Case 4, the
theorem holds for V' and U NV so by Case 2 the theorem holds for U UV .=<«.

Therefore U = M. |
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20.1 Cohomology Ring Calculations

Sn

degree H, H* St xSt
degree H, H*
n Z 7
n—1 0 0 2 z z
. 1 YACY/RYACY/
: 0 7z Z
1 0 0
0 Z Z
cp RP2n+1
degree H, H* degree H, H*
2n 7 Z 2n+1 7 7z
o — 1 0 0 o 0 Z/(2Z)
o — 2 Z Z om—1  Z/(2Z) 0
1 0 0 3 Z)(2Z) 0
0 Z Z 2 0 Z]/(2Z)
1 Z7](27Z) 0
0 7 7
RP? (nonorientable) R P2
degree H, H* degree H.(;Z/(2Z) H*(;Z/(27Z)
2 0 Z](27) 2 Z/(27) Z](27)
1 Z](27) 0 1 Z/(2Z) Z](27)
0 Z 7 0 7/(27Z) Z7](27Z)
Cup Products:
H*(S™):
Group generators: 1 € H°(S™), x € H"(S™).
No choices: 1U1 =1 lUz=2Ul=ux rUx=0 vV

Before proceding to the other spaces we need a lemma.
Let X be a connected compact oriented manifold s.t. all the boundary maps in some cellular
chain complex for X are trivial. (e.g. X = 5™; S x S1; CP". Also X = RP" if we use Z/(2Z)
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coefficients.)

H"(X) = Ho(X) =2 Z (in the cases with Z-coefficients). Let u be a generator of H"™(X).
Replacing p by —pu is necessary, we may assume that (i, () = 1, where ¢ € H,(X) the chosen
orientation. Let g € HY(X) be a basis element. (Note: The boundary maps equal to 0 implies
that H%(X) = Hom(D,(X),Z) is a free abelian group.)

Lemma 20.1.1 3f € H" 4 X) s.t. fUg=p

Proof: Being a basis element, g is not divisible by p for any p so neither is D(g) € H,_,(X)
(since D is an isomorphism). Therefore by the hypothesis on the cellular chain complex for X,
df € H"9(X) s.t. (11,¢) =1 = (f,D(9)){f,gN¢) = (fUg,() Hence f U g is a generator of
H"(X) and fUg = +pu. O

H*(ST x Sh).

Group generators: 1 € H( ), y,z € H'( ), p € H*().

S8t =+ (8Y)  mi(x) =y, m(x) ==

Since z? = 0 in H*(S'), y* = (7fz)? = 0 (ring homomorphism). Similarly 2% = 0.

By the lemma, y U f = u for some f so f = +=z.

Reversing the roles of y and z if necessary, yUz = p and 2 Uy = (=1)"y Uz = —pu.

Aside from the multiplications by the identity and the multiplications which must be 0 for
degree reasons, this describes all of the cup products in H*(S x S1). V

Lemma 20.1.2 Let X =YV Z so that H*(X) = H*(Y)®H*(Z) If f € H?(X) and g € HY(Z)
then fUg =0 in HPTI(X).

Proof: Leti:Y - YV Zbyywr (y,x) and j : Z — Y V Z by z — (%,2) denote the
injections.

i H*(Y) ® H*(Z) — H*(Y) is the first projection and j* is the second projection. Thus
for x € H*(Y) ® H*(Z), z = 0 is equivalent to i*z = 0 and j*z = 0.

i*(fUg) =i"fUi*g = fUO since g = (0,9) € H*(Z) has no H*(Y) component. Thus
i*(fUg) = 0. Similarly j*(fUg) =0. Thus fUg=0. O

Corollary 20.1.3 S' x St 2 St v Stv 82 (although they have the same homology groups).

H*(CP™):

Let z; € H¥(CP™) be a generator, choosing zo = 1 and z,,. Set 2 := 1.

n=2: Basisis 1, v = 21, = z».

By the lemma, Jg s.t. U g = p, and so g must be £x. Replacing o by —pu if necessary, we
may assume x Uz = u. Aside from the multiplications by the identity and those that must be
0 for degree reasons, this describes all of the multiplications in H*(CP?).
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n=3:

Consider i : CP""! —— CP". It is clear from the cellular chain complex that i*(z;) = 27
for j <n —1 (and i*z, = 0 for degree reasons). So in H*(CP3), x Uz = w5 (else applying i*
gives a contradiction to the above calculations in H*(CP?) ). Now by the lemma, z U (z U x)
must be a generator of H(CP?), so x Uz Ux = p (or at least we can choose u so that this is
true). This describe all the non-obvious multiplications in H*(CP?).

