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Chapter 1

Sets

Notation:
f : X → Y A ⊂ X B ⊂ Y
f(A) := {f(a) | a ∈ A} ⊂ Y
f−1(B) := {x ∈ X | f(x) ∈ B}

Note: f−1(∩α∈IVα) = ∩α∈If
−1(Vα)

f−1(∪α∈IVα) = ∪α∈If
−1(Vα)

f(P ∪Q) = f(P ) ∪ f(Q) but in general f(P ∩Q) 6= f(P ) ∩ f(Q)

Theorem 1.0.1 The following are equivalent (assuming the other standard set theory axioms):

1. Axiom of Choice

2. Zorn’s Lemma

3. Zermelo well-ordering principle

where the definitions are as follows.

Axiom of Choice: Given sets Aα for α ∈ I, Aα 6= ∅ ⇒
∏

α∈I 6= ∅
(i.e. may choose aα ∈ Aα for each α ∈ I to form an element of the product)

To state (2) and (3):

Definition 1.0.2 A partially ordered set consists of a set X together with a relation ≤ s.t.

1. x ≤ x ∀x ∈ X reflexive

2. x ≤ y, y ≤ z ⇒ x ≤ z transitive
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3. x ≤ y, y ≤ x⇒ x = y (anti)symmetric

Notation: b ≥ a means a ≤ b.
If X is a p.o. set:

Definition 1.0.3 1. m is maximal if m ≤ x⇒ m = x.

2. For Y ⊂ X, an element b ∈ X is called an upper boundfor Y if y ≤ b ∀y ∈ Y . an
element b ∈ X is called an lower boundfor Y if y ≥ b ∀y ∈ Y .

3. X is called totally ordered if ∀x, y ∈ X, either x ≤ y or y ≤ x. A totally ordered subset
of a p.o. set is called a chain.

4. X is called well ordered if each Y 6= ∅ has a least element. i.e. if ∀Y 6= ∅, ∃y0 ∈ Y s.t.
y0 ≤ y ∀y ∈ Y .

Remark 1.0.4 In contrast to “well-ordered”, which requires the element y0 to lie in Y , a “lower
bound” is an elt. of X which need not lie in Y .

Note: well ordered⇒ totally ordered (given x, y apply defn. of well ordered to the subset {x, y}),
but totally ordered 6⇒ well ordered (e.g. X = Z).

Zorn’s Lemma: A partially ordered set having the property that each chain has an upper
bound (the bound not necessarily lying in the set) must ahve a maximal element.

Zermelo’s Well-Ordering Principle: Given a set X, ∃ relation ≤ on X such that (X,≤) is
well-ordered.
Proof of Theorem:
2⇒ 3:

Given X, let S := {(A,≤A) | A ⊂ X and (A,≤A) well ordered }
Define order on S by:

(A ≤A) ≤ (B,≤B) if A ⊂ B and

{
a ≤B a′ ⇔ a ≤A a

′ ∀a, a′ ∈ B
a ≤ b ∀a ∈ A, b ∈ B − A

(i) This is a partial order

Trivial. e.g. Symmetry: If (A,≤A) ≤ (B,≤B) ≤ (A,≤A) then A ⊂ B ⊂ A so A = B and
defns. imply order is the same.

(ii) If C = {(A,≤A)} is a chain in S then (Y := ∪A∈C,≤Y ) is an upper bound for C where ≤Y

is defined by:
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If y, y′ ∈ Y , find A,A′ ∈ C s.t. y ∈ A, y′ ∈ A′.

C chain⇒ A,A comparable⇒ larger (say A) contains both y, y′.

So define y ≤Y y′ ⇔ y ≤A y
′.

To qualify as an upper bound for C, must check that Y ∈ S. i.e. Show Y is well-ordered.

Proof: For ∅ 6= W ⊂ Y , find A0 ∈ C s.t. W ∩ A0 6= ∅.

A0 ∈ S ⇒ A0 well-ordered⇒ W ∩ A0 has a least elt. w0.

∀w ∈ W, ∃A ∈ C s.t. w ∈ A.
C chain⇒ A0, A comparable in S.
If A ⊂ A0 then w ∈ A0 so w0 ≤ w (w0 = least elt. of A0).

If A0 ⊂ A then w0 ≤ w by defn. of ordering on S.
Therefore w0 ≤ w ∀w ∈ W so every subset of Y has a least elt.

Therefore Y is well-ordered.

Hence (Y,≤Y ) belongs to S and forms an upper bound for C.
So Zorn applies to S. Therefore S has a maximal elt. (M ≤M).

If M 6= X, let x ∈ X −M and set M ′ :=M ∪ {x} with x ≥ a ∀a ∈M .

Then (M ′,≤) 6≤ (M,≤). ⇒⇐
Therefore M = X.

Hence ≤M is a well-ordering on X.

3⇒ 1:
Well order ∪αAα. For each α, let aα := least elt. of Aα. Then (aα)α∈A is an elt. of

∏
αAα.

Standard consequences of Zorn’s Lemma:

1. Every vector space has a basis. (Choose a maximal linearly independent set)

2. Every proper ideal of a ring is contained in a maximal proper ideal

3. There is an injection from N to every infinite set.
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1.1 Ordinals

Definition 1.1.1 If W is well ordered, an ideal in W is a subset W ′ s.t. a ∈ W ′, b ≤ a⇒ b ∈
W ′.

Note: Ideals are well-ordered.

Lemma 1.1.2 Let W ′ be an ideal in W . Then either W ′ = W or W ′ = {w ∈ W | w < a} for
some a ∈ W .

Proof: If W ′ 6= W , let a be least elt. of W −W ′. If x < a then x ∈ W ′.
Conversely if x ∈ W ′:
If a ≤ x then a ∈ W ′ ⇒⇐
Therefore x < a.

Corollary 1.1.3 If I, J are ideals of W then either I ⊂ J or J ⊂ I.

Notation: Inita := {w ∈ W | w < a} called an initial interval

Proof of Cor. If I = Inita and J = Initb, compare a and b.

Theorem 1.1.4 Let X, Y be well ordered. Then

either a) Y ∼= X

or b) Y ∼= an initial interval of X

or c) X ∼= an initial interval of Y

The relevant iso. is always unique.

Lemma 1.1.5 A, B well-ordered. Suppose ζ : A → B is a morphism of p.o. sets mapping
A isomorphically to an ideal of B. Let f : A → B be an injection of p.o. sets. Then ζ(a) ≤
f(a) ∀a ∈ A.

Proof: If non-empty {a ∈ A | ζ(a) > f(a)} has a least elt. a0.
ζ(a0) > f(a0).
Since Im ζ is an ideal, f(a0) = ζ(a) for some a ∈ A.
ζ(a0) > ζ(a)⇒ a0 > a (ζ p.o set injection)
Choice of a0 ⇒ f(a0) = ζ(a) ≤ f(a)
⇒ a0 ≤ a (f p.o. set injection)
⇒⇐
Therefore ζ(a) ≤ f(a) ∀a.
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Proof of Thm. From Lemma, if ζ1, ζ2 are both isos. from A onto ideals of B (not necess. the
same ideal)
∀a, ζ1(a) ≤ ζ2(a) ≤ ζ1(a)⇒ ζ1(a) = ζ2(a).
Therefore ζ1 = ζ2. So uniqueness part of thm. follows.

Claim: X 6∼= an initial interval of itself
Proof: If g : X ∼= I where I = Inita,

I
j- X and I

j- X
g∼= I

j- X map I isomorphically onto an ideal of X. (i.e. If
b ≤ jgjx = g(jx) ∈ I then b ∈ I since I ideal ⇒ b = g(y) some y. Then g(y) ≤ g(jx) ⇒ y ≤
jx⇒ y ∈ I ⇒ y = j(y), so b ∈ Im jgj.)

Therefore j = jgj (Lemma).
Impossible since jg(a) ∈ Im j whereas g(a) 6∈ Im jgj (i.e. a > jc ∀x ∈ I ⇒ jg(a) >

jgj(x)⇒ jg(a) 6∈ Im jgj)
Therefore at most one of (a), (b), (c) holds.
Let Σ := set of ideals of X which are isomorphic to some ideal of Y , ordered by inclusion.
(K := Σ = ∪I∈ΣI) is an ideal in X
For each I ∈ Σ, let ζI : I → Y be the unique map taking I isomorphically onto an ideal

of Y .
Therefore If J ⊂ I, ζJ = ζI |J .
So the ζI ’s induce a map ζ : K → Y which takes K isomorphically to an ideal of Y . (i.e. If

y < ζ(K), find I s.t. k ∈ I. Then ζI iso. to its image ⇒ y = ζI(l) for some l. Therefore Im ζ
is an ideal. And ζ is an injection: Remember, given two elts. a ∈ I, a′ ∈ I ′ either a ≤ a′ in
which case a ∈ I ′ or reverse is true.)

Therefore K ∈ Σ.
If (both) K 6= X and ζ(K) 6= Y , let x, y be least elts. of X −K, Y − ζ(K) respectively.

Extend ζ by defining ζ(x) = y to get an iso. from K ∪ {x} to the ideal ζ(K) ∪ {y} of Y .
Contradicts defn. of K ⇒⇐

So either K = X or ζ(K) = Y or both, giving the 3 cases.

Corollary 1.1.6 Let g : X → Y be an injective poset morphism between between well-ordered
posets. Then

either a) X ∼= Y

or b) X ∼= initial interval of Y

(i.e. Y 6∼= initial interval of X in previous thm.)
Proof: If h : Y ∼= initial interval of X then

f : Y
h- initial interval of X = Init(a) →֒ X

g- Y is an injection from Y to Y .
Applying earlier Lemma with ζ = 1Y gives g ≤ f(y) ∀y ∈ Y .
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But Im f ⊂ Init
(
g(a)

)
so y < g(a) ∀y ∈ Y (i.e. y ≤ f(y) < g(a))

⇒⇐ (letting y = g(a))

Definition 1.1.7 An ordinal is an isomorphism class of well ordered sets.

(Generally we refer to an ordinal by giving a representative set.)

Example 1.1.8

1. n := {1, . . . , n} standard order

2. ω := N standard order

3. ω + n := N∐ n with the ordering x < y if x ∈ N and y ∈ n and standard ordering if both
x, y ∈ N or both x, y ∈ n
Note: ∐ := disjoint union (i.e. union of N with a set isomorphic to n containing no elts.
of N.)

4. 2ω = N∐ N)

Note: For any ordinal gamma there is a “next” ordinal γ + 1, but there is not necessarily
an ordinal τ such that γ = τ + 1.

Transfinite induction principle: Suppose W is a well ordered set and {P (x) | x ∈ W} is a
set of propositions such that:

(i) P (x0) is true where x0 is the least elt. of W
(ii) P (y) true for ∀ y < x⇒ P (x) true

Then P (x) is true ∀ x.

1.2 Cardinals

Theorem 1.2.1 (Shroeder-Bernstein). Let X, Y be sets. Then

1. Either ∃ injection X →֒ Y or ∃ injection Y →֒ X.

2. If both injections exist then X ∼= Y
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Proof: 1. Choose well ordering for X and for Y . Then use iso. of one with other or with
ideal of other to define injection.

2. Suppose i : X →֒ Y and j : Y →֒ X. Choose well ordering for X and Y . If ∃x ∈ X s.t. X
is bijection with Init(x), let x0 be least such x. So in this case X is bijective with Init(x0) but
not with any ideal of Init(x0). Replacing X by Init(x0) we may assume that X is not bijective
with any of its ideals. (And in the case where 6 ∃x ∈ X s.t. X is bijective with Init(x) then
this is clearly also true.) Similarly may assume that Y well ordered such that it is not bijective
with any of its ideals. Assuming X 6∼= Y , one is iso. to an ideal of the other. Say Y ∼= Init(x).
The inclusion i : X →֒ Y induces a new well-order (X,≺) on X. from that on Y . By earlier
Corollary, either ∃ iso. ζ : (X,≺) → Y or ∃ iso. ζ : (X ≺) → Init(y) for some y ∈ Y . In the

former case we are finished, so suppose the latter. (X,≺))
ζ∼= Init(y) ⊂ - Y

∼=- Init(x) gives
a bijection from X to an initial interval of X. (Note: Image of init interval under iso. is an init
interval, and an init interval within an init interval is an init interval.)
⇒⇐
Therefore X is bijective with Y .

Definition 1.2.2 A cardinal is an isomorphism class of sets. (In this context “isomorphism”
means “bijection”.)

cardX = cardY means ∃ bijection from X to Y .
cardX ≤ cardY means ∃ injection from X to Y .

(Thus previous Thm. says: cardX ≤ cardY and cardY ≤ cardX ⇒ cardX = cardY )

1.3 Countable and Uncountable Sets

Definition 1.3.1 A set is called countable if either finite or numerically equivalent (i.e. ∃ a
bijection) to the nature numbers N. A set which is not countable is called uncountable.

Example 1.3.2 1. Even natural numbers

2. Integers

3. Positive rational numbers Q+. Proof: Define an ordering on Q+ by a/b ≺ c/d if(
a+ b < c+ d or (a+ b = c+ d and a < c)

)
where a/b, c/d are written in reduced form.

e.g. 1, 1/2, 2, 1/3, 3, 1/4, 2/3, 3/2, 4, 1/5, 5, . . .

For f ∈ Q+, let Sr = x ∈ Q+ | x ≤ r}. This set is finite for each r so define f(r) = ‖Sr|.
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Proposition 1.3.3 A subset of a countable set is countable.

Proof: Let A be a subset of X and let f : X → N be a bijection. Define g : A → N by
g(a) :=

∣∣{b ∈ A | f(b) ≤ f(a)}
∣∣.

Proposition 1.3.4 Let g : X → Y be onto. If X is countable then Y is.

Proof: Let f : X → N be a bijection. For y ∈ Y , set h(y) := min{f(x) | g(x) = y}. Then h
is a bijection between Y and some subset of N so apply prev. prop.

Proposition 1.3.5 X, Y countable ⇒ X × Y countable.

Proof: Use diagonal process as in pf. that rationals are countable. (Exercise.)

Theorem 1.3.6 (Cantor). R is uncountable.

Proof: Suppose ∃ bijection f : R → N. Let g : N → R be the inverse bijection. For each
n ∈ N define

an :=

{
1 if nth interger after decimal pt. in decimal expansion of g(n) is not 1

2 if nth interger after decimal pt. in decimal expansion of g(n) is 1

Therefore an 6= nth integer after dec. pt. in the dec. expansion of g(n). Let a be the real
number represented by the decimal 0.a1a2a3 · · · . (i.e. a is defined as the limit of the convergent
series a1/10+a2/100+a3/1000+ . . .+an/(10

n)+ . . ..) Let f(a) = m or equivalently g(m) = a.
Then am = mth integer after dec. pt. in dec. expansion of g(m), contradicting defn. of am.
⇒⇐
Therefore no such bijection f exists.
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Chapter 2

Topological Spaces

2.1 Metric spaces

Definition 2.1.1 A metric space consists of a set X together with a function d : X×X → R+

s.t.

1. d(x, y) = 0⇔ x = y

2. d(x, y) = d(y, x) ∀x, y

3. d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z triangle inequality

Example 2.1.2 Examples

1. X = Rn

2. X = {continuous real-valued functions on [0, 1]}
d(f, g) = supt∈[0,1] |f(t)− g(t)|

3. X = {bounded linear operators on a Hilbert space H}
d(f, g) = supx∈H ||A(x)−B(x)|| =: ||A−B||

4. X any

d(x, y) =

{
0 x = y
1 x 6= y

12



Notation:
Nr(a) = {x ∈ X | d(x, a) < r} open r-ball centred at a

Nr[a] = {x ∈ X | d(x, a) ≤ r} closed r-ball centred at a

Definition 2.1.3 A map φ : X → Y is continuous at a if ∀ǫ > 0 ∃δ > 0 s.t. d(x, a) < δ ⇒
d
(
φ(x), φ(a)

)
< ǫ. φ is called continous if φ is continuous at a for all a ∈ X.

Equivalently, φ is continuous if ∀ǫ ∃δ such that φ
(
Nδ(a)

)
⊂ Nǫ

(
φ(a)

)
.

Definition 2.1.4 A sequence (xi)i ∈ N of points in X converges to x̄ ∈ X if ∀ǫ, ∃M s.t.
n ≥M ⇒ xi ∈ Nǫ(x̄)

We write (xi)→ x̄.
Exercise: (xi)→ x in X ⇔ d(xi, x)→ 0 in R.

Proposition 2.1.5 If (xi) converges to x̄ and (xi) converges to ȳ then x = y.

Proof: Show d(x, y) < ǫ ∀ǫ.

Proposition 2.1.6 f : X → Y is continuous ⇔
(
(xi)→ x̄⇒

(
f(xi)

)
→ f(x̄)

)

Proof: ⇒ Suppose f continuous. Let (xi)→ x̄.
Given ǫ > 0, ∃δ s.t. f

(
Nδ(x̄)

)
⊂ Nǫ(x̄)

Since (xi)→ x̄, ∃M s.t. n ≥M ⇒ xi ∈ Nδ(x̄) ∴ n ≥M ⇒ f(xi) ∈ Nǫ

(
f(x̄)

)
.

⇐ Suppose that
(
(xi)→ x̄⇒

(
f(xi)

)
→ f(x̄)

)

Assume f not cont. at a for some a ∈ X. Then ∃ǫ > 0 s.t. there is no δ s.t. f
(
Nδ(x̄)

)
⊂

Nǫ(x̄). Thus ∃ǫ > 0 s.t. for every δ there is an x ∈ Nδ(x̄) s.t. f(x) 6∈ Nǫ(x̄) Therefore
we can select, for each integer n, an xn ∈ N1/n(x̄) s.t. f(xn) 6∈ Nǫ(x̄). Then (xn) → x but
f(xn) 6→ f(x̄).⇒⇐

Definition 2.1.7 An open set is a subset U of X s.t. ∀x ∈ U existsǫ s.t. Nǫ ⊂ U .

Proposition 2.1.8

1. Uα open ∀α⇒ ∪α∈IUα is open

2. Uα open ∀α, |I| <∞⇒ ∪α∈IUα is open

Proof:

13



1. Let x ∈ V = ∪α∈IUα. So x ∈ Uα for some α.

∴ Nǫ ⊂ Uα ⊂ V for some ǫ.

2. Number the sets U1, . . . , Un.

Let x ∈ V = ∩n
j=1Uj. So ∀j ∃ǫj s.t. Nǫj(x) ⊂ Uj .

Let ǫ = min{ǫ1, . . . , ǫn}. Then Nǫ(x) ⊂ V .

Note: An infinite intersecion of open sets need not be open. For example, ∩n≥1(−1/n, 1/n) =
{0} in R.

Lemma 2.1.9 Nr(x) is open ∀x and ∀r > 0.

Proof: Let y ∈ Nr(x). Set d = d(x, y). Then Nr−d(y) ⊂ Nr(x) (and r − d > 0 since
y ∈ Nr(x)).

Corollary 2.1.10 U is open ⇔ U = ∪Nα where each Nα is an open ball

Proof: ⇐ Nα open ∀α so ∪Nα is open. ⇒ If U open then for each x ∈ U, ∃ǫx s.t. Nǫx ⊂ U .
U = ∪x∈UNǫx(x).

Proposition 2.1.11 f : X → Y is continuous ⇔ ∀ open U ⊂ Y , f−1(U) is open in X

Proof: ⇒ Suppose f continuous. Let U ⊂ Y be open.
Given x ∈ f−1(U), f(x) ∈ U so ∃ǫ > 0 s.t. Nǫ

(
f(x)

)
⊂ U . Find δ > 0 s.t. f

(
Nδ(x)

)
⊂

Nǫ

(
f(x)

)
. Then Nδ(x) ⊂ f−1

(
Nǫ

(
f(x)

))
⊂ f−1(u).

⇐ Suppose that the inverse image of every open set is open.
Let x ∈ X and assume ǫ > 0.
Then x ∈ f−1

(
Nǫ

(
f(x)

))
and f−1

(
Nǫ

(
f(x)

))
is open so ∃δ s.t. Nδ(x) ⊂ f−1

(
Nǫ

(
f(x)

))

That is, f
(
Nδ(x)

)
⊂ Nǫ

(
f(x)

)

∴ f continuous at x.

Note: Although the previous Prop. shows that knowledge of the open sets of a metric space
is sufficient to determine which functions are cont., it is not sufficient to determine the metric.
That is, different metrics may give rise to the same collection of open sets.
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2.2 Norms

Let V be a vector space of F where F = R or F = C.

Definition 2.2.1 A norm on V is a function V → R, written x 7→ ||x||, which satisfies

1. ||x|| ≥ 0 and ||x|| = 0⇔ x = 0.

2. ||xy|| ≤ ||x||+ ||y||

3. ||αx|| = |α| ||x|| ∀α ∈ F, x ∈ V
Given a normed vector space V , define metric by d(x, y) = ||x− y||.

Proposition 2.2.2 (V, d) is a metric space

Proof: Check definitions.

2.3 Topological spaces

Definition 2.3.1 A topological space consists of a set X and a set T of subsets of X s.t.

1. ∅ ∈ T , X ∈ T

2. For any index set I, if Uα ∈ T ∀α ∈ I, then ∪α∈IUα ∈ T .

3. U, V ∈ T ⇒ U ∩ V ∈ T .
Definition 2.3.2 Open sets

The subsets of X which belong to T are called open.

If x ∈ U and U is open then U is called a neighbourhood of X.
If S ⊂ T has the property that each V ∈ T can be written as a union of sets from S, then

S is called a basis for the topology T .
If S ⊂ T has the property that each V ∈ T can be written as the union of finite intersections

of sets in S then S is called a subbasis, in other words V = ∪α (∩i1,...,iαSiα)
Given a set X and a set S ⊂ 2X (the set of subsets of X), ∃! topology T on X for which

S is a subbasis. Namely, T consists of all sets formed by taking arbitrary unions of finite
intersections of all sets in S.

(Have to check that the resulting collection is closed under unions and finite intersections
— exercise)

In contracts, a set S ⊂ 2X need not form a basis for any topology on X. S will form a basis
iff the intersection of 2 sets in S can be written as the union of sets in S.

15



Definition 2.3.3 Continuous Let f : X → Y be a function between topological spaces. f is
continuous if U open in Y ⇒ f−1(U) open in X.

Note: In general f(open set) is not open. For example, f = constant map : R→ R.

Proposition 2.3.4 Composition of continuous functions is continuous.

Proof: Trivial

Proposition 2.3.5 If S is a subbasis for the topology on Y and f−1(U) is open in X for each
U ∈ S then f is continuous.

Proof: Check definitions.

2.4 Equivalence of Topological Spaces

Recall that a category consists of objects and morphisms between the objects.
For example, sets, groups, vector spaces, topological spaces with morphisms given respec-

tively by functions, group homomorphisms, linear transformations, and continuous functions.
(We will give a precise definition of category later.)
In a any category, a morphism f : X → Y is said to have a left inverse if ∃g : Y → X s.t.

g ◦ f = 1X .
A morphism f : X → Y is said to have a right inverse if ∃g : Y → X s.t. f ◦ g = 1Y .
A morphism g : Y → X is said to be an inverse to f is it is both a left and a right inverse.

In this case f is called invertible or an isomorphism.

Proposition 2.4.1

1. If f has a left inverse g and a right inverse h then g = h (so f is invertible)

2. A morphism has at most one inverse.

Proof:

1. Suppose g ◦ f = 1x and f ◦ h = 1Y .

Part of the definition of category requires that composition of morphisms be associative.

Therefore h = 1X ◦ h = g ◦ f ◦ h = g ◦ 1Y = g.

2. Let g, h be inverses to f . Then in particular g is a left inverse and h a right inverse so
g = h by (1).

16



Intuitively, isomorphic objects in a category are equivalent with regard to all properties in
that category.

Some categories assign special names to their isomorphisms. For example, in the category
of Sets they are called “bijections”. In the category of topological spaces, the isomorphisms are
called “homeomorphisms”.

Definition 2.4.2 Homeomorphism A continuous function f : X → Y is called a homeo-
morphism if there is a continuous function g : Y → X such that g ◦ f = 1X and f ◦ g = 1Y .

Remark 2.4.3 Although the word “homeomorphism” looks similar to “homomorphism” it is
more closely analogous to “isomorphism”.

Note: In groups, the set inverse to a bijective homomorphism is always a homomorphism so a
bijective homomorphism is an isomorphism. In contrast, a bijective continuous map need not
be a homeomorphism. That is, its inverse might not be continuous. For example

X = [0, 1) Y = unit circle in R2 = C
f : X → Y by f(t) = e2πit.

2.5 Elementary Concepts

Definition 2.5.1 Complement If A ⊂ X, the complement of A in X is denoted XrA or Ac.

Definition 2.5.2 Closed A set A is closed if its complement is open.

Definition 2.5.3 Closure The closure of A (denoted A) is the intersection of all closed subsets
of X which contain A.

Proposition 2.5.4 Arbitrary intersections and finite unions of closed sets are closed.

Definition 2.5.5 Interior The interior of A (denoted
◦

A or IntA) is the union of all open
subsets of X which contained in A.

Proposition 2.5.6 x ∈
◦

A⇔ ∃U ⊂ A s.t. U is open in X and x ∈ U .

Proof: ⇒ If x ∈
◦

A, let U =
◦

A.

⇐ x ∈ U ⊂ A. Since U is open, U ⊂
◦

A, so x ∈ A.
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Proposition 2.5.7
(
A
)c

=
◦

(Ac)

Proof: Exercise

Corollary 2.5.8 If x 6∈ A then ∃ open U s.t. x ∈ U and U ∩ A = ∅.

Definition 2.5.9 Dense A subset A of X is called dense if Ā = X.

Definition 2.5.10 Boundary Let X be a topological space and A a subset of X. The boundary
of A (written ∂A) is

{x ∈ X | each open set of X containing x contains at least one point from A

and at least one from Ac}

Proposition 2.5.11 Let A ⊂ X

1. ∂A = A ∩ Ac = ∂(Ac)

2. ∂A is closed

3. A is closed ⇔ ∂A ⊂ A

Proof:

1. Suppose x ∈ ∂A.
If x 6∈ A then ∃ open U s.t. x ∈ U and U ∩ A = ∅.
Contradicts x ∈ ∂A⇒⇐
∴ ∂A ⊂ A.

Similarly ∂A ⊂ Ac.

∴ ∂A ⊂ A ∩ Ac.

Conversely suppose x ∈ A ∩ Ac.

If U is open and x ∈ U then

x ∈ A⇒ U ∩ A 6= ∅ and
x ∈ Ac ⇒ U ∩ Ac 6= ∅
True ∀ open U so x ∈ ∂A.
∴ A ∩ Ac ⊂ ∂A.
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2. By (1), ∂A is the intersection of closed sets

3. ⇒ Suppose A closed

∂A = A ∩ Ac ⊂ A = A (since A closed)

⇐ Suppose A closed.

Let x ∈ A. Then every open U containing x containe a point of A.

If x 6∈ A then every open U containing x also contains a point of Ac, namely x.

In this case x ∈ ∂A ⊂ A⇒⇐
∴ A ⊂ A so A = A and so A is closed.

2.6 Weak and Strong Topologies

Given a set X, topological space Y,S and a collection of functions fα : X → Y then there is a
’weakest topology on X s.t. all fα are continuous’:

namely intersect all the topologies on X under which all fα are continuous.
Given a set X, a topological space W and functions gα : W → X we can form T , the

strongest topology on X s.t. all gα are continuous. Define T by U ∈ T ⇔ g−1
α (U) is open in

W ∀α.
Strong and weak topologies Given X, a topology on X is ’strong’ if it has many open sets,
and is ’weak’ if it has few open sets.

Extreme cases:
(a) T = 2X is the strongest possible topology on X. With this topology any function

X → Y becomes continuous.
(b) T = {∅, X} is the weakest possible topology on X. With this topology any function

W → X becomes continuous.

Proposition 2.6.1 If Tα are topologies on X then so is ∩α∈ITα.

Common application: Given a set X, a topological space (Y,S) and a collection of functions
fα : X → Y then there is a ’weakest topology on X s.t. all fα are continuous’. Namely, intersect
all the topologies on X under which all fα are continuous.

Similarly, given a set X, a topological space (W,P) and functions gα : W → X, we can
form T which is the strongest topology on X s.t. all gα are continuous. Explicitly, define T by
U ∈ T ⇔ g−1

α (U) is open in W ∀α.
Example: H = Hilbert space.
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B(H) = bounded linear operators on H
Some common topologies on B(H):
(a) Norm topology: Define

||A|| = sup
x∈H,||x||=1

||A(x)||

A norm determines a metric, which determines a topology.
(b) Weak topology: For each x, y ∈ H, define a function fx,y : B(H)→ C by

A 7→ (Ax, y)

The weak topology on B(H) is the weakest topology s.t. fx,y is continuous ∀x, y.
(c) Strong topology: For each x ∈ H define a function gx : B(H)→ R by

A 7→ ||A(x)||
The strong topology is the weakest topology on B(H) s.t. gx is continuous ∀x ∈ H.

Definition 2.6.2 Subspace topology
Let X be a topological space, and A a subset of X. The subspace topology on A is the weakest

topology on A such that the inclusion map A→ X is continuous.
Explicitly, a set V in A will be open in A iff V = U ∩ A for some open U of X.

Definition 2.6.3 Quotient spaces
If X is a topological space and ∼ an equivalence relation on X, the quotient space X/∼

consists of the set X/∼ together with the strongest topology such that the canonical projection
X → X/∼ is continuous.

Special case: A a subset of X. x ∼ y ⇔ x, y ∈ A. In this case X/∼ is written X/A.
For example, if X = [0, 1] and A = {0, 1} then X/A ∼= circle.
(Exercise: Prove this homeomorphism between X/A and the circle.)

Example 2.6.4 Examples

1. Spheres:

Sn = {x ∈ Rn+1 | ||x|| = 1}

2. Projective spaces:
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(a) Real projective space RP n: Define an equivalence relation on Sn by x ∼ −x. Then
RP n = Sn/∼

with the quotient topology.

Thus points in RP n can be identified with lines through 0 in Rn+1, in other words
identify the equivalence class of x with the line joining x to −x.
Similarly

(b) Complex projective space CP n:

S2n+1 ⊂ R2n+2 = Cn+1.

Define an equivalence relation x ∼ λx for every λ ∈ S1 ⊂ C where λx is formed by
scalar multiplication of C on Cn+1. Then

CP n = S2n+1/∼
with the quotient topology. The points correspond to complex lines through the origin
in Cn+1.

(c) Quaternionic projective space Hn

S4n+3 ⊂ R4n+4 = Hn+1

Define x ∼ λx for every λ ∈ S3 ⊂ H where λx is formed by scalar multiplication of
H on Hn+1.

HP n = S4n+3/∼
with the quotient topology.

3. Zariski topology:

(This is the main example in algebraic geometry.)

R is a ring.

SpecR = {prime ideals in R}
Define Zariski topology on SpecR as follows: Given an ideal I of R, define V (I) = {P ∈
Spec(R) | I ⊂ P}.
Specify the topology by declaring the sets of the form V (I) to be closed.

To show that this gives a topology, we must show this collection is closed under finite
unions and arbitrary intersections.

This follows from
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Lemma 2.6.5

(a) V (I) ∪ V (J) = V (IJ)

(b) ∩α∈KV (Iα) = V (
∑

α∈K Iα.

4. Ordinals:

Let γ be an ordinal.

Define X = {ordinals σ | σ ≤ γ}, where for ordinals σ and γ, σ < γ means that the
well-ordered set representing σ is isomorphic to an initial interval of that representing γ.

Recall the Theorem: For two well-ordered sets X and Y either X ∼= Y or X ∼= initial
interval of Y or Y ∼= initial interval of X. Thus all ordinals are comparable.

Define a topology on X as follows.

For w1.w2 ∈ X define Uw1,w2 = {σ ∈ X|w1 < σ < w2}. Here allow w1 or w2 to be ∞.

Take as base for the open sets all sets of the form Uw1,w2 for w1, w2 ∈ X Note that this
collection of sets is the base for a topology since it is closed under intersection,

in other words Uw1,w2 ∩ Uw′1,w′
2
= Umax{w1.w′

1}min{w2,w′
2}
.

Definition 2.6.6 Product spaces
The product of a collection {Xα} of topological spaces is the set X =

∏
αXα with the topology

defined by: the weakest topology such that all projection maps πα : X → Xα are continuous.

Proposition 2.6.7 In
∏

αXα sets of the form
∏

α Uα for which Uα = Xα for all but finitely
many α form a basis for the topology of X.

Proof: Let S ⊂ 2X be the collection of sets of the form
∏

α Uα.
Intersection of two sets in S is in S so S is the basis for some topology T .

Claim: In the topology T on X, each πα is continuous.
Proof: Let U ⊂ Xα0 be open.

Then π−1
α0
(U) = U ×∏α 6=α0

Xα ∈ S ⊂ T
∴ πα0 is continuous.

Claim: If T ′ is any topology s.t. all πα are continuous then S ⊂ T (and thus T ⊂ T ′)
Proof Let V = Uα1 × Uα2 × . . .× Uαn

×∏α 6=α1,...,αn
Xα ∈ S.

Then V = π−1
α1
Uα1 ∩ π−1

α2
Uα2 ∩ · · · ∩ π−1

αn
Uαn

which must be in any topology in which all πα
are cont.

∴ T = weakest topology on X s.t. all πα are cont.
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Note: A set of the form
∏

α Uα in which Uα 6= Xα for infinitely many α will not be open.

Proposition 2.6.8 Let X =
∏

α∈I Xα. Then πα : X → Xα is an open map ∀ α.

Proof: Let U ⊂ X be open, and let y ∈ πα(U).
So y = πα(x) for some x ∈ U .
Find basic open set V =

∏
β Vβ (with Vbeta = Xβ for almost all β) s.t. x ∈ V ⊂ U .

Then y ∈ Vα = πα(V ) ⊂∏α(U).
∴ every pt. of

∏
α(U) is interior, so

∏
α(U) is open.

∴ πα is an open map.

Proposition 2.6.9 If Fα is closed in Xα ∀α then
∏

α Fα is closed in
∏

αXα.

∏
α Fα = ∩α

(
Fα ×

∏
β 6=αXβ

)

Fα ×
∏

β 6=αXβ is closed (compliment is F c
α ×

∏
β 6=αXα).

⇒∏
α Fα is closed

Theorem 2.6.10 X1, X2, . . ., Xk, . . . metric ⇒ X =
∏

i∈NXi metrizable

Proof: Let x, y ∈ X.
Define d(x, y) =

∑∞
n=1 dn(xn, yn)/2

n.
LetX denoteX with the product topology and let (X, d) denoteX with the metric topology.
Clear that πn : (X, d)→ Xn is continous ∀n.
∴ 1X : (X, d)→ X is continous.
Conversely, let Nr(x) be a basic open set in (X, d).
To show Nr(x) open in X, let y ∈ Nr(x) and show y interior.
Find r̃ such that Nr̃(y) ⊂ Nr(x).
Find M s.t. 1/2(M−1) < r̃.
y ∈ U :=

∏
k≤M N1/2M (yk)×

∏
k>M Xk, which is open in X

For z ∈ U ,

d(y, z) ≤ 1

2M

(
1

2
+ . . .+

1

2M

)
+

1

2M+1
+

1

2M+2
+ . . . <

1

2M
+

1

2M
=

1

2M−1
< r̃.