For general n: Using induction on n and the same argument as in the previous cases,
z; =xUzU- -z (j times). In other words, as a graded ring H * (CP") = Z[x]/(z"*") with
degree x = 2. Passing to the limit gives H*(CP>) = Z[z].

If we use Z/(2Z) coefficients, the same method shows that Hx(RP"); Z/(2Z2) = Z/(2Z)[z] /(=™ 1)
with degree © = 1 and H * (RP*);Z/(2Z) = Z/(27Z)|x].
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Chapter 21

Classification of Surfaces

Definition 21.0.4 A surface is a 2-dimensional manifold.

Definition 21.0.5 Let Sy and Sy be two manifolds of dimension n. The connected sum S;#.55
1s the manifold obtained by removing a disk D™ from Sy and Sy and gluing the resulting manifold
with boundary S* I1.S* to the cylinder S* x [0, 1].

Theorem 21.0.6 (a) Any compact orientable surface is homeomorphic to a sphere, or to the
connected sum

T2 .. #T?

(b) Any compact nonorientable surface is homeomorphic to the connected sum

Pi#... P#

where P is the projective plane RP2.

Alternative version of part (b) of Theorem 21.0.6:

Theorem 21.0.7 Any compact orientable surface is homeomorphic to the connected sum of an
orientable surface with either one copy of the projective plane P or one copy of the Klein bottle

K.
Proof of Theorem 21.0.6:

Definition 21.0.8 Euler Characteristic
The Euler characteristic of a topological space M s the alternating sum of the dimensions
of the homology groups (with rational coefficients):
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X(M) = ho(M) — hy(M) + ...
where h;j(M) = dim H;(M; Q).

For a manifold of dimension 2 equipped with a triangulation, the Euler characteristic is given
by
X(M)=V —E+F

where V' is the number of vertices, £ the number of edges and F' the number of faces. The
Euler characteristic is independent of the choice of triangulation.

Proposition 21.0.9 The Euler characteristic of a connected sum of surfaces S1 and Sy is given
by
X(S1#£52) = x(51) + x(S2) — 2

(This is proved by counting the number of vertices, edges and faces in a natural triangulation
of the connected sum.)

Lemma 21.0.10 The Euler characteristics of surfaces are as follows:

genus = 0
X(5%) =2

genus = g
X(T?# ... T*) =2 —2g

(the genus is the number of copies of T?)

(connected sum of n copies of the projective plane)
X(P#...#P)=2—n
(connected sum of K with genus g orientable surface)
X(K#T?4 ... #T%) = —2g
(connected sum of P with genus g orientable surface)
X(PH#T?*# .. . #T?*) =1-2g
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Lemma 21.0.11 Surfaces are classified by:
(i) whether they are orientable or nonorientable
(i) their Euler characteristic

Proof of Theorem 21.0.6:

1. Take a triangulation of the surface S. Glue together some (not all) of the edges to form
a surface D which is a closed disk. (This comes from a Lemma which asserts that if we glue
together two disks along a common segment of their boundaries, the result is again a disk.)
The edges along the boundary of D form a word where each edge is designated by a letter x;
or xy, with the same letter used to designate edges that are glued.

2. We now have a polygon D whose edges must be identified in pairs to obtain S. We
subdivide the edges as follows.

(i) Edges of the first kind are those for which the letter designating the edge appears with
both exponents +1 and —1.

(ii) Edges of the second kind are those for which the letter designating the edge appears
with only one exponent (+1 or —1)

Adjacent edges of the first kind can be eliminated if there are at least four edges. (See
Figure 1.17, p. 22, figure #2.)

3. Identify all vertices to a single vertex. If there are at least 2 different equivalence classes,
then the polygon must have an adjacent pair of vertices which are not equivalent, call them P
and Q.

Cut along the edge ¢ from @) to the other vertex of a. Then glue together the two edges
labelled a. The new polygon has one less vertex in the equivalence class of P. (See Figure 1.18,
p. 23, figure #3.)

Perform step 2 again if possible (eliminate adjacent edges). Then perform step 3 again,
reducing the number of vertices in the equivalence class of P. If more than one equivalence
class of vertices remains, repeat the procedure to reduce the number of equivalence classes of
vertices to 1, in other words we reduce to a polygon where all vertices are to be identified to a
single vertex.

4. Make all pairs of edges of the second king adjacent. (See Figure 1.19, p. 24, #4.) Thus
if there are no pairs of edges of the first kind, the symbol becomes

T1TX1T2T2 ... XTIy

In this case the surface is

S = P4 .. #P

(the connected sum of n copies of P).
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Otherwise there is at least one pair of edges of the first kind (label these ¢) One can argue
that there is a second pair of edges of the first kind interspersed (label these d. It is possible
to transform these so they are consecutive, so the symbol includes

cde td?