∴ U ⊂ Nr̃(y) ⊂ Nr(X) so y is interior.
∴ Nr(x) is open in X.
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2.7 Universal Properties

X
f - Y

�
�
�
�
�

f̄
∃!

�

X/∼

π

?

A set function f̄ making the diagram commute exists iff
(
a ∼ b⇒ f(a) = f(b)

)

Proposition 2.7.1 f̄ is cont. ⇔ f is cont.

Proof: Check definitions.

W

	�
�
�
�
�

f
∃!

@
@
@
@
@

fα

R∏
Xα

� πα
Xα

A function into a product is determined by its projections onto each component.

Proposition 2.7.2 f is continuous ⇔ fα is cont. ∀α

Proof: ⇒ fα − πα ◦ f so f cont.⇒ fα cont. ⇐ Suppose fα cont. ∀α.
Let V = Uα1 × · · · × Uαn

×∏α 6=α1,...,αn
Xα ∈ S

Then

f−1(V ) = f−1π−1
α1
(Uα1) ∩ · · · ∩ f−1π−1

αn
(Uαn

) = f−1
α1

(Uα1) ∩ · · · ∩ f−1
αn

(Uαn
) = open

Since S is a basis, this implies f cont.
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2.8 Topological Algebraic Structures

Definition 2.8.1 A topological group consists of a group G together with a topology on the
underlying set G s.t.

1. multiplication G×G mult- G

2. inversion G→ G

are continuous (using the given topology on the set G and the product topology on G×G)

Example 2.8.2

1. Rn with the standard topology (coming from the standard metric) and + as the group
operation

(x, y) 7→ x+ y is continuous

x 7→ −x is continuous

2. G = S1 ⊂ R2 = C.

Group operation is multiplication as elements of C

(a) S1 × S1 → S1

(eit, eiw) 7→ ei(t+w) is continuous

(b) eit 7→ e−it is continuous

Similarly G = S3 ⊂ R4 = H

S3 becomes a topological group with multiplication induced from that on quaternions

3. G = GLn(C) = { invertible n× n matrices with entries in C }
Group operation: matrix multiplication

Topology: subspace topology induced from inclusion into Cn2
(with standard metric on

Cn2
)

In other words, the topology comes from the metric

d(A,B)2 =
∑

i,j

|aij − bij|2
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(a) G × G
mult−→ G is continuous since the entries in the product matrix AB depend

continuously on the entries of A and B

(b) the inversion map G→ G is continuous since there is a formula for the entries of A−1 in
terms of entries of A using only addition, multiplication and division by the determinant.

Similarly SLn(C), U(n), GLn(R), SLn(R) and O(n) are topological groups.

4. Let G be any group topologized with the discrete topology.

Lemma 2.8.3 If X and Y have discrete topology then the product topology on X × Y is also
discrete.

For (x, y) ∈ X × Y the subset consisting of the single element (x, y) is open (a (finite)
product of open sets).

Every set is a union of such open sets so is open.
Hence multiplication and inversion are continous. (Any function is continuous if the domain

has the discrete topology.)
Similarly one can define topological rings, topological vector spaces and so on.
A topological ring R consists of a ring R with a topology such that addition, inversion and

multiplication are continuous.
A topological vector space over R consists of a vector space V with a topology such that the

following operations are continuous: addition, multiplication by −1 and

R× V → V

t, v 7→ tv where R has its standard topology and R× V the product topology.
Exercise: The standard topology on Rn is the only one which gives it the structure of a

topological vector space over R.
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2.9 Manifolds

A Hausdorff (see Definition 4.1.1) topological space M is called an n-dimensional manifold if ∃
a collection of open sets Uα ⊂M such that M =

⋃
α∈I Uα with each Uα homeomorphic to Rn.

This is usually known as a “topological” manifold. One can also define differentiable or C∞

manifold or complex analytic manifold, by requiring the functions giving the homeomorphisms
to be differentiable, C∞ or complex analytic respectively. (The last concept only makes sense
when n is even.)

Example 2.9.1 Sn is an n-dimensional manifold.

Lemma 2.9.2 Sn r {pt} ∼= Rn.

Proof: Stereographic projection:
Place the sphere in Rn+1 so that the south pole is located at the origin. Let the missing point

be the north pole (or N), located at (0, . . . , 0, 2). (Note that we also introduce the notation S
for the south pole.)

Define f : Snr{N} → Rn by joining N to x and f(x) be the point where the line meets Rn

(the plane where the z coordinate is 0).
Explicitly f(x) = x+ λ(x− a) for the right λ.

0 = f(x) · a = x · a+ λ(x− a) · a

so
λ = − x · a

(x− a) · a.

Hence f(x) = x− x·a
(x−a)·a

.(x− a). This is a continuous bijection.

The inverse map g : Rn → Sn r {N} is given by y 7→ the point on the line joining y to N
which lies on Sn+1.

Explicitly, g(y) = ty + (1− t)a where t is chosen s.t. ||g(y)|| = 1.
Hence

(
ty + (1− t)a

)
·
(
ty + (1− t)a

)
= 1 so

t2||y||2 + 2t(1− t)y · a+ (1− t)2||a||2 = 1

The solution for t depends continuously on y.
Write Sn =

(
Sn r {N}

)
∪
(
Sn r {S}

)
which is a union of open sets homeomorphic to Rn.

2

Lemma 2.9.3 ∀r > 0 and ∀x ∈ Rn, Nr(x) is homeomorphic to Rn.
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Proof: It is clear that translation gives a homeomorphism Nr(x) ∼= Nr(0) so we may as-
sume x = 0.

Define f : Nr(0) → Rn by f(y) = y
r−||y||

and g : Rn → Nr(0) by g(z) =
r

1+||z||
z. It is clear

that f and g are inverse homeomorphisms.

Corollary 2.9.4 Let X be a topological space having the property that each point in X has a
neighbourhood which is homeomorphic to an open subset of Rn. Then X is a manifold.

Proof: Let x ∈ X. ∃Ux with x ∈ Ux and a homeomorphism hx : Ux → V.
If V is open, ∃rx s.t. Nr

(
hx(x)

)
⊂ V .

The restriction of hx to h−1
x (Nr(z)) gives a homeomorphism Wx → Nr(z).

(By definition of the subspace topology, the restriction of a homeomorphism to any subset
is a homeomorphism.)

Hence X = ∪x∈XWx and each Wx is homeomorphic to Nrx(Z) for some Z which is in turn
homeomorphic to Rn. 2

Example 2.9.5 RP n

Let π : Sn → RP n be the canonical projection.
Let x ∈ Sn represent an element of RP n.
Let U = {y ∈ RP n | π−1(y) ∩Nr(x) 6= ∅}
π−1(U) = Nr(x) ∪ Nr(−x) which is open. Hence U is open in RP n by definition of the

quotient topology.
Because r < 1/2, Nr(x) ∩Nr(−x) = ∅.
So ∀y ∈ U π−1(y) consists of two elements, one in Nr(x) and the other in Nr(−x).
Define fx : U → Nr(x) by y 7→ unique element of π−1(y) ∩Nr(x).

Claim: fx is a homeomorphism.
Proof: For any open set V ⊂ Nr(x) π

−1f−1
x (V ) = V ∪ −V which is open in Sn.

Hence f−1
x (V ) is open in RP n by definition of the quotient topology.

Hence fx is continuous.
The restriction of π to Nr(x) gives a continuous inverse to fx so fx is a homeomorphism.
Let hx : Sn r {−x} → Rn be a homeomorphism. So hx

(
Nr(x)

)
is open in Rn. So we have

homeomorphisms

U
fx−→ Nr(x)

hx|Nr(x)- hx
(
Nr(x)

)

giving a homeomorphism from U to an open subset of Rn.
Since every point of RP n is π(x) for some x ∈ Sn we have shown that every point of RP n

has a neighbourhood homeomorphic to a neighbourhood of Rn. So RP n is a manifold by the
previous Corollary. 2

28



Definition 2.9.6 A topological group which is also a manifold is called a Lie group.

Examples: Rn, S1, S3, GLn(R).
To check the last example, we must show GLn(R) is a manifold.
Since the topology on GLn(R) is that as a subspace of Rn2

, by Corollary 2.9.4 it suffices to
show that GLn(R) is an open subset of Rn2

.
Let Mn(R) = {n × n matrices over R} with topology coming from the identification of

Mn(R) with Rn2
.

So by construction Mn(R) is homeomorphic to Rn2
.

det :Mn(R)→ R is continuous (it is a polynomial in the entries of A).

det : A 7→ detA

GLn(R) = det−1(Rr {0})
0 is closed in R so Rr {0} is open. Hence GL(n,R) is open in Rn2

. 2

29



Chapter 3

Compactness

Definition 3.0.7 A topological space X is called compact if it has the property that every open
cover of X has a finite subcover.

Theorem 3.0.8 Heine-Borel A subset X ⊂ Rn is closed and bounded if and only if every
open cover of X has a finite cover.

Proposition 3.0.9 Given a basis for the topology on X, X is compact ⇔ every open cover of
X by sets from the basis has a finite subcover.

⇒ Obvious
⇐ Let Uα be an open cover of X.
Write each Uα as a union of sets in the basis to get a cover of X by basic open sets.
Select a finite subcover V1, . . . , Vn from these.
By construction ∀j ∃αj s.t. Uα1 , . . . , Uαn

cover X 2

Theorem 3.0.10 Given a subbasis for X, X is compact ⇔ every open cover of X by sets from
the subbasis has a finite subcover.

⇒ Obvious
⇐ Consider the basis formed by taking finite intersections of sets in {Uα}α∈I . By Proposition

3.0.9, it suffices to show that any open cover by sets in this basis has a finite subcover.
Let {Vα } be such an open cover. So WLOG each Vβ is a finite intersection of sets from

{Uα}.
Suppose {Vβ}β∈J has no finite subcover.
Well-order I and J .
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Define f : J → I as follows so that for each β, Vβ ⊂ Uf(β) and {Uf(γ)}γ≤β ∪ {Vγ}γ>β has no
finite subcover.

Step 1: Define f(j0):
Write Vj0 = Uσ1 ∩ Uσ2 ∩ · · · ∩ Uσn

.
Claim 1: For some i = 1, . . . , n, {Uσi

} ∪ {Vγ}γ>j0 has no finite subcover.
Proof: Suppose not. Then ∃ a finite collection of the Vγ s.t. ∀i X = Uσi

∪ Vγ1 ∪ · · · ∪ Vγr .
So

X = ∩n
i=1Uσi

∪ Vγ1 ∪ · · · ∪ Vγr
= (∩n

i=1Uσi
) ∪ Vγ1 ∪ · · · ∪ Vγr

= Vj0 ∪ Vγ1 ∪ · · · ∪ Vγr .
This contradicts our earlier assertion that X does not have a finite subcover by a finite

collection of the Vγ . 2

Choose i such that {Uσi
} ∪ {Vγ}γ>j0 has no finite subcover, and define

f(j0) = σi. (3.1)

Suppose now that f has been defined for all γ < β.
Claim 2:

{Uf(γ)}γ<β ∪ {Vγ}γ≥β

has no finite subcover.
Proof: Such a subcover would contradict the definition of f(γ̂) where γ̂ is the largest index
occurring in the sets {Uf(γ)} used in the subcover.

In other words, if Uf(β1), . . . , Uf(βk), Vβ′
1
, . . . , Vβ′

r
is a subcover then it is also a subcover of

{Uf(γ)}γ≤βk
∪ {Vγ}γ>βk

}. This contradicts the definition of f(γ̂) where γ̂ = βk.

Write Vβ = Uσ1 ∩ · · · ∩ Uσn
.

Claim 3. For some i = 1, . . . , n {Uf(γ)}γ<β ∪ {Uσi
} ∪ {Vγ}γ>β has no finite subcover.

Proof: If not, we get a contradiction to the previous claim as in the proof of the definition of
f(j0).

So choose i as in the previous claim and set f(β) = σi.
Now that f has been defined,

Claim 4. {Uf(β)} has no finite subcover.
Proof: If Uf(β1)∪· · ·∪Uf(βk) is a subcover then it is also a subcover of {Uf(γ)}γ≤βk

∪{Vγ}γ>βk
,

contradicting the definition of f(βk).
But Claim 4 contradicts the definition of {Uα}.
So {Vβ}β∈J has a finite subcover and thus X is compact.

2
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Theorem 3.0.11 (Tychonoff) If Xα is compact for all α then
∏

α∈I Xα is compact.

Proof: Sets of the form

Vα = Uα ×
∏

γ 6=α

Xγ

(with Uα open in Xα) form a subbasis for the topology of X.
Let {Vβ}β∈J be an open cover of X by sets in this subbasis.
Suppose {Vβ} has no finite subcover.
Let Fβ = (Vβ)

c.
Then

∩βFβ = ∅ (3.2)

but
∩{any finite subcollectionFβ} 6= ∅ (3.3)

where Vβ = Uα0 ×
∏

γ 6=α0
Xγ

Note that for any β, the image of each of the projections of Fβ is closed. That is, if
Vβ = Uα0 ×

∏
γ 6=α0

Xγ then πα0Fβ = (πα0Vβ)
c which is closed and for all other α, παFβ = Xα

which is closed.
So for any α, if ∩β(παFβ) = ∅ then παFβ1 ∩ · · · ∩ πα(Fβr

) = ∅ for some β1, . . . , βr, since Xα

is compact. This implies Fβ1 ∩ · · · ∩ Fβr
= ∅. This is a contradiction to (3.3). So there exists

an xα ∈ ∩βΠαFβ.
This is true for all α. So let x = (xα).
Then x ∈ ∩βFβ. This contradicts (3.2).
So {Vβ} has a finite subcover. Hence X is compact.

2

32



Chapter 4

Separation

4.1 Separation Axioms; Urysohn’s Lemma; Stone-Cech

Compactification

Let X be a topological space.

Definition 4.1.1 X has the following names if it has the following properties:

1. X is T0 if ∀x 6= y ∈ X either ∃ open U s.t. x ∈ U, y /∈ U x ∈ U, y /∈ U or ∃ open U s.t.
x /∈ U, y ∈ U

2. X is T1 if ∀x 6= y ∈ X ∃ open U s.t. x ∈ U, y /∈ U and ∃ open V s.t. y ∈ V, x /∈ V .

3. X is T2 or Hausdorff if ∀x 6= y ∈ X ∃ open U, V with U ∩ V = ∅ s.t. x ∈ U and y ∈ V

4. X is T3 or regular if X is T1 and given x ∈ X and a closed set F ⊂ X with x /∈ F , ∃ open
U and V s.t. x ∈ U , F ⊂ V and U ∩ V = ∅

5. X is T3 1
2
or completely regular if X is T1 and also given x ∈ X and a closed set F ⊂ X

with x /∈ F , ∃f : X → [0, 1] s.t. f(x) = 0 and f(F ) = 1.

6. X is T4 or normal if X is T1 and also given closed F,G ⊂ X s.t. F ∩G = ∅ ∃ open U, V
s.t. F ⊂ U , G ⊂ V and U ∩ V = ∅.

We say U and V separate A and B if A ⊂ U , B ⊂ V and U ∩ V = ∅.
Some reformulations:

Proposition 4.1.2
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1. X is T1 ⇔ the points of X are closed subsets of X

2. X is Hausdorff

(a) ⇔ {x} =
⋂

Uopen
x∈U

Ū

(b) ⇔ ∆(X) is closed in X ×X (where ∆(X) means the diagonal subset {(x, x) |
x ∈ X} of X ×X)

3. X is regular ⇔ X is Hausdorff and given x ∈ U , ∃ open V s.t. x ∈ V ⊂ V̄ ⊂ U

4. X is normal

(a) ⇔ X is Hausdorff and given x ∈ U ∃ open V s.t. F ⊂ V ⊂ V̄ ⊂ U

(b) ⇔ X Hausdorff and given closed F,G with F ∩G = ∅ ∃ open U, V s.t. F ⊂ U ,
G ⊂ V and Ū ∩ V̄ = ∅.

Proof:
1: (⇒) X T1. Let x ∈ X. ∀y ∈ X ∃ open Vy s.t. x /∈ Vy and y ∈ Vy. Hence X r {x} = ∪y 6=xVy
is open so {x} is closed.

(⇐) Suppose points closed. Let x, y ∈ X. U = X r {y} is open. x ∈ U, y /∈ U . Similarly
the reverse.
2a: (⇒) X is Hausdorff. Let x ∈ X. ∀y 6= x ∃Uy, Vy s.t. x ∈ Uy, y ∈ Vy and Uy ∩ Vy = ∅.
Uy ⊂ (Vy)

c ⇒ Ūy ⊂ (Vy)
c ⇒ y /∈ Ūy ⇒ y /∈

⋂

Uopen
x∈U

Ū .

(⇐) Let x 6= y ∈ X. {x} =
⋂

Uopen
x∈U

Ū . Find open U s.t. x ∈ U and y /∈ Ū . Let V = Ū c, which

is open.
2b: (⇒) Suppose X is Hausdorff.

If (x, y) ∈ (∆(x))c find U, V s.t. x ∈ U, y ∈ V , U ∩ V = ∅
Then (x, y) ∈ U × V but U × V ⊂

(
∆(X)

)c
. Since U × V is open, (x, y) ∈ interior of(

∆(X)
)c
. This is true ∀(x, y) ∈

(
∆(X)

)c
, so

(
∆(X)

)c
is open, and

(
∆(X)

)
is closed.

(⇐) Suppose ∆(X) is closed.
If x 6= y then (x, y) ∈

(
∆(X)

)c
. Since U × V is open, (x, y) ∈ interior of

(
∆(X)

)c
. This is

true ∀(x, y) ∈
(
∆(X)

)c
, so

(
∆(X)

)c
is open, and

(
∆(X)

)
is closed.

(⇐) Suppose ∆(X) is closed.
If x 6= y then (x, y) ∈ (∆c(X))c which is open so there exists a basic open set U × V s.t.

(x, y) ∈ U × V ⊂ (∆(X))c. Hence x ∈ U, y ∈ V, U ∩ V = ∅.
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3: (⇒) Suppose X is regular. Then X is T1 so points are closed. Hence given x 6= y ∈ X let
F = {y} and apply defn. of regular to see that X is Hausdorff. Given x ∈ U , x ∩ U c = ∅ and
U c is closed so ∃ open V,W s.t. x ∈ V, U c ⊂ W and V ∩W = ∅.

x ∈ V ⊂ W c ⊂ U .
Since W c is closed, V̄ ⊂ W c

(⇐ ) Hausdorff ⇒ T1.
Let x ∈ X, F ⊂ X with x /∈ F .
Then x ∈ F c, which is open, so ∃ open U s.t. x ∈ U ⊂ Ū ⊂ F c. Let V = (Ū)c. Then

F ⊂ V and U ∩ V = ∅.
4a: ⇔ similar to (3.)
4b: (⇐) trivial

(⇒) Given closed F,G s.t. F ∩G = ∅. Then F ⊂ Gc so ∃ open U s.t. F ⊂ U ⊂ Ū ⊂ Gc.
G ⊂ (Ū)c so ∃ open V s.t. G ⊂ V ⊂ V̄ ⊂ (Ū)c.
Hence Ū ∩ V̄ = ∅.

Proposition 4.1.3 Let f, g : X → Y , with Y Hausdorff. Suppose A ⊂ X is dense and
f
∣∣
A
= g
∣∣
A
. Then f = g.

Proof: Define h : X → Y × Y by h(x) =
(
f(x), g(x)

)
. Then h is continous (since its

projections are).
Let F = {x ∈ X | f(x) = g(x)}.
F = h−1

(
∆(Y )

)
which is closed since Y is Hausdorff.

A ⊂ F ⇒ X = A ⊂ F
Hence f(x) = g(x) ∀x ∈ X.

Theorem 4.1.4 metric ⇒ T4⇒ T3 1
2
⇒ T2 ⇒ T2 ⇒ T1 ⇒ T0

Proof: T2 ⇒ T1 ⇒ T0 is trivial. T3 ⇒ T2 by definition, and part (1) of the previous
proposition.

T3 1
2
⇒ T3: Given x, F let f : X → [0, 1] s.t. f(X) = 0, f(F ) = 1, as in the definition of T3. Set

U = f−1
(
[0, 1/2)

)
and V = f−1

(
(1/2, 1]

)
which are open in [0, 1]. Then U , V separate x, F in

X.

metric⇒ T4: Let F , G be closed in metric space X s.t. F ∩G = ∅.
For x ∈ F , let dx = infy∈G{d(x, y)}.
Claim: dx 6= 0.
Proof:
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If dx = 0 then ∀n ∃yn ∈ G s.t. d(x, yn) < 1/n.
Hence (yn)→ x. Hence x ∈ G.
(Exercise: G closed, yn ∈ G, (yn)→ x⇒ x ∈ G)
⇒⇐
Let Y = ∪x∈FNdx/2(x) which is open with F ⊂ U .

Claim: U ∩G = ∅
Proof:
Let y ∈ U ∩G.
Then ∃ sequence (un)→ y with un ∈ U .
∀n find xn ∈ F s.t. un ∈ Ndxn/2(x)
dxn
≤ d(xn, y) ≤ d(xn, un) + d(un, y) < dxn

/2 + d(un, y).
Hence dxn

/2 < d(un, y).
(un)→ y ⇒ d(un, y0)→ 0⇒ dxn

/2→ 0.
Hence d(xn, y) < dxn

/2 + d(un, y)⇒ d(xn, y)→ 0⇒ (xn)→ y.
So y ∈ F ⇒⇐.
Hence U ∩G = ∅.
So let V = (U)c ⊃ G.

T4 ⇒ T3
1
2
: Corollary of

Theorem 4.1.5 (Urysohn’s Lemma) Suppose X is normal, and F and G are closed subsets
of X with F ∩G = ∅. Then ∃f : X → [0, 1] s.t. f(F ) = 0 and f(G) = 1.

Proof:
Apply 4(b) of Proposition 4.1.2 to F ⊂ Gc. Then ∃ open U1/2 s.t. F ⊂ U1/2 ⊂ ¯U1/2 ⊂ Gc.
Two more applications of Proposition 4.1.2:
4(b) ⇒ ∃ open U1/4, U3/4 s.t. F ⊂ U1/4 ⊂ Ū1/4 ⊂ U1/2 ⊂ Ū1/2 ⊂ U3/4 ⊂ Ū3/4 ⊂ Gc.
Continuing, construct an open set Ut for all t of the form m/2n for some m and n. For

x ∈ X define

f(x) =

{
0 x ∈ Ut ∀t
sup({t|x /∈ Ut} otherwise

(4.1)

It is clear that f(F ) = 0 and f(G) = 1. We show that f is continuous.
Intervals of the form [0, a) and (a, 1] form a subbasis for [0, 1].
f(x) < a ⇔ x ∈ Ut for some t < a.
Hence f−1([0, a)) = {x|f(x) < a} = ∪t<aUt, which is open.
Similarly f(x) > a ⇔ x /∈ Ut for some t > a. which is true iff x /∈ Ūs for some s > a.
Hence f−1((a, 1]) = ∪s>a

(
Ūs

)c
, which is open.

We conclude that f is continuous. 2
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Lemma 4.1.6 Suppose X is Hausdorff. Suppose x ∈ X and Y ⊂ X is compact s.t. x /∈ Y .
Then ∃ open U, V separating x and Y .

Proof: ∀y ∈ Y ∃ open Uy, Vy s.t. x ∈ Uy, y ∈ Vy and Uy ∩ Vy = ∅. Y = ∪y∈Y Vy is a cover of
Y by open sets in X so ∃ a finite subcover Vy1 , . . . , Vyn .

Let U = Uy1 ∩ · · · ∩ Uyn and V = Vy1 ∪ · · · ∪ Vyn . Then
(i) x ∈ Uyj ∀j ⇒ x ∈ U
(ii) Vy1 , . . . , Vyn cover Y ⇔ Y ⊂ V .
(iii) U ∩ V = ∅.
(Proof: If z ∈ U ∩ V then z ∈ Vyj for some j and z ∈ Uyj ∀j. But Uyj ∩ Vyj = ∅.

Contradiction.)
2

Corollary 4.1.7 A compact subspace of a Hausdorff space is closed.

Proof: Suppose A ⊂ X where A is compact and X is Hausdorff. By Lemma, ∀y ∈ Ac ∃ open
Uy, Vy separating y and A so y ∈ Uy ⊂ Ac. Hence y is an interior point of Ac. This is true for
all y so Ac is open (equivalently A is closed).

2

Theorem 4.1.8 A continuous bijection from a compact space to a Hausdorff space is a home-
omorphism.

Proof: Let f : X → Y where f is compact and Y is Hausdorff. We must show that the
inverse to f is continuous, which is equivalent to showing that for any closed set B, f(B) is
closed. If B ⊂ X is closed, then by our earlier Theorem, B is compact, so by another earlier
Theorem, f(B) is compact. By a previous Corollary, this implies f(B) is closed. 2

Theorem 4.1.9 A compact Hausdorff space is normal.

Proof: Suppose X is a compact Hausdorff space. Suppose A and B are closed subsets of X
with A ∩ B = ∅. Since A and B are closed and X is compact, we conclude that A and B are
also compact.

By the Lemma, ∀a ∈ A ∃ open sets Ua, Va s.t. a ∈ Ua, b ∈ Va and Ua ∩ Va = ∅.
∪aUa is a cover of A by open sets in X so by compactnss there is a finite subcover

Ua1 , . . . , Uan . Let U = Ua1 ∪ · · · ∪ Uan and V = Va1 ∪ · · · ∪ Van .
Then as in the proof of the Lemma
(i) A ⊂ U
(ii) B ⊂ V
(iii) U ∩ V = ∅

2
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Proposition 4.1.10 Suppose A ⊂ X.
If X is Tj for j < 4 then so is A.
If A is closed and X is T4 then A is T4.

Proof:
j = 0, 1, 2: Trivial

j = 3: Let a ∈ A and let F ⊂ A be closed in A with a 6∈ F .
Let F denote the closure of F within X.
Then a 6∈ F .

(Proof: F =
⋂

G⊃F

G closed in X

G. Therefore

(G ∩ A) =
⋂

G′⊃F

G′ closed in X

(G ∩ A) =
⋂

G′⊃F

G′ closed in X

G′ = (closure of F in A) = F .

Hence a ∈ A, 6∈ F ⇒ a 6∈ F .)
So ∃ open U , V in X s.t. a ∈ U , F ⊂ V and U ∩ V = ∅.
But then U ′ = U ∩ A and V ′ = V ∩ A are open in A and satisfy:
(i) a ∈ U ∩ A
(ii) F = F ∩ A ⊂ V ∩ A = V ′

(iii) U ′ ∩ V ′ = ∅
j = 31

2
: Let a ∈ F , F ⊂ A with F closed in A, a 6∈ F .

F = F ∩ A with F as above.
Since, as above, a 6∈ F , ∃f : X → [0, 1] s.t. f(a) = 0, f(F ) = 1.

The composition f̂ : A ⊂ - X
f- [0, 1] is continuous and satisfies f̂(a) = 0 and (F̂ ) = 1

(since F ⊂ F ).

j = 4: A ⊂ X closed.
Let F , G be closed in X. As in previous two cases, F = F ∩ A and F ∩ A = F since A is

closed in X. So F is closed in X and similarly G is closed in X.
Therefore ∃U, V open in X separating F , G in X.
So U ∩ A and V ∩ A separate F , G in A.

Proposition 4.1.11 Let X =
∏

α∈I Xα with Xα 6= ∅ ∀α.
For j < 4, X is Tj ⇔ Xα is Tj ∀α. X is T4 ⇒ Xα is Tj∀α.

Proof:
⇒ Suppose X is Tj. Show Xα0 is Tj .
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For α 6= α0, select xα ∈ Xα. (Axiom of Choice)

Define i : Xα → X by πα
(
i(a)

)
=

{
a α = α0;

xα α 6= α0.

Xα0

i - X

@
@
@
@
@

1Xα0
R

Xα0

πα0

?

Note: Provided Xα is T1 for α 6= α0, i(closed) =closed (since a product of closed sets is closed).
If a 6= b ∈ Xα0 then i(a) 6= i(b) in X.

j = 0: If i(a) ∈ U , i(b) 6∈ U , find basic open U ′ s.t. i(a) ∈ U ′ ⊂ U . So i(b) 6∈ U ′.
But a = πα0i(a) ∈ πα0(U

′) (open since projections maps are open maps)
Claim: 6∈ πα0(U

′)
Proof: Since U ′ basic, U ′ =

∏
α πα(U

′)
For α 6= α0, πα(ib) = xα = πα(ia) ∈ πα(U ′).
Therefore ib 6∈ U ′ so b = πα0b 6∈ πα0(U ′)

j = 1: Similar

j = 2: Begining with open U , V , separating ia, ib, find basic U ′, V ′ separating ia, ib.
Claim: πα0(U

′) and πα0(V
′) (which are open) separate a and b.

Proof: πα0 ◦ i = 1Xα0
so a ∈ πα0(U

′) and b ∈ πα0(V
′).

If c ∈ πα0(U
′)∩πα0(U

′) then ic ∈ U ′∩V ′ since U ′, V ′ basic and πα(ic) = xα ∈ πα(U ′)∩πα(V ′)
for α 6= α0.

Contradiction.

j = 3: Xα0 is T1 by above.
Let a ∈ Xα0 , B closed ⊂ Xα0 with a 6∈ B.
i(a) 6∈ i(B) (closed because (xα)α 6=α0 is closed in Πα 6=α0Xα by j = 1 case and so i(B) =

B ×∏α 6=α0
Xα=closed)

Find U , V separating i(a), i(B) in X/
Find basic U ′ with i(a) ∈ U ′ ⊂ U .
∀z ∈ i(B), ∃ basic open Vz s.t. z ∈ Vz ⊂ V .
Let Ṽ = ∪z∈i(B)πα0(Vz) open in Xα

Therefore B ⊂ Ṽ (i.e. b ∈ πα0(Vi(b)) )

Claim: πα0(U
′), Ṽ is a separation of a and B.
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Proof: c ∈ πα0(U
′) ∩ Ṽ ⇒ πα0(ic) ∈ πα0(U

′) and πα0(ic) ∈ πα0(Vz) for some z ∈ i(B).
For α 6= α0, πα(ic) = xα = πα(a) ∈ πα(U ′) and πα(ic) = xα = πα(z) ∈ πα(Vz)
That is, ic ∈ U ′ ∩ Vz ⊂ U ∩ V . ⇒⇐.
Therefore case j = 3 follows.

j = 31
2
: Xα0 is T1 by above.

Let a ∈ Xα0 , B closed ⊂ Xα0 , a 6∈ B.
i(a) 6∈ i(B) (which is closed) implies ∃g : X → 0, 1 s.t. g(ia) = 0, g(oB) = 1.
Let f = g ◦ i.

j = 4: Xα0 is T1 as above. Find separating function as in previous case, using Urysohn.

⇐ Suppose Xα is Tj for all α.
First consider cases j < 3.
Let x, y ∈ X with xα0 6= yα0 for some α0.

j = 0: If xα0 ∈ U0, yα0 6∈ Uα0 then U = U0 ×
∏

α 6=α0
Xα is open in X and x ∈ U , y 6∈ U .

j = 0: Similar

j = 2: If U0, V0 separate xα0 , yα0 in Xα0 then U = U0 ×
∏

α 6=α0
Xα and V = V0 ×

∏
α 6=α0

Xα

separate x and y in X.

j = 3: By above X is T1.
Let x ∈ U (open)
Find basic open U ′ s.t. U ′ ⊂ U . Write U ′ =

∏
α Uα where Uα = Xα for α 6= α1, . . . , αn.

For j = 1, . . . , n find Vαj
s.t. xαj

∈ Vαj
⊂ Vαj

⊂ Uαj

Let V = Vα1 × · · · × Vαr
×∏α 6=α1,...,αn

Xα closed

Therefore V ⊂ W .
Hence x ∈ V ⊂ V ⊂ W ⊂ U ′ ⊂ U
Therefore X is T3.

j = 31
2
: A corollary of the Stone-Cech Compactification Thm (below) is

Corollary 4.1.12 X is completely regular ⇔ X is homeomorphic to a subspace of a compact
Hausdorff space.

Proof of Case j = 31
2
(Given Corollary)

By Corollary, ∀α, find compact Hausdorff Yα s.t. Xα homeomorphic to a subspace of Yα.
Hence X is homeomorphic to a subspace of Y :=

∏
α Yα.

By Tychonoff, Y is compact and by case j = 2, Y is Hausdorff. Hence X is homeomorphic
a subspace of a compact Hausdorff space so is completely regular by the Corollary.

Proof of Corollary:
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⇐: By earlier theorems, a compact Hausdoff space is normal and thus completely regular
and a subpace of a completely regular space is completely regular.
⇒ Follows from:

Theorem 4.1.13 (Stone-Cech Compactification) Let X be completely regular. Then there
exists a compact Hausdorff space β(X) together with a (continuous) injection X ⊂ - β(X) s.t.

1. i : X ⊂ - β(X) is a homeomorphism

2. X is dense in β(X)

3. Up to homeomorphism β(X) is the only space with these properties

4. Given a compact Hausdorff space W and h : X → W there is a unique h̄ s.t. h = h̄ ◦ i

Definition 4.1.14 β(X) is called the Stone-Cech compactification of X.

Example 4.1.15 Let X = (0, 1]. Let f : X → [−1, 1] by f(x) = sin(1/x). Then f is a
continuous function from X to the compact Hausdorff space [−1, 1], but f does not extend
to [0, 1]. Thus although [0, 1] is a compact Hausdorff space containing (0, 1] as a dense subspace,
it is not the Stone-Cech compactification of (0, 1].

Proof of Theorem: Let J = {f : X → R | f bounded and continuous}.
For f ∈ J , let If be the smallest closed interval containing Im(f). As f is bounded, If is

compact.
Let Z =

∏
f∈J If . It is compact Hausdorff.

Define i : X → Z by (ix)f = f(x). Since X is completely regular, x 6= y ⇒ ∃f : X → [0, 1]
s.t. f(x) 6= f(y). Thus i is injective.

Claim: i : X
∼=- i(X).

Proof: Use the injection i to define another topology on X – the subspace topology as a
subset of Z.

The Claim is equivalent to showing the subspace topology is equals to the original topology.
Since i is continuous (because its projections are), if U is open in the subspace topology

then U is open in the original topology.
Conversely suppose U is open in the original topology.
Let x ∈ U . To show x is interior (in the subspace topology):
By definition of the subspace and product topologies, the subspace topology is the weakest

topology s.t. f : X → R is continuous ∀f ∈ J .
Because X is completely regular, ∃f : X → [0, 1] s.t. f(x) = 0, f(U c) = 1
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f ∈ J ⇒ f−1([0, 1)) is open in the subspace topology.
f−1([0, 1)) ⊂ U since f(x) = 1 ∀x not in U .
Therefore x ∈ Int(U) (in the subspace topology).
True ∀x ∈ U , so U is open in the subspace topology.