This corresponds to the connected sum of one copy of T? with a surface with fewer edges in its
triangulation. (See Figure 1.21, p. 25, #5.) O

Lemma 21.0.12
T?4#P =~ P4P4P

Remark 21.0.13 P#P = K This is because we can carve up the diagram representing the
Klein bottle, a square with two parallel edges identified in the same direction, and the two
remaining parallel edges identified in opposite directions. (See Figure 1.5, p. 10, #1) This is
the union of two copies of the Mobius strip along their boundary, using the fact that a Mobius
strip is the same as the complement of a disk in the real projective plane.

This reduces the proof of Lemma 21.0.12 to proving
Lemma 21.0.14 P#K = P#T

This is proved by decomposing a torus and a Klein bottle as the union of two rectangles.
We excise a disk from one of the rectangles, and glue a Mdobius strip to the boundary of the
excised disk (to form the connected sum of P with the torus or Klein bottle). The text (Massey,
see handout, Lemma 1.7.1) argues that the resulting objects are homeomorphic. Indeed, we
can regard this as taking the connected sum of a Md&bius strip with a torus or Klein bottle,
and then gluing a disk to the boundary of the Mébius strip. The first step (connected sum of
Mébius strip with torus or Klein bottle) yields two spaces that are manifestly homeomorphic.
So they remain homeomorphic after gluing a disk to the boundary of the Mobius strip. See
Figure 1.23, p. 27, #6. a

References: 1. William S. Massey, Algebraic Topology: An Introduction (Harcourt Brace
and World, 1967), Chapter 1.

(All figures are taken from Chapter 1 of Massey’s book.)

2. James R. Munkres, Topology (Second Edition), Chapter 12.
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Chapter 22

Group Structures on Homotopy
Classes of Maps

For basepointed spaces X, Y, recall that [ X, Y] denotes the based homotopy classes of based
maps from X to Y. In general [X, Y] has no canonical group structure, but we define concepts
of H-group and co-H-group such that [X,Y] has a natural group structure provided either Y
is an H-group or X is a co-H-group.

It is easy to check that if G is a topological group (regarded as a pointed space with the
identity as basepoint) then [X, G] has a group structure defined by [f][g] = [h], where h(z) is
the product f(z)g(x) in G. But a topological group is more than we need: all we need is a
group “up to homotopy”. We generalize topological group to H-group as follows:

A pointed space (H, e) is called an H-space if 3 a (continuous pointed) map m : H x H — H
such that . »

31 1

H Hx H H HxH

and
1u m 1y m

H H
are homotopy commutative, where i;(z) := (z,e) and is(X) := (e, z).
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An H-space is called homotopy associative if

1H xXm

HxHxH Hx 1y

m x H m

HxH—" H
If H is an H-space, a map c¢: H — H is called a homotopy inverse for H if
(1Hv*) (*alH)
H Hx H H Hx H
and
* m m *
H H

are homotopy commutative.
A homotopy associative H-space with a homotopy inverse is called an H-group.
An H-space is called homotopy abelian if

T
H HxH

H

is homotopy commutative, where 7" is the swap map T'(z,y) = (y, x).

Proposition 22.0.15 Let H be an H-group. Then ¥X, [X, H] has a natural group structure
given by [fllg] = [mo (f,g)]. If H is homotopy abelian then the group is abelian.

Remark 22.0.16 “Natural” means that any map q : W — X induces a group homomorphism
denoted ¢ : [X, H] — [W, H] defined by q* ([f]) = [f o q]. The assignment X s [X, H] is thus
a contravariant functor.

Proof:
Associative:
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mo (m x 1) o (f,9,h) = m(olu) x mo (£, 9,h) so (f)] = A(ellR).
Identity:

mo (x,f) =moijo f=1gof = fso[x][f] =[f] and similarly [f][x] = [f], and thus [*]
forms a 2-sided for [X, H].

Inverse:

Given [f], define [f]~! to be the class represented by co f. mo(f, f~1) = mo(1g,c)o(fx f) =
lgof = (fx)fox=xso[f][f!] = [¥] and similarly [f~'][f] = [*]. Thus [f~!] forms a 2-sided
inverse for f.

Finally, if H is homotopy abelian then [f][g] = mo(f,g) = moTo(f,g) = mo(g, f) = [g][f],
so that [X, H| is abelian. O

Two H-space structures m, m’ on X are called equivalent if m ~ m’ (rel %) as maps from
X x X to X. It is clear that equivalent H-space structures on X result in the same group
structure on [W, X].

A basepoint-preserving map f : X — Y between H-spaces is called an H-map if

Xfo_Xf,YxY

mx my

X Y

homotopy commutes.
An H-map f : X — Y induces, for any space A, a group homomorphism fy : [A, X] —
[A, Y] given by fx([g]) = [f o g].

Remark 22.0.17 The collection of H-spaces forms a category with H-maps as morphisms.
Examples
1. A topological group is clearly an H-group.

2. IR® has a continous (non-associative) multiplication as the “Cayley Numbers”, also called
“octonians” Q.

3. Loop space on X:

Given pointed spaces W and X, we define the function space X", also denoted Map, (W, X).
Set X" := {continuous f : W — X}. Topologize X" as follows: For each pair (K,U)
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where K C W is compact and U C X is open, let Vixy = {f € XV | f(K) C U}. Take
the set of all such sets V{x 1) as the basis for the topology on X v,

X5 is called the “loop space” of X and denote QX . Define a multiplication on QX which
resembles the multiplication in the group 71 (X) by m(f,g) :== f - g.

To show that m is continuous:

Let Vik,v) be a subbasic open set in Q.X. Write K = K'UK" where K’ = KN[0,1/2] and
K'"=Kn [1/2, 1] Then m_l(V(K?U)) = ‘/(L’,U) X ‘/(L”,U) where L' is the image of K’ under
the homeomorphism [0,1/2] — [0, 1] given by ¢ +— 2t and L” is the image of K" under
the homeomorphism [1/2,1] — [0, 1] given by ¢ + 2t — 1. Therefore m is continuous.

The facts that X is homotopy associative, that the constant map c¢,, is a homotopy
identity, and that f — f~!' (where f~1(t) = f(1 —t)) is a homotopy inverse follow,
immediately from the facts used in the proof that m (X, xg) is a group.

QX is an example of an H-group which is not a group. By definition a path from f to ¢
in QX is the same as a homotopy H : f =~ g rel(0,1). The group [S?, QX] defined using the
H-space structure on QX is clearly the same as m (X, x¢).

Remark 22.0.18 Given continous f : X — Y, it is easy to see that there is a continous
induced map QUf : QX — QY given by (2f)(«) :== foa. Thus the correspondence X — QX
defines a functor from the category of topological spaces to the category of H-spaces.

The preceding can be generalized as follows.
Observe that a pointed map AV B — Y is equivalent to a pair of pointed map A — Y,
B — Y. (In other words, AV B is the coproduct of A and B in the category of pointed
topological spaces.) We write f1g: AV B — Y for the map corresponding to f and g.
A pointed space X is called a co-H-space if 3 a (continuous pointed) map ¢ : X — X V X
such that
v

X 4 XVX X XVX

and
Ix Ly L 1y w11y

X X
are homotopy commutative.
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A co-H-space is called homotopy coassociative if

X v XVX
(0 Ix Ly
11
xvx Y vy xvx
If X is a co-H-space, a map c¢: X — X is called a homotopy inverse for X if
X v XVX X v XVvX
and
* 1xlec \x )AX
X X

are homotopy commutative.
A homotopy coassociative co-H-space with a homotopy inverse is called a co-H-group.
A co-H-space is called homotopy coabelian if

AN

XVX XVvX

is homotopy commutative, where 7" is the swap map.

Proposition 22.0.19 Let X be a co-H-group. Then for any pointed space Y, [X,Y] has a
natural group structure. If X coabelian then [X,Y] is abelian.

Proof: The group structure is given by [f][g] = [(fLg) o ¢¥] where f,g: X — Y. The proof is
essentially the same as the dual proof for H-groups with arrows reversed. Further, as before, a
map ¢ : Y — Z induces a group homomorphism gy : [X, Y] — [X, Z] defined by g4 ([f]) = [gof].
(The association Y +— [X,Y], ¢ — ¢ is a functor from topological spaces to groups.) |

Example of a co-H-group:
S™ is a co-H-space for n > 1. The map ¢ : S™ — S"V S§™ is given by “pinching” the equator
to a point.
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Thus for any pointed space X, m,(X) := [S™, X| has a natural group structure for n > 1,
called the nth homotopy group of X. Looking at the case n = 1, the group structure that we
get on [S1, X] is the same as that of the fundamental group.

More generally:

Let X be a topological space. Define a space denoted SX, called the (reduced) suspension
of X, by SX = (X x I)/((X x {0}) U (X x {1}) U (x x I)). For any X, SX becomes a
co-H-group by pinching the equator, X x {1/2}, to a point. That is, ¢ : SX — SX V SX by

o) (x,2t) in the first copy of SX ift <1/2;
"7;7 - . .
(x,2t — 1) in the second copy of SX ift > 1/2.