Let β(X) = i(X).
Then β(X) is compact Hausdorff, as it is a closed subspace of a compact Hausdorff space

and X ∼= i(X) is dense in β(X) by construction.
To show the extension property and uniqueness of β(X) up to homeomorphism,

Lemma 4.1.16

1. Given g : X → Y , ∃! ĝ : β(X)→ β(Y ) s.t.

X
g - Y

β(X)
? ĝ - β(Y )

?

2. If X is compact Hausdorff then X → β(X) is a homeomorphism.

Proof:

1. Uniqueness: Since β(Y ) is Hausdorff and X is dense in β(X) any two maps from β(X)
agreeing on X are equal. So ĝ is unique.

Existence: Let C(X) = {f : X → R | f is bounded and continuous}, and let C(Y ) = {f :
Y → R | f is bounded and continuous}.
Let z ∈ β(X).

To define ĝ(z): For f ∈ CY , define Πf (ĝz) = Πf◦g(z) ∀x ∈ X, and ∀f ∈ CY . Each
projection is continous so ĝ is continuous.

∀x ∈ X and ∀f ∈ C(Y ):

Πf (iY gx) = f
(
g(x)

)
while πf (ĝiXx) = πf◦g(iXx) = f ◦ g(x). Therefore iY ◦ g = ĝ ◦ iX

which also shows that ĝ
(
β(X)

)
⊂ ĝ
(
i(X)

)
⊂ i(Y ) = β(Y ).

Hence ĝ is the desired extension of g.
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2. i : X ⊂ - β(X) is continuous, and X is compact ⇒ i(X) is compact ⇒ i(X) is closed in
β(X) since β(X) is Hausdorff.

But i(X) is dense in β(X) so i(X) = β(X). Hence i is a bijective map from a compact
space to a Hausdorff space and is thus a homeomorphism.

Proof of Theorem (continued): Let h : X → Y where Y is compact Hausdorff. Then

X
h - Y

β(X)

iX

? ĥ - β(Y )

iY ∼=
?

So i−1
Y ◦ ĥ is the desired extension of h to β(X). If W is another space with these properties

then X ∼= W by the standard category theory proof.

4.2 1st and 2nd countability

Definition 4.2.1 X is called 2nd countable if ∃ a countable basis for the open sets of X.

e.g. X = Rn. Basis = {Nr(X) | r rational and all coordinates of X are rational }

Definition 4.2.2 X is called 1st countable if each x ∈ X has a countable basis for its neigh-
bourhoods.

e.g. X = metric. {Nr(X) | r rational} is a basis for the neighbourhoods of X.

Definition 4.2.3 X is called separable if it has a countable dense subset

Proposition 4.2.4 2nd countable implies 1st countable and separable.

Proof: 2nd countable implies 1st countable is trivial.
Let {Uj} be a countable basis of (non-empty) open sets. ∀j, select xj ∈ Uj. Let A = {xj}.

A is countable. Any open set intersects A so A is dense.
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Example 4.2.5 Compact subspace which is not closed.
Let X := R as a set.
Specify the topology on X to be the one coming from the subbasis;

{U ∩Q | Uopen in standard topology on R}∪
{V | V is the complement of a finite set of rationals}

Observe: In corresponding basis, any basis set containing an irrational can be obtained only
by intersecting the second type of sets, yielding another set of this type. Therefore any open set
in X containing an irrational is the complement of a finite set of rationals.

Hence if S ⊂ X contains an irrational then S is compact because in any open cover of S at
least one set contains all but finitely many points of S, so S can be covered by that set together
with one set for each of the missing points. In particular, if y is irrational, Q∪ {y} is compact
but not closed. (Its complement contains irrationals, so it can’t be open since any open set
containing an irrational contains all irrationals.)

4.3 Convergent Sequences

Definition 4.3.1 A sequence (xn) in X converges to x, written (xn) → x, if ∀ open U , ∃N
s,t, n ≥ N ⇒ xn ∈ U .

Proposition 4.3.2 X Hausdorff, (xn)→ x, (xn)→ y implies that x = y.

Proof: If x 6= y separate x, y by open sets and apply definition to give contradiction.

Proposition 4.3.3 Suppose A ⊂ X. If (an)→ x where an ∈ A ∀n then x ∈ A. Conversely, if
X is 1st countable and x ∈ A then ∃ sequence (an) in A s.t. (an)→ x in X.

Proof: Supppose (an)→ x. Then ∀ open U s.t. x ∈ U , U ∩ A 6= ∅ so x /∈ A.
Conversely, suppose X is 1st countable and x ∈ A.
Then any open neighbourhood of x intersects A.
Let {U1, U2, . . . , Un, . . .} be a basis for the open neighbourhoods of x.
Select a1 ∈ U , a2 ∈ U1∩U2, . . ., an ∈ U1∩U2 · · ·∩Un, . . ., with an ∈ A ∀n. So an ∈ Uk ∀n ≥ k.
Given open V s.t. x ∈ V find basic open UN s.t. UN ⊂ V .
Then ∀n ≥ N , an ∈ UN ⊂ V so (an)→ x.
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Definition 4.3.4 If A ⊂ X and (an)→ x where an ∈ A then x is called a limit point of A.

Thus previous proposition says that in a 1 countable space, as set is closed if and only if it
contains its limit points.

Proposition 4.3.5 Let f : X → Y be a (set) function. f is continuous if and only if (
(xn)→ x⇒ f(xn)→ f(x) ).

Proof Suppose f is continous and (xn)→ x.
Given U s.t. f(x) ∈ U then x ∈ f−1(U) so ∃N s.t. nn ≥ N ⇒ xn ∈ f−1(U).
Therefore n ≥ N ⇒ f(xn) ∈ U so f(xn)→ f(x).
Conversely, suppose X 1st countable and ( (xn)→ x⇒ f(xn)→ f(x) ).
Let A ⊂ Y be closed. Show f−1(A) is closed.
Let x ∈ f−1(A). Find sequence (xn) in f

−1(A) s.t. (xn)→ x.
Then for all n, f(xn) ∈ A and hypothesis implies

(
f(xn)

)
→ f(x). So A closed implies

f(x) ∈ A. Therefore x ∈ f−1(A).
Thus f−1(A) = f−1(A) and hence f−1(A) is closed.
Therefore f is continuous.

Definition 4.3.6 X is called sequencially compact if every sequence has a convergent subse-
quence.

Definition 4.3.7 Suppose X is Hausdorff and 1st countable. Then X compact implies X
sequentially compact.

Proof: Let X be Hausdorff, 1st countable and compact.
Let (xn) be a sequence in X. If any element appeas infinitely many times in (xn) then

(xn) has a constant (thus convergent) subsequence, so suppose not. Then discarding repeated
elements gives us a subsequence so we may assume that (xn) has no repetitions.

Claim: ∃x ∈ X s.t. ∀ open U containing x, U ∩ {xn} is infinite.
Proof: Suppose not. That is, suppose that ∀x, ∃ open Ux s.t. x ∈ Ux and Ux ∩ {xn} is finite.

Then {Ux} is an open cover so ha s a finite subcover U
(1)
x , U

(2)
x , . . ., U

(k)
x .

Since ∀j, U (j)
x ∩ {xn} is finite, {xn} is finite.

⇒⇐.

Choose x as in claim and let {V1, V2, . . . , Vk, . . .} be a basis for the neighbourhoods of x.
Choose xn(1) ∈ V1 ∩ {xn}.
Choose xn(2) ∈ V1 ∩ V2 ∩ {xn | n > n(1)}.
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...
Choose xn(k) ∈ V1 ∩ · · · ∩ Vk ∩ {xn | n > n(k − 1)}.
...
Then (xn(1), xn(2), . . . , xn(k), . . .) is a subsequence of (xn) and converges to x.
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Chapter 5

Metric Spaces

5.1 Completeness

Definition 5.1.1 Let (xn) be a sequence in (X, d). Then (xn) is called a Cauchy sequence if
∀ǫ > 0 ∃N s.t. n,m > N ⇒ d(xn, xm) < ǫ.

Proposition 5.1.2 (xn)→ x ⇒ (xn) Cauchy.

Proof: Obvious.

Definition 5.1.3 A complete metric space is one in which ∀ Cauchy sequences (xn) ∃ x ∈ X
s.t. (xn)→ x.

Definition 5.1.4 A complete normed vector space is called a Banach space.

Proposition 5.1.5 Suppose (X, d) is complete, and Y ⊂ X. Then Y is complete ⇔ Y is
closed.

Proof: Exercise.

Theorem 5.1.6 Cantor intersection theorem Let (X, d) be a complete metric space. Let
(Fn) be a decreasing sequence of nonempty closed subsets of X s.t. diam(Fn)→ 0 in R. Then
∩nFn contains exactly one point.

Proof: Let F = ∩nFn. If F contains two points x and y then we have a contradiction when
diam(Fn) < d(x, y). Hence |F | ≤ 1.
∀n choose xn ∈ Fn. diam(Fn)→ 0 ⇒ (xn) is Cauchy.
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Hence ∃x ∈ X s.t. (xn) → x. We show that x ∈ Fn ∀n. If {xn} is finite then xn = x for
infinitely many n, so that x ∈ Fn for infinitely many n. Since Fn+1 ⊂ Fn this implies x ∈ Fn ∀n.
So suppose {xn} is infinite. ∀m, (xm, xm+1, . . . , xm+k, . . . ) is a sequence in Fm converging to x.
Since {xn}n≥m is infinite, this implies x is a limit point of Fm. But Fm is closed, so x ∈ Fm. 2

Theorem 5.1.7 Let (X, d) be a metric space. Then ∃ ! metric space (X̃, d̃) together with an
isometry ı : X → X̃ s.t.

1. (X̃, d̃) is complete.

2. Given any complete (Y, d′) and an isometry j : X → Y , ∃ ! isometry j̃: X̃ → Y s.t.

Note: An isometry f : X → Y is a map s.t. d
(
f(a), f(b)

)
= d(a, b) ∀a, b ∈ X.

Definition 5.1.8 X̃ is called the completion of X.

Sketch of Proof:
Let C = { Cauchy sequences in X}.
Impose an equivalence relation (xn) ∼ (yn) if d(xn, yn)→ 0 in R.
Let X̃ = C/ ∼. Define d̃

(
(xn), (yn)

)
= limn→∞ d(xn, yn).

Define ı : X → X̃ by x 7→ (x, x, . . . , x, . . .) Check that it works. (Exercise) 2

Proposition 5.1.9 X is dense in X̃.

Proof: X̄ is closed in X̃, so complete. It also satisfies the universal property of completion so
X̄ = X̃. 2

Definition 5.1.10 f : X → Y is called uniformly continuous if ∀ǫ > 0, ∃δ > 0 s.t. d(a, b) < δ
⇒ d

(
f(a), f(b)

)
< ǫ.

Proposition 5.1.11 f : X → Y is uniformly continuous, (xn) is Cauchy in X ⇒
(
f(xn)

)
is

Cauchy in Y .

Proof: Exercise.

Definition 5.1.12 Let (fn) be a sequence of functions fn : X → Y . We say fn converges
uniformly to f : X → Y if ∀ǫ > 0 ∃N s.t. n > N ⇒ d

(
f(x), f(y)

)
< ǫ ∀x ∈ X.

Proposition 5.1.13 Suppose fn converges uniformly to f and fn is continuous ∀n. Then f is
continuous.
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Proof: Let a ∈ X. Show f is continuous at a. Given ǫ > 0, choose N0 s.t. n ≥ N0

⇒ d
(
f(x), fn(x)

)
< ǫ/3 ∀x ∈ X.

Choose δ s.t. d(x, a) < δ ⇒ d
(
fN0(x), fN0(a)

)
< ǫ/3. Then d(x, a) < δ ⇒ d

(
f(x), f(a)

)
≤

d
(
f(x), fN0(x)

)
+ d
(
fN0(x), fN0(a)

)
+ d
(
fN0(a), f(a)

)
< ǫ/3 + ǫ/3 + ǫ/3 = ǫ. 2

Example 5.1.14 Sequence of continuous functions whose pointwise limit is not continuous:

fn : [0, 1]→ [0, 1], fn(x) = xn. f(x) =

{
0 x < 1;

1 x = 1.

Notation: Let X be a topological space (not necessarily metric).
C(X,R), resp. C(X,C) are real-valued (resp. complex-valued) bounded continuous functions

on X.

Proposition 5.1.15 C(X,R) and C(X,C) are Banach spaces.

Proof: Let Y = C(X,R), or C(X,C).
For f ∈ Y , setting ||f || = supx∈X |f(x)| makes Y into a normed vector space. Let (fn) be

a Cauchy sequence in Y . Then ∀x ∈ X,
(
fn(x)

)
is a Cauchy sequence in R (resp. C) so set

f(x) = limn→∞ fn(x).
Must show f is bounded and continuous, and show (fn)→ f in Y .
Given ǫ > 0, find N s.t. n,m > N ⇒ ||fn − fm|| < ǫ/2.
Given x ∈ X find nx > N s.t. |fnx

(x)− fn(x)| < ǫ/2.
Then n > N ⇒ |f(x) − fn(x)| ≤ |f(x) − fnx

(x)| + |fnx
(x) − fn(x)| < ǫ/2 + ǫ/2 = ǫ Hence

(fn) converges uniformly to f so f is continuous. ||f || ≤ ||f − fN ||+ ||fN || < ||fN ||+ ǫ <∞ so
f is bounded. Therefore f ∈ Y , and {f} → f in Y since ||f − fN || → 0.

Theorem 5.1.16 (Tietze extension theorem) Let X be normal and A ⊂ X is closed. Let
f : A→ [p, q]. Then there exists F : X → [p, q] s.t. F |A = f .

Proof: If p = q then f is constant and the theorem is trivial so suppose p < q. Let c =
max(p, q).

Claim: ∃ h : X → [−c/3, c/3] s.t. |h(a)− f(a)| ≤ 2/3c ∀a ∈ A.
Proof: Set A− = f−1[−c,−c/3] and A+ = f−1[c/3, c]. By Urysohn, ∃g : X → [0, 1] s.t.
g(A−) = 0 and g(A+) = 1.

Composing with a homeomorphism of [0, 1] with [−c/3, c/3] gives a function h : X →
[−c/3, c/3] s.t. h(A−) = −c/3 and h(A+) = c/3. If a ∈ A then |h(a)− f(a)| ≤ 2/3c.

Apply the Claim to f . This implies ∃h1 : X → [−c/3, c/3] s.t. |f(a) − h1(a)| ≤ 2/3c.
Apply the Claim to f − h1. This implies ∃h2 : X → [−2c/32, 2c/32] s.t. |f(a) − h1(a) −
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h2(a)| ≤ (2/3)2c. By induction, we apply the Claim to f − h1 − · · · − hn−1. This implies
∃hn : X → [−2n−1c/3n, 2nc/3n] s.t. |f(a)− h1(a)− · · · − hn−1(a)| ≤ (2/3)nc.

Let G(x) =
∑∞

n=1 hn(x).
∀x ∈ X,

|G(x)| ≤
∞∑

n=1

| |hn(x)| | ≤
∞∑

n=1

| |hn| | = c/3(1 + 2/3 + (2/3)2 + . . . ) = c/3(
1

1− 2/3
) = c.

The partial sums of G are a Cauchy sequence in C(X,R).
Hence by completeness of C(X,R) their pointwise limit G : X → [−c, c] is continuous.
Define F by

F (x) =





G(x) if p ≤ G(x)

p ifG(x) < p

q ifG(x) > q

F |A = G|A since p ≤ f(a) ≤ q ∀a ∈ A. 2

5.2 Compactness in Metric Spaces

Proposition 5.2.1 A sequentially compact metric space is complete.

Proof: Suppose X is sequentially compact, and (xn) is Cauchy in X.
Some convergent subsequence of (xn) converges to x ∈ X so since (xn) is Cauchy, with

(xn) → x. That is, given ǫ > 0, ∃N s.t. m,n ≥ N ⇒ d(xn, xm) < ǫ/2. Therefore since some
subsequence of (xn) converges, Nǫ/2(x) contains xm for infinitely many m, so ∃m > N s.t.
xm ∈ Nǫ/2(x) and therefore n ≥ N ⇒ d(xn, x) ≤ d(xn, xm) + d(xm, x) < ǫ/2 + ǫ/2 = ǫ.

Definition 5.2.2 Given ǫ > 0, a finite subset T of X is called an ǫ-net if {Nǫ(t)}t∈T forms an
open cover of X.

X is called totally bounded if ∀ǫ > 0, ∃ an ǫ-net for X.

Note: X totally bounded ⇒ diam(X) < diam(T ) + 2ǫ and diam(T ) <∞ since T finite, so
totally bounded implies bounded.

Example 5.2.3 Suppose X is infinite with

d(x, y) =

{
0 x = y

1 x 6= y

Then X is bounded but ∄ an ǫ -net for any ǫ < 1.
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Theorem 5.2.4 For metric X, the following are equivalent:

1. X compact

2. X sequentially compact

3. X is complete and totally bounded.

Proof:
(1) ⇒ (2)

Already showed: metric ⇒ first countable and Hausdorff
and first countable and Hausdorff and compact ⇒ sequentially compact.

(2) ⇒ (3):
Suppose X is sequentially compact.
We already showed this implies X is complete.
Given ǫ > 0: Pick a1 ∈ X.
Having chosen a1, . . . , an−1 if Nǫ(a1) ∪ . . . Nǫ(an−1) covers X, we are finished.
If not, choose an ∈ X −

(
Nǫ(a1) ∪ . . . Nǫ(an−1)

)
.

So either we get an ǫ-net {a1, . . . , an} for some n, or we get an infinite sequence (a1, a2, . . . , an, . . . ).
If the latter: By construction d(ak, an) ≥ ǫ ∀k, n so (an) has no convergent subsequence.

This is a contradiction. So the former holds. 2

(2) ⇒ (1):

Definition 5.2.5 Let {Gα}α∈J be an open cover of the metric space X. Then a > 0 is called
a Lebesgue number for the cover if diam(A) < a ⇒ A ⊂ Gα for some α.

Theorem 5.2.6 (Lebesgue’s Covering Lemma) If X is sequentially compact, then every
open cover has a Lebesgue number.

Proof: Let {Uα}α∈J be an open cover.
Say A ⊂ X is “big” if A is not contained in any Uα.
If ∄ big subsets then any a > 0 is a Lebesgue number, so assume ∃ big subsets.
Let a = inf{diam(A) | A big}
If a > 0, a is a Lebesgue number, so we assume a = 0 .
Hence ∀n > 0, ∃ a big Bn s.t. diam(Bn) < 1/n.
∀n, pick xn ∈ Bn. Find x s.t. a subsequence of (xn) converges to x.
Find α0 s.t. x ∈ Uα0 .
Uα0 is open, so ∃r > 0 s.t. Nr(x) ⊂ Uα0 .
For infinitely many n, xn ∈ Nr/2(x).
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Find N s.t. N > 2/r and xN ∈ Nr/2(x).

diam(BN) < 1/N < r/2 and BN ∩Nr/2(x) 6= ∅
(
since x ∈ BN ∩Nr/2(x)

)
so BN ⊂ Nr(x) ⊂

Uα0 . This is a contradiction, since BN is big.
Hence a > 0 so X has a Lebesgue number.

Proof that (2) ⇒ (1):
Given an open cover {Uα}α∈J , find a Lebesgue number a for {Uα}.
Let ǫ = a/3 and using (2) ⇒ (3) from the above, pick an ǫ-net T = {t1, t2, . . . , tn}. For

k = 1, . . . , n diamNǫ(tk) = 2ǫ < a so Nǫ(tk) ⊂ Uαk
for some α4.

Since {Nǫ(t1), Nǫ(t2), . . . , Nǫ(tn)} covers X (by definition of ǫ-net), so does {Uα1 , . . . , Uαn
}.

3 ⇒ 2:
Suppose X is complete and totally bounded.
Let S(0) = (x1, x2, . . . , xm, . . . ) be a sequence in X.
Since X is complete, to show S(0) has a convergent subsequence, it suffices to show S(0) has

a Cauchy subsequence.
Choosing an ǫ-net for ǫ = 1/2, cover X with finitely many balls of radius 1/2. Since S(0)

is infinite, some ball contains infinitely many xm so discard the xn outside that ball to get a
subsequence S(1) = (x

(1)
1 , x

(1)
2 , . . . , x

(1)
m , . . . ) with d(x

(1)
m , x

(1)
p ) < 2ǫ = 1 ∀m, p. Repeating this

procedure with ǫ = 1/4, 1/6, . . . , 1/(2n), . . . gives for each n a subsequence of S(n−1).

S(n) = (x
(n)
1 , x

(n)
2 , . . . , x

(n)
m , . . . ) s.t. d(x

(n)
m , x

(n)
p ) < 1/n ∀m, p.

Let S(n) = (x
(1)
1 , x

(2)
2 , . . . , x

(n)
n , . . . )

If m, p ≥ n then since S(m) and S(p) are subsequences of S(n), d(x
(m)
m , x

(p)
p ) < 1/n so S is a

Cauchy subsequence of S(0) as desired. 2

Theorem 5.2.7 If X and Y are metric spaces, and f : X → Y is a continuous function with
X compact, then f is uniformly continuous.

Proof: Given ǫ > 0, x ∈ f−1
(
Nǫ/2(f(x)

)
, so

{
f−1
(
Nǫ/2(f(x)

)}
x∈X

is an open cover of X.

Let δ be a Lebesgue number for this cover.
∀a, b ∈ X: d(a, b) < δ ⇒ diam{a, b} < δ ⇒ {a, b} ⊂ f−1

(
Nǫ/2(f(x)

)
for some x. Hence

d
(
f(a), f(b)

)
≤ d
(
f(a), f(x)

)
+d
(
f(x), f(b)

)
< ǫ/2+ ǫ/2 = ǫ. Hence f is uniformly continuous.

2

Corollary 5.2.8 A compact metric space is second countable.

Lemma 5.2.9 For metric spaces second countable ⇔ separable.
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Proof: Second countable ⇒ separable in general.
⇐= Suppose X is a separable metric space. Let {x1, . . . , xn, . . . } be a countable dense subset.
Then {Nr(xj)| r rational } forms a countable basis for X. (That is: Given Nr′(x), find xn s.t.
d(xn, x) < r′/3. Choose rational r s.t. r < r′/3. Then Nr(xn) ⊂ Nr′(x). )

Proof of Corollary: Suppose X is a compact metric space. Show X is separable.
For each ǫ = 1/n, choose an ǫ-net Tn = {x(n)1 , . . . , x

(n)
kn
}. Let S = ∪nTn. Then S is a

countable dense subset of X.
2

Example 5.2.10 Normal but not metric:
Let X =

∏
t∈R It where It = [0, 1] ∀t. X is compact by Tychonoff and is Hausdorff so X is

normal.
If X were metric, then being compact, it would be second countable.
Let S = {U1, . . . , Un, . . . } will be a countable basis.
Since R is uncountable, ∃tn ∈ R s.t. πt0(Un) = It0 ∀n. But then S is not a basis. (e.g. The

set (1/4, 3/4)×∏t 6=t0
It is not a union of sets in S.

This is a contradiction. So X is not metric.

2
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Chapter 6

Paracompactness

Let {Wα}α∈I be a cover of X. (We do not assume Wα is open.)

Definition 6.0.11 A cover {Tβ}β∈J is called a refinement of {Wα}α∈I if ∀β ∈ J, ∃α ∈ I s.t.
Tβ ⊂ Wα.

Definition 6.0.12 A collection {Wα}α∈I of subsets of X is called locally finite if each x ∈ X
has an open neighbourhood whose intersection with Wα is non-empty for only finitely many α.

Proposition 6.0.13 {Wα}α∈I is locally finite ⇒ ∪αW α = ∪αWα

Proof: Wα ⊂ ∪αWα ⇒ ∪αWα ⊂ ∪αWα

Conversely suppose y 6∈ ∪Wα.
Find open U s.t. y ∈ U and U ∩Wα = ∅ for α 6= α1, . . . αn.
y 6∈ Wα1 , . . . ,Wαn

.
Therefore y ∈ V := U ∩ (Wα1)

c ∩ · · · ∩ (Wαn
)c open

V ∩Wα = ∅ ∀α
Therefore V c ⊂ ∪αWα (since V c closed)
Therefore V ∩ (∪αWα) = ∅.
Hence y 6∈ ∪Wα

Definition 6.0.14 A topological space X is called paracompact if every open cover of X has
a locally finite refinement.

Note: Compact ⇒ paracompact. (A subcover is also a refinement.)

Proposition 6.0.15 If A is closed ⊂ X and X is paracompact, then A is paracompact.
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Proof: Let {Uα}α∈J be an open cover of A. For all α write Uα = Vα ∩ A with Vα open in X.
Then {Vα} ∪ {Ac} is an open cover of X so it has a locally finite refinement {Wβ}β∈I .

Then {Wβ ∩ A}β∈I is a locally finite refinement of {Uα}α∈J . 2

Proposition 6.0.16 X paracompact Hausdorff ⇒ X normal

Proof:
First show that X is regular:

Let a ∈ X and let B ⊂ X be closed with a 6∈ B.
∀b ∈ B ∃ open nbhd. Ub s.t. a 6∈ Ub (X Hausdorff)
{Ub}b∈B ∪ Bc is an open cover of X.
Let {Wα}α∈J be a locally finite refinement.
Let I = {α ∈ J | Wα ∩ B 6= ∅} Therefore {Wα}α∈I} covers B.
Set V := ∪α∈IWα ⊃ B.
∀α ∃b ∈ B s.t. Wα ⊂ Ub, and so Wα ⊂ Uβ ⇒ a 6∈ Wα

Therefore a 6∈ ∪α∈IWα = ∪α∈IWα = V .
Therefore X is regular.

Now given closed A, B, s.t. A ∩ B = ∅
∀b ∈ B∃ open Ub s.t. A ∩ Ub = ∅.
{Ub}b∈B ∪ Bc covers X.
Let {Wα}α∈J be a locally finite refinement.
Let I = {α ∈ J |Wα ∩ B 6= ∅}. Then {Wα}α∈I covers B. Set V = ∪α∈IWα.
For all α ∃b ∈ B s.t. Wα ⊂ Ub so Wα ⊂ Ūb ⇒ A ∩ W̄α = ∅. Hence ∅ = A ∩ (∪α∈IWα) =

A ∩ ∪α∈IWα = A ∩ V̄ .
Hence X is normal. 2

Definition 6.0.17 Let X be a topological space and let {Uj}j∈J be an open cover of X. A
partition of unity relative to the cover {Uj}j∈J consists of a set of functions fj : X → [0, 1]
such that:

1. f−1
j

(
(0, 1]

)
⊂ Uj ∀j ∈ J .

2. f−1
j

(
(0, 1]

)
j∈J

is locally finite.

3.
∑

j∈J fj(x) = 1 ∀x ∈ X.

Note: (2) implies that if x ∈ X, fj(x) = 0 for all but finitely many j so the sum in (3) makes
sense.
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{fj}j∈J is a partition of unity implies that
{
f−1
j

(
(0, 1]

)
j∈J

}
is a locally finite refinement of

{Uj}.
Hence if every open cover of X has a partition of unity then X is paracompact.
Conversely

Theorem 6.0.18 If X is paracompact Hausdorff, then for every open cover {Uα}α∈J of X
there is a partition of unity relative to {Uα}α∈J .

Proof: Let {Uα}α∈J be an open cover of X where X is paracompact Hausdorff.
Let {Vβ}β∈I be a locally finite refinement.
Then ∃φ : I → J s.t. Vβ ⊂ Uφ(β) ∀β ∈ I.
Given α ∈ J set Wα = ∪{β|φ(β)=α}Vβ. Then Wα ⊂ Uα.
Claim: {Wα} is locally finite.
Proof of Claim: Let x ∈ X. Then ∃Ux s.t. Ux ∩ Vβ = ∅ for all but β1, . . . , βn. Hence

Ux ∩Wα = ∅ unless φ(βj) = α for some j = 1, . . . , n.
Therefore Ux ∩Wα = ∅ unless φ(βj) = α, some j = 1, . . . , n.
i.e. Ux ∩Wα = ∅ for all but φ(β1), . . . , φ(βn) which is a finite set (although it might contain

duplicate entries).
Therefore {Wα} locally finite.

√

Proof of Thm. (cont.) Suff. to show ∃ partition of unity relative to {Wα} since this
gives functions fα : X → [0, 1] s.t. f−1((0, 1]) ⊂ Wα ⊂ Uα.

Lemma 6.0.19 Let {Uα}α∈J be a locally finite open cover of X where X normal. Then ∃
locally finite open cover {Vα}α∈J s.t. Vα ⊂ Vα ⊂ Uα ∀α ∈ J .

Proof of Thm. (concluded; given Lemma):
Apply Lemma to {Wα}α∈J to get cover {Vα}α∈J s.t. Vα ⊂ Vα ⊂ Wα ∀α.
{Wα} locally finite ⇒ {Vα} locally finite.
Do it again to get locally finite cover {Tα}α∈J s.t. Tα ⊂ Tα ⊂ Vα ⊂ Vα ⊂ Wα ∀α.
X paracompact Hausdorff ⇒ X normal ⇒ ∃gα : X → [0, 1] s.t. gα(Tα) = 1, gα(V

c
α) = 0.

g−1
α (0, 1] ⊂ Vα ⇒ g−1

α (0, 1] ⊂ Vα ⊂ Wα.
Define g(x) =

∑
α gα(x) (finite sum since fα(x) = 0 unless x ∈ Vα and {Vα} locally

finite so x in only finitely many Vα)
Set fα(x) = gα(x)/g(x).
Then {fα}α∈J is the desired partition of unity.

Proof of Lemma: To help prove Lemma:
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Lemma 6.0.20 (Sublemma). Let X be normal. Suppose X = U ∪ V U , V open. Then ∃
open W s.t. W ⊂ W ⊂ U and X = W ∪ V .

Proof:(Exercise)

Proof of Lemma (cont.): Well order J .
X = Uj0 ∪Wj0 where j0 = least elt. of J and Wj0 =

⋃
j>j0

Uj.

SubLemma ⇒ ∃ open Vj0 s.t. Vj0 ⊂ Vj0 ⊂ Uα and X = Vj0 ∪Wj0 .
Suppose that for all γ < β we have found open Vγ s.t. Vγ ⊂ Vγ ⊂ Uγ and

X =
⋃

j≤γ

Vj ∪
⋃

j>γ

Uj.

Claim: X =
⋃

j<β Vj ∪
⋃

j≥β Uj.

Proof of Claim: Let x ∈ X.
If x ∈ Uj some j ≥ β, then x ∈ RHS.
Otherwise, let M be max. s.t. x ∈ UM . ({Uj} locally finite ⇒ ∃ such max.)
Since M < β, applying induction hypoth. with γ =M :

X =
⋃

j≤M

Vj ∪
⋃

j>M

Uj .

x 6∈ Uj any j > M so x ∈ Vj some j ≤M .
i.e. x ∈ RHS.

Proof of Lemma (cont.): By Claim, X = Uβ ∪Wβ where

Wβ =
⋃

j≤β

Vj ∪
⋃

j>β

Uj.

SubLemma⇒ ∃ open Vβ s.t. Vβ ⊂ Vβ ⊂ Uβ and X = Vβ ∪Wβ. i.e.

X =
⋃

j≤β

Vj ∪
⋃

j>β

Uj.

completing induction step.
Therefore ∃ open Vj s.t. Vj ⊂ Vj ⊂ Uj and

X =
⋃

j≤γ

Vj ∪
⋃

j>γ

Uj ∀γ.
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Claim: X = ∪jVj.
Proof:Given x ∈ X find max. M s.t. x ∈ UM .
Apply above with γ =M to see that x ∈ Vj some j ≤ γ.

Proof of Lemma (concluded): Vj ⊂ Uj ∀j, {Uj} locally finite ⇒ {Vj} locally finite.
{Vj} is the required cover.

Theorem 6.0.21 Let X be regular. Suppose that every open cover of X has a countable re-
finement. Then X is paracompact.

Lemma 6.0.22 Let {Bβ}β∈J be a locally finite cover of X by closed sets. Suppose {Eα}α∈I is
a collection of sets (arbitrary — not necessarily open, closed, . . .) s.t. ∀β, Bβ ∩ Eα = ∅ for
almost all α. Then ∀α ∈ I we can choose open Uα s.t. Eα ⊂ Uα and {Uα} locally finite.

Note: {Eα} must be locally finite.
i.e. ∀x∃Qx s.t. Qx intersects only finite many Bβ and each such Bβ intersects only finitely

many Eα.

Proof of Lemma: Set Cα :=
⋃

Bβ∩Eα=∅Bβ.

{Bβ | Bβ ∩ Eα = ∅} ⊂ {Bβ} which is locally finite.
Therefore Cα =

⋃
Bβ∩Eα=∅Bβ =

⋃
Bβ∩Eα=∅Bβ = Cα.

Therefore Cα is closed.
Set

Uα := (Cα)
c =

⋃

Bβ∩Eα=∅

⇔
Eα⊂Bc

β

Bc
β ⊃ Eα.

Show {Uα} locally finite.
Let x ∈ X.
Find open V s.t. x ∈ V and V ∩Bβ = ∅ for β 6= β1, . . ., βn.
Therefore V ⊂ Bβ1 ∪ . . . ∪ Bβn

.
∀j, Bβj

∩ Eα = ∅ for all but finitely many α.
Let {α1, . . . , αk} be the set of all such α for all j = 1, . . . , n.
For α 6= α1, . . ., αk:
V ⊂ Bβ1 ∪ . . . ∪ Bβn

⊂ ⋃Bβ∩Eα=∅Bβ = Cα

Therefore V ∩ Uα = ∅ for α 6= α1, . . . , αk.

Proof of Thm. Let {Uj}j∈J be an open cover of X.
∀x ∈ X, x ∈ Uj(x) for some j(x).
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X regular ⇒ ∃Wx s.t. x ∈ Wx ⊂ Wx ⊂ Uj(x)

{Wx} is an open cover refining {Uα}α∈J
Applying hypothesis to {Wx} gives a countable refinement of {Wx} (thus a refinement

of {Uα}α∈J) V1, V2, . . ., Vn, . . ., where ∀j Vj ⊂ Vj ⊂ Uα(j) for some α(j)
Set

E1 := V1
E2 := V2 − V1
...

En := Vn −
⋃n−1

j=1 Vj ⊂ Vn ⊂ Uα(n)

...

For x ∈ X:
∃ least n s.t. x ∈ Vn.
x ∈ En for this n.

Therefore {En} covers X.

If k > n, Vn ∩
(
Vk −

⋃k−1
j=1 Vk−1

)
= ∅

Since Ek is the closure of Vk −
⋃k−1

j=1 Vk−1 = ∅, V open ⇒ Vn ∩ Ek = ∅.
Therefore {Ek} locally finite (since each x ∈ Vn for some n.)