When ¢ = 1/2 the definitions agree since each gives the common point at which the two copies
of SX are joined.
This generalizes the preceding example since:

Lemma 22.0.20 SS™ is homeomorphic to S™.

Proof: Intuitively, think of S"*! as the one point compactification of R"*! and notice that after
removal of the point at which the identifications have been made, SS™ opens up to become an
open (n+ 1)-disk. For a formal proof, write S* as I*/9(I*) and notice that both SS™ and S™*+*
becomes quotients of I"™! with exactly the same identifications. |

Remark 22.0.21 As in the case of ), given f : X — Y there is an induced map Sf : SX —
SY defined by Sf(x,t) == (f(z),t) and so S defines a functor from the category of pointed

spaces to itself.

Theorem 22.0.22 For each pair of pointed spaces X andY there is a natural bijection between
the sets Map,(SX,Y) and Map,(X,QY). This bijection takes homotopic maps to homotopy
maps and thus induces a bijection [SX,Y]| — [X,QY]. Furthermore, the group structure on
[SX,Y] coming from the co-H-space structure on SX coincides under this bijection with that
coming from the H-space structure on QY .

Proof: Define ¢ : Map, (SX,Y) — Map, (X, QY) by ¢(f) = g where g(z)(t) = f(x,t). Notice
that g(x)(0) = f(z,0) = f(x) = yo and g(z)(1) = f(z,1) = f(x) = yo since the identified
subspace ((X x {0}) U (X x {1}) U (x x I)) is used as the basepoint of SX. Thus g(z) is an
element of QY.

Must show that ¢ is continuous.

Let g : X x I — SX denote the quotient map. Let V(x ) be a subbasic open set in 2Y.
Then ¢ '(Vikw)) = {z € X | f(x,k) € U Vk € K}. Pick z € g7 (Vk,y). By continuity
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of ¢ and f, for each k € K find basic open set A, x W, C X x I s.t. x € Ag, k € W, and
A Xx Wi, C (qo f)™ (U). {Wi}rex covers I so choose a finite subcover Wy, ..., W, and let
A=A, N NAg,. Thenz € Aand A C g (Vigu)) so z is an interior point of ¢~ (Vik 1))
and since this is true for arbitrary =, g~ (Vix,v)) is open. Therefore g is continuous.

Show ¢ is 1 — 1:

Clearly if 6(f) = 6(f") then f(x.t) = (6(F)@)(®) = (6(F)@)() = F(z,) for all a,¢
so f=1f.
Show ¢ is onto:

Given g : X — QY define: SX — Y by f(z,t) = (g(z))(t). Forallz, f(z,0) = (g(x))(0) =
yo and f(z,1) = (g9(x))(1) = yo and for all ¢, f(zo,t) = (9(x0))(t) = cy(t) = yo and thus f is
well defined.

Must show that f is continuous. Given open U C Y,

FHU) = {(x,t) € SX | (g9(=))(t) € U}.

By the universal property of the quotient map, showing that f~1(U) is open is equivalent to
showing that (f o q)~!(U) is open in X x I.
For a pair (z,t) € X x I:

Since ¢ is continuous A := ¢~ (V; ) C X is open. Thus A x I is an open subset of X x [
which contains (z,t), and if (a,t') € A x I then foq(a,t') = (g(a))(t) € U since g(a) takes all
of I to U. Thus Ax I C (f oq) '(U) and thus (z,t) is an interior point of A x I, and since
this is true for arbibrary (x,t), f is continuous. Therefore f lies in Map,(SX,Y) and clearly
o(f) =g, so ¢ is onto.

It is easy to see that f ~ f' < ¢(f) = &(f'). (e.g., if H : f >~ f' define (g,(2))(t) :=
H(z,t).)

To show that the group structures coincide:

f(x,2t) ift<1/2;

(P, t) = {f’(x, ot — 1) ift>1/2.

SO (gb(ff’)) () = <(gb(f)) (x)- (¢(f’)) (a:)) by the definition of multiplication of paths. Therefore
o(ff)=o(f)o(f). Thus ¢ is an isomorphism, or equivalently, the group structures coincide.
O

Corollary 22.0.23 7,(QX) = m,1(X) O

221



According to the previous theorem, there is a natural bijection between Map,(SX,Y’) and
Map, (X, Q2Y) where natural means that for any map j: A — X.

Map, (SX,Y) —¢> Map(X, QY)
(S5)* j*

Map,(SA,Y) —¢> Map(A4, QYY)

commutes, and similarly for any k:Y — Z

Map, (SX,Y) —¢> Map(X, QY)
(Sk)# kg

Map. (SX, Z) -2+ Map(X, 02)
For this reason, S and (2 are called adjoint functors. More generally:

Definition 22.0.24 Functors F': C'— D and G : D — C are called adjoint functors if there is
a natural set bijection ¢ : Homg(FX,Y) — Homp(X, GY') for all X in ObjC andY in Obj D.
F is called the left adjoint or co-adjoint and G is called the right adjoint or simply adjoint.