{Ek} is a locally finite refinement of {Uα}.
Repeat procedure on cover {Vn} to get a locally finite closed refinement {Bβ} of {Vn}.
By construction ∀β, Bβ ⊂ Vn for some n so Bβ ∩ Ek = ∅ for almost all k.
Therefore Lemma ⇒ ∀k ∃ open Wk s.t. Ek ⊂ Wk and {Wk} locally finite.
Set W ′

k := Wk ∩ Uα(k) ⊂ Uα(k) open.
Ek ⊂ Wk and Ek ⊂ Uα(k) ⇒ Ek ⊂ W ′

k.
{Ek} covers so {W ′

k} covers.
W ′

k ⊂ Uα(k) ⇒ {W ′
k} is a refinement.

W ′
k ⊂ Wk, {Wk} locally finite ⇒ {W ′

k} locally finite.

Corollary 6.0.23 X regular and 2nd countable ⇒ X paracompact.

Proof: Let {Uα} be an open cover of X.
Let W1, W2, . . ., Wn, . . . be a countable basis.
If x ∈ X then x ∈ Uα some α so ∃ basic open Wn(x) s.t. x ∈ Wn(x) ⊂ Uα.
Therefore {Wn(x)} is a refinement of {Uα} which covers X and is countable (subcollections

of a countable collection)
Therefore Thm. ⇒ X paracompact.
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Chapter 7

Connectedness

Definition 7.0.24 A pair of nonempty open subsets A and B of a topological space X is called
a disconnection of X if A ∩ B = ∅ and A ∪ B = X.

Note: If A,B is a disconnection of X then A and B are also closed since A = Bc and B = Ac.

Proposition 7.0.25 A subspace of R is connected ⇔ it is an interval. In particular R is
connected.

Proof: Exercise.

Proposition 7.0.26 Suppose f : X → Y is continuous. If X is connected then f(X) is
connected.

Proof: Exercise.

Proposition 7.0.27 Suppose f : X → Y is continuous. If X is connected then f(X) is
connected.

Proof: Assume there is a disconnectionG,H of f(X). Then f−1(G), f−1(H) is a disconnection
of f(X). This is a contradiction, so f(X) must be connected. 2

Proposition 7.0.28 Suppose A ⊂ X. If A is connected then Ā is also connected.

Proof: Suppose G,H is a disconnection of Ā. Then G ∩ A,H ∩ A is a disconnection of A.
(Note that G ∩ Ā 6= ∅ ⇒ G ∩ A 6= ∅. Similarly for H.) 2

Proposition 7.0.29 If Xα is connected ∀α, and ∩αXα 6= ∅, then ∪αXα is connected.
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Proof: Suppose G,H is a disconnection of ∪αXα. Then ∀α, Xα = (G ∩ Xα) ∪ (H ∩ Xα).
Hence either G ∩ Xα = ∅ or H ∩ Xα = ∅. If H ∩ Xα = ∅, then Xα = G ∩ Xα so Xα ⊂ G.
Otherwise Xα ⊂ H. In other words, each Xα is in one of the sets G,H. Since ∩αXα 6= ∅ and
G∩H = ∅, each Xα is in the same set, say G. But then ∪αXα ⊂ G so that H = Gc = ∅, which
is a contradiction. Hence ∪αXα is connected. 2

Lemma 7.0.30 Let X be disconnected. Then ∃f : X → {0, 1} which is onto.

Proof: Let A,B be a disconnection. Define f(x) = 0, x ∈ A and f(x) = 1, x ∈ B. 2

Theorem 7.0.31 Let X
∏

α∈J Xα. Then X is connected ⇔ Xα is connected ∀α.

Proof: (=⇒) Suppose X is connected. Then Xα = πα(X) is connected.
(⇐=) Suppose Xα is connected ∀α. Assume X is disconnected. Let f : X → {0, 1} be onto.

Pick xα ∈ Xα. (The theorem is trivial if Xα = ∅ for some α.)
For α ∈ J and x ∈ X, define ıα0 : Xα0 → X by

πα(ıα0(w)) = w for α = α0

and
πα(ıα0(w)) = xα for α 6= α0.

Then
Xα0

ıα0−→ X
f−→ {0, 1}

is continuous, so Xα0 is connected ⇒ fıα0(Xα0) is connected.
Then fıα0 must not be onto since {0, 1} is disconnected.
Therefore ∀w ∈ Xα0 , f ◦ ıα0(w) = f ◦ ıα0(xα0) = f(x).
In other words, if x, y ∈ X and xα = yα for α 6= α0 then f(x) = f(y).
This is true ∀α0 so f(x) = f(y) whenever x and y differ in only one coordinate.
By induction, f(x) = f(y) whenever x, y differ in only finitely many coordinates.

Claim: Given z ∈ X, {y ∈ X|yα = zα for almost all α} is dense in X.
Proof (of Claim): Every open set V contains a basic open set U =

∏
α Uα with Uα = Xα for

almost all α. Hence ∃y ∈ U c s.t. yα = zα for almost all α.
√

Since {0, 1} is Hausdorff, f(y) = f(z) ∀y in a dense subset ⇒ f(y) = f(z) ∀y ∈ X. Hence
f is constant. Since f is onto, this is a contradiction. So X is connected. 2
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7.1 Components

Definition 7.1.1 A (connected) component of a space X is a maximal connected subspace.

Theorem 7.1.2
1. Each nonempty connected subset of X is contained in exactly one component. In partic-

ular each point of X is in a unique component so X is the union of its components.
2. Each component of X is closed.
3. Any nonempty connected subspace of X which is both open and closed is a component.

Proof:
1. Let ∅ 6= Y ⊂ X be connected. Let C =

⋃

A connected,Y⊂A

A.

Since Y ⊂
⋂

A connected,Y⊂A

A, this intersection is non-empty, so by the earlier Proposition, C

is connected. C is a component containing Y . If C ′ is another component containing Y then
by construction C ′ ⊂ C so C ′ = C by maximality.

2. If C is a component then C̄ is connected by the earlier Proposition, and C ⊂ C̄ so C = C̄
by maximality. Hence C is closed.

3. Suppose ∅ 6= Y with Y connected, and both closed and open. Let C be the component
of X containing Y . Let A = C ∩ Y and B = C ∩ Y c. Since Y and Y c are open, we must have
C ∩ Y c = ∅ so that A,B is not a disconnection of C. Hence C = C ∩ Y so C ⊂ Y . So Y = C
is a component.

2

Note: A component need not be open. For example, in Q the components are single points.

7.2 Path Connectedness

Notation: Let I = [0, 1].

Definition 7.2.1 X is called path connected if ∀x, y ∈ X ∃w : I → X s.t. w(0) = x, w(1) = y.

Proposition 7.2.2 Path connected ⇒ connected.

Proof: Suppose X is path connected. If X is not connected, then X has at least two compo-
nents C1, C2. Pick x ∈ C1, y ∈ C2 and find w : I → X s.t. w(0) = x, w(1) = y. I is connected,
so w(I) is connected, so by an earlier Proposition, w(I) is contained in a single component.
This is a contradiction, so X is connected. 2
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Example: A connected space need not be path connected.
Let Y = {(0, y) ∈ R2} (the y-axis)
Z = {

(
x, sin(1/x)

)
| 0 < x ≤ 1} the graph of y = sin(1/x) on (0, 1]

X = Y ∪ Z.
(a) X is connected:

Proof: The map (0, 1]
f−→ R2 given by t 7→ (t, sin(1/t)) is continuous so Z = Im(f) is

connected.
Hence Z is connected.
0 ∈ Z. But 0 ∈ Y so Y ∩ Z̄ 6= ∅ and Y is connected. Hence Y ∩ Z is connected. But

Y ∩ Z = Y ∩ Z since the limit points of Z are in Y .

(b) X is not path connected:
Proof: Suppose w : I → X s.t. w(0) = (0, 0) and w(1) =

(
1, sin(1)

)
.

Let t0 = inf{t|w(t) ∈ Z}.
t < t0 ⇒ w(t) ∈ Y and Y is closed so by continuity w(t0) ∈ Y .
By definition of inf, ∀δ > 0i ∃0 < r > δ s.t. ω(t0 + r) =

(
a, sin(1.a)

)
∈ Z for some a. Then

πxω[t0, t0 + r] contains 0 and a and is connected so it contains all x in [0, a]. In particular,
ω[t0, t0+δ) ⊃ ω[t0, t0+r] contains points of the form (∗, 0) and points of the form (∗, 1). This is
true for all δ, so w is not continuous at t0. This is a contradiction, so X is not path connected.

2

Note that from this example, A ⊂ X is path connected does not always imply Ā is path
connected. (Let A = Z in the above example.)

Proposition 7.2.3 If f : X → Y is continuous and X is connected, then f(X) is path con-
nected.

Proof: Given f(x1), f(x2) ∈ f(X) let w be a path connecting x1 and x2. Then f ◦w : I → Y
connects f(x1) and f(x2).

2

Proposition 7.2.4
1. If Xα is path connected ∀α, then ∩αXα 6= ∅ ⇒ ∪αXα is path connected.
2.
∏

αXα is path connected ⇔ Xα is path connected ∀α.

Proof:
1. Let a ∈ ∩αXα. Given x, y ∈ ∪αXα, connect them to each other by connecting each to a.
2. Let X =

∏
αXα.

(=⇒) Suppose X is path connected. Then Xα = πα(X) is path connected.
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(⇐=) Suppose Xα is path connected ∀α. Given x = (xα), y = (yα) ∈ X, ∀α select wα : I →
Xα s.t. wα(0) = xα, wα(1) = yα.

Define w : I → X by πα ◦ w = wα. Then w is continuous since each projection is, and
w(0) = x and w(1) = y.

2

Definition 7.2.5 A path component of a space X is a maximal path connected space.

Proposition 7.2.6 Each path connected subset of X is contained in exactly one path compo-
nent. In particular each point of X is in a unique path component, so X is the union of its
path components.

Proof: Insert “path” before “connected” and before “component” in the earlier proof, since
it used only that ∩αXα 6= ∅ with Xα connected implies ∪αXα connected.

2
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Chapter 8

Local Properties

Definition 8.0.7 A space X is called locally compact if every point has a neighbourhood whose
closure is compact.

Example: Rn is locally compact, but not compact.

Proposition 8.0.8 If a space X is compact, then it is locally compact.

(The proof is obvious.)

Theorem 8.0.9 Let X be a locally compact Hausdorff space. Then ∃ a compact Hausdorff
space X and an inclusion ı : X −→ X∞ s.t. X∞ rX is a single point.

Proof: Let ∞ denote an element not in the set X and define X∞ = X ∪ {∞} as a set.
Topologize X∞ by declaring the following subsets to be open:

(i) {U | U ⊂ X and U open in X}
(ii) {V | V c ⊂ X and V c is compact}
(iii) the full space X∞

Exercise: Check this is a topology.
Claim: X∞ is compact.
Proof: Let {Uα} be an open cover of X∞. If some Uα is X∞ itself, it is a finite subcover so we
are finished. Suppose not. Find Uα0 s.t. ∞ ∈ Uα0 . Uα0 must be a set of type (ii) so U c

α0
is a

compact subset of X.
{Uα ∩ X} covers U c

α0
so there is a finite subcover {Uα1 ∩ X, . . . , Uαn

∩ X}. But then
{Uα0 , Uα1 , . . . , Uαn

} covers X∞.

I claim that X∞ is Hausdorff.
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Proof: Let x 6= y ∈ X∞. If x, y ∈ X, we can separate them using the open sets from X, so
say y =∞.

Since X is locally compact, ∃U s.t. x ∈ U and Ū is a compact subset of X. Hence X∞ r Ū
is open in X∞ and ∞ ∈ X∞ r Ū .

Definition 8.0.10 Given a locally compact Hausdorff space X, the space X∞ formed by the
above construction is called the one point compactification of X.

Example: If X = Rn then X∞ is homeomorphic to Sn. (The inverse homeomorphism is given
by stereographic projection.)

Corollary 8.0.11 Suppose X is locally compact and Hausdorff, and A ⊂ X is compact. If U
is open s.t. A ⊂ U and U 6= X, then ∃f : X → [0, 1] s.t. f(A) = 0 and f(U c) = 1.

Proof: X∞ is normal so ∃ such an f on X∞ by Urysohn. Restrict f to X. 2

Definition 8.0.12 A space X is called locally [path] connected if the [path] components of
open sets are open.

Proposition 8.0.13 X is locally [path] connected ⇔ ∀x ∈ X and ∀ open U containing x, ∃ a
[path] connected open V s.t. x ∈ V ⊂ U .

Proof: (=⇒) Given x ∈ U , Let V be the [path] component of U containing x.
(⇐=) Let U be open. Let C be a [path] component of U and let x ∈ C. There exists an

open [path] connected V s.t. x ∈ V ⊂ U so by maximality of [path] components, V ⊂ C.

Hence x ∈
◦

C. This is true ∀x ∈ C so C is open. 2

Note:
1. Locally [path] connected does not imply [path] connected.
For example, [0, 1] ∪ [2, 3] is locally [path] connected but not [path] connected.
2. Conversely [path] connected does not imply locally [path ] connected.
For example, the comb space

X = {(1/n, y) | n ≥ 1, 0 ≤ y ≤ 1} ∪ {(0, y) | 0 ≤ y ≤ 1} ∪ {(x, 0) | 0 ≤ y ≤ 1}
X is [path] connected but not locally [path] connected.
Another example is the union of the graph of sin(1/x) with the y-axis and a path from the

y-axis to (1, sin(1)). Without this path, the space is not path connected.

Proposition 8.0.14 If X is locally path connected, then X is locally connected.
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Proof: ∀U and ∀x ∈ U ∃ a path connected V s.t. x ∈ V ⊂ U . But V is connected since path
connected implies connected. 2

Proposition 8.0.15 If X is connected and locally path connected, then X is path connected.

Proof: Let C be a path component of X. Hence C is open (by definition of locally path
connected applied to the open set X).

Let x ∈ C̄.
X is locally path connected⇒ ∃ a connected open set U containing x. (Apply the definition

of locally path connected to the open set X. The component of X containing x is open.)
x ∈ C̄ ⇒ U ∩ C 6= ∅ ⇒ C ∪ U is path connected.
So C ∪ U = C (by maximality of components)
Hence x ∈ U ⊂ C and therefore C = C̄, in other words C is closed.
Since C is both open and closed, by theorem 7.1.2, C is a connected component.
Since X is connected, C = X.
Hence X is path connected.

2
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Chapter 9

CW complexes

9.1 Attaching Maps

Given A ⊂ X with f : A→ Y , we define “the space obtained from Y by attaching X by means
of f” (written X ∪f Y ) as

X ∪f Y = (X ∐ Y ) /∼
where a ∼ f(a) ∀a ∈ A.

A
f - Y

A
A
A
A
A
A
A
A
A
A
A
A
AU

X
?

∩

jX- X ∪f Y

iY

?

∩

HHHHHHHHHHHHj

@
@
@
@
@

∃!

R

Z

is a pushout in the category of topological spaces.
iY is always an injection.
jX is an injection iff f is.

Example 9.1.1 Y = ∗ f : A→ ∗.
Then X ∪f ∗ = X/A.
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Associativity: A ⊂ X, B ⊂ Y .
f : A→ Y , g : B → Z.
Then

X ∪jY ◦f (Y ∪g Z) ∼= (X ∪f Y ) ∪g Z =
X ∐ Y ∐ Z

∼ .

Assume A is closed in X.

Proposition 9.1.2

1. In X ∪f Y , iY (Y ) is closed, jX(X r A) is open.

2. (a) iY : Y ∼= iY (Y ),

(b) jX : X r A ∼= jX(X r A).

Proof:

1. X ∪f Y = iY (Y ) ∪ jX(X r A) and iY (Y ) ∩ jX(X r A) = ∅
π : X ∐ Y → X ∪f Y

π−1
(
jX(X r A)

)
= X r A open in X ∐ Y

Therefore jX(X r A) open in X ∪f Y

Therefore iY (Y ) closed

2. (a) Show Y open in Y ⇒ iY (U) open in iY (Y )

Notice that iY (Y ) = A ∪f Y ⊂ X ∪f Y

π−1
(
iY (U)

)
= f−1(U)∐ U open in A∐ Y .

Therefore iY (U) open in A ∪f Y = i(Y )

(b) Show V open in X r A⇒ jX(V ) open in jX(X)

π−1
(
jX(V )

)
= V open in A∐ Y

Therefore jX(V ) open in X ∪f Y

Therefore jX(V ) open in jX(X) (since it is even open in entire space)

From now on we think of Y as the subset iY (Y ) of X ∪f Y .

Corollary 9.1.3 F ⊂ X ∪f Y is closed ⇔ F ∩ iY (Y ) and F ∩ jX(X r A) are closed.

Proof: Since X ∪f Y = iY (Y ) ∪ jX(X r A) this follows from the fact that iY (Y ) is closed.
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Proposition 9.1.4 If X and Y are compact, then X ∪f Y is compact.

Proof: X, Y compact ⇒ X ∐ Y compact ⇒ X ∪f Y = π(X ∐ Y ) compact

Proposition 9.1.5 If X and Y are normal, then X ∪f Y is also normal.

Proof: Suppose B,C ⊂ X ∪f Y with B ∩ C = ∅ where B, C are either closed or singletons.
(We don’t assume singletons are closed — have to show T1 as well)

Then B ∩ Y , C ∩ Y are disjoint closed subsets of Y so ∃g : Y → I s.t. g(B ∩ Y ) = 0,
g(C ∩ Y ) = 1.

Define h : j−1
X (B) ∪ j−1

X (C) ∪ A→ I by h|j−1
X

(B) = 0, h|j−1
X

(C) = 1, hA = g ◦ f .
This agrees on overlaps (which are closed) so yields a well-defined cont. function. Domain

of h closed in X, X normal =====
(Tietze)

⇒ ∃H : X → I extending h.

X ∐ Y H ∐ g - I

@
@
@
@
@R ..

..
..
..
..
..
..

φ
← universal property of quotient

�

X ∪f Y

φ(B) = 0, φ(C) = 1,
Therefore ∃ open sets separating B and C. Applied to singletons gives Hausdorff (thus T1)

and then applied again to closed sets gives normal.

Proposition 9.1.6 If Y is Hausdorff and X is metric, then X ∪f Y is Hausdorff.

Proof:

1. x 6= w ∈ X r A

Separation in X r A gives a separation in X ∪f A since X r A is open.

2. X ∈ X r A, y ∈ Y
Find ǫ > 0 s.t. N2ǫ(x) ⊂ X r A

Then x ∈ Nǫ(x) ⊂ Nǫ(x) ⊂ X r A, (where the closure can be taken either in X r A or
in X ∪f Y — it’s the same)

Then Nǫ(x),
(
Nǫ(x)

)c
separate x and y.
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3. y1, y2 ∈ Y

Lemma 9.1.7 X metric. A ⊂ X. V open in A.

Then ∃ open U in X s.t. U ∩ A = V and U ∩ A = closure of V in A

Proof:

See Problem Set I.

Proof of Prop. (cont):
Let U ′, V ′ be a separation of y1, y2 in Y (with y1 ∈ U ′, y2 ∈ V ′)
f−1(U ′) open in A. X metric so by Lemma, ∃ open U in X s.t. U ∩ A = f−1(U), U ∩

A =closure of f−1(U ′) in A = f−1(U ′) (since A closed).
Let W = (jXU) ∪ U ′ ⊂ X ∪f Y
π−1(any) = j−1

X (any)∐ i−1
Y (any)

Since j−1
X

(
U ′ ∪ jX(U)

)
= f−1(U ′) ∪ U = U and i−1

Y

(
U ′ ∪ jX(U)

)
= U ′ ∪

(
jX(U) ∩ Y ) =

U ′ ∪ f(U ∩ A) = U ′ we get π−1(W ) = U ∐ U ′ in X ∐ Y so W is open in X ∪f Y .

Claim: W = jX(U) ∪ U ′

Proof: B ⊂ f−1
(
f(B)

)
⇒ B ⊂ f−1

(
f(B)

)
⇒ f(B) ⊂ f(B) in general, and so W ⊂

U ′ ∪ jX(U) ⊂ U ′ ∪ jX(U) = W .
Therefore sufficient to show that U ′ ∪ jX(U) is closed.

SubClaim: j−1
X

(
jX(U ∪ U ′)) = U ∪ j−1

X (U ′)

Proof: U ⊂ j−1
X jX(U) so RHS⊂ LHS.

Conversely, suppose that a ∈LHS.
If a ∈ j−1

X (U ′) then a ∈RHS and if a ∈ U then a ∈RHS.
So suppose a ∈ (j−1

X jXU)r U .
Then ∃b ∈ U s.t. jX(a) = jX(b). Since a 6= b this implies a, b ∈ A. Hence b ∈ U ∩ A =

closure of f−1(U ′) in A.
If Z is a nbhd. of jX(b) then j

−1
X (Z) is a nbhd. of b, so j−1

X (Z) contains pts. of V . Hence Z
contains pts. of jX

(
f−1(U ′)

)
⊂ U ′. True ∀ nbhds. of jX(b), so jX(a) = jX(b) ∈ U ′.

Therefore a ∈ j−1
X (U ′) ∈ RHS.

Proof of Claim (cont.):
SubClaim ⇒ j−1

X

(
jX(U) ∪ U ′

)
= U ∪ j−1

X (U ′) closed in X

i−1
Y

(
jX(U) ∪ U ′

)
=
(
jX(U) ∩ Y

)
∪ (U ′ ∩ Y ) (9.1)
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jX(U)∩ Y = jX(U ∩A) = f(U ∩A) = f
(
closure of f−1(U ′) in A

)
⊂ closure of f

(
f−1(U ′)

)

in Y ⊂ U ′ ∩ Y , and so (9.1) ⇒ i−1
Y

(
jX(U) ∪ U ′

)
= U ′ ∩ Y which is closed in Y .

Therefore we have shown that π−1
(
jX(U) ∪ U ′

)
= closed ∐ closed so jX(U ∪ U ′) closed, as

desired.

Proof of Prop. (cont.):
y1 ∈ U ′ ⊂ W
Show y2 6∈ W so that W , (W )c is the desired separation.
Suppose y2 ∈ W . Then y2 ∈ W ∩ Y = i−1

Y (W ) ⊂ U ′ ∩ Y = closure of U ′ in Y . But y2 ∈ V ′

and V ′ ∩ (closure of U ′ in Y ) = ∅
⇒⇐
So y2 6∈ W , as desired.
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9.2 Coherent Topologies

Let X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ be topological spaces.
Let X = ∪nXn

The coherent topology on X defined by the subspaces Xn is the topology whose closed sets
are {A ⊂ X | A ∩Xn is closed in Xn ∀n}. (Clearly this collection is closed under intersections
and finite unions.) This is the weakest topology on X s.t. all the inclusion maps are continuous.

Notation: Write X = lim−→
n

Xn for ∪nXn with this topology.

Proposition 9.2.1 Given fn : Xn → Y s.t. fn
∣∣
Xk

= fk for k < n, ∃! f : X → Y s.t.

f
∣∣
Xn

= fn.

X0
⊂ - X1

⊂ - · · · ⊂ - Xn
⊂ - · · · ⊂ - XPPPPPPPPPPPPPPPPPPPq

HHHHHHHHHHHHj �....
....

....
....

....
....

....
....

..

∃!

Y
?

Proof: Let f be the unique set map on X restricting to fn on Xn. Given closed A in Y ,
f−1(A) ∩ Xn = f−1

n (A) which is closed in Xn. Hence f−1(A) is closed in X. Therefore f is
continuous.

Proposition 9.2.2 Suppose ∀n that Xn is normal and Xn is closed in X. Then X is normal.

Proof:
∀x ∈ X, {x} ∩Xn =

{
{x} or ∅

}
= closed in Xn

Hence {x} closed.
So X is T1.
Suppose A, B closed in X with A ∩ B = ∅.
X1 normal ⇒ ∃g1 : X1 → I s.t. g1(X1 ∩ A) = 0, g1(X1 ∩ B) = 1.
Suppose gn : Xn → I has been defined s.t. gn(Xn ∩A) = 0, gn(Xn ∩B) = 1, gn

∣∣
Xk

= gk for
k < n.
To define gn+1:

Define fn : Yn := Xn ∪ A ∪B → I by fn(Xn) = gn, fn(A) = 0, and fn(B) = 1.
A, B, Xn closed and fn agrees on the overlaps, so fn is continuous.
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Yn closed in X ⇒ Yn ∩ Xn+1 closed in Xn+1, so by Tietze (using Xn+1 normal) ∃gn+1 :
Xn+1 → I extending f

∣∣
Y ∩Xn+1

.

Hence gn+1

∣∣
Xn

= fn
∣∣
Xn

= gn, gn+1(Xn+1 ∩ A) = 0, gn+1(Xn+1 ∩B) = 1.
By universal property of lim−→, ∃! g : X → I extending gn ∀n.
Then g(A) = 0 and g(B) = 1.
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9.3 CW complexes

Motivation: Finite CW complexes:
A finite 0-dimensional CW complex consists of a finite set with the discrete topology.
A finite (n+ 1)-dimensional CW complex is a space of the form

(∐
α∈J D

n+1
)
∪f X where

(1) X is a finite k-dimensional CW complex for some k ≤ n
(2) Dn+1 denotes [0, 1]n+1.

∐
α∈J D

n+1 has the “disjoint union” topology: U is open if its
intersection with each Dn+1 is open.

(3) f :
∐
∂Dn+1 → X, where Sn ∼= ∂Dn+1 ⊂ Dn+1

Examples:
(1) I = [0, 1]
(2) Sn which is homeomorphic to Dn ∪f pt = Dn/∂Dn.

Definition of CW complex which follows is more general and allows for infinite CW -
complexes as well.

Terminology:
Spaces homeomorphic to Dm will be called m-cells.
Spaces homeomorphic to the interior of Dm will be called open m-cells.
m is called the dimension of the cell.

Definition 9.3.1 A CW-structure on a Hausdorff space X consists of a collection of disjoint
open cells {eα}α∈J and a collection of maps fα : Dm → X s.t.

1. X = ∪α∈Jeα (disjoint as a set)

2. ∀α :

(a) fα
∣∣

◦

Dm
:

◦

Dm ∼= eα

(b) fα(∂D
m) ⊂ {union of finitely many of the cells eα having dimension less than m }

3. A ⊂ X is closed ⇔ A ∩ eα is closed in eα for all α

A space with a CW-structure is called a CW-complex.

To see that this generalizes the above description:

Suppose Y = X ∪
(∐

β∈K D
n+1
β

)
∪g X where X = ∪α∈J eα is a CW complex with dim eα ≤

n ∀α. Write C =
∐

β∈K D
n+1
β and ∂C =

∐
β∈K ∂D

n+1
β .

So C r ∂C =
∐

β∈K

◦

Dn+1
β .
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∂C ⊂ - C

X
?

⊂
i - Y

j

?

Let fβ = j
∣∣
Dn+1

β

: Dn+1
β → X. (So X is a union of cells having dimension < n+ 1.)

Since Y = ∪α∈J eα
⋃ ∪β∈K eβ in the case of a finite CW complex (where the sets J and K

are finite) the third condition is automatic.

Terminology:
∪{eα | dim eα ≤ n} is called the n-skeleton of X, written X(n).
The restrictions fα|∂Dm are called the attaching maps.

Notice that we can recover X from knowledge of X(0) and the attaching maps as follows:

Inductively defineX(n+1) byX(n+1) =
(∐

β∈Kn+1
Dn+1

β

)
∪fX

(n) whereKn+1 = {all (n+1)-cells}.
(Knowledge of a map includes knowledge of its domain so we know the set Kn+1.)

X(0) ⊂ X(1) ⊂ · · · ⊂ X(n) . . .

Define X = ∪nX
(n) = ∪α∈Jeα and topologize it by condition 3.

If ∃M s.t. X(M) = X then X is called finite dimensional.
X is called finite if it has finitely many cells.

Note: A space can have more than one CW-structure giving the same topology.
e.g.

S2 = e0 ∪ e2

S2 = e0 ∪ e0 ∪ e1 ∪ e1 ∪ e2 ∪ e2
Note: The open n-cells comprising X are not necessarily open as subsets of X. Only the top
dimensional open cells are actually open in X.

Lemma 9.3.2 eα = fα(D
m)

Proof: Dm compact ⇒ fα(D
m) compact ⇒ fα(D

m) closed as X is Hausdorff. (In fact X is
normal.)

eα = fα(
◦

Dm) ⊂ fα(D
m) ⇒ eα ⊂ fα(D

m).
Conversely f−1

α (eα) = f−1
α (eα) = Int(Dm) = Dm so fα(D

m) ⊂ eα. 2
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Corollary 9.3.3 eα ⊂ X(m).

Proof: eα = fα(D
m) = fα(

◦

Dm) ∪ fα(∂Dm) with fα(
◦

Dm) = eα and fα(∂D
m) ⊂ X(m−1), so

eα ⊂ X(m). 2

Corollary 9.3.4 For any α0, eα0 ∩ eα = ∅ for all but finitely many α.

Proof: By definition fα0(∂D
m) ∩ eα = ∅ for all but finitely many α. 2

Theorem 9.3.5 A compact ⊂ X ⇒ A ∩ eα = ∅ for all but finitely many α.

Proof: X = ∪α∈J eα. Let I = {α ∈ J | α ∩ eα 6= ∅}.
For all α ∈ I, choose yα ∈ A ∩ eα. Set Y = {yα}α∈I .
∀β, {α | eβ ∩ eα 6= ∅} is finite, so eβ ∩ Y is finite.
Suppose S ⊂ Y .
∀β ∈ J , S ∩ eβ is finite, thus closed in X, since X is T1.
Hence S is closed in X. (Property 3)
In particular, Y is closed in X and every subset of Y is closed in Y .
So Y has the discrete topology.
But Y ⊂ A, A is compact, and Y is closed, hence Y is compact. Therefore Y is discrete

implies Y is finite. Hence I is finite. 2

Corollary 9.3.6 If A is a compact subset of X, then A ⊂ X(N) for some N .

Corollary 9.3.7 X is compact ⇔ X is finite.

Proof: =⇒ If X is compact then X intersects only finitely many eα. But X intersects all eα
so X is finite.
⇐= X(n+1) = Cn+1 ∪f X

(n) where Cn+1 =
∐

β∈Kn+1
Dn+1.

If X is finite, then Kn+1 is finite, and so Cn+1 is compact, and hence X(n+1) is compact (by
induction).

If X is finite, then X = X(N) for some N . 2

9.3.1 Subcomplexes

Let X = ∪α∈J eα be a CW complex. Suppose J ′ ⊂ J .
Y = ∪α∈J ′ eα is called a subcomplex of X if eα ⊂ Y ∀α ∈ J ′.

Example: X(n) is a subcomplex of X ∀n.

Proposition 9.3.8 Let Y be a subcomplex of X. Then Y is closed in X.
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Proof: For β ∈ J show Y ∩ eβ is closed in eβ.
{α ∈ J | eα ∩ eβ 6= ∅} is finite, so eβ = eα1 ∪ · · · ∪ eαk

.
The eα are disjoint so Y ∩ eα = ∅ unless eα ⊂ Y .
Discarding those α for which Y ∩ eα = ∅, write

Y ∩ eβ =
(
(Y ∩ eα1) ∪ · · · ∪ (Y ∩ eαr

)
)
∩ eβ with eα1 , . . . , eαr

⊂ Y
⊂
(
Y ∩ eα1) ∪ · · · ∪ (Y ∩ eαr

)
)
∩ eβ

⊂ (eα1 ∪ · · · ∪ eαr
) ∩ eβ

⊂ Y ∩ eβ
using eαj

⊂ Y and applying the definition of subcomplex.
Hence Y ∩ eβ = (eα1 ∪ · · · ∪ eαr

) ∩ eβ is closed in eβ. Hence Y is closed in X. 2

Corollary 9.3.9 A subcomplex of a CW complex is a CW complex.

Proof: Let Y ⊂ X be a subcomplex where Y = ∪α∈J ′ eα and X = ∪α∈J eα.
For α ∈ J ′, fα(D

m) = eα ⊂ Y (thus it is in finitely many cells of Y since X is a CW -
complex) so condition (2) is satisfied.

Check condition (3).
Suppose A ∩ eα closed in eα for all α ∈ J ′.
Given β ∈ J , write Y ∩ eβ = (eα1 ∪ · · · ∪ eαr

) ∩ eβ with α1, . . . , αr ∈ J ′ as above.
Then A ∩ eβ =

(
(A ∩ eα1) ∪ · · · ∪ (A ∩ eαr

)
)
∩ eβ.

A ∩ eαj
is closed in eα, thus compact, for j = 1, . . . , r.

Therefore A ∩ eβ = (compact) ∩ eβ =closed subset of eβ.
Hence A is closed in X and thus closed in Y .

Corollary 9.3.10 X(n) is closed in X ∀n.
Corollary 9.3.11 X = lim−→n

X(n).

Proof: X(n) is closed in X for all n. If A ⊂ X satisfies A ∩ X(n) closed for all n, then ∀α,
(A ∩X(n)) ∩ eβ = A ∩ eβ closed, since eα ⊂ X(n) for some n.

Proposition 9.3.12 X(m) is normal ∀m.

Proof: X(n+1) = Cn+1 ∪f X
(n) where Cn+1 =

∐
β D

n+1 is normal. Hence X(m) is normal ∀m
by induction. 2

Corollary 9.3.13 X is normal.

There is a stronger theorem which we won’t prove which says

Theorem 9.3.14 (Mizakawa) X is a CW -complex ⇒ X is paracompact.

78



9.3.2 Relative CW-complexes

Definition 9.3.15 A relative CW-structure (X,A) consists of a Hausdorff space X, a subspace
A of X, a collection of disjoint open cells {eα}α∈J and maps fα : Dm → X s.t.

1. X = A ∪⋃α∈J eα

2. ∀α
(a) f(Dm) ⊂ eα and fα| ◦

Dm

∼= eα

(b) fα(∂D
m) ⊂ A∪ { union of finitely many of the cells eα having dimension less than

m}
3. B ⊂ X is closed ⇔ B ∩ A is closed in A and B ∩ (A ∪ eα) is closed in A ∪ eα ∀α.
A pair (X,A) with a relative CW-structure is called a relative CW-complex.

Define X(n) = A ∪⋃dim eα≤n eα. By convention, set X(−1) = A.

Proposition 9.3.16 Let (X,A) be a relative CW-complex.

1. X = lim−→n
X(n).

2. A is normal ⇒ X is normal.

3. X(n) is closed in X ∀n.
4. (X/A, ∗) is a relative CW complex.

2

9.3.3 Product complexes

Let X = ∪α∈J e
α and Y = ∪β∈K e

β be CW complexes.
Then X × Y =

⋃
(α,β)∈J×K (eα × eβ).

Note: If eα is an m-cell and eβ is an n-cell then eα × eβ is an (m+ n)-cell.

Define fα,β by Dm+n = Dm ×Dn fα×fβ- X × Y.
◦

Dm+n =
◦

Dm ×
◦

Dn fα×fβ→ X × Y is a homeomorphism from
◦

Dm+n to its image.

∂Dm+n = (∂Dm ×Dn) ∪ (Dm × ∂Dn) ⊂ - X × Y
fα,β(∂D

m+n) ⊂
{(

(m − 1) − cells
)
×
(
n − cells

)}
∪
{(
m − cells

)
×
(
(n − 1) − cells

)}
=

{
(m+ n− 1)− cells

}
.

So X×Y will be a CW-complex if condition 3 is satisfied. In general, it will not be satisfied.
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9.4 Compactly Generated Spaces

In this section, all spaces will be assumed to be Hausdorff.

Definition 9.4.1 A (Hausdorff) space X is called compactly generated (or a k-space) if it
satisfies A ⊂ X is closed ⇔ A ∩K is closed in K for all compact subspaces K of X.

Examples:

1. Compact spaces

2. CW-complexes

Given X we define a space Xk as follows.
As a set, Xk = X. Topologize Xk by: closed sets = {A ⊂ Xk|A∩K is closed (in the original

topology) in K for every K ⊂ X which is compact in the original topology }.
Note: Since X is Hausdorff, A closed in K is equivalent to A closed in X.

A ⊂ X is closed in the original topology ⇒ A is closed in Xk.
Hence

Proposition 9.4.2 Xk

id−→ X is continuous.

Thus the topology on Xk is finer. In particular Xk is Hausdorff.
Clearly X compact ⇒ Xk = X.

Proposition 9.4.3 f : X → Y continuous implies that f is continuous when considered as a
map Xk → Yk.

Proof: Suppose B ⊂ Yk is closed. If K ⊂ X is compact, then f(K) is compact, so B ∩ f(K)
is closed in Y

This implies f−1(B ∩ f(K)) is closed in X. Hence f−1(B ∩ f(K)) = f−1(B)∩ f−1(f(K)) ⊃
f−1(B)∩K. So f−1(B)∩K = f−1(B∩ f(K))∩K which is closed in K Hence f−1(B) is closed
in Xk. 2

Proposition 9.4.4 If A is closed in X, then Ak is the subspace topology from the inclusion
A →֒ Xk.

Proof: A →֒ X ⇒ Ak →֒ Xk is continuous so the Ak topology is finer than the subspace
topology. Suppose that B ⊂ Ak is closed. So for all compact K ⊂ A, B∩K is closed in K. We
show that B is closed in Xk. Suppose L ⊂ X is compact. A is closed, so A ∩ L is a compact
subset of A. However B ∩ L = B ∩ A ∩ L, so B ∩ L is closed. Hence B is closed in Xk. 2
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Corollary 9.4.5 K is compact in Xk ⇔ K is compact in X.

Proof: K is compact in Xk ⇒ id(K) = K is compact in X.
If K is compact in X, then K is closed in X which implies that Kk is the subspace topology

as a subset of Xk. Hence K is compact when regarded as a subspace of Xk. 2

Corollary 9.4.6 Xk is compactly generated.

Proof: SupposeA ⊂ Xk is such thatA∩K is closed for all compactK ofXk. {compact subspaces ofXk}
= { compact subspaces of X} so this implies A is closed in Xk. Hence Xk is compactly gener-
ated. 2

Proposition 9.4.7 If X is compactly generated, then Xk = X. In particular (Xk)k = Xk.

Proof: If A is closed in X, then A is closed in Xk. Conversely suppose A is closed in Xk.
Then A ∩K is closed ∀ compact K of X. Hence A is closed in X. 2

Theorem 9.4.8 Let X and Y be CW complexes. Then (X × Y )k is a CW complex.

Proof: Write X = ∪α∈Jeα, and Y = ∪β∈Keβ. So as a set Z = X × Y = ∪J×Keα × eβ. Since
Dm+n is compact, fα,β(D

m+n) is compact so its topology as a subspace of X is the same as
that as a subspace of X×Y . Hence fα,β is continuous as a map from Dm+n to Z and fα,β| ◦

Dm+n

is still a homeomorphism to its image in Z, so property (2) in the definition of CW -complex
is satisfied. For property (3): Suppose A ∩ eα × eβ is closed for all α, β. For any compact K,
π1(K) and π2(K) are compact so π1(K) ⊂ ∪j=1,...,reαj

, π2(K) ⊂ ∪k=1,...,seβk
.

Hence
K ⊂ ∪ j=1,...,r

k=1,...,s
eαj
× eβk

⊂ ∪ j=1,...,r

k=1,...,s
eαj
× eβk

Hence

A ∩K = A ∩
(
∪ j=1,...,r

k=1,...,s
eαj
× eβk

)
∩K

=

(
∪ j=1,...,r

k=1,...,s
A ∩ eαj

× eβk

)
∩K

which is closed. So A is closed in Z. 2
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Chapter 10

Categories and Functors

Definition 10.0.9 A category C consists of:

E1) A collection of objects (which need not form a set) known as Obj(C)

E2) For each pair X, Y in Obj(C), a set (denoted C(X, Y ) or HomC(X, Y )) called the
morphisms in the category C from X to Y

E3) For each triple X, Y, Z in Obj(C), a set function ◦ : C(X, Y ) × C(Y, Z) → C(X,Z)
called composition

E4) For each X in Obj(C), an element 1X ∈ C(X,X) called the identity morphism of X

such that:

A1) ∀f ∈ C(X, Y ), 1Y ◦ f = f and f ◦ 1X = f .

A2) f ∈ C(X, Y ), g ∈ C(Y, Z), h ∈ C(Z,W ) ⇒ h ◦ (g ◦ f) = (h ◦ g) ◦ f ∈ C(X,W )

Examples:

Objects Morphisms ◦ id

1. Sets Set functions comp. of functions identity set map
2. Groups Group homomorphisms ” ”
3. Top. spaces conts. functions ” ”

4. “Topological pairs”
An object in C is a pair (X,A) of topological spaces with A ⊂ X.
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Morphisms (X,A) 7→ (Y,B) = { conts. f : X → Y | f(A) ⊂ B}
5. X p.o. set. Define C by Obj(C) = X.

C(x, y) =

{
set with one element if x ≤ y;

∅ if y ≤ x or x, y not comparable

6. C any category. Define Cop by

ObjCop = ObjC.

Cop(X, Y ) = C(Y,X).

g ◦Cop f = f ◦C g.

Definition 10.0.10 A functor F : C→ D consists of:

E1) For each object X in C, an object F (X) in D

E2) For each morphism g in C(X, Y ), a morphism F (g) in D
(
F (X), F (G)

)

such that:

A1) F (1X) = 1F (X)

A2) F (g ◦ f) = F (g) ◦ F (f)

Examples:

1. “Forgetful” functor F : Top Spaces → Sets

F (X) = underlying set of top. space X

2. Sets → k-vector spaces

S 7→ “Free” vector space over k on basis S
(
S → TF (S)

)
7−→ F (T )

3. Completely regular topological spaces and continuous maps→ Compact topological spaces
and conts. maps

X 7−→ β(X)
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4. Top. spaces → Compactly generated top. spaces

X 7−→ Xk

Definition 10.0.11 If F and G are functors from C to D, then a natural transformation
n : F → G consists of:

For all X in C, a morphism nX ∈ D(F (X), G(G)) s.t. ∀f ∈ C(X, Y ),

F (X)
nX- G(X)

F (Y )

F (f)

? nX- G(Y )

G(f)

?

commutes.

Example: C =topological pairs
D = topological spaces
F : C→ D forget A. i.e. (X,A) 7−→ X
G : C→ D (X,A) 7−→ X/A(
(X,A)

f- (Y,B)
)
7−→

(
X/A

G(f)- Y/B
)
.

n : F → G by nX : F (X,A)→ G(X,A) is the canonical projection, X → X/A.

Then (X,A)
f→ (Y,B) yields

X
F (f) - Y

X/A

nX

? G(f)- Y/B.

nY

?
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Chapter 11

Homotopy

11.1 Basic concepts of homotopy

Example:

∫

γ1

1

z
dz =

∫

γ2

1

z
dz

but ∫

γ1

1

z
dz 6=

∫

γ3

1

z
dz.

Why? The domain of 1/z is C r {0}. We can deform γ1 continuously into γ2 without leaving
Cr {0}.

Intuitively, two maps are homotopic if one can be continuously deformed to the other.
The value of

∫
γ

1
z
dz is an example of a situation where only the homotopy class is important.

Definition 11.1.1 Let X and Y be topological spaces, and A ⊂ X, and f, g : X → Y with
f |A = g|A. We say f is homotopic to g relative to A (written f ≃ g relA) if ∃H : X × I → Y
s.t. H|X×0 = f , H|X×1 = g, and H(a, t) = f(a) = g(a) ∀a ∈ A. H is called a homotopy from
f to g.

In the example, X = I, Y = Cr {0}, A = {0} ∪ {1}, f(0) = g(0) = p, f(1) = g(1) = q.
Notation: For t ∈ I, Ht : X → Y by Ht(x) = H(x, t). In other words H0 = f , H1 = g.

f
H≃ g rel A or H : f ≃ g rel A mean H is a homotopy from f to g. We write f ≃ g if A is

understood.

Example: Y = Rn, f, g : X → Rn. f |A = g|A. Then f ≃ g rel A.
Proof: Define H(x, t) = tg(x) + (1− t)f(x)
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Proposition 11.1.2 A ⊂ X. j : A → Y . Then homotopy rel A is an equivalence relation on
S = {f : X → Y |f |A = j}.

Proof: (i) reflexive: given f ∈ S, define H : f ≃ f by H(x, t) = f(x) ∀t.
(ii) Symmetric: Given H : f ≃ g define G : g ≃ f by G(x, t) = H(x, 1− t).
(iii) Transitive: Given F : f ≃ g, G : g ≃ h define H : f ≃ h by

H(x, t) =

{
F (x, 2t) if 0 ≤ t ≤ 1/2

G(x, 2t− 1) if 1/2 ≤ t ≤ 1

2

Important special case: A = pt x0 of X.

Definition 11.1.3 A pointed space consists of a pair {X, x0}. x0 ∈ X is called the basepoint.
A map of pointed spaces f : (X, x0)→ (Y, y0) is a map of pairs, in other words f : X → Y s.t.
f(x0) = y0.

Note: Pointed spaces and basepoint-preserving maps form a category.
Notation: X, Y pointed spaces. [X, Y ] = { homotopy equivalence classes of pointed maps }.
Top (X, Y ) is far too large to describe except in trivial cases (such as X = pt). But [X, Y ] is

often countable or finite so that a complete computation is often possible. For this case under
certain hypotheses (discussed later) this set has a natural group structure.

Notation: πn(Y, y0)
def
= [Sn, Y ] with basepoints (1, 0, . . . , 0) and y0 respectively. In this

special case X = Sn, this set has a natural group structure (described later). πn(Y, y0) is called
the n-th homotopy group of Y with respect to the basepoint y0.

π1(Y, y0) is called the fundamental group of Y with respect to the basepoint y0.

11.1.1 Group Structure of π1(Y, y0)

Notation: f, g : I → Y . Suppose f(1) = g(0).
Define f · g : I → Y by

f · g(s) =
{
f(2s) if 0 ≤ s ≤ 1/2

g(2s− 1) if 1/2 ≤ s ≤ 1

Lemma 11.1.4 f, g : I → Y s.t. f(1) = g(0). A = {0} ∪ {1} ⊂ I. Then the homotopy class
of f · g rel A depends only on the homotopy classes of f and g rel A. In other words f ≃ f ′

and g ≃ g′ ⇒ f · g ≃ f ′ ≃ g′.
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F : f ≃ f ′, G : g ≃ g′.
H : I × I → Y

H(s, t) =

{
F (2s, t) if 0 ≤ s ≤ 1/2

G(2s− 1, t) if 1/2 ≤ s ≤ 1.

H : f · g ≃ f ′ · g′. 2

Let f, g ∈ π1(Y, y0). So f, g : S1 → Y .
Thought of as maps I → Y for which f(0) = f(1) = g(0) = g(1) = y0.
Define f ⋆ g in π1(Y, y0) to be f · g.

Theorem 11.1.5 π1(Y, y0) becomes a group under [f ][g] := [fg].

Proof: The preceding lemma show that this multiplication is well defined.

Associativity:
Follows from:

Lemma 11.1.6 Let f, g, h : I → Y such that f(1) = g(0) and g(1) = h(0). Then (f · g) · h ≃
f · (g · h),

Proof: Explicitly H(s, t) =





f( 4s
2−t

) 4s ≤ 2− t;
g(4s+ t− 2) 2− t ≤ 4s ≤ 3− t;
h(4s+t−3

1+t
) 3− t ≤ 4s.

√

Identity: Given y ∈ Y , define cy : I → Y by c(s) = y for all s. Constant map.

Lemma 11.1.7 Let f : I → Y be such that f(0) = p. Then cp · f ≃ f rel({0} ∪ {1}).

H(s, t) =

{
p 2s ≤ t;

f(2s−t
2−t

) 2s ≥ t.

Similarly if f(1) = q then f · cq ≃ f relA. Applying this to the case p = q = y0 gives that
[f ][cy0 ] = [cy0 ][f ] = [f ].

√

Inverse: Let f : I → Y Define f−1 : I → Y by f−1(s) := f(1− s).
Lemma 11.1.8 . f · f−1 ≃ cp rel({0} ∪ {1}).
Proof: Intuitively:

t = 1 Go from p to q and return.
0 < t < 1 Go from p to f(t) and then return.
t = 0 Stay put.

H(s, t) =

{
f(2st) 0 ≤ s ≤ 1/2;

f
(
2(1− s)t

)
1/2 ≤ s ≤ 1.
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Applying the lemma to the case p = q = y0 shows [f ][f−1] = [cy0 ] in π1(Y, y0),
√

This completes the proof that π1(Y, y0) is a group under this multiplication.

Note: In general π1(Y, y0) is nonabelian.

Proposition 11.1.9 Let f : X → Y be a pointed map. Define f# : π1(X, x0) → π1(Y, y0) by
f#[ω] := [f ◦ ω]. Then f# is a group homomorphism.

(f# is called the map induced by f .)

Proof:
Show that f# is well defined.

Lemma 11.1.10

(W,A)
g-
g′
- (X,B)

h-
h′
- (Y,C)

Suppose g ≃ g′ relA and h ≃ h′ relB. Then h ◦ g ≃ h′ ◦ g′ relA.

Proof of Lemma:
Let G : g ≃ g′ and H : h ≃ h′ be the homotopies. Define K : W × I → Y by K(w, t) :=

H
(
G(w, t), t

)
. Then K : h ◦ g ≃ h′ ◦ g′ relA. (i.e. K(w, 0) = H

(
G(w, 0), 0

)
= H

(
g(w), 0

)
= h ◦

g(w) and similarly K(w, 1) = h′ ◦ g′(w) while for a ∈ A, K(a, t) = H
(
G(a, t), t

)
= H

(
g(a), t

)
=

h
(
g(a)

)
= h′

(
g′(a)

)
.

Proof of Proposition (cont.) Thus f# is well defined (applying the lemma with W := S1,
A = {w0 := (1, 0)}, B := {x0}, C := {y0}, g := w, g′ := w′, and h = h′ := f).

√

f ◦(w ·γ) = (f ◦ω)·(f ◦γ) Therefore f#([ω][γ]) = f#([ω ·γ]) = [f ◦(ω ·γ)] = [(f ◦ω)·(f ◦γ)] =
[f ◦ ω][f ◦ γ] = f#([ω])f#([γ]).

Corollary 11.1.11 The associations (X, x0) 7−→ π1(X, x0) with f 7−→ f# defines a functor
from the category of pointed topological spaces to the category of groups.

To what extent does π1(Y, y0) depend on y0?

Proposition 11.1.12

1. Let Y ′ be the path component of Y containing y0. Then π1(Y
′, y0) ≃ π1(Y, y0).

2. If y0 and y1 are in the same path component then π1(Y, y0) ≃ π1(Y, y1)
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Proof:

1. Any curve of Y beginning at y0 lies entirely in Y ′ (since curves are images of a path
connected set and thus path connected).

2. Pick a path α joining y0 to y1. Define φ : π1(Y, y0) → π1(Y, y1) by [f ] 7→ [α−1 · f · α]
(where α−1 denotes the path which goes backwards along α).

Check that φ is a homorphism:

φ([f ][g]) = [α−1fα][α−1gα] = [α−1fαα−1gα] = [α−1fgα] since fαα−1g ≃ fcy1g ≃ fg.
Thus φ([f ][g]) = [α−1fgα] = φ([fg])

√

Show φ is injective:

Suppose that φ([f ]) = e. That is [α−1fα] = [cy1 ]. Then α−1fα ≃ cy1 . Hence f ≃
cy0fcy0 ≃ αα−1fαα−1 ≃ αcy1α

−1 ≃ αα−1 ≃ cy0 . Thus [f ] = [e] in π1(Y, y0).
√

Check that φ is onto:

Given [g] ∈ π1(Y, y1), set f := α · g · α−1. Then φ[f ] = [α−1fα] = [α−1αgα−1α] = [g].
√

In algebraic topology, path connected is a more important concept than connected. From
now on, we will use the term “connected” to mean “path connected” unless stated otherwise.

Notation: If Y is (path) connected, write π1(Y ) for π1(Y, y0) since up to isomorphism it is
independent of y0. The constant function (X, x0)→ (Y, y0) taking x to y0 for all x ∈ X is often
denoted ∗. Also the basepoint itself is often denoted ∗.

If f ≃ ∗ then f is called null homotopic. So for f : S1 → Y , f is null homotopic if and only
if [f ] = e in π1(Y ).

Theorem 11.1.13 Let X =
∏

j∈I Xj. Let ∗ = (xj)j∈I ∈ X. Then π1(X, ∗) =
∏

j∈I π1(Xj, xj).

Proof:
Let pj : X → Xj be the projection. The homomorphisms pj# : π1(X, ∗)→ π1(Xj, xj) induce

φ := (pj#) : π1(X, ∗)→
∏

j∈I π1(Xj, xj).
To show φ injective:

Suppose that φ([ω]) = 1. Then ∀j ∈ I, ∃ a homotopy Hj : pj ◦ ω ≃ cxj
. Put these together

to get H : ω ≃ c∗. (i.e. for z = (zj)j∈I ∈ X, define H(z, t) :=
(
Hj(zj, t)

)
j∈I

Hence [ω] = 1

in π1(X, ∗).
To show φ surjective:

Given ([ωj])j∈I where [ωj] ∈ π1(Xj, xj):
Define ω to be the path whose jth component is ωj. (That is, ω(t) =

(
ωj(t)

)
j∈I

.) Then

φ([ω]) = ([ωj])j∈I .
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Definition 11.1.14 If X is (path) connected and π1(X) = 1 (where 1 denotes the group with
just one element) then X is called simply connected.
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11.2 Homotopy Equivalences and the Homotopy Cate-

gory

Definition 11.2.1 A (pointed) map f : X → Y of pointed spaces is called a homotopy equiv-
alence if ∃ (pointed) g : Y → X s.t. g ◦ f ≃ 1X rel ∗ and f ◦ g ≃ 1Y rel ∗. If ∃ a homotopy
equivalence between X and Y then X and Y are called homotopy equivalent.

We write X ≃ Y or f : X
≃- Y .

Define the homotopy category (HoTop) by:
Obj HoTop = Topological Spaces
HoTop(X, Y ) = [X, Y ] (pointed homotopy classes of pointed maps from X to Y )

Examples of homotopy equivalences:

1. Any homeomorphism

2. Rn ≃ ∗
Proof: : Let f : ∗ → Rn by ∗ 7→ a (where a is some chosen basepoint) and g : Rn → ∗
by x 7→ ∗ for all x. Then g ◦ f = 1∗ and f ◦ g ≃ 1Rn since any two maps into Rn are
homotopic and furthermore can do it leaving the basepoint fixed.

3. Inclusion of S1 into Cr {0} is a homotopy equivalence.

Proof: Intuitively widen the hole in C r {0} and then squish everything to a single
curve. Explicitly,

i : S1 → Cr {0} inclusion

Define r : Cr{0} → S1 by z 7→ z/||z||. Then r◦ i = 1s1 . To show i◦r ≃ 1Cr{0}, note that
ir ∗ z) = z/||z|| and define a homotopy H : Cr {0}× I → Cr {0} via (z, t) 7→ z

1+t(||z||−1)
.

Definition 11.2.2 A pointed space (X, x0) is called contractible if 1X ≃ cx0 rel{x0}.

If (X, x0) is contractible as a pointed space then we say that the (unpointed) spaces X is
contractible to x0. (Note: It is possible that a space X is contractible to some point x0 but not
contractible to some different point x′0.)

Proposition 11.2.3 Suppose Y contractible. Then any two maps from X to Y are homotopic.

Proof: 1Y ≃ cy0 . Hence ∀f : X → Y , f = 1Y ◦ f ≃ cy0 ◦ f = cy0 .
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Proposition 11.2.4 X contractible ⇔ X ≃ ∗

Example: Any convex subset of Rn is contractible to any point in the space. Proof: Let x0
belong to X where X is convex. Define H : X × I → X by H(x, t) = tx0 + (1− t)x, which lies
in X since X is convex.

The two most basic questions that homotopy theory attempts to answer are:

1. Extension Problems:

A ⊂ - X

	..
..
..
..
..
..
..

∃?

Y
?

2. Lifting Problems:

E

..
..
..
..
..
..
..

∃?

�

X - B
?

Lemma 11.2.5 f : Sn → Y . Then f extends to f̄ : Dn+1 → Y ⇔ f ≃ cy0.

Proof:

Sn ⊂
i - Dn+1

@
@
@
@
@

f

R 	..
..
..
..
..
..
..

∃f̄ ?

Y

(⇒) Suppose f̄ exists. f = f̄ ◦ ı. Dn+1 is contractible (as it is a convex subspace of Rn+1) ⇒
i ≃ ∗.

Hence f = f̄ ◦ ı ≃ f̄ ◦ ∗ = ∗.
(⇐) Suppose H : cy0 ≃ f. H : Sn × I → Y .
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Define

f̄(x) =

{
y0 0 ≤ ||x|| ≤ 1/2

H(x/||x||, 2||x|| − 1) 1/2 ≤ ||x|| ≤ 1

2

Corollary 11.2.6 Suppose f, g : I → Y s.t. f(0) = g(0), f(1) = g(1). If Y simply connected,
then f ≃ g rel(0, 1).

Proof: To show f ≃ g rel(0, 1) we want to extend the map shown on ∂(I × I) to all of I × I.
Up to homeomorphism, I × I = D2 and ∂(I × I) = S1. By the Lemma, the extension exists ⇔
the map on the boundary is null homotopic.

π1(Y ) = 1 ⇒ any map S1 → Y is null homotopic. 2

Lemma 11.2.7 f : Sn → Y . Then f extends to f̄ : Dn+1 → Y ⇔ f ≃ cy0.

Proof: (⇒) Suppose f̄ exists. f = f̄ ◦ ı. Dn+1 is contractible (as it is a convex subspace of
Rn+1) ⇒ i ≃ ⋆.

Hence f = f̄ ◦ ı ≃ f̄ ◦ ∗ = ∗.
(⇐) Suppose H : cy0 ≃ f.
Define

f̄(x) =

{
y0 0 ≤ ||x|| ≤ 1/2

H(x/||x||, 2||x|| − 1) 1/2 ≤ ||x|| ≤ 1

2

Corollary 11.2.8 Suppose f, g : I → Y s.t. f(0) = g(0), f(1) = g(1). If Y simply connected,
then f ≃ g rel(0, 1).

Proof: To show f ≃ g rel(0, 1) we want to extend the map shown on ∂(I × I) to all of I × I.
Up to homeomorphism, I × I = D2 and ∂(I × I) = S1. By the Lemma, the extension exists ⇔
the map on the boundary is null homotopic.

π1(Y ) = 1 ⇒ any map S1 → Y is null homotopic. 2

Theorem 11.2.9 Suppose H : f ≃ g rel ∅ where f, g : X → Y . Let y0 = f(x0), y1 = g(x1). Let
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α be the path α(t) = H(x0, t) joining y0 and y1. Then

π1(Y, y0)

�
�
�
�
�

f#
�

π1(X, x0)

@
@
@
@
@

g#
R

π1(Y, y1)

α∗
∼=

?

commutes, where α∗ denotes the isomorphism α∗([h]) = [α−1hα].

Proof: Let p : (S1, ∗) → (X, x0) represent an element of π1(X, x0). We must show g ◦ p ≃
α−1 · (f ◦ p) · α rel ∗.

� g ◦ p

α−1 (f ◦ p) α -

cy1

?

cy1

6

Thinking of S1 as I/({0} ∪ {1}), show the map defined on ∂(I × I) as shown extends to
I × I. Hence show the map on ∂(I × I) is null homotopic. The boundary map under the
homeomorphism ∂(I × I) ∼= S1 ∼= I/({0} ∪ {1}) becomes [c−1

y1
·α−1 · (f ◦ p) ·α · cy1 · (g ◦ p)−1] =

[α−1 · (f ◦ p) · α · (g ◦ p)−1].

X × I H - Y

S1 × I

p× I
6

(where, by convention, we sometimes write the name of a space to denote the identity map of
that space).
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H : f ≃ g

H ◦ (p× I) : f ◦ p ≃ g ◦ p
By the Lemma, since the extension exists, α−1 · (f ◦ p) · α · (g ◦ p)−1 is null homotopic.

2

Corollary 11.2.10 Let f : X → Y be a homotopy equivalence. Then f# : π1(X, x0) →
π1
(
Y, f(x0)

)
is an isomorphism.

Proof: Let g : Y → X be a homotopy inverse to f . Let H : gf ≃ 1X . Let α(t) = H(x0, t)
joining x0 to gf(x0).

By the Theorem:

π1(X, x0)

�
�
�
�
�

(1X)#
�

π1(X, x0)

@
@
@
@
@

(gf)#
R

π1
(
X, gf(x0)

)

α∗
∼=

?

Hence g#f# = (gf)# = α∗ is an isomorphism. Similarly f#g# is an isomorphism. It follows
(from category theory) that f# (and g#) are isomorphisms.

In other words,

Lemma 11.2.11 φ : G → H, ψ : H → G s.t. ψφ and φψ are isomorphisms. Then φ is an
isomorphism.

Proof: Let a = (ψφ)−1 : G → G. Then aψφ = 1G so φaψφψ = φ1Gψ = φψ. Right
multiplication by (φψ)−1 gives φaψ = 1H . aψφ = 1G, φaψ = 1H ⇒ aψ is inverse to φ so φ is
an isomorphism. 2

Corollary 11.2.12 X contractible ⇒ X simply connected.
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Proof: Let H : 1X ≃ cx0 .
(1) Show X (path) connected.
Let x ∈ X. Define I

w→ X by w(t) = H(x, t). w joins x0 to x1. So all points are connected
by a path to x0. So X is connected.

(2) Show π1(X, x0) = 1:
By earlier Proposition, X is contractible ⇔ X ≃ ∗. Hence π1(X, x0) ≃ π1(∗, ∗) and it is

clear from the definition that π1(∗, ∗) = 1. 2
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Chapter 12

Covering Spaces and the Fundamental
Group

12.1 Introduction to covering spaces

Covering spaces have many uses both in topology and elsewhere. Our immediate goal is to use
them to help compute π1(X).

Definition 12.1.1 A map p : E → X is called a covering projection if every point x ∈ X
has an open neighbourhood Ux s.t. p−1(Ux) is a (nonempty) disjoint union of open sets each
of which is homeomorphic by p to Ux. E is called the covering space, X the base space of the
covering projection.

Remark: It is clear from the definition that a covering projection must be onto.

Example: R
exp→ S1 by t 7→ e2πit

exp−1(Ux) =
∐∞

n=−∞ Vn.
Vn ∼= Ux∀n.
More generally: A (left) action of a topological group G on a topological space X consists

of a (continuous) map φ : G×X → X s.t.

1. ex = x ∀x

2. g1(g2x) = (g1g2)x ∀g1, g2 ∈ G, x ∈ X.

Given action φ : G×X → X, for each g ∈ G we get a continuous map φg : X → X sending
x to gx. Each φg is a homeomorphism since φg−1 = (φg)

−1.
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Note: Any group becomes a topological group if given the discrete topology. In the case
where G has the discrete topology, φ is continuous ⇔ φg is continuous ∀g ∈ G. (In general, φg

continuous for all g is not sufficient to conclude that φ is continuous.)
Suppose G acts on X.
Define an equivalence relation on X by x ∼ gx ∀x ∈ X, g ∈ G. Write X/G for X/ ∼ (with

the quotient topology).
Remark: The notation is in conflict with the previously given notation that X/A means identify
the points of A to a single point. Rely on context to decide which is meant.

Preceding example: X = R, G = Z. φ(n, x) = x + n. Then R/Z ∼= S1. In this example
X happens to also be a topological group and G a normal subgroup so X/G also has a group
structure. The homeomorphism R/Z ∼= S1 is an isomorphism of topological groups.

Theorem 12.1.2 Suppose a group G acts on a space X s.t. ∀x ∈ X, ∃ an open neighbourhood
Vx s.t. Vx ∩ gVx = ∅ for all g 6= e in G. Then the quotient map p : X → X/G is a covering
projection.

Proof: Given [x] ∈ X/G, find Vx as in the hypothesis. Set U[x] = p(Vx). p
−1(U[x]) =

⋃
g∈G g·Vx.

Vx open ⇒ gVx open ∀g ⇒ p−1(U[x]) open ⇒ U[x] open.
g1Vx ∩ g2Vx = ∅ so the union is a disjoint union.
p : Vx → U[x] is a bijection and check that by definition of the quotient topology it is a

homeomorphism.

gVx
∼= - Vx

@
@
@
@
@

p

R 	�
�
�
�
�

p
∼=

U[x]

Both gVx and Vx map to U[x] under p, and the map p composed with g : Vx → gVx equals
the map p : Vx → U[x], which shows that p|gVx

is a homeomorphism ∀g.
Hence p : X → X/G is a covering projection.

Corollary 12.1.3 Suppose H is a topological group and G a closed subgroup of H s.t. as a
subspace of H, G has the discrete topology Then p : H → H/G is a covering projection.

Example 2: Sn → RP n is a covering projection.
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Proof: RP n = Sn/Z2 where Z2 = {−1, 1} acts by 1x = x,−1x = −x. Furthermore, the
hypothesis of the previous theorem is satisfied.

Similarly CP n = S2n+1/S1 and HP n = S4n+3/SU(2), but these quotient maps are not
covering projections (since the group is not discrete).

What have covering spaces got to do with π1(X)?

Return to the example R
exp→ S1.

Let w be a path in R which begins at 0 and ends at the integer n. w is not a closed curve
in R (unless n = 0, where in this context “closed” means a curve which ends at the point at
which it starts) but exp(w) is a closed curve in S1 joining ∗ to ∗.

So exp(w) represents an element of π1(S
1).

We will show that the resulting element of π1(S
1) depends only on n (not on w) and that

this correspondence sets up an isomorphism π1(S
1) ∼= Z.

Terminology: Let p : E → X be a covering projection. Let U ⊂ X be open. If p−1(U) is
a disjoint union of open sets each homeomorphic to U , then we say that U is evenly covered.
If U ⊂ X is evenly covered, with p−1(U) =

∐
i Ti with Ti

∼= U , then each Ti is called a sheet
over U .

Theorem 12.1.4 (Unique Lifting Theorem) Let p : (E, e0)→ (X, x0) be a map of pointed
spaces in which p : E → X is a covering projection.

Let f : (Y, y0) → (X, x0). If Y is connected, then there is at most one map f ′ : (Y, y0) →
(E, e0) s.t.

E

..
..
..
..
..
..
..

f ′
�

Y
f - X

p

?

Remark 12.1.5 : For this theorem it suffices to know that Y is connected under the standard
definition, although in most applications we will actually know that Y is path connected, which
is even stronger.

Proof:
Suppose f ′, f ′′(Y, y0)→ (E, e0) s.t. pf

′ = f and pf ′′ = f . Let A = {y ∈ Y | f ′(y) = f ′′(y)},
B = {y ∈ Y | f ′(y) 6= f ′′(y)}. Then A ∩B = ∅, A ∪ B = Y .

It suffices to show that both A and B are open because then one of them is empty. But
A 6= ∅ since y0 ∈ A, so this would imply that B = ∅ and A = X, in other words f ′ = f ′′.
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To show A is open: Let y ∈ A. Let U be an evenly covered set in X containing f(y). Let
S be a sheet in p−1(U) containing f ′(y) = f ′′(y). Let V = (f ′)−1(S) ∩ (f ′′)−1(S), which is
open in Y and contains y. ∀v ∈ V , pf ′(v) = f(v) = pf ′′(v) ⇒ f ′(v) = f ′′(v) (since p|S is a
homeomorphism). Hence V ⊂ A, so y is interior. So A is open.

To showB is open: Let y ∈ B. Let U be an evenly covered set containing f(y). f ′(y) 6= f ′′(y)
but pf ′(y) = f(y) = f ′′(y) so f ′(y) and f ′′(y) lie in different sheets (say S ′, S ′′) over p−1(U).

Let V = (f ′)−1(S ′) ∩ (f ′′)−1(S ′′), which is open in Y . Since S ′ ∩ S = ∅, f ′(V ) 6= f ′′(V )
∀v ∈ V . Hence V ⊂ B. So y is interior. Therefore B is open. 2

Theorem 12.1.6 (Path Lifting Theorem) Let (E, e0)
p→ (X, x0) be a covering projection.

Let w : I → X s.t. w(0) = x0. Then w lifts uniquely to a path w′ : I → E s.t. w′(0) = e0.

E

..
..
..
..
..
..
..

ω′
�

I
ω - X

?

Proof: Uniqueness follows from the previous theorem (since I is connected).
Existence: Cover X by evenly covered sets. Using a Lebesgue number for the inverse images

under w in the compact set I, we can partition I into a finite number of subintervals [ti, ti+1]
(0 = t0 < t1 < · · · < tn = 1) s.t. ∀i, w([ti, ti+1]) ⊂ Ui. Note that Ui is evenly covered.

Let S0 = sheet in p−1(U0) containing e0. p|S0 is a homeomorphism ⇒ ∃ unique path in S0

covering w([t0, t1]). Let e1 denote the end of this path. (p(e1) = w(t1))
Let S1 = sheet in p−1(U1) containing e1.
As above, ∃ unique path in S1 covering w([t1, t2]).
Continuing: Build a path w′ in E beginning at e0 and covering w.

Remark 12.1.7 The procedure is reminiscent of analytic continuation. Notice that even through
ω is closed (ω(0) = ω(1)), this need not be true for ω′. e.g. Consider p = exp : R→ S1 and let
ω(t) = e2πtt : I → S1. Then ω′ is the line segment joining 0 to 1.

We will show that under the right conditions (e.g. R → S1) elements of π1(X, x0) can be
identified by the endpoint in E of the lifted representing path.

Need:

Theorem 12.1.8 (Covering Homotopy Theorem) Let p : (E, e0)→ (X, x0) be a covering pro-
jection. Let (Y, y0) be a pointed space. Let f : (Y, y0) → (X, x0) and let f ′ : (Y, y0) → (E, e0)
be a lift of f . Let H : Y × I → X be a homotopy with H − 0 = f . Then H lifts to a homotopy
H ′ : Y × I → E s.t. H ′

0 = f ′.
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Before the proof, we examine the consequences.