Another example: Let T : Vector Spaces/k — Algebras/k by sending V' to the tensor algebra on
V, and let J : Algebras/k — Vector Spaces/k be the forgetful functor. Then Homp,(TV, W) =
Homy s (V, JW) for any vector space V' and algebra W over k.

Let X be an H-space. Then QX has a second H-space structure (in addition to the one
coming from the loop-space structure) given by m’ : QX x QX — QX with m/ is defined by
m/(a, ) = v where v(t) = a(t)3(t) (where a(t)B(t) denotes the product mx (a(t), 3(t)) in the
H-space structure on X.

Theorem 22.0.25 Let X be an H-space. Then the H-space structure on QX induced from that
on X as above is equivalent to the one coming form the loop-space multiplication. Furthermore,
this common H -space structure is homotopy abelian.

Proof: In one H-space structure (af3)(s) = a(s)B(s), while in the other the product is

{a(23) if s <1/2;

(a-B)ls) := B(2s—1) ifs>1/2.
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We construct a homotopy by homotoping « until it becomes - c,,, and /3 until it comes c,, -
while at all times “multiplying” the paths in X using the H-space structure on X. Explicitly
H:QX xQX xI— QX by

a(2s/(t+1))5(0) if 2s <1—t
H(o, B,t)(s) =S a(2s/(t+1))B((2s +t—1)/(t+1)) ifl1—-t<25s<1+¢
a(0)B((2s +t—1)/(t+1)) if 25 > 1 +t;

The definitions agree on the overlaps do the function is well defined and is continuous.
Check that H is a homotopy rel x:

The basepoint of QX x QX is (¢zy, Czy)-

H ((Cags Cag, 1)) () = Towg = g Vs, t. Hence H(Cyy, Cay, ) = 4 Vt so H is a homotopy rel *.
Note: Although for arbitrary z, xoxr and xxy need not equal z, since multiplication by z is
only required to be homotopic to the identity rather that equal to the identity, it is nevertheless
true that zoxy = xg since multiplication is a basepoint-preserving map.

H(a,B,1)(s) = a(s)B(s) Vs which is the product of o and f in the H-space structure
induced from that on X.

Since a(0) = a(1) = B(0) = (1) = o,

Hio, 3,0)(s) = a(2s)5(0) %f 25 < 1; a(2s)x %f 25 <1; _ .
a(l)p(2s—1) if2s>1, zof(2s —1) if2s>1,
where a(s) = a(s)zy and 5’(5) = xofB(s). Since multiplication by z is homotopy to the

identity (rel), & ~ « (rel*) and similarly 3 ~ f (rel ¥). Thus the multiplications maps are
homotopic and so the two H-space structures are equivalent.

To show that this structure is homotopy abelian, observe there is a homotopy analogous to
H given by

a(0)B(2s/(t + 1)) if 25 <1 —t;
J(a,B,t)(s) = qa((2s+t—1)/(t+1))8(2s/(t+1)) if1-t<2s<1+1
a((2s+t—1)/(t+1))B(1) if 25 > 1 +t.

As before Ji(s) = a(s)B(s) but

2 if 25 < 1:
a(2s —1)zg  if 25 > 1.

Since Jy >~ (- a, we get that the H-space structure is homotopy abelian. |
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Corollary 22.0.26 Suppose Y is an H-space. Then for any space X the group structure on
[SX, Y] coming from the co-H-space structure on SX agrees with that coming from the H-space
structure on Y. Furthermore this common group structure is abelian.

Proof: By Theorem 22.0.22 there is a bijection from [SX,Y] = [X,QY] which is a group
isomorphism from [SX,Y] with the group structure coming from the suspension structure
on [SX], to [X, QY] with the group structure coming from the loop space H-space structure
on QY. It is easy to check that the group space structure on [SX, Y] coming from the H-space
structure on Y corresponds under this bijection with that on [X, QY] coming from the H-space
structure on Y. Since these H-space structures agree and are homotopy abelian, the result
follows. ]

Corollary 22.0.27 IfY is an H-space, m(Y') is abelian.

O
Corollary 22.0.28 For any spaces X and Y, [S*X,Y] is abelian.
Proof: [S*X,Y] = [SX, QY. |
Corollary 22.0.29 7,,(Y) is abelian for all Y when n > 2.

O
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22.1 Hurewicz Homomorphism

Suppose n > 1 and let ¢, be a generator of H,(S™). Define h : m,(X) — H,(X) by h([f]) :=
f«(tn) for a representative f : S™ — X. This is well defined by the homotopy axiom.