Corollary 12.1.9 Let (E, e0) → (X,x0) be a covering projection. Let σ, τ : I → X be paths
from x0 to x1 s.t. σ ≃ τ rel{0, 1}. Let σ′, τ ′ be lifts of σ, τ respectively, beginning at e0. Then
σ′(1) = τ ′(1) and σ′ ≃ τ ′ rel{0, 1}.

Note in particular that this implies that the endpoint of a lift of a homotopy class is independent
of the choice of representative for that class.

Proof of Corollary (assuming Theorem): Let H : σ ≃ τ rel{0, 1}. Apply the theorem to
get H ′ : I × I → E which lifts H and s.t. H ′

0 = σ′

The left vertical line of H ′ can be thought of as a path in E begining at σ′(0) = e0 and
lifting cx0 . By uniqueness it must be ce0 . Similarly the right must be ce1 , where e1 = σ′(1).
Also, the top is a lift of τ beginning at e0 so it must be τ ′. Thus H ′ : σ′ ≃ τ ′ rel{0, 1} and
τ ′(1) = upper right corner = e1 = σ′(1).

Proof of Theorem:
Technical remark: It is easy to define the required lift, but not so easy to show continuity.
i.e. Given y ∈ I, H

∣∣
y×I

is a path in X beginning at f(y) so H ′
∣∣
f ′(y)×I

is the unique lift beginning

at f ′(y).

Step 1: ∀y ∈ Y , ∃ open neighbourhood Vy and a partition 0 = t0 < t1 < . . . < tn = 1 of I
(depending on y) s.t. ∀i, H(Vy × [ti, ti+1]) is contained in an evenly covered set.
Proof: Given y:
∀t ∈ I find evenly covered neighbourhood Ut of H(y, t) in X.
Find basic open At × Bt ⊂ H−1(Ut) ⊂ Y × I containing (y, t). Then ∪t∈IBt covers I so

choose a finite subcover Bt1 , . . . Btn−1 . Set Vy := At1 ∩ · · · ∩ Atn−1 ∩ A0 ∩ A1. Use Vy together
with the partition 0 < t1 < . . . < tn−1 < 1.

√

Step 2: ∀y, ∃ continuous H ′
y : Vy × I → E lifting H

∣∣
Vy×I

and extending H ′
y

∣∣
Vy×0

= f ′
∣∣
Vy
.

Proof: Use the same inductive argument as in the proof of the Path Lifting Theorem.
√

Step 3: The various lifings H ′
y from Step 2 combine to produce a well defined map of sets

H ′ : Y × I → E.
Proof: Suppose (y, t) ∈ (Vt1×I)∩(Vy2×I). The restrictions H ′

y1

∣∣
y×I

and H ′
y2

∣∣
y×I

each produce

paths in E beginning at f ′(y) and lifting H
∣∣
y×I

. So by unique path lifting, H ′
y1
(y, t) = H ′

y2
(y, t).

Hence the value of H ′(y, t) is independent of the set Vyi used to compute it. i.e. H ′ is well
defined.

√

Step 4: The map H ′ defined in Step 3 is continuous.
Proof: Suppose U ⊂ E is open.
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H ′−1(U) =
⋃

y∈U(H
′
y)

−1(U).

∀y ∈ U , H ′
y : Vy × I → E is continuous which implies that (H ′

y)
−1(U) is open in Vy × I.

Since Vy × I is open in Y × I, this implies that (H ′
y)

−1(U) is open in H ′−1(U). Hence H ′−1(U)
is open and thus H ′ is continuous.

Corollary 12.1.10 Let p : (E, e0) → (X, x0) be a covering projection. Then p# : π1(E, e0) →
π1(X, x0) is a monomorphism.

Proof: Let [ω] ∈ π1(E, e0). ω is a path in E beginning and ending at e0. Suppose p#([ω]) = 1.
Then p ◦ ω ≃ cx0 rel{0, 1}. By the Corollary 12.1.9, (p ◦ ω)′ ≃ c′x0

rel{0, 1} where (p ◦ ω)′, c′x0

are, respectively, the lifts of p ◦ ω, cx0 beginning from e0. Clearly these lifts are ω and ce0
respectively. Hence ω ≃ ce0 rel{0, 1}, so [ω] = 1 ∈ π1(E, e0).

Theorem 12.1.11 π1(S
1) ∼= Z

Proof: Let ω : (S1, ∗)→ (S1, ∗) represent an element of π1(S
1, ∗). Regard ω as a path which

begins and ends at ∗. By unique path lifting in exp : (R, 0) → (S1, ∗) we get a path ω′ in R
lifting ω beginning at 0. Hence exp

(
ω′(1)

)
= ω(1) = ∗ so ω′(1) = n ∈ Z. By Corollary 12.1.9

n is independent of the choice of representative for the class [ω]. Thus we get a well defined
φ : π1(S

1)→ Z given by [ω] 7→ ω′(1).

Claim: φ is a group homomorphism.
Let σ, τ : (S1, ∗) → (S1, ∗) represent elements of π1(S

1). Let σ′, τ ′ : I → R be lifts of σ,
τ respectively beginning at 0. Let n = σ′(1) = φ([σ]) and m = τ ′(1) = φ([τ ]). Define τ ′′ by
τ ′′(t) = τ ′(t) + n. Then τ ′′ = lift of τ beginning at n, ending at n + m. The path σ′ · τ ′′
in R makes sense (since σ′(1) = n = τ ′′(0)). σ′ · τ ′′ begins at 0 and ends at n + m. But
exp(σ′ · τ ′′) = σ · τ so it lifts σ · τ . Hence φ([σ][τ ]) = φ([σ · τ ]) = n+m = φ([σ]) + φ([τ ]). Thus
φ is a homomorphism.

√

Claim: φ is injective
Suppose φ([σ]) = 0. Let σ′ : I → R be the lift of σ beginning at 0. Then the definition of φ

implies that σ′ ends at 0 so σ′ represents an element of π1(R) and exp#([σ
′]) = [σ]. But R is

simply connected (π1(R) = 1) and so [σ′] = 1 which implies [σ] = 1.
√

Claim: φ is onto
Given n ∈ Z, let ω′ be any path in R joining 0 to n. Let ω = exp ◦ω′ : I → S1. Then ω is

a closed path in S1 and φ([ω]) = n.

Corollary 12.1.12 π1(C− {0}) ∼= Z

Proof: S1 → C− {0} is a homotopy equivalence.
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We wish to apply the method used above to calculate π1(S
1) to calculate π1(X) for other

spaces X. For this, we need a covering projection E → X, called the universal covering
projection of X with properties described in the next section. For reference, we note here the
properties of R→ S1 which were needed in the calculation of π1(S

1).

1. Z acts on R, Z× R→ R, by (n, x) 7→ n+ x s.t.

R
Tn - R

@
@
@
@
@

exp

R 	�
�
�
�
�

exp

S1

where Tn is the translation Tn(X) = n+ x.

2. π1(R) = 1

We will return to this later. First some applications.

Theorem 12.1.13 6 ∃f : D2 → S1 s.t.

S1 ⊂ - D2

@
@
@
@
@

1S1

R 	�
�
�
�
�

f

S1

commutes.
Proof: If f exists then, since D2 is contractible, applying π1 yields

Z = π1(S
1) ⊂ - π1(D

2) = 0

@
@
@
@
@

1
R 	�

�
�
�
�

f#

Z = π1(S
1)

This is a contradiction so f does not exist.
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Corollary 12.1.14 (Brouwer Fixed Point Theorem): Let g : D2 → D2. Then ∃x ∈ D2 such
that g(x) = x.

Proof: Suppose g has no fixed point. Define f : D2 → S1 as follows:
g(x) 6= x implies that ∃ a well defined line segment joining g(x) to x. Follow this line until it
reaches S1 and call this point f(x).

f is a continuous function of x (since g is) and if x ∈ S1 then f(x) = x. This contradicts
the previous theorem. Hence g has no fixed point.
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12.2 Universal Covering Spaces

Definition 12.2.1 Let p : E → X and p′ : E ′ : X be covering projections. A morphism of
covering spaces over X consists of a map φ : E → E ′ s.t.

E
φ - E ′

@
@
@
@
@

p

R 	�
�
�
�
�

p′

X

commutes.
A morphism of covering spaces which is also a homeomorphism is called an equivalence of

covering spaces.

Remark: Covering spaces over a fixedX together with this notion of morphism form a category.
An equivalence is an isomorphism in this category.

Definition 12.2.2 A covering projection p̃ : X̃ → X is called the universal covering projection
of X (and X̃ is called the universal covering space of X) if for any covering projection p : E → X
∃! morphism f : X̃ → E of covering projections.

i.e.

X̃
f - E

@
@
@
@
@

p̃

R 	�
�
�
�
�

p

X

commutes.

Remark: This says p̃ : X̃ → X is an initial object in the category of covering spaces over X.

Proposition 12.2.3 If X has a universal covering space then it is unique up to equivalence of
covering spaces.

Proof: Standard categorical argument. 2
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Theorem 12.2.4 (Lifting Theorem) Let p : (E, e0) → (X, x0) be a covering projection and
let f : (Y, y0)→ (X, x0) where Y is connected and locally path connected. Then ∃ f ′ : (Y, y0)→
(E, e0) lifting f ⇔ f#π1(Y, y0) ⊂ p#π1(E, e0).

(E, e0)

..
..
..
..
..
..
..

f ′
�

(Y, y0)
f- (X, x0)

p

?

Remark: X connected ⇒ at most one such lift exists, by the Unique Lifting Theorem.
Proof: (⇒) Suppose f ′ exists. Then f# = (pf ′)# = p#f

′
#. Hence Im f# ⊂ Im p#.

(⇐) Suppose Im f# ⊂ Im p#. For y ∈ Y choose a path σ joining y0 to y. Then f ◦σ : I → X
joins x0 to f(y). Lift to a path (fσ)′ in E beginning at e0 and define f ′(y) = (fσ)′(1).
Claim this gives a well-defined function of y:

Suppose τ : I → Y also joins y0 to y. Then σ · τ−1 represents an element of π1(Y, y0) so
by hypothesis ∃[w] ∈ π1(E, e0) s.t. [p ◦ ω] = p#([w]) = f#([σ · τ−1]) = [f ◦ (σ · τ−1)]. Since
p ◦ w ≃ f ◦ (σ · τ−1), lifting these paths to E beginning at e0 results in paths with the same
endpoint.

But w lifts p ◦ w and it ends at e0 (it is a closed loop since it represents an element of
π1(E, e0)). Hence the lift α : I → E of f ◦ (σ · τ−1) beginning at e0 also ends at e0. Let
e1 = α(1/2).

The restriction of α to [0, 1/2] lifts σ (beginning at e0, ending at e1).
The restriction of α to [1/2, 1] lifts τ−1 (beginning at e1, ending at e0).
So the curve lifting τ beginning at e0 ends at e1. So using either σ or τ in the definition of

f ′(y) results in f ′(y) = e1. Hence f
′ is well defined.

√

To help show f ′ continuous:

Lemma 12.2.5 Let y, z ∈ Y and let γ be a path in Y from y to z. If the path f ◦γ is contained
in some evenly covered set U of X then f ′(y), f ′(z) lie in the same sheet in p−1(U).

Proof: Let (f ◦ γ)′ be the lift of f ◦ γ beginning at f ′(y).
Claim: (f ◦ γ)′ ends at f ′(z).

Proof of Claim: Use σ ◦ γ as the path joining y0 to z in the definition of f ′(z). Then
(f ◦σ)′ ·(f ◦γ)′ is the lift of f ◦(γ ·σ) which begins at e0, so f

′(z) is the endpoint of (f ◦σ)′ ·(f ◦γ)′,
in other words the endpoint of (f ◦ γ)′. √

Let S be the sheet of p−1(U) containing f ′(y).
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p|S is a homeomorphism, which implies S contains the entire path (f ◦ γ)′, so in particular
it contains f ′(z). 2

Claim: f ′ is continuous.
Given e ∈ E, let Up(e) ⊂ X be an evenly covered set containing p(e) and let Se be the sheet

in p−1(Up(e)) which contains e.
For an open set V ⊂ E, V =

⋃
e∈V (Se ∩ V ), so to show f ′ is continuous, it suffices to show

f ′−1(W ) is open whenever W ⊂ E is open in some Se.
Since p|Se

is a homeomorphism, p(W ) is open in X and is evenly covered (being a subset of
the evenly covered set Up(e)).

Set A := f−1
(
p(W )

)
⊂ Y . By continuity of f , A is open so its path components are open

by hypothesis.
(f ′)−1(W ) ⊂ A. Show (f ′)−1(W ) is open by showing (f ′)−1(W ) is a union of path compo-

nents of A.
Write A =

⋃
i∈I Ai where Ai is a path component of A.

Claim: ∀i, either Ai ∩ (f ′)−1(W ) = ∅ or Ai ⊂ (f ′)−1(W ).
Note: This shows (f ′)−1(W ) is the union of those Ai which intersect it, thus completing the
proof.
Proof of Claim: Suppose y ∈ Ai ∩ (f ′)−1(W ). Let z ∈ Ai. Show z ∈ (f ′)−1(W ).

Let γ be a path joining y to z in Ai. (Ai is a path component so is path connected.)
Since Ai ⊂ A = f−1

(
p(W )

)
, f ◦ γ is entirely contained in the evenly covered set p(W ), so

by the Lemma, f ′(y) and f ′(z) lie in the same sheet of p−1
(
p(W )

)
.

y ∈ (f ′)−1(W ) ⇒ that sheet is W so z ∈ (f ′)−1(W ). 2

Lemma 12.2.6 A covering space of a locally path connected space is locally path connected.

Proof: Let E
p→ X be a covering projection, with X locally path connected.

Let V be open in E, let A be a path component of V and let a ∈ A.
Let U ⊂ X be an evenly covered set containing p(A) and let S be the sheet in p−1(U)

containing a.
Replacing U by the smaller evenly covered set p(S ∩ V ), we may assume S ⊂ V .
Let W be the path component of U containing p(a). Hence W is open by hypothesis. p|S is

a homeomorphism, so B := p−1(W ) ∩ S is a path connected open subset in E.

B is path connected, and a ∈ B, so B ⊂ A. Since B is open, a ∈
◦

A so A is open. 2

Corollary 12.2.7 (of Lifting Theorem): A simply connected locally path connected covering
space is a universal covering space.

Proof: Let p̃ : (X̃, x̃0) → (X, x0) be a covering projection s.t. X̃ is simply connected and
locally path connected. Let p : (E, e0)→ (X, x0) be a covering projection of X.
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π1(X̃, x̃0) = 1 so the hypothesis p̃#π1(X̃, x̃0) ⊂ p#π1(E, e0) of the Lifting Theorem is trivial.
Hence ∃f : X̃ → E s.t.

X̃
f - E

@
@
@
@
@

p̃

R 	�
�
�
�
�

p

X

The Unique Lifting Theorem shows f is unique. 2

Corollary 12.2.8 (of Lifting Theorem:) Let W be simply connected and let (E, e0)
p→

(X, x0) be a covering projection. Then [(W,w0), (E, e0)]
p#- [(W,w0), (X, x0)] is a set bijection.

Proof: Essentially the same as the proof of Corollary 12.2.7. 2

12.2.1 Computing Fundamental Groups from Covering Spaces

Definition 12.2.9 Let p : E → X be a covering projection. A self-homeomorphism φ : E → E
is called a covering transformation if

E
φ - E

@
@
@
@
@

p

R 	�
�
�
�
�

p

X

commutes.

Remark: pφ = p guarantees that ∀x ∈ X, φ is a self-map of p−1(x). p−1(x) is often called the
fibre over x.

{ covering transformations of E
p→ X } forms a group under composition.

Example 1: exp : R→ S1. The group of covering transformations is Z.

Example 2: p : Sn → RP n. The group of covering transformations is Z2, because it is the
collection of maps sending x→ x or x→ −x (for x ∈ Sn).

Notice that in each case |G| = card
(
p−1(x)

)
.
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Lemma 12.2.10 Let p : E → X be a covering projection with E connected. Let φ, φ′ : E → E
s.t. pφ = p, pφ′ = p. If φ(e) = φ′(e) for some e ∈ E then φ = φ′. In particular, a covering
transformation is determined by its value at any point.

Proof:

E

..
..
..
..
..
..
..

φ, φ′
�

E
p - X

p

?

Apply the Unique Lifting Theorem with y0 = e and x0 = φ(e) = φ′(e).
2

Theorem 12.2.11 Let p : E → X be a covering projection s.t. E is simply connected and
locally path connected (thus a universal covering space). Then π1(X) = group of covering
transformations of p.

(Since “simply connected” includes “path connected”, notice that p onto implies that X is
path connected, so π1(X) is well defined, i.e. independent of the choice of basepoint.)

Proof: Let G be the group of covering tranformations of p. Define ψ : G→ π1(X) as follows:
Given φ ∈ G, select a path wφ joining e0 to φ(e0).

pφ(e0) = pe0 = x0 ⇒ p ◦ wφ is a closed loop in X so it represents an element of π1(X, x0).
Define ψ(φ) = [p ◦ wφ].

Claim: ψ is well-defined.
Proof: (of Claim:) If w′

φ is another path joining e0 to φ(e0) then E is simply connected
⇒ wφ ≃ w′

φ rel{0, 1}.
Hence p ◦ wφ ≃ p ◦ wφ′ rel{0, 1}. i.e. [p ◦ ωφ] = [p ◦ ω′

φ] in π1(X).
Claim: ψ is a group homomorphism.
Proof: (of Claim:) Let φ1, φ2 ∈ G. Pick paths wφ1 , wφ2 as above joining e0 to φ1(e0) resp. ,

φ2(e0). Then φ1 ◦wφ2 is a path joining φ1(e0) to φ1

(
φ2(e0)

)
= φ1φ2(e0). So we use wφ1 (̇φ1 ◦wφ2)

to define ψ(φ1φ2).
φ is a covering transformation, so p ◦ φ1 ◦ wφ2 = p ◦ wφ2 .
Hence ψ(φ1φ2) = [p ◦ (wφ1 · (φ1 ◦ wφ2)] = [p ◦ wφ1 ][p ◦ φ1 ◦ wφ2 ]
= [p ◦ wφ1 ][p ◦ wφ2 ]
= ψ(φ1)ψ(φ2).

Claim: ψ is injective.
Proof: (of Claim:) ψ(φ1) = ψ(φ2) ⇒ p ◦ wφ1 ≃ p ◦ wφ2 . This implies the lifts of wφ1 and wφ2

beginning at e0 must end at the same point.
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Hence φ1(e0) = φ2(e0) which implies φ1 = φ2.
Claim: ψ is surjective.
Proof: (of Claim:) Let [σ] ∈ π1(X, x0).

Lift σ to a path σ′ in E beginning at e0.
Let e = σ′(1).
It suffices to show there exists a covering transformation φ : E → E s.t. φ(e0) = e.
Then we use σ′ to define ψ(φ) to see that ψ(φ) = σ.

(E, e)

..
..
..
..
..
..
..

φ
�

(E, e0)
p- (X, x0)

p

?

Since E is connected and locally path connected and 1 = p#π1(E, e0) ⊂ p#π1(E, e), the
lifting theorem implies ∃φ s.t. p ◦ φ = p and φ(e0) = e.

It remains to show φ is a homeomorphism.
But we may apply the lifting theorem again with the roles of e0 and e reversed to get

θ : (E, e)→ (E, e0).
Then p ◦ θ ◦ φ = p and θ ◦ φ(e0) = e0 so by the previous Lemma, θ ◦ φ = 1E. Similarly

φ ◦ θ = 1E. So φ is a homeomorphism. 2

Remark: We already used this to show that π1(S
1) = Z. Later we will show that Sn is simply

connected for n ≥ 2, so that the theorem applies to Sn → RP n, giving π1(RP n) ∼= Z2 for n ≥ 2.

Note: The preceding proof showed a bijection between covering transformations and elements
of p−1(x0). Each point corresponds to a covering transformation taking e0 to that point.

12.2.2 ‘Galois’ Theory of Covering Spaces

Theorem 12.2.12 Let p : E → X be a covering projection s.t. E is simply connected and
locally path connected (thus a universal covering space). Then for every subgroup H ⊂ π1(X),
∃ a covering projection pH : EH → X, unique up to equivalence of covering spaces, such that
(pH)#(π1(EH)) = H.

Proof: {covering transformations of E} ∼= π1(X) so H can be regarded as the set of covering
transformations of E. Hence H acts on E. Let EH = E/H.

If e′ = h ◦ e for h ∈ H, since h is a covering transformation, p(e′) = p(e).
Hence p induces a well defined map pH : E/H → X.
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For evenly covered Ux of p : E → X, sheets p−1(Ux) correspond bijectively to elements
of π1(X).

p−1
H (Ux) is what we get by identifying S, S ′ whenever S, S ′ correspond to group elements

g, g′ s.t. g′ = gh for some h ∈ H (in other words g′ and g are in the same coset of G (mod H)).
Hence pH is a covering projection (with Ux as evenly covered set).

Also Theorem 12.1.2 implies E
f→ E/H is a covering projection. To apply the theorem we

need to know that ∀e ∈ E, ∃Ve s.t. Ve ∩ hVe = ∅ unless h = 1. Set Ve := the sheet over Up(e)

which contains e for some evenly covered Up(e) ⊂ X. This works since h is a covering translation
so hS is also a sheet and sheets are disjoint.

By inspection, the group of covering translations of fH ∼= H ∼= π1(E/H). (In general, the
group of covering translations of Y → Y/G is isomorphic to G.)

By Corollary 12.1.10, any covering projection induces a monomorphism on π1.
Hence (pH)# : H = π1(EH) →֒ π1(E).
In other words (pH)#

(
π1(EH)

)
= H. 2

12.2.3 Existence of Universal Covering Spaces

Not every space has a universal covering space.
Example: Let X =

∏∞
j=1 S

1.

Proof: Let En =
∏n

j=1R×
∏∞

j=n+1 S
1.

It’s easy to check that pn = exp× · · · × exp×1
∣∣∏∞

j=n+1 S
1 is a covering projection.

(In general a product of covering projections is a covering projection.)
Suppose X had a universal covering projection p̃ : X̃ → X.
Then ∀n, we have

X̃
fn - En

@
@
@
@
@

p̃

R 	�
�
�
�
�

pn

X
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By uniqueness of fn,
En+1

�
�
�
�
�

fn+1

�

X̃

@
@
@
@
@R

X

en+1

?

where en+1 is exp on factor (n+ 1) and the identity on the other factors.
Apply π1 and use that p# is a monomorphism to see that all maps on π1 are monomorphisms.

π1(X̃) ⊂ · · · ⊂ π1(En+1) ⊂ π1(En) ⊂ · · · ⊂ π1(X).

π1(X) =
∞∏

j=1

π1(S
1) =

∞∏

j=1

Z

and π1(En) is the subgroup
∏∞

j=n+1 Z. Hence π1(X) ⊂ ⋂∞
n=1 π1(En) = 0. So π1(X) = 0.

Let U ⊂ X be an evenly covered set for the covering projection X̃ → X.
Replace U by the basic open subset U1 × U2 × · · · × Un × S1 × S1 × . . .
For j = 1, . . . , n select uj ∈ Uj.
Define α : S1 → X by 




αj = cuj
j = 1, . . . , n

αn+1 = 1S1

αj = c∗ j > n+ 1

Notice that Im (α) ⊂ U . [α] = (0, . . . , 0, 1, 0, . . . ) ∈ π1(X) =
∏∞

j=1 Z (where the ‘1’ is in
position n+ 1).

Let T be a sheet in p̃−1(U).
Im (α) ⊂ U , p̃|T is a homeomorphism, so α has a lift α′ which is a closed curve in T .
So α′ represents a class in π1(X̃) and p̃#([α

′]) = [α]. But π1(X̃) = 0. This is a contradiction
since [α] = (0, . . . , 0, 1, 0, . . .) 6= 0.

Hence X has no universal covering space.
2
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Definition 12.2.13 A space X is called semilocally simply connected if each point x ∈ X has
an open neighbourhood Ux s.t. i# : π1(Ux, x) → π1(X, x) is the trivial map of groups. (where
i : Ux →֒ X denotes the inclusion).

Notice that
∏∞

n=1 S
1 is not semilocally simply connected.

Theorem 12.2.14 Let X be connected, locally path connected and semilocally simply con-
nected. Then X has a universal convering space.

Proof: Choose x0 ∈ X.
For path α, β in X beginning at x0, define equiv. reln.: α ∼ B if α(1) = β(1) and α ≃ β

rel (0, 1).
Let X̃ = {equiv. classes} ← (paths beginning at x0)
Define p̃ : X̃ → X.

[α]→ α(1).
Topologize X̃ as follow: Given [α] ∈ X̃ and open V ⊂ X containing α(1), define subset

denoted 〈α, V 〉 of X̃ by 〈α, V 〉 = {[w] ∈ X̃|[w] = [α · β] for some path β in V }. ← (strictly
speaking mean Imβ ⊂ V .)

Note: 〈α, V 〉 is independent of choice of representation for [α] used to define it.
Claim: {〈α, V 〉} form a base for a topology on X̃.

Proof: Show intersection of 2 such sets is ∅ or a union of sets of this form.
Suppose [w] ∈ 〈α, V 〉 ∩ 〈α′, V ′〉 6= ∅
Suff. to show:
Claim: 〈w, V ∩ V ′〉 ⊂ 〈α, V 〉 ∩ 〈α′, V ′〉

Proof: Suppose γ ∈ 〈w, V ∩ V ′〉 ∴ [γ] = [w · β] some β in V ∈ V ′.
[w] ∈ 〈α, V 〉 ⇒ ∃β1 in V s.t. [w] = [α · β1]
[w] ∈ 〈α′, V ′〉 ⇒ ∃β2 in V ′ s.t. [w] = [α′, β2]

|

|w /

2β 1/

w

α
β

γ

α β

where w′ ≡ α′ · β2 ≃ w.

β1 · β in V , [α] = [α · β1 · β2]⇒ [γ] ∈ 〈α, V 〉.
Similarly [γ] ∈ 〈α′, V ′〉. ∴ 〈w, V ∩ V ′〉 ⊂ 〈α, V 〉 ∩ 〈α′, V ′〉
Give X̃ the topology defined by this base.
Let V ⊂ X be open.
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Then p̃−1(V ) = {[w] ∈ X̃|w(1) ∈ V } = ⋃
{α|α(1)∈V }

〈α, V 〉

∴ p̃ cont.
For x ∈ X find Vx s.t. i# : π1(Vx, x)→ π1(X, x) is trivial. i : Vx 7→ X
Let Ux = path component of Vx containing x. open since X locally path connected.

(A): Show p̃−1(Ux) =
∐

{[α]|α(1)=x}

〈α, Ux〉.

1. ⊃ α(1) = x. p̃([w]) = w(1) ∈ Ux.

2. ⊂ Suppose [w] ∈ X̃ s.t. p̃[w] ∈ Ux. i.e. [w] ∈ p−1(Ux)

Then ∃ path β in Ux joining x to w(1).

Let α = w · β−1. [α · β] = [w · β−1 · β] = [w].

∴ [w] ∈ 〈α, Ux〉 ⊂
⋃

α(1)=x

〈α, Ux〉 ← ( α ends where β begins – at x)

3. union is disjoint Suppose [w] ∈ 〈α, Ux〉 ∩ 〈α′, Ux〉
[α′ · β′] = [w] = [α · β] β, β′ paths in Ux

x /

w (1)

U x

x
α

/α

β

β
0

Ux ⊂ Vx ⇒ path β · β′−1 reps. elt. of π1(Vx, x) so choice of Vx ⇒ [β · β′−1] = [cx] in
π1(X, x).

∴ [α] = [α · β · β′−1] = [w · β′−1] = [α′ · β′ · β′−1] = [α′].

(B) Show ∀ [α] s.t. α(1) = x that p̃|〈α,Ux〉 : 〈α, Ux〉 → Ux is a homeomorphism.

Any pt. in Ux can be joined to x by a path in Ux, hence q is onto.

Claim: q is 1− 1.

Suppose [w], [w′] ∈ 〈α, Ux〉 s.t. q([w]) = q([w′]).

Find paths β, β′ in Ux s.t. [w] = [α · β], [w′] = [α · β′].

β, β′ each join x to w(1) = w′(1) in Ux so as above [β−1 · β′] = [cx] in π1(X, x).

∴ [w] = [α · β] = [α · β · β−1 · β′] = [α · β′] = [w′].

Claim: q−1 is continuous.
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Let 〈γ, V 〉 be basic open set with 〈γ, V 〉 ⊂ 〈α, Ux〉.
q(〈γ, V 〉) = path component of x within V ∩ Ux open since X locally path connected.

Note: q〈γ, V 〉 = 〈γ, path component of γ(1) within V 〉. This implies we may assume V
is path connected.

q(w) = β(1) where β in V , β(1) ∈ Ux, and β(0) = α(1) = x since β ∈ 〈γ, V 〉 ⊂ 〈α, Ux〉.
⇒ q(〈γ, V 〉) ⊂ V ∩ Ux.

Conversely V ∩ Ux ⊂ q(〈γ, V 〉) since endpt. of γ can be joined to β(1) by path in V .

∴ q−1 cont.

∴ p̃ : X̃ → X covering proj.

∴ Suff. to show:

(C) X̃ is simply connected:

Pick x̃0 := [cx0 ] ∈ X̃ as basept. of X̃.

1. X̃ is path connected:

Given [w] ∈ X̃, define I
φw−→X̃ by φw(s) = [ws] where ws(t) = w(st).

w0 = cx0 , w1 = w.

∴ φw(0) = [w0] = [cx0 ] = x̃0 .

Hence

φw joins x̃0 to [w].

∴ φw(1) = [w1] = [w].

∴ X̃ path connected.

Before showing π1(X̃, x̃0) = 1 need properties of φw.

(a) p̃ ◦ φw(s) = p̃([ws]) = ws[1] = w(s)⇒ φw is the lift of w to X̃ beginning at x̃0.

(b) Claim: [w] = [γ]⇒ ∅w ≃ ∅γ rel (0, 1).
Proof: Follows from Covering Homotopy Thm.

2. Show π1(X̃, x̃0) = 1. Let σ rep. an elt. of π1(X̃, x̃0). Then p̃ ◦ σ is a path in X
joining x0 to itself. ∴ σ, φp̃◦σ are both lifts of p̃ ◦ σ to X̃ beginning at x̃0. ∴ Unique
lifting⇒ σ = φp̃◦σ ⇒ σ(1) = φp̃◦σ(1) and x̃0 = σ(1) because σ represents an element
of π1(X, x̃0). π1(X, x̃0).)
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Therefore in X̃, [p̃ ◦ σ] = [(p̃ ◦ σ)1] = φp̃◦σ(1) = x̃0 = [cx0 ].

Therefore σ = φp̃◦σ

part (b) above
≃ φcx0

= cx̃0 so [σ] = 1 in π1(X̃, x̃0).

Therefore X̃ is simply connected.
√

(So by Corollary 12.2.7, being a simple connected cover of a connected, path connected and
locally path connected space, X̃ is a universal covering space.) 2
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12.3 Van Kampen’s theorem

Theorem 12.3.1 (Seifert-) Van Kampen Let U and V be connected open subsets of X s.t.
U ∪ V = X and U ∩ V is connected and nonempty. Let i1 : U ∩ V → U , i2 : U ∩ V → V ,
j1 : U → X and j2 : V → X be the inclusion maps. Choose a basepoint in U ∩ V .

Let G = π1(U), H = π1(V ) and let A = π1(U ∩ V ). Then

π1(X) = G ∗A H
where ∗ denotes the amalgamated free product defined below.

Definition 12.3.2 Amalgamated free product
If A,G,H are groups, α : A → G, β : A → H group homomorphisms, define G ∗A H as

follows. The elements are “words” w1 . . . wn where for each j either wj ∈ G or wj ∈ H, modulo
relations generated by

(
gα(a)

)
h = g

(
β(a)h

)

(Thus every element can be written as a word alternating between elements of G and H.)
Group multiplication is by juxtaposition.
Remark: G ∗A H is a pushout in the category of groups:

A - G

A
A
A
A
A
A
A
A
A
A
A
A
AU

H
?

- G ∗A H
?

HHHHHHHHHHHHj

..............R
Z

If A = 1 then G ∗H is called the free product of G and H.
Proof: (of Theorem): Pick a basepoint x0 for X lying in U ∩ V . By the universal property,
there exists φ : G ∗A H → π1(X).

(Map G →֒ π1(X), H →֒ π1(X) and map a word in G ∗A H to the product of images of the
elements of the word.)

Lemma 12.3.3 φ is onto.
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Proof: Let f : I → X represent an element of π1(X). f−1(U)∪f−1(V ) = I so by compactness
∃N s.t. J ⊂ I, diam J ≤ 1/N ⇒ J ⊂ f−1(U) or J ⊂ f−1(V ). (i.e. 1

N
is a Lebesgue number for

the covering f−1(U), f−1(V ).) Partition I into intervals of length 1/N .
By discarding some division points, we may assume images of intervals alternate between

U and V , so the (remaining) division points are in U ∩ V .
Pick path αi in U ∩V joining x0 to the i-th division point. In π1(X) [f ] = [f1] . . . [fq] where

fi = αi ◦ f |Ji+1
◦ α−1

i+1. ∀i, [fi] ∈ G or [fi] ∈ H so [f ] ∈ Imφ.

Lemma 12.3.4 φ is injective.

Proof: Notation: A = V0, U = V1, V = V2.
Let w = w1 . . . wq ∈ G ∗A H s.t. φ(w) = 1. For each i = 1, . . . , q, represent each wi by a

path fi in either V1 or V2.
Reparametrize fi so that fi : [(i− 1)/q, i/q]→ V1 or V2 in X.
Let f : I → X by f

∣∣
[(i−1)/q,i/q]

:= fi.

φ(w) = 1 ⇒ f ∼= ∗ rel{0, 1} so ∃F : I × I → X s.t. F (s, 0) = f(s), F (s, 1) = x0,
F (0, t) = F (1, t) = x0 ∀t.

By compactness ∃ a Lebesgue number ǫ s.t. S ⊂ I× I with diamS < ǫ⇒ either F (S) ⊂ V1
or F (S) ⊂ V2.

Choose partitions 0 = s0 < s1 < · · · < sm = 1 and 0 = t0 < · · · < tn = 1 of I s.t. the
diameter of each rectangle on the resulting grid on I × I is less than ǫ.

Include the points k/q among the si.
For each ij select λ(ij) = 1 or 2 s.t. F (Rij) ⊂ Vλ(ij). (If F (Rij ⊂ both, take your pick.)
For each vertex vij, Vij = intersection of Vλ(kl) over the 4 (or fewer for edge vertices) rect-

angles having vij as vertex.
(So ∀i, j, Vij = V0, V1 or V2.)
∀i, j choose a path gij : I → Vij joining x0 to F (vij) in Vλ(ij), using that V0, V1, and V2 are

path connected.
Choose these gij arbitrarily except:
If si = k/q choose gi0 = cx0

Choose g0j = cx0 and g1j = cx0 ∀j.
Choose gi1 = cx0 ∀i.
Let Aij = Faij , Bij = Fbij .
Aij, Bij are not closed paths, but from them form closed paths αij = gi−1,j ◦ Aij ◦ g−1

ij ,

βij = gi−1,j ◦Bij ◦ g−1
ij

∀i, j either [αij ] and [βij ] ∈ G, or [αij ] and [βij ] ∈ H.

w1 = [A01 · · · · · A0i1 ] = [α01 · · · · · α0i1 ]

(since g00 = g0,i1 = cx0 , because the points s/q are among the si).
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Similarly
w2 = [A0(i1+1) · · · · · A0i2 ] = [α0(i1+1) · · · · · α0i2 ]

...

wq = [A0(iq+1) · · · · · A0m] = [α0(iq+1) · · · · · α0m]

Therefore w = [α01 · · · · · α0m][α01] . . . [α0m] ∈ G ∗A H.
By Lemma 11.2.5, each Ri,j gives Ai,j−1Bij ≃ Bi−1,jAij rel{0, 1}.
Hence αi,j−1βij ∼= βi−1,jαij rel{0, 1}.
So the relation
[αi,j−1][βij ] = [βi−1,j ][αij ] holds in either G or H and thus in G×A H.
Also [β0j ] = [βmj ] = 1 ∀j (again for each j it holds in one of G,H) and [αin] = 1 ∀i.
Hence ∀j

[α1,j−1] . . . [αm,j−1] = [α1,j−1] . . . [αm,j−1][βm,j ]
= [α1,j−1] . . . [αm−1,j−1][βm−1,j ][αm,j ]
= . . .
= [β0,j ][α1,j ] . . . [αm−1,j ][αm,j ]
= [α1,j ] . . . [αm−1,j ][αm,j ].

Hence w1 . . . wq =
∏m

i=1 αi0 = . . . =
∏m

i=1 αin = 1. 2

Corollary 12.3.5 If X can be written as the union of 2 simply connected open subsets whose
intersection is connected then X is simply connected.

Corollary 12.3.6 Sn is simply connected for n ≥ 2.

Proof: Write Sn = slightly enlarged upper hemisphere ∪ slightly enlarged lower hemisphere.

Example 1: π1(RP n) = Z2 for n ≥ 2.
(Our covering space argument to compute π1(RP n) required knowing that Sn is simply

connected for n ≥ 2.)

Example 2: X is the figure eight. Then π1(X) = Z ∗ Z.
Proof: Circles comprising X are not open, but slightly enlarge to form U and V .Then U ∼= S1

and V ∼= S1. 2

The space X is denoted S1∨S1. The wedge of pointed spaces (Y, ∗) and (Z, ∗) written Y ∨Z
is the space formed from the disjoint union of Y and Z by identifying respective basepoints
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and using the common basepoint as the basepoint of Y ∨Z. In other words, Y ∨Z = {(y, z) ∈
Y × Z | y = ∗ or z = ∗}

Y ≃ Y ′ ⇒ Y ∨ Z ≃ Y ′ ∨ Z
In particular, if W is contractible then Y ∨W ≃ Y . So if X ≃ Y ∨ Z where ∃ contractible

open ∗ ∈ U ⊂ Y and contractible open ∗ ∈ V ⊂ Y then π1(X) = π1(Y ) ∗ π1(Z).
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Chapter 13

Homological Algebra

Introductory concepts of homological algebra

Definition 13.0.7 A chain complex (C, d) of abelian groups consists of an abelian group Cp

for each integer p together with a morphism dp : Cp → Cp−1 for each p such that dp−1 ◦ dp = 0.
Maps dp are called boundary operators or differentials.

The subgroup ker dp of Cp is denoted Zp(C). Its elements are called cycles.
The subgroup Im dp+1 of Cp is denoted Bp(C). Its elements are called boundaries.

dp ◦ dp+1 = 0 ⇒ Bp(C) ⊂ Zp(C).
The quotient group Zp(C)/Bp(C) is denoted Hp(C) and called the p-th homology group

of C. Its elements are called homology classes.
x, y ∈ Cp are called homologous if x− y ∈ Bp(C).

Definition 13.0.8 A chain map f : C → D consists of a group homomorphism fp ∀p s.t.

Cp

dp - Cp−1

Dp

fp

? dp - Dp−1

fp−1

?

Notation: The subscripts are often omitted, so we might write d2 = 0 or fd = df .

Remark: The composition of chain maps is a chain map so chain complexes and chain maps
form a category.
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A chain map f : C → D induces a homomorphism f∗ : Hp(C) → Hp(D) for all p, defined
as follows:

Let x ∈ Zp(C) represent an element [x] ∈ Hp(C).
Then df(x) = fd(x) = f(0) = 0 so f(x) ∈ Zp(D).
Define f∗([x]) := [f(x)].
If x, x′ represent the same element of Hp(C) then x − x′ = dy for some y ∈ Cp+1(C).

Therefore fx − fx′ = fdy = d(fy) which implies f(x), f(x′) represent the same element of
Hp(D). So f∗ is well defined.

Definition 13.0.9 A composition of homomorphisms of abelian groups

X
f - Y

g - Z

is called exact at Y if ker g = Im f . A sequence

Xn

fn - Xn−1

fn−1 - . . . - X1

f1 - X0

is called exact if it is exact at Xi for all i = 1, . . . , n− 1.

Remark: An exact sequence can be thought of as a chain complex whose homology is zero.
More generally, homology can be thought of as the deviation from exactness.

A chain complex whose homology is zero is called acyclic.

Definition 13.0.10 A 5-term exact sequence of the form

0 - A
f - B

g - C - 0

is called a short exact sequence.

Proposition 13.0.11 Let

0 - A
f - B

g - C - 0

be a short exact sequence. Then f is injective, g is surjective and B/A ∼= C.

Proof:
Exactness at A ⇒ Ker f = Im (0→ A) = 0 ⇒ f injective
Exactness at C ⇒ Im g = Ker (C → 0) = C ⇒ g surjective
Exactness at B ⇒ B/ ker g ∼= Im g = C ⇒ B/ Im f ∼= B/A.
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Corollary 13.0.12

(a) 0→ A
f→ B → 0 exact ⇒ f is an isomorphism.

(b) 0→ A→ 0 exact ⇒ A = 0.

Definition 13.0.13
A map i : A→ B is called a split monomorphism if ∃s : B → A s.t. si = 1A.
A map p : A→ B is called a split epimorphism if ∃s : B → A s.t. ps = 1B.

Note: The splitting s (should it exist) is not unique.

It is trivial to check:
(1) A split monomorphism is a monomorphism
(2) A split epimorphism is an epimorphism

Proposition 13.0.14 The following are three conditions (1a, 1b, and 2) are equivalent:

1. ∃ a short exact sequence 0→ A
f→ B

g→ C → 0 s.t.

1a) i is a split monomorphism

1b) p is a split epimorphism

2. B ∼= A⊕ C.

Remark: The isomorphism in 2. will depend upon the choice of splitting s in 1a (respec-
tively 1b).

Lemma 13.0.15 (Snake Lemma) Let

0 - A′ i′ - A
i′′ - A′′ - 0

0 - B′

f ′

? j′ - B

f

? j′′ - B′′

f ′′

?
- 0

be a commutative diagram in which the rows are exact. Then ∃ a long exact sequence

0→ ker f ′ → ker f → ker f ′′ ∂→ coker f ′ → coker f → coker f ′′ → 0.
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Proof:
Step 1. Construction of the map ∂ (called the “connecting homomorphism”):
Let x ∈ ker f ′′. Choose y ∈ A s.t. i′′(y) = x. Since j′′fy = f ′′i′′y = f ′′x = 0, fy ∈ ker j′′ =

Imj′ so fy = j′(z) for some z ∈ B′. Define ∂x = [z] in coker f ′.
Show ∂ well defined:
Suppose y, y′ ∈ A s.t. i′′y = x = i′′y′.
i′′(y − y′) = 0 ⇒ y − y′ = i′(w) for some w ∈ A′. Hence fy − fy′ = fi′w = j′f ′w.
Therefore if we let fy = j′z and fy′ = j′z′ then j′(z − z′) = j′f ′w ⇒ z − z′ = f ′w (since j

is an injection). So [z] = [z′] in Coker f ′.
√

Step 2: Exactness at Ker f ′′:

Show the composition ker f
i′′→ ker f ′′ ∂→ Coker f ′ is trivial.

Let k ∈ Ker f . Then ∂(i′′k) = [z] where j′(z) = f(k) = 0. So z = 0.
So ∂ ◦ i′′ = 0. Hence Im (i′′) ⊂ Ker ∂.
Conversely let x ∈ Ker ∂. Let y ∈ A s.t. i′′y = x. We wish to show that we can replace y

by a y′ ∈ ker f which satisfies i′′y′ = x.
Find z ∈ B′ s.t. j′z = fy. So ∂x = [z]. ∂x = 0⇒ z ∈ Coker f ′.
Hence z = f ′w for some w ∈ A′.
Set y′ := y − i′w. Then i′′y = iy − i′′i′w = iy = x and fy′ = fy − fi′w = fy − j′f ′w =

fy − j′z = 0.
Hence y′ ∈ Ker f .

The rest of the proof is left as an exercise 2

Lemma 13.0.16 ( 5-Lemma)
Let

A - B - C - D - E

A′

f

?
- B′

g

?
- C ′

h

?
- D′

i

?
- E ′

j

?

be a commutative diagram with exact rows. If f, g, i, j are isomorphisms then h is also an
isomorphism.

(Actually , we need only f mono and j epi with g and i iso.)

Definition 13.0.17 A sequence

0→ C
f→ D

g→ E → 0
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of chain complexes and chain maps is called a short exact sequence of chain complexes if

0→ Cp
fp→ Dp

gp→ Ep → 0

is a short exact sequence (of abelian groups) for each p.

Theorem 13.0.18 Let
0→ P

f→ Q
g→ R→ 0

be a short exact sequence of chain complexes. Then there is an induced natural (long) exact
sequence

· · · → Hn(P )
f∗→ Hn(Q)

g∗→ Hn(R)
∂→ Hn−1(P )

f∗→ Hn−1(Q)→ . . .

Remark 13.0.19 Natural means:

0 - P - Q - R - 0

0 - P ′
?

- Q′
?

- R′
?

- 0

implies

. . . - Hn(P ) - Hn(Q) - Hn(R)
∂- Hn−1(P ) - . . .

. . . - Hn(P
′)

?
- Hn(Q

′)
?

- Hn(R
′)

? ∂- Hn−1(P
′)

?
- . . .

Proof:
1. Definition of ∂:

Let [r] ∈ Hn(R), r ∈ Zn(R). Find q ∈ Qn s.t. g(q) = r.
g(dq) = d(qd) = dr = 0 (since r ∈ Zn(R)), which implies dg = fp for some p ∈ Pn−1.
f(dp) = dfp = d2q = 0 ⇒ dp = 0 (as f injective).
So p ∈ Zn−1(p). Define ∂[r] = [p].

2. ∂ is well defined:
(a) Result is independent of choice of q:
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Suppose g(q) = g(q′) = r.
g(q − q′) = 0 ⇒ q − q′ = f(p′′) for some p′′ ∈ Pn.
Find p′ s.t. dq′ = fp′.
f(p− p′) = d(q − q′) = dfp′′ = fdp′′ ⇒ p− p′ = dp′′ ∈ Bn−1(P ).
So [p] = [p′] in Hn−1(P ).

(b) Result is independent of the choice of representative for [r]:
Suppose r′ ∈ Zn(R) s.t. [r

′] = [r].
r − r′ = dr′′ for some r′′ ∈ Rn+1.
Find q′′ ∈ Qn+1 s.t. gq′′ = r′′.
gdq′′ = dgq′′ = dr′′ = r − r′ = g(q)− r′ ⇒ r′ = g(q − dq′′).
Set q′ := q − dq′′ ∈ Qn.
gq′ = r′ so we can use q′ to compute ∂[r′].
dq′ = dq − d2q′′ = dq so the definition of ∂[r′] agrees with the definition of ∂[r].

3. Sequence is exact at Hn−1(P ).

To show that the composition Hn(R)
∂→ Hn−1(P )

f∗→ Hn−1(Q) is trivial:
Let [r] ∈ Hn(R). Find q ∈ Qn s.t. gq = r.
Then ∂[r] = [p] where fp = dq.
So f∗∂[r] = [fp] = [dq] = 0 since dq ∈ Bn−1(Q).
Hence Im ∂ ⊂ Ker f∗.
Conversely let [p] ∈ Ker f∗.
Since [fp] = 0, fp = dq for some q ∈ Qn.
Let r = gq. Then ∂[r] = [p].
So Ker f∗ ⊂ Im ∂.

The proof of exactness at the other places is left as an exercise. 2

Definition 13.0.20 Let f, g : C → D be chain maps.
A collection of maps sp : Cp → Dp+1 is called a chain homotopy from f to g if the relation

ds + sd = f − g : Cp → Dp is satisfied for each p. If there exists a chain homotopy from f to
g, then f and g are called chain homotopic.

Proposition 13.0.21 Chain homotopy is an equivalence relation.

Proof: Exercise

Proposition 13.0.22 f ≃ f ′, g ≃ g′ ⇒ gf ≃ g′f ′.
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Proof: C
f-
f ′
- D

g-
g′
- E

Show gf ≃ gf ′:
Let s : f ≃ f ′. s : Cp → Dp+1 s.t. ds+ sd = f ′ − f .
g ◦ s : Cp → Ep+1 satisfies dgs+ gsd = gds+ gsd = g(ds+ sd) = g(f ′ − g) = gf ′ − gf.
Similarly g′f ≃ g′f ′. 2

Definition 13.0.23 A map f : C → D is a chain (homotopy) equivalence if ∃g : D → C s.t.
gf ≃ 1C, fg ≃ 1D.

Proposition 13.0.24 f ≃ g ⇒ f∗ = g∗ : H∗(C)→ H∗(D).

Proof: Let [x] ∈ Hp(C) be represented by x ∈ Zp(C). Let s : f ≃ g.
Then fx− gx = sdx+ dsx = dsx ∈ Bp(C). So [fx] = [gx] ∈ Hp(D). 2

Corollary 13.0.25 f : C → D is a chain equivalence ⇒ f∗ : H∗(C) → H∗(D) is an isomor-
phism. 2

Proposition 13.0.26 (Algebraic Mayer-Vietoris) Let

- An

i - Bn

j - Cn

∂ - An−1

i - Bn−1

j - Cn−1
-

- A′
n

α

? i′ - B′
n

β

? j′ - C ′
n

γ

? ∂ - A′
n−1

α

? i′ - B′
n−1

β

? j′ - C ′
n−1

γ

?
-

be a commutative diagram with exact rows. Suppose γ : Cn → C ′
n is an isomorphism ∀n. Then

there is an induced long exact sequence

. . . - An
ρ- Bn ⊕ A′

n

q- B′
n

∆- An−1
- Bn−1 ⊕ A′

n−1
- B′

n−1

where
ρ(a) = (ia, αa)
q(b, a′) = βb− i′a′
∆ = ∂γ−1j′

Proof: Exercise
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Chapter 14

Homology

14.1 Eilenberg-Steenrod Homology Axioms

Historically:

1. Simplical homology was defined for simplicial complexes.

2. It was proved that the homology groups of a simplicial complex depend only on its geo-
metric realization, not upon the actual triangulation.

3. Various other “homology theories” were defined on various subcategories of topological
spaces. (e.g. singular homology, de Rham (co)homology, Čech homology, cellular homol-
ogy,. . . ) The subcollection of spaces on which each was defined was different, but they
had similar properties, were all defined for polyhedra (i.e. realizations of finite simplicial
complexes) and furthermore gave the same groups H∗(X) for a polyhedron X.

4. Eilenberg and Steenrod formally defined the concept of a “homology theory” by giving
a set of axioms which a homology theory should satisfy. They proved that if X is a
polyhedron then any theory satisfying the axioms gives the same groups for H∗(X).

Definition 14.1.1 (Eilenberg-Steenrod) Let A be a class of topological pairs such that:

1) (X,A) in A ⇒ (X,X), (X, ∅), (A,A), (A, ∅), and (X × I, A× I) are in A;

2) (∗, ∅) is in A (where ∗ denotes a space with one point).

A homology theoryon A consists of:

E1) an abelian group Hn(X,A) for each pair (X,A) in A and each integer n;
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E2) a homomorphism f∗ : Hn(X,A)→ Hn(Y,B) for each map of pairs

f : (X,A)→ (Y,B);

E3) a homomorphism ∂ : Hn(X,A)→ Hn−1(A) for each integer n (where Hn(A) is an abbre-
viation for Hn(A, ∅) ),

such that:

A1) 1∗ = 1;

A2) (gf)∗ = g∗f∗;

A3) ∂ is natural. That is, given f : (X,A)→ (Y,B), the diagram

Hn(X,A)
f∗ - Hn(Y,B)

Hn−1(A)

∂

? (f |A)∗- Hn−1(B)

∂

?

commutes;

A4) Exactness:

. . . - Hn(A) - Hn(X) - Hn(X,A)
∂-

Hn−1(A) - Hn−1(X) - Hn−1(X,A) - . . .

is exact for every pair (X,A) in A, where H∗(A)→ H∗(X) and H∗(X)→ H∗(X,A) are
induced by the inclusion maps (A, ∅)→ (X, ∅) and (X, ∅)→ (X,A);

A5) Homotopy: f ≃ g ⇒ f∗ = g∗.

A6) Excision: If (X,A) is in A and U is an open subset of X such that U ⊂
◦

A and (XrU,Ar
U) is in A then the inclusion map (X r U,A r U) → (X,A) induces an isomorphism

Hn(X r U,Ar U)
∼=- Hn(X,A) for all n;

A7) Dimension: Hn(∗) =
{
Z if n = 0;

0 if n 6= 0.
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Many homology theories also satisfy the following “Compactness Axiom”.
A8) For each α ∈ Hn(X,A) there exists a pair of compact subspaces (X0, A0) in A such that

α ∈ Im j∗, where j : (X0, A0)→ (X,A) is the inclusion map.

Remark 14.1.2

1. Some people include the 8th axiom (which is not on Eilenberg-Steenrod’s list) in their
definition, but many people would call anything satisfying the 1st 7 axioms a homology
theory.

2. A1 and A2 simply say that Hn( ) is a functor for each n.

Remark 14.1.3 Under the presence of the other axiom, the excision is equivalent to the Mayer-
Vietoris property, stated below as Theorem 14.2.34 and to the Suspension property, stated below
as Theorem 15.0.41.

14.2 Singular Homology Theory

Definition 14.2.1 A set of points {a0, a1, . . . , an} ∈ RN is called geometrically independent if
the set

{a1 − a0, a2 − a0, . . . , an − a0}
is linearly independent.

Proposition 14.2.2 a0, . . . , an geometrically independent if and only if the following statement
holds:

∑n
t=0 tiai = 0 and

∑n
t=0 ti = 0 implies ti = 0 for all i.

Proof: Exercise

Definition 14.2.3 Let {a0, . . . , an} be geometrically independent. The n-simplex σ spanned by
{a0, . . . , an} is the convex hull of {a0, . . . , an}. Explicitly

σ = {x ∈ Rn | x =
∑n

i=0 tiai where ti ≥ 0 and
∑
ti = 1}.

For a given n-simplex σ, each x ∈ σ has a unique expression x =
∑n

i=0 tiai with ti ≥ 0 and∑
ti = 1. The ti’s are called the barycentric coordinates of x (with respect to a0, . . . , an). The

barycentre of the n-simplex is the point all of whose barycentric coordinates are 1/(n+ 1).
a0, . . . , an are called the vertices of σ.
n is called the dimension of σ.
Any simplex formed by a subset of {a0, . . . , an} is called a face of σ.
Special case:
a0 = ǫ0 := (0, 0, . . . , 0), a1 = ǫ1 := (1, 0, . . . , 0), a2 = ǫ2 := (0, 1, 0, . . . , 0),

an = ǫn := (0, 0, . . . , 0, 1) in Rn gives what is known as the standard n-simplex, denoted ∆n.
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Definition 14.2.4 Suppose A ⊂ Rm is convex. A function f : A → Rk is called affine if
f
(
ta+ (1− t)b

)
= tf(a) + (1− t)f(b) ∀a, b ∈ Rm and 0 ≤ t ≤ 1 ∈ R.

Let σ be an n-simplex with vertices v0, . . . , vn. Given (n+1) points p0, . . . , pn in Rk, ∃! affine
map f taking vj to pj.
Note: p0, . . . , pn need not be geometrically independent.

Notation: Given a0, . . . , an ∈ RN , let l(a0, . . . , an) denote the unique affine map taking ej to aj.
Explictly, l(a0, . . . , an)(x1, . . . , xn) = a0 +

∑n
i=1(ai − a0)xi

Note: l(ǫ0, . . . , ǫ̂i, . . . , ǫn) is the inclusion of the (ith face of ∆n) into ∆n.

Definition 14.2.5 Given a topological space X, a continuous function f : ∆p → X is called a
singular p-simplex of X.

Let Sp(X) := free abelian group on {singular p-simplices of X}.
Wish to define a boundary map making Sp(X) into a chain complex.
Given a singular p-simplex T , can define (p− 1)-simplices by the compositions

∆p−1 l(ǫ0,...,ǫ̂i,...,ǫn)- ∆p T- X.

A homomorphism from a free group is uniquely determined by its effect on generators.
Define homomorphism
∂ : Sp(X)→ Sp−1(X) by ∂(T ) :=

∑p
i=0(−1)iT ◦ l(ǫ0, . . . , ǫ̂i, . . . , ǫn).

Given g : X → Y , define homomorphism g∗ : Sp(X) → Sp(Y ) by defining it on generators

by g∗(T ) := g ◦ T . ∆p T- X
g- Y

Lemma 14.2.6 g∗∂ = ∂g∗

(Thus after we show Sp(X), Sp(Y ) are chain complexes, we will know that g∗ is a chain
map.)

Proof: Sufficient to check g∗∂(T ) = ∂g∗(T ) ∀T . (Exercise: Essentially, left multiplication
commutes with right multiplication.)

Lemma 14.2.7 S∗(X) is a chain complex. (i.e. ∂2 = 0)

Proof:
Special Case: X = σ spanned by a0, . . . , ap and T = l(a0, . . . , ap).
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Then
∂T = ∂l(a0, . . . , ap)

=
∑p

j=0(−1)jl(a0, . . . , ap) ◦ l(ǫ0, . . . , ǫ̂j, . . . , ǫp)
=
∑p

j=0(−1)jl(a0, . . . , âj, . . . , ap)
Therefore

∂2T =
∑p

j=0(−1)j∂l(a0, . . . , âj, . . . ap)
=
∑p

j=0(−1)j
(∑

i<j(−1)il(a0, . . . , âi . . . , âj , . . . , ap)
+
∑

i>j(−1)i−1l(a0, . . . , âi . . . , âj, . . . , ap)
)

(Note: removal of aj moves ai to (i− 1)st position)
= 0

since each term appears twice (once with i < j and once with j < i) with opposite signs so
they cancel.

General Case: f : ∆p → X. Let I = 1∆p = l(ǫ0, . . . , ǫp) ∈ Sp(∆
p). Then f = f∗(I) ∈ Sp(X).

So ∂2f = f∗(∂
2I) ============

(special case)
f∗(0) = 0.

Corollary 14.2.8 (Corollary of previous Lemma)
g : X → Y implies g∗ : S∗(X)→ S∗(Y ) is a chain map.

Definition 14.2.9 H∗

(
S∗(X), ∂

)
is denoted H∗(X) and called the singular homology of the

space X.

Proposition 14.2.10 Singular homology is a functor from the category of topological spaces
to the category of abelian groups.

Proof: Requirements are 1∗ = 1 and (gf)∗ = g∗f∗. Both are trivial.

Corollary 14.2.11 If f : X → Y is a homeomorphism then f∗ is an isomorphism.

Let A be a subspace of X with inclusion map j : A ⊂ - X. Then j∗ : S∗(A)→ S∗(X) is an
inclusion (S∗(X) is the free abelian group on a larger set — in general strictly larger since not
all functions into X factor through A) so can form the quotient complex S∗(X)/S∗(A) (strictly
speaking the denominator is j∗

(
S∗(A)

)
).

Definition 14.2.12 H∗

(
S∗(X)/S∗(A)

)
is written H∗(X,A) and is called the relative homology

of the pair (X,A).

Notice, if A = ∅ then S∗(A) = Free-Abelian-Group(∅) = 0 so H∗(X, ∅) = H∗(X).
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14.2.1 Verification that Singular Homology is a Homology Theory

A pair (X,A) gives rise to a short exact sequence of chain complexes:

0→ S∗(A)→ S∗(X)→ S∗(X)/S∗(A)→ 0

in such a way that a map of pairs (X,A)→ (Y,B) gives a commuting diagram:

0 - S∗(A) - S∗(X) - S∗(X)/S∗(A) - 0

0 - S∗(B)
?

- S∗(Y )
?

- S∗(Y )/S∗(B)
?

- 0

It follows from the homological algebra section that there are induced long exact homology
sequences

. . .
∂- Hp(A) - Hp(X) - Hp(X,A)

∂- Hp−1(A) - Hp−1(X) - . . .

. . .
∂- Hp(A)

?
- Hp(X)

?
- Hp(X,A)

? ∂- Hp−1(A)
?

- Hp−1(X)
?

- . . .

making the squares commute.
This in the definition of a homology theory we immediately have the following: E1, E2, E3,

A1, A2, A3, A4.

Proposition 14.2.13 A7 is satisfied.

Proof: By definition, if p ≥ 0,
Sp(∗) = Free-Abelian-Group

(
{maps from ∆p to ∗}

)
= Z,

generated by Tp where Tp is the unique continuous map from ∆p to ∗.
∂Tp =

∑p
i=0(−1)iTp ◦ l(ǫ0, . . . , ǫ̂i, . . . , ǫp).

For p > 0, Tp ◦ l(ǫ0, . . . , ǫ̂i, . . . , ǫp) = Tp−1 ∀i, so ∂Tp =
{
Tp−1 p even;

0 p odd.

Proposition 14.2.14 A8 is satisfied.

133



Proof: Let α ∈ Hp(X,A). So α is represented by a cycle of Sp(X)/Sp(A) for which we choose

a representative c =
∑k

i−1 niTi ∈ Sp(X). Thus ∂c =
∑r

i=1miVi ∈ Sp(A).

Let X0 =
(
∪k

i=1 ImTi
)
∪ (∪r

i=1 ImVi) and let A0 = (∪r
i=1 ImVi).

Since Ti : ∆p → X and Vi : ∆p−1 → A ⊂ - X, each of X0 and A0 are a finite union
of compact sets and thus compact. It is immediate from the definitions that α ∈ Im j∗ :
H∗(X0, A0) → H∗(X,A) where j : (X0, A0

⊂ - (X,A) is the inclusion map, since the chain
representing α exists back in S∗(X0)/S∗(A0).

Theorem 14.2.15 H0(X) ∼= Fab({path components of X}).

Proof: S0(X) = Fab({singular 0-simplices of X}).
S1(X) is generated by maps f : I = ∆1 → X.
∂f = f(1)− f(0). Hence Im ∂ = {f(1)− f(0) | f : I → X}.
Therefore

H0(X) = ker ∂0/ Im ∂0 = S0(X)/ Im ∂1
= Fab(points of X)/∼ where f(1)− f(0)∼0 ∀f : I → X
∼= Fab({path components of X}).

14.2.2 Reduced Singular Homology

Define the “augmentation map” ǫ : S0(X)→ Z by ǫ(
∑

i∈I nixi) =
∑

i∈I ni.
If f is a generator of S1(X) with f(0) = x and f(1) = y then ∂f = y − x so ǫ∂f = 0.

- Sp(X)
∂- Sp−1(X) - . . . - S1(X)

∂- S0(X) - 0 -

- 0
?

- 0
?

- . . . - 0
?

- Z

ǫ

?
- 0

?
-

commutes.
The chain complex formed by taking termwise kernels of this chain map is denoted S̃∗(X)

and its homology, denote H̃∗(X), is called the reduced homology of X.
The short exact sequence of chain complexes defining S̃∗(X) yields a long exact sequence

0→ H̃p(X)→ Hp(X)→ 0→ . . .→ 0→ H̃1(X)→ H1(X)→ 0→ H̃0(X)→ H0(X)
ǫ- Z→ 0.
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Therefore Hn(X) ∼=
{
H̃n(X) n > 0;

H̃0(X)⊕ Z n = 0.

Consider the special case X = ∗.

S∗(∗) → Z
∼=- Z → . . .

0- Z
∼=- Z → 0y

y
y

yǫ

y
→ 0 - 0 → . . . - 0 - Z → 0

In this case ǫ becomes the identity map so that ǫ∗ : H0(∗) → Z is an isomorphism. (We
already knew H∗(X) ∼= Z; just want to check that ǫ∗ gives the isomorphism.)

Theorem 14.2.16 H̃∗(X) ∼= H∗(X, ∗).
Proof: We have a long exact sequence

0 0 0

Hn(∗)

ww
- Hn(X) - Hn(X, ∗) - Hn−1(∗)

ww
- . . . - H1(∗)

ww
-

- H1(X) - H1(X, ∗)
∂ - H0(∗)

i- H0(X) - Hn(X, ∗) - 0

Let f : X → ∗.

H0(∗)
i- H0(X)

@
@
@
@
@

1

R

@
@
@
@
@

ǫ∗

R

H0(∗)

f∗

? ǫ∗ - Z

Therefore ǫ∗i = ǫ∗ is an isomorphism so i is an injection. It follows algebraically that ∂ = 0
and that the short exact sequence

0 - H0(∗) - H0(X) - H0(X, ∗) - 0

@
@
@
@
@

∼=

R

Z

ǫ

?

splits and H̃0(X) = ker ǫ ∼= coker i ∼= H0(X∗).
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Theorem 14.2.17 Let X ⊂ RN be convex. Then H̃∗(X) = 0.

Proof: Let w ∈ X be any point. Define a homomorphism Sp(X) → Sp−1(X) by defining it
on generators as follows.

Let T : ∆p → X be a generator of Sp(X).
To define φ(T ) ∈ Sp+1(X): Let φ(T ) : ∆p+1 → X be the generator of Sp+1(X) defined as

follows: Given y ∈ ∆p+1 we can write y = tǫp + (1 − t)z for some z ∈ ∆p, t ∈ [0, 1] (where
ǫp = (0, . . . , 0, 1) ). Let φ(T )(y) = tw + (1− t)T (z).

Lemma 14.2.18 Let c ∈ Sp(X). Then ∂
(
φ(c)

)
=

{
φ(∂c) + (−1)p+1c p > 0

ǫ(c)Tw − c p = 0

where Tw : ∆0 → X by Tx(∗) = w.

Proof: It suffices to check this when c is a generator. Let T : ∆p → X be a generator
of Sp(X).
If p = 0:

φ(T ) is a line joining T (∗) to w so ∂
(
φ(T )

)
= Tw − T = ǫ(T )Tw − T as required.

If p > 0:
∂
(
φ(T )

)
=
∑p+1

i=0 (−1)iφ(T ) ◦ li where li is short for l(ǫ0, . . . ǫ̂i, . . . , ǫp).
If i = p+ 1, li is the inclusion of ∆p into ∆p+1 so φ(T ) ◦ lp = φ ◦ T

∣∣
∆p = T .

If i ≤ p, φ(T ) ◦ li = φ
(
T ◦ l(ǫ0, . . . , ǫ̂i, . . . , ǫp)

)
, extended by sending the last vertex to w.

Therefore

∂
(
φ(T )

)
=
∑p

i=0(−1)iφ
(
T ◦ l(ǫ0, . . . , ǫ̂i, . . . , ǫp)

)
+ (−1)p+1T

= φ
(∑p

i=0(−1)iT ◦ l(ǫ0, . . . , ǫ̂i, . . . , ǫp)
)
+ (−1)p+1T

= φ(∂T ) + (−1)p+1T

Proof of Theorem (cont.)
p = 0:

Suppose c ∈ S̃0(X). So ǫ(c) = 0.
∂
(
φ(c)

)
= 0− c so [c] = 0 ∈ H̃0(X).

p > 0:
Let c ∈ Zp(X).
∂
(
φ(c)

)
= φ(∂c) + (−1)p+1c = φ(0) + (−1)p+1c = (−1)p+1c.

Therefore [c] = 0 in Hp(X) = H̃p(X).

Corollary 14.2.19 H̃p(∆
n) = 0 ∀p.
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14.2.3 Proof that A5 is satisfied: Acyclic Models

Let f, g : X → Y s.t. f
H≃ g.

X
i-
j
- X × I H- Y where i(x) = (x, 0), j(x) = (x, 1).

Then H◦ = f and H ◦ j = g. Therefore f∗ = H∗ ◦ i∗ and g∗ = H∗ ◦ j∗. Show to show f∗ = g∗
it suffices to show that i∗ = j∗.

We show this by showing that at the chain level i∗ ≃ j∗ : S∗(X)→ S∗(X × I).
We will show that i∗ ≃ j∗ by “acyclic models”.
Intuitively, acyclic models is a method of inductively constructing chain homotopies which

makes use of the fact that in an acyclic space equations of the form ∂x = y can always be
“solved” for x provided ∂y = 0. (In general there will be many choices for the solution x.) The
method does not give an explicit formula for the chain homotopy but merely proves that one
exists. In fact, the final result is non-canonical and depends upon the choices of the solutions.
In the case of chain homotopy i∗ ≃ j∗ which we are considering at present, it would be possible
to directly write down a chain homotopy and check that it works without using acyclic models.
However we will need the method in other places where it would not be so easy to simply write
down the formula so we introduce it here.

The acyclic spaces (“models”) used in this particular application of the method are the
spaces ∆n. Intuitively we make used of the fact that equations can be solved in ∆n to solve the
same equations in S∗(X) using that elements in S∗(X) are formed from maps ∆n → X.

Lemma 14.2.20 ∃ a natural chain homotopy DX : i ≃ j : S∗(X)→ S∗(X × I).
In more detail:

1. ∀x and ∀p, ∃DX : Sp(X)→ Sp+1(X × I) s.t. ∀c ∈ Sp(X),

∂DXc+DX∂c = j∗(c)− i∗(c).

2. ∀f : X → Y ,

Sp(X)
DX- Sp+1(X × I)

Sp(Y )

f∗

? DY- Sp+1(Y × I)

(

?

f × 1)∗

commutes.
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Proof: Since Sp(X) is a free abelian group it suffices to define DX on generators and check
its properties on them.

If p < 0, Sp(X) = 0 so DX = 0-map.
Continue constructing DX inductively. The induction assumptions are for all spaces. More

precisely:
Induction Hypothesis: ∃ integer p such that for all k < p and ∀X we have constructed
homomorphisms DX : Sk(X)→ Sk+1(X × I) s.t. ∀c ∈ Sk(C)

1. ∀x and ∀p, ∃DX : Sp(X)→ Sp+1(X × I) s.t. ∀c ∈ Sp(X),

∂DXc+DX∂c = jX ∗ (c)− iX ∗ (c).