Check that h is a group homomorphism:

[fg] = [(fLg) o] where ¢ : S™ — S™ Vv S™ pinches the equator to a point.

H,(S™ Vv 8") =2 7 @& 7 generated by ey := ji(¢), ea := ji(¢), where jy,jp : S™ — S™V S C
S™ x S™ by j1(x) = (x,%) and jo(z) = (%, 7). ¥.(t) = €1 + e3. To determine (fLg).(e1) use the
commutative diagram

sn T gy g

1
Fefox flg

X

to obtain (fLg).(e1) = fi(¢). Similary (fLg).(e2) = g.(¢). Therefore h([fg]) = (fg)«(r) =
(fLg)s(er +e2) = fu(t) + g«(t) = h[f] + h[g] and so h is a homomorphism.

We now specialize to the case n = 1.

As before, let S,(X) denote the singular chain complex of X. Let exp be the generator of
S1(SY) defined by exp : Al = I — S where exp(t) = €*™. In S!, set v = 1 = exp(0) and
w = —1 =exp(1l). Clearly d(exp) = v—v = 0 so [exp] is a cycle and thus represents a homology
class in Hy(S").

Lemma 22.1.1 [exp] is a generator of Hy(S").

Proof: Set D := [~1,1], D := [0,1] and D~ := [~1,1]. Let f be the composite A" = [ =

D+ —L+ S where f(t) = ™ and let g be the composite A' = I = D~ —2+ S where
G(t) = e+ We have isomorphisms

~

Hy(D*, 8% ——— Hy(S', D7)
€XC1Ss101
~9 =~
7.2 Hy(S°) H,(SY)

w—wv is a generator of Hy(S°) so its image under the isomorphisms is a generator of Hy (S').
f € Si(D7) has the property that f = w — v so it represents the generator of Hy(D™,S?)
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which hits w — v under the isomorphism 9, and thus its image in S;(S1)/S;(D™) represents a
generator of Hy(S', D7). f+ g € S1(S") projects to f in S;(S')/S1(D™), and f + g is a cycle
so the homology class [f + g] is a generator of H(S). Since exp = f - g, we conclude the proof
by the following Lemma which shows that [exp] = [f + ¢].

Lemma 22.1.2 Let f,g: I — X such that g(0) = f(1). Then as elements of S1(X), f - g is
homologous to f + g.

Proof: Define T : A? — X by extending the map shown around the boundary:

f
This is possible since the map around the boundary is null homotopic.
OT = f—f-g+g, sof-gishomologous to f+ g. O

We will use [exp] for ¢1.

Theorem 22.1.3 (Baby Hurewicz Theorem)
Suppose X is connected. Then h : m(X) — Hy(X) is onto and its kernel is the commutator
subgroup of m(X). ie. Hi(X) = m(X)/(commutator subgroup) = abelianization of 7 (X).

Proof: Let zy be the basepoint of X.
Show that h is onto:
Let z = Y n;T; represent a homology class in H;(X). Thus 0 = 9z = > n,;(T;(1) — T;(0)).
Let 7,0 and 7;; be paths joining zg to T;(0) and T;(1) respectively.
Let S; = vio + T; — v € S1(X) Thus z = > n;S; since the 4’s cancel out, using 0z = 0.
(Each ; appears equally often with € = 0 as with e = 1.)
Set fi =, - Ty - ' € m(X).
Let f; denote the composite I —» [/ ~= S! Jxe T (X).
By the preceding Lemma, f; is homologous to v + 1Ty — vi1 = S; € S; (X). Therefore
RITA") = (ITfi)(n) = Ronifi] = o naSi] = [2].
Show ker h = commutator subgroup:
H,(X) is abelian so (commutator subgroup) C ker h.

Conversely, suppose f € ker h. Then, regarded as a generator of S;(X), f = 9z for some
A SQ(X )
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Write f = 9(>_n,T;) = > n;0T;. Let 0T; = a9 — a1 + ay2 and for j = 0, 1,2 choose paths
7ij joining xy to the endpoints of a;; as shown, making sure to always choose the same path ~;;
if a given point occurs as an endpoint more than once.

Set

G0 = Yo Vis'

gi1 = Yioi1 Vi

Gio = ViV

Set gi = giogi1 giz = Vi1 Qo Q2 Vi -

Since OéioOé;llOéiQ can be extended to a map on the interior (namely T;,) it is null homotopic,
so g; ~ *. Therefore [[;(g:)™ =1 € m(X). But f =Y. n,0T; = Y ni(cvio—aj;' +ay2) in the free
abelian group S7(X). This means that when terms are collected on the right, f remains with
coefficient 1 and all other terms cancel. Thus modulo the commutator subgroup the product
mi(gi)™ can be reordered to give f with the 7's cancelling out. Therefore, modulo commutators,
f =1so that f € (commutator subgroup). O
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Chapter 23

Universal Coeflicient Theorem

Theorem 23.0.4 Universal Coefficient Theorem — homology
Let G be an abelian group. Then

H,/(X,A;G) = H,/(X,A)®@G®Tor(H,—1(X,A),G)
More precisely there is a short exact sequence
0— H(X,A)®G — H(X,A;G) = Tor(H,1(X,A),G) - 0

This sequence splits (implying the preceding statement) but not canonically (the splitting requires
some choices).

Theorem 23.0.5 Universal Coefficient Theorem — cohomology
Let G be an abelian group. Then

HI(X, A; G) = Hom(H,(X, A), G) & Bxt(H, 1(X, 4), G)
More precisely there is a short exact sequence
0 — Ext(H,—1(X,A),G) - HI(X,A;G) - Hom(H,(X,A),G) — 0

This sequence splits (implying the preceding statement) but not canonically (the splitting requires
some choices).

Definition 23.0.6 Let R = Z and let M be a left Z-module. A free resolution of M is a
sequence of left Z-modules and an exact sequence

—C, 50505 50505 M =0 (23.1)

where all the C; are free.
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Free resolutions exist. To construct one, we choose € mapping a free module Cy onto M, then
choose d mapping a free module C onto Ker(e), etc.

Definition 23.0.7 To form Tor, we tensor the sequence (23.1) by G on the left, forming
G0, 500,15 ...
The resulting sequence is not exact. We define

Ker(d, : G®C)) - G® Cyq)
Im(d, : G®Cpp1 = GRCY)

Tor, (G, M) =

Similarly we define
Ker(d* : Hom(Cy, G) — Hom(Cyi1, G)
Im(d* : Hom(Cy—1,G) — Hom(C,, G)
We use ¢ = 1 for Ext and Tor. For ¢ > 2, we can arrange that Ext = Tor = 0.
Remark: if G = Q,R or C (a field of characteristic zero) we have H,(X;G) = H,(X)® G
and H"(X;G) = Hom(H"(X), G).
Remark: If H,, and H,_; are finitely generated, then H,(X;Z,) has

Ext,(G, M) =

e a Z, summand for every Z summand of H,
e a Z, summand for every Z,» summand of H, (for k > 1)

e a Z, summand for every Z,» summand of H,_, (for k > 1)

Remark: If A or B is free or torsion free, then Tor(A, B) =0
If H is free then Ext(H,G) = 0.

Ext(Z,, G) = G/nG.

Remark: If H,(X) and H,_;(X) are finitely generated with torsion subgroups 7, resp.
T,_1, then H*(X) = H,/T,, ® T,,_1.

Example:

Hj(RP"; Zy) =

Zy when H; = 7 or Zs,

Zz when Hj—l = Zg.

Example: orientable 2-manifolds of genus g

degree  H, H*

2 Z Z
1 7 1
0 Z Z
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Example: nonorientable 2-manifolds

degree H, H* H*(—,Z)
2 0 Loy L
1 7" ® Ly L VAR
0 Z Z Lo
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Chapter 24

Hodge Star Operator

Let M be a compact oriented manifold of dimension n.

Definition 24.0.8 The Hodge star operator is a linear map
0 QF (M) — QM)

which satisfies

[ ]
% 0% = (—1)kn=k)

a A xa = |al*vol
where vol is the standard volume form and |a|? is the usual norm on a(z) viewed as an
element of A*T*M.

The definition of the Hodge star operator requires the choice of a Riemannian metric on the

tangent bundle to M.
Let d be the exterior differential. Then d* := *dx is the formal adjoint of d, in the sense

that (d*a,b) = (a,db). This is because (xa, *b) = (a,b) for any a,b € Q¥M, so

(da,b) — /da*b: (—1>k/ad*b

(by Stokes’ theorem )
= (=) P (=1)"(a, xd * b)
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Definition 24.0.9 A k-form a on M is harmonic if da = d*a = 0.
Theorem 24.0.10 The set of harmonic k-forms is isomorphic to H*(M;R).

Theorem 24.0.11 If o is a harmonic k-form on M, its Poincare dual is represented by *ca.
The pairing between an element o and its Poincare dual is nondegenerate, i.e. for any «
fMa/\*a:() — a=0.

For the definition of the Hodge star operator, see J. Roe, Elliptic Operators, Topology and
Asymptotic Methods (Pitman, 1988). I have reproduced two pages from this book (p. 18-19)
which give the definition. See the link on this website.
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