2. ∀f : X → Y ,

Sk(X)
DX- Sk+1(X × I)

Sk(Y )

f∗

? DY- Sk+1(Y × I)

(

?

f × 1)∗

commutes.

(We have this initially for p = 0.)

To construct DX : Sp(X)→ Sp+1(X × I) for any X, consider first the special case (“model
case”):

Let X = ∆p and let ιp = 1∆p ∈ Sp(∆
p).

i, j : ∆p → ∆p × I.
Want to define D∆p(ιp) so that ∂D∆p(ιp) = j∗(ιp)− i∗(ιp)−D∆p(∂ιp).
That is, solve the equation ∂x = j∗(ιp)− i∗(ιp)−D∆p(∂ιp) for x and set

D∆p(ιp) := solution.
Since ∆p × I is acyclic, solving the equation is equivalent (except when p = 0: see below)

to checking ∂(RHS) = 0.

∂(RHS) = ∂j∗(ιp)− i∗(ιp)−D∆p(∂ιp)

===========
(chain maps)

j∗(∂ιp)− i∗(∂ιp)− ∂D∆p(∂ιp)

==========
(induction)

∂J∗(ιp)− ∂i∗(ιp)− (j∗∂ιp − i∗i∗∂ιp −D∆p∂∂ιp)
= 0.

Hence ∃ solution. Choose any solution and define D∆p(∗ιp) = solution.

138



Must do the case p = 0 separately, sinceH0(∆
0×I) 6= 0. For the generator 1∆0 : ∆0 = ∗ → ∗,

set D∆0(x) := 1I ∈ S1(I = ∆0 × I) = Hom(∆1, I) = Hom(I, I). Then ∂D∆0(x) := ∂1I =
j∗(∗)− i∗(∗) as desired.
Note: We could have avoided doing p = 0 separately by writing our argument using reduced
homology.

Now to define Sp(X)→ Sp+1(X) in general:
Let T : ∆p → X be a generator of Sp(X). Define DX(T ) in the only possible such that (2)

is satisfied. That is, want

Sp(∆
p)

D∆p
- Sp+1(∆

p × I)

Sp(X)

T∗

? DX- Sp+1(X × I)

(

?

T × 1)∗

Observe that T = T∗(ιp) ∈ Sp(X) so we are forced to define DX(T ) by
DX(T ) := (T × 1)∗D∆pι0.

Check that this works:

∆p ιp - ∆p j∆p
- ∆p × I

@
@
@
@
@

T
R

X

T

? j - X × I

T × 1

?

∆p ιp - ∆p i∆p
- ∆p × I

@
@
@
@
@

T
R

X

T

? i - X × I

T × 1

?

∂DXT = ∂(T × 1)∗D∆pιp
= (T × 1)∗∂D∆pιp
= (T × 1)∗(j∗ιp − i∗ιp −D∆p∂ιp)
= (T × 1 ◦ j)∗ιp − (T × 1 ◦ i)∗ιp − (T × 1)∗D∆p∂ιp
= j∗(T )− i∗(T )− (T × 1)∗D∆p∂ιp

==========================
((2) of induction hypothesis)

j∗(T )− i∗(T )−DXT∗(∂ιp)

=================
(T∗ is a chain map)

j∗(T )− i∗(T )−DX∂T∗ιp
= j∗(T )− i∗(T )−DX∂T

Also, if f : X → Y then

(f×1)∗DX(T )
(defn)
= (f×1)∗(T×1)∗D∆pιp =

(
(f ◦ T )× 1

)
∗
D∆pιp

(defn)
= DY (f ◦T ) = DY (f∗T ).

139



This competes the induction step and proves the lemma.

Theorem 14.2.21 Singular homology satisfies A5.

Proof: Let f, g : (X,A)→ (Y,B) s.t. f ≃ g.

Then ∃F : X × I → Y s.t. F : f ≃ g and F
∣∣
A×I

: f
∣∣
A
→ g

∣∣
A
. That is, (X,A)

i-
j
- (X ×

I, A × I) F- (Y,B) where i(x) = (x, 0), j(x) = (x, 1), F ◦ i = f , F ◦ j = g. Therefore, to
show f∗ = g∗ it suffices to show i∗ = j∗.

By (2) of the lemma, the restriction of DX to A equals DA. (since the diagram commutes
and S∗(A) → S∗(X) is a monomorphism. Thus there is an induced homomorphism on the
relative chain groups:

0 - Sp(A) - Sp(X) - Sp(X,A) - 0

0 - Sp+1(A)

DA

?
- Sp+1(X)

DX

?
- Sp+1(X,A)

DX,A

?
- 0

with DX,A a chain homotopy between i∗ and j∗. Hence i∗ = j∗ and so f∗ = g∗.

14.2.4 Barycentric Subdivision

(to prepare for excision:)

Definition 14.2.22 Let σ be a (geometric) p-simplex spanned by p+ 1 geometrically indepen-
dent points v0,. . .,vp. The barycenter of σ, denoted σ̂ is defined by σ̂ =

∑p
i=0

1
p+1

vi.

(This is, the unique point all of whose barycentric coordinates are equal)
σ̂ = centroid of σ.
Define the barycentric subdivision sd σ of a simplex as follows.
Join σ̂ to the barycenter of each face of σ to get sd σ. (This includes joining σ̂ to each vertex

since vertices are faces and are their own barycenters.)
sd σ writes σ as a union of p-simplices.
Can then perform barycentric subdivision on each of these to get sd2 σ and so on.

Notation: τ ≺ σ shall mean: τ is a face of σ.

Lemma 14.2.23 Every p-simplex of sd σ is spanned by vertices σ̂0, σ̂1, . . ., σ̂p where σ0 ≺
σ1 ≺ · · · σp.
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Proof: By induction on dim σ.
True if dim σ = 0.
Observe: sd σ is formed by forming sd(Boundary σ) and then joining σ̂ to each vertex

in sd(Boundary σ). Thus, of the (p + 1) vertices spanning a simplex τ in sd σ, p of them span
a simplex τ ′ in Boundary σ and the last is σ̂. By induction, τ ′ is spanned by σ̂0, σ̂1, . . ., σ̂p−1

where σ0 ≺ σ1 ≺ · · · σp−1 and so τ has the desired form with σp = σ̂.

Lemma 14.2.24 Let σ be a p-simplex and let d be any metric on σ which gives it the standard
topology. Then ∀ǫ > 0, ∃N s.t. the diameter or each simplex of sdN σ is less than ǫ.

Proof:

Step 0: If true for one metric than true for any metric.

Proof:
Let d1, d2 be metrics on σ each giving the correct topology. Then 1 : σ → σ is a homeo-

morphism so continuous and thus uniformly continuous by compactness of σ. Therefore, given
ǫ, ∃δ > 0 s.t. any set with d1-diameter less than δ has d2-diameter less then ǫ. Thus if the
theorem holds for d1 then it holds for d2 also.

For the rest of the proof use the metric on R given by d(x, y) = maxi=1,...,N |xi − yi|, which
yields the same topology as the standard one. Notice that in this metric:

1. d(x, y) = d(x− a, y − a)

2. d(0, nx) = nd(0, x)

3. d(0, x+ y) ≤ d(0, x) + d(x, x+ y) = d(0, x) + d(0, y)

4. For a p-simplex τ spanned by v0, . . ., vp, diam(τ) = max{d(vi, vj)}

Step 1: If dim σ = p then ∀z ∈ σ, d(z, σ̂) ≤ p
p+1

diam σ.

Proof:
First consider the special case z = v0.
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d(v0, σ̂) = d

(
v0,

p∑

i=0

vi
p+ 1

)

= d

(
0,

p∑

i=0

vi − v0
p+ 1

)

=
1

p+ 1
d

(
0,

p∑

i=0

(vi − v0)
)

=
1

p+ 1
d

(
0,

p∑

i=1

(vi − v0)
)

≤
p∑

i=1

1

p+ 1
d(0, vi − v0)

=

p∑

i=1

1

p+ 1
d(v0, vi)

≤
p∑

i=1

1

p+ 1
diam σ

=
p

p+ 1
diam σ.

Similarly d(vjσ̂) ≤ p
p+1

diam σ ∀ vertices of σ. Therefore the closed ball B p

p+1
diamσ[σ̂] contains

all vertices of σ so, being convex it contains all of σ. Hence d(z, σ̂) ≤ p
p+1

diam σ ∀z ∈ σ.
Step 2: For any simplex τ of sd σ, diam τ ≤ p

p+1
diam σ.

Proof: By induction on p = dim σ.
Trivial if p = 0. Suppose true in dimensions less than p.
Write τ = σ̂0 . . . σ̂p where σp = σ.
Then diam τ = max{d(σ̂i, σ̂j)}. Suppose i < j.
If j < p then by induction: d(σ̂i, σ̂j) ≤ j

j+1
diam σj ≤ p

p+1
diam σj ≤ p

p+1
diam σ since j < p

and σj ⊂ σ.
If j = p then d(σ̂i, σ̂p) = d(σ̂i, σ̂) ≤ p

p+1
diam σ by Step 1.

Hence diam τ ≤ p
p+1

diam σ.

Definition 14.2.25 Let X be a topological space. Define the barycentric subdivision operator,
sdX : Sp(X)→ Sp(X) inductively as follows:

sdX : S0(X)→ S0(X) is defined as the identity map.
Suppose sdX defined in degrees less than p for all spaces.

142



Recall: Given convex Y ⊂ RN and y ∈ Y , in the proof of Theorem 14.2.17 we defined a
homomorphism Sq(Y )→ Sq+1(Y ), which we will denote T 7→ [T, y], by

[T, y](v) := ty + (1− t)T (z)

where v = tǫp+1 + (1 − t)z with z ∈ ∆p. Recall that ∂[c, y] =

{
[∂c, y] + (−1)q+1c q > 0;

ǫ(c)Ty − c q = 0,

where Ty : ∆
0 → Y by Ty(∗) = y.

We will apply this with Y = ∆p, y = σ̂ = barycenter of ∆p.

To define Sp(X)
sdX- Sp(X), first consider ιp := identity map : ∆p → ∆p ∈ Sp(∆

p).
Define sd∆p ιp) := (−1)p[sd∆p(∂ιp), σ̂] ∈ Sp+1(∆

p).
Then given generator T : ∆p → X ∈ Sp(X) for arbitrary X, define
sdX(T ) := T∗

(
sd∆p(ιp)

)
= (−1)p

[
T∗
(
sd∆p(∂ιp)

)
, T (σ̂)

]
.

Letting SD denote geometric barycentric subdivision, by construction, sd∆p(ιp) =
∑±σi

where SD(∆p) = ∪iτi and σ ∈ Sp(∆
p) is the affine map sending ǫj to τ̂j where τ̂0, . . ., τ̂p are

the vertices of τ̂i.

Lemma 14.2.26 sdX is a natural augmentation-preserving chain map.

Note: Natural means

Sp(X)
sdX- Sp(Y )

Sp(Y )

f∗

? sdY- Sp(Y )

f∗

?

commutes.
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Proof:
Let ǫ : S0(X) → Z be the augmentation. If c ∈ S0(X) then sdX(c) = c so ǫ

(
sd(c)

)
= ǫ(c).

Hence sdX is augmentation preserving.
To show naturality:
fX sdX T = f∗T∗ sd∆p ιp = (f ◦ T )∗ sd∆p ιp = sdY (f ◦ T )∗ιp = sdY f∗T .
We show that sdX is a chain map by induction on p. Suppose we know, for all spaces, that

∂ sdX = sdX ∂ in degrees less than p. Then in ∆p we have

∂ sd ιp = (−1)p∂[sd ∂ιp, σ̂]

=

{
(−1)p[∂ sd ∂ιp, σ̂] + (−1)p(−1)p sd ∂ιp p > 1

−ǫ(sd ∂ι1)Tσ̂ + sd ∂ι1 p = 1

=

{
(−1)p[sd ∂∂ιp, σ̂] + sd ∂ιp p > 1

−ǫ∂ι1Tσ̂ + sd ∂ι1 p = 1

=

{
0 + sd ∂ιp p > 1

0 + sd ∂ι1 p = 1

= sd ∂ιp.

Now for arbitrary T ∈ Sp(X),

∂ sdT = ∂T∗(sd ιp) = T∗(∂ sd ιp)
(naturality of sd)

= sdT∗∂ιp = sd ∂T∗ιp = sd ∂T .

Theorem 14.2.27 Let A be a collection of subset of X whose interiors cover X. Let T : ∆p →
X be a generator of Sp(X). Then ∃N s.t. sdN T =

∑
i niTi with ImTi contained in some set

in A for each i. (Need not be the same set of A for different i.)

Proof: Since {IntA}A∈A covers X, {T−1(IntA)}A∈A covers ∆p which is compact. Let λ be a
Lebesgue number for the covering {T−1(IntA)}A∈A of ∆p. Choose N s.t. for each simplex σ of
SDN ∆p, diam σ < λ (where SD denotes geometric barycentric subdivision).

Thus writing sdN σ =
∑
niσi, for each i ∃A ∈ A s.t. Im σi ⊂ T−1(IntA). (Each ni is ±1,

but we don’t need this.)
By naturality sdN T =

∑
niT (σi) and so ∀i ∃A ∈ A s.t. ImTσi ⊂ A

Theorem 14.2.28 For each m, ∃ natural chain homotopy DX : 1 ≃ sdm : S∗(X)→ S∗(X).
That is,

1. ∀p ∃DX : Sp(X)→ Sp+1(X) s.t. ∂DXc+DX∂c = sdm c− c ∀c ∈ Sp(X)
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2. Given f : X → Y ,

Sp(X)
DX- Sp+1(X)

Sp(Y )

f∗

? DY- Sp+1(Y )

f∗

?

commutes.

Proof: By “acyclic models”. i.e. DX is defined on all spaces by induction on p.
For p = 0, define DX = 0 : S∗(X)→ S1(X):

Since for c ∈ S0(X), sdm(c) = c, so ∂DXc+DX∂c = ∂0 +DX0 = 0 = sdm c− c is satisfied.
Now suppose by induction that for all k < p and for all spaces X, DX : Sk(X)→ Sk+1(X)

has been defined satisfying (1) and (2) above.
Define DXT first in the special case X = ∆p, T = ιp : ∆

p → ∆p ∈ Sp(∆
p).

To define DXιp need to “solve” equation ∂c = sdm ιp − ιp −D∆p(∂ιp) for c and define DXιp
to be a solution.

Since ∆p is acyclic, it suffices to check that ∂(RHS) = 0.
∂ sdm ιp − ∂ιp − ∂D∆p(∂ιp) = ∂ sdm ιp − ∂ιp −

(
sdm ∂ιp − ∂ιp −D∆p(∂∂ιp)

)
= 0. Therefore

can define DXιp s.t. (1) is satisfied.
Given T : ∆p → X ∈ Sp(X), define DXT := T∗

(
D∂p(ιp)

)
. Then

∂DXT = ∂T∗(D∂pιp)
= T∗∂(D∂pιp)
(induction)

= sdm T∗ιp − T∗ιp −D∆pT∗∂ιp
= sdm T − T −D∆p∂T ιp
= sdm T − T −D∆p∂T

Also fXDX(T ) = f∗T∗(D∆pιp) = (f ◦ T )∗(D∆pιp) = DY (f ◦ T ) = DY f∗(T ).

Let A be a subspace of X. Since sdA is the same as sdX restricted to A, ∃ induced sdX,A :
S∗(X,A)→ S∗(X,A). By property (2) of DX , restrcion of DX to A equals DA so ∃ an induced
homomorphism

0 - Sp(A) - Sp(X) - Sp(X,A) - 0

0 - Sp+1(A)

DA

?
- Sp+1(X)

DX

?
- Sp+1(X,A)

DX,A

?
- 0
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with DX,A : 1 ≃ sdm
X,A : S∗(X, a)→ S∗(X,A).

Notation: Let A be a collection of sets which cover X.
Set SA

p (X) := free abelian group{T : ∆p → X | ImT ⊂ A for some A ∈ A}.
SA
p (X) is a subgroup of Sp(X).

Notice that if ImT ⊂ A then writing ∂T =
∑
niTi, for each i ImTi ⊂ ImT ⊂ A so ∂T ∈

SA
p−1(X). Thus the restriction of ∂ to SA

p (X) turns SA
p (X) into a chain complex and the

inclusion map becomes a chain map.
Notice also that if T is a generator of SA

p (X) then DXT ∈ SA
p+1(X) because:

if D∆p(ιp) =
∑
niSi then DXT = T∗(D∆pιp =

∑
niT∗Si =

∑
ni(T ◦ Si). But ImT ⊂ A for

some A ∈ A and ImT ◦ Si ⊂ ImT .

Theorem 14.2.29 Let A be a collection of subsets of X whose interiors cover X. Then
H∗

(
SA
∗ (X), ∂

)
→ H∗

(
S∗(X), ∂

)
is an ismorphism.

Remark 14.2.30 The even stronger statement i∗ : SA
∗ (X) → S∗(X) is a chain homotopy

equivalence is true, but we will not show this.

Proof: The short exact sequence of chain complexes

0→ SA
∗ (X)

i- S∗(X)
q- S∗(X)/SA

∗ (X)→ 0
induces a long exact homology sequence. Showing that i∗ is an isomorphism on homology for
all p is equivalent to showing that Hp

(
S∗(X)/SA

∗ (X)
)
= 0 ∀p.

Let qc ∈ S∗(X)/SA
∗ (X) be a cycle representing an element of Hp

(
S∗(X)/SA

∗ (X)
)
, where

c ∈ Sp(X). That is, ∂qc = 0 or equivalently ∂c ∈ SA
p−1(X).

We wish to show that there exists d ∈ Sp+1(X) s.t. ∂qd = qc or equivalently c−∂d ∈ SA
p (X).

Since c is a finite sum of generators c =
∑
njTj, find N s.t. we can write sdN Tj =

∑
nijTij

where ∀i, j ∃A ∈ A (depending upon i and j) with ImTij ⊂ A. Let DX be the chain homotopy
DX : 1 ≃ sdN for this N . Show c+ ∂DXc ∈ SA

p (X) and then let d = −DXc.

∂DXc+DX∂c = sdN c− c so c+ ∂DXc = sdN c−DX∂c.
By definition of N , sdN c ∈ SA

p (X). Also ∂c ∈ SA
p−1(X) as noted earlier and so DX∂x ∈

SA
p (X). Thus the requred d exists. Hence ∂c represents the zero homology class inHp

(
S∗(X)/SA

∗ (X)
)
.

Let X, A be as in the preceding theorem, and let B be a subspace of X. Let A ∩ B
denote the covering of B obtained by intersecting the sets inA with B. Write SA

∗ (X,B) for
SA
∗ (X)/SA∩B

∗ (B).

Corollary 14.2.31 SA
∗ (X,B) to S∗(X,B) induces an isomorphism on homology.
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Proof:

0 - SA∩B
∗ (B) - SA

∗ (X) - SA
∗ (X,B) - 0

0 - S∗(B)
?

- S(
∗X)
?

- S∗(X,B)
?

- 0

induces

→HA
p+1(X,B) - HA∩B

p (B) - HA
p (X) - HA

p (X,B) - HA∩B
p−1 (B) - HA

p−1(X) →

→Hp+1(X,B)
?

- Hp(B)

∼=
?

- Hp(X)

∼=
?

- Hp(X,B)
?

- Hp−1(B)

∼=
?

- Hp−1(X)

∼=
?

→

Since the marked maps are isomorphisms from the theorem, the remaining vertical maps are
also, by the 5-lemma.

Theorem 14.2.32 (Excision)
Let A be a subspace of X and suppose that U is a subspace of A s.t. U ⊂ IntA. Then

j : (X r U,Ar U)→ (X,A) induces an isomorphism on singular homology.

Remark 14.2.33 Note that this is slightly stronger than axiom A5 which requires that U be
open in X.

Proof: Let A denote the collection {X − U,A} in 2X .
Int(X r U) = X r U . Since U ⊂ IntA, the interiors of X − U and A cover X. Hence

SA
∗ (X,A) → S∗(X,A) induces an isomorphism on homology. To conclude the proof we show

that S∗(X r U,Ar U) ∼= SA
∗ (X,A) as chain complexes.

Define φ : Sp(XrU)→ SA
p (X)/SA∩A

p (A) by T 7→ [T ], which makes sense since ImT ⊂ X−U
which belongs to A.

Every element of SA
p (X) can be written c =

∑
miSi +

∑
njTj where

ImSi ⊂ A ∀i and ImTj ⊂ X r U ∀j. Since
∑
miSi ∈ SA∩A

p (A), in SA
p (A)/S

A∩A
p (A), [c] =[∑

njTj
]
= φ(

∑
j Tj). Therefore φ is onto.

kerφ = Sp(X − U) ∩ SA∩A
p (A).

Notice that A∩A = {(X r U) ∩A,A ∩A} = {A− U,A} and since this colleciton includes
A itself, SA∩A

p (A) = Sp(A).
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In general Sp(A) ∩ Sp(B) = Sp(A ∩B) since a simplex has image in A and B if and only if
its image lies in A∩. Hence kerφ = Sp(X r U) ∩ SA∩A

p (A) = Sp

(
(X r U) ∩ A

)
= Sp(Ar U).

Thus Sp(X rU,ArU) ∼= Sp(X −U)/Sp(ArU)
φ∼= SA

p (X)/S+ pA∩A(A) = SA
p (X,A).

Let X1, X2 be subspaces of Y , let A = X1 ∩ X2 and let X = X1 ∪ X2. Notice that
X2 r A = X rX1. Call this U . Thus X2 r U = A; X r U = X1.

Theorem 14.2.34 (Mayer-Vietoris): Suppose that (X1, A)
j- (X,X2) induces an isomor-

phism on homology. (e.g. if U ⊂ IntX2. ) Then there is a long exact homology sequence

. . .→ Hn+1(X)
∆- Hn(A)→ Hn(X1)⊕Hn(X2)→ Hn(X)

∆- Hn−1(A)→ . . .

Remark 14.2.35 The hypothesis is satisfied of X1 and X2 are open since that U = U and
IntX2 = X2.

Proof: Follows by algebraic Mayer-Vietoris from:

- Hn+1(X1, A) - Hn(A) - Hn(X1) - Hn(X1, A)
∂- Hn−1(A) -

- Hn+1(X,X2)

∼=
?

- Hn(X2)
?

- Hn(X)
?

- Hn(X,X2)

∼=
? ∂- Hn−1(X2)

?
-

14.2.5 Exact Sequences for Triples

Suppose A ⊂ - B ⊂ - C.
0 → S∗(B)/S∗(A) → S∗X/S∗(A) → S∗(X)/S∗(B) → 0 is a short exact sequence of chain

complexes. Therefore we have a long exact sequence

. . .→ Hn+1(X,B)
∂- Hn(B,A)→ Hn(X,A)→ Hn(X,B)

∂- Hn−1(X,A)→ . . .

called the long exact homology sequence of the triple. From

0 - S∗(B) - S∗(X) - S∗(X)/S∗(B) - 0

0 - S∗(B)/S∗(A)
?

- S∗(X)/S∗(A)
?

- S) ∗ (X)/S∗(B)

wwwwwwwww
- 0
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we get

- Hn(X) - Hn(X,B)
∂- Hn−1(B) -

- Hn(A)
?

- Hn(X,B)

wwwwwwwww
∂̃- Hn−1(B,A)

j

?
-

so ∂̃ = j∂ which relates the boundary homomorphism of the triple to ones we have seen before.
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Chapter 15

Applications of Homology

First we need some calculations.

Theorem 15.0.36 Suppose n > 0. Then Hq(S
n) =

{
Z q = 0, n

0 otherwise.

Proof: By induction on n using Mayer-Vietoris.

Corollary 15.0.37 Sn is not homotopy equivalent (and in particular not homeomorphic) to Sm

for n 6= m.

Corollary 15.0.38 Rn is not homeomorphic to Rm for n 6= m.

Proof: If Rn were homotopy equivalent to Rm then Rn r {∗} would be homeomorphic to
Rm r {∗}. But Sn−1 ≃ Rn r {∗} and Sm−1 ≃ Rm r {∗}.

Theorem 15.0.39 6 ∃f : Dn → Sn−1 s.t.

Sn−1 - Dn

@
@
@
@
@

1Sn−1

R 	�
�
�
�
�

Sn−1

commutes.
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Corollary 15.0.40 (Brouwer Fixed Point Theorem) Let g : Dn → Dn. Then ∃x ∈ Dn s.t.
g(x) = x.

Proof: Same as proof in case n = 2.

Definition and Notation:
LetX be a topological space. Define the (unreduced) cone onX, denoted CX by CX := X×I

X×{0}
.

CX is contractible ∀X. (H : CX × I → CX by H
(
(x, s), t

)
:= (x, st). )

Define the (unreduced) suspension of X, denoted SX, by SX := X×I
X×{0}∪X×{1}

. SSn is

homeomorphic to Sn+1

C and S are functors from Topological Spaces to Topological Spaces. e.g. Given f : X → Y ,
∃ induced S(f) : SX → SY given by (x, t) 7→

(
f(x), t

)
satisfying S(1) = 1 and S(g ◦ f) =

S(g) ◦ S(f).
Theorem 15.0.41 (Suspension) ∃ a natural isomorphism H̃q(X) ∼= H̃q+1(SX) ∀q and ∀X.

Note: Natural means, ∀f : X → Y ,

H̃q(X)
∼=- H̃q+1(SX)

H̃q(X)

f∗

? ∼=- H̃q+1(SX)

Sf ∗

?

commutes.

Proof: Let C+X and C−X denote the upper and lower cones on X, within SX. Enlarge
them slightly to open sets. i.e. Replace them by

C+X :=
X × (1

2
− ǫ, 1)

X × {1} , C−X :=
X × (0, 1

2
+ ǫ)

X × {0} .

Then we have Mayer-Vietoris sequences for C+X, C−X, where C+X∪C−X = SX and C+X∩
C−X ≃ X

0 0

H̃q+1(C
+X)⊕ H̃q+1(C

−X)

wwwww
- H̃q+1(SX)

∆
∼=
- H̃q(X) - H̃q(C

+X)⊕ H̃q+1(C
−X)

wwwww

H̃q+1(C
+Y )⊕ H̃q+1(C

−Y )
?

- H̃q+1(SY )

(Sf)∗
?

∆
∼=
- H̃q(Y )

f∗
?

- H̃q(C
+Y )⊕ H̃q+1(C

−Y )
?

0

wwwww
0

wwwww
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Remark 15.0.42 Under the presence of the other axioms, Suspension⇔Mayer-Vietoris⇔Excision.

Theorem 15.0.43 Let f : Sn → Sn be the reflection (x0, . . . , xn) 7→ (−x0, . . . , xn). Then
r∗ : Z ∼= H̃n(S

n)→ H̃n(S
n) ∼= Z is multiplication by −1.

Proof: Notice that if we denote r : Sn → Sn by rn then rn = Srn−1. Therefore by naturality
of suspension it suffices to prove the theorem in the case n = 0 when it is trivial.

Corollary 15.0.44 Let : Sn → Sn be the antipodal map x 7→ −x. Then a∗ : H̃n(S
n)→ H̃n(S

n)
is multiplication by (−1)n+1.

Proof: : Write a as the composition of the n + 1 reflections rj : Sn → Sn given by
rj(x0, . . . , xn) := (x0, . . . ,−xj , . . . , xn).

Definition 15.0.45 Let f : Sn → Sn. Then f∗ : Z ∼= H̃n(S
n)→ H̃n(S

n) ∼= Z is multiplication
by k for some integer k. k is called the degree of f .

Theorem 15.0.46 Let f : Sn → Sn. Suppose deg f 6= (−1)n+1. Then f has a fixed point.

Proof: If f has no fixed point then the great circle joining f(x) to −x has a well defined
shorter and longer segment. Contruct a homotopy H : f ≃ a by moving f(x) towards −x along

the shorter seqment. Explicitly, H(x, t) = (1−t)f(x)+t(−x)
||(1−t)f(x)+t(−x)||

. (The only way the denominator

can be zero is if (1 − t)f(x) = tx which is doesn’t hold for t = 0 or 1 and would otherwise
require that f(x) = tx/(1 − t) which doesn’t hold since f(x) is never a multiple of x.) Hence
deg f = deg a = (−1)n+1, which is a contradiction.

Theorem 15.0.47 Let f : Sn → Sn. If deg f 6= 1, then f(x) = −x for some x.

Proof: Since deg f 6= 1, deg af 6= (−1)n+1, so af has a fixed point x. i.e. x = af(x) = −f(x).
Hence f(x) = −x.

Theorem 15.0.48 ∃ continuous nowhere vanishing “vector field” on Sn if and only if n is odd.
That is, if T (Sn) denotes the tangent bundle to Sn then ( ∃ continuous v : Sn → T (Sn) s.t.
v(x) 6= 0 ∀x ∈ Sn ) if and only if n is odd.
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Proof:
←− If n is odd, then v(x0, x1, . . . , x2n+1) := (−x1, x0, . . . ,−x2n+1, x2n is a nowhere vanishing
vector field on Sn.
−→ Suppose ∃ such a v. Define w : Sn → Sn by w(x) := v(x)/||v(x)}||. Then x ⊥ w(x) ∀x ∈
Sn. In particular, w(x) 6= x ∀x and w(x) 6= −x ∀x. Thus w has no fixed point and hence
degw = (−1)n+1. But since 6 ∃x s.t. w(x) = −x we also have degw = 1. Hence 1 = (−1)n+1,
so n is odd.

An alternate more direct argument (not using the two preceding theorems) is as follows:
To get the conclusion 1 = (−1)n+1 is suffices to show that both w ≃ 1Sn and w ≃ a hold.

Define F : Sn × I → Sn by F (x, t) := x cos(tπ) + w(x) sin(tπ). Then F0 = 1, F1/2 = w and
F1 = a so F provides a homotopy from 1 to a. Therefore by the homotopy axiom 1 = (−1)n+1.
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15.1 Jordan-Brouwer Separation Theorems

Definition 15.1.1 Suppose A ⊂ X. We say that A separates X if X rA is disconnected (i.e,
not path connected), or equivalently if H̃∗(X r A) 6= 0.

Terminology: If B is homeomorphic to Dk then B is called a k-cell.

Theorem 15.1.2 Let B ⊂ Sn be a k-cell. Then Sn rB is acyclic. (i.e. H̃(Sn rB) = 0 ∀ q.)
In particular, B does not separate Sn.

Remark 15.1.3 B ≃ ∗ and Sn r {∗} = Rn, but in general A ≃ B does not imply that
X r A ≃ X rB.

Proof: By induction on k.
k = 0 is trivial since then B = ∗ and Sn r {∗} = Rn.
Suppose that the theorem is true for (k − 1)-cells.
Let h : Ik → B be a homeomorphism.
Write B = B1 ∪ B2 where B1 := h(Ik−1 × [0, 1/2]) and B2 := h(Ik−1 × [1/2, 1]).
Let C = B1 ∩ B2; a (k − 1)-cell.
Let i : (Sn rB)→ Sn rB1, j : (Sn r B)→ (Sn rB2).
Suppose 0 6= α ∈ H̃p(S

n rB).

Lemma 15.1.4 Either i∗(α) 6= 0 or j∗(α) 6= 0.

Proof: Sn rB1 and Sn rB2 are open so they have a Mayer-Vietoris sequence.
(Sn rB1) ∩ (Sn rB2) = Sn r B (Sn rB1) ∪ (Sn r B2) = Sn r (B1 ∩ B2) = Sn r C.

H̃p+1(S
n r C)

∆ - H̃p(S
n rB) >

(i∗, j∗)- H̃p(S
n rB1)⊕ H̃p(S

n r B2)

0

(by hypothesis)
wwww

so either i∗(α) 6= 0 or j∗(α) 6= 0.

Proof of Theorem (cont.): By the lemma, continuing to subdivide we obtain a nested
decreasing sequence of closed intervals In s.t. if we let jm : (Sn r B) ⊂ - (Sn r Qm), where
Qm := h(Ik−1 × Im), then jm∗α 6= 0.

By the Cantor Intersection Theorem, ∩mIm = a single point {e}.
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Hp(S
n rB) - . . . - Hp(S

n rQm) - . . . - Hp

(
Sn r h(Ik−1 × {e})

)

0

(induction)
www

where we have used that E := h(Ik−1×{e}) is a (k−1)-cell. Since SnrQm is open and nested
and Sn r E = ∪∞

m=1(S
n rQm), H∗(S

n r E) = lim−→H∗(S
n rQm).

Therefore α 7→ 0 in H∗(S
nrE) implies that jm∗(α) = 0 in H∗(S

nrQm) for some m, which
is a contradiction. Hence 6 ∃ nonzero α ∈ Hp(S

n rB).

Theorem 15.1.5 Suppose h : Sk ⊂ - Sn. Then H̃i

(
Sn r h(Sk)

)
=

{
Z i = n− k − 1;

0 otherwise.

Proof: By induction on k.
If k = 0, H̃p

(
Sn r h(S0)

)
= H̃p

(
Sn r {2 points}

)
= H̃p

(
Rn r {point}

)
= H̃p(S

n−1). √
Suppose that the theorem is true for k − 1.
Let Ek

+, E
k
− be the upper and lower hemispheres of Sk. Notice that by compactness, h is a

homeomorphism onto its image, so h(Ek
+) and h(E

k
−) are k-cells.

Also Sn r h(Ek
+), S

n r h(Ek
−) are open so Mayer-Vietoris applies.(

Sn r h(Ek
+)
)
∪
(
Sn r h(Ek

−)
)
=
(
Sn r h(Ek

+ ∩ Ek
−)
)
=
(
Sn r h(Sk−1)

)
(
Sn r h(Ek

+)
)
∩
(
Sn r h(Ek

−)
)
=
(
Sn r h(Ek

+ ∪ Ek
−)
)
=
(
Sn r h(Sk)

)

0
‖

H̃p

(
Sn r h(Ek

+)
)
⊕ H̃p

(
Sn r h(Ek

−)
)
→ H̃p

(
Sn r h(Sk−1)

) ∆

∼=
- H̃p−1

(
Sn r h(Sk)

)

→ H̃p−1

(
Sn r h(Ek

+)
)
⊕ H̃p−1

(
Sn r h(Ek

−)
)

‖
0

Theorem 15.1.6 (Jordan Curve Theorem) Suppose n > 0. Let C be a subset of Sn which
is homeomorphic to Sn−1. Then Sn r C has precisely two path components and C is their
common boundary. (Furthermore, the components are open in Sn.)
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Proof: By the preceding theorem, H̃0(S
n r C) ∼= Z, so Sn r C has two path components.

Denote these components W1 and W2.
C is closed in Sn so SnrC is open. Hence by local path connectedness of Sn, its components

W1 and W2 are open. Thus W1 ⊂ W c
2 .

If x ∈ ∂W1 = W1rW1, then x /∈ W2 (since x ∈ W1 = W c
2 ) and x /∈ W1. So x ∈ (W1∪W2)

c =
C. Hence ∂W1 ⊂ C.

Conversely let x ∈ C.
Let U be an open neighbourhood of x. Show U ∩W1 6= ∅. Since U arbitrary, it will follow

that x is an accumulation point of W1 so that x ∈ W1. But x ∈ C so x /∈ W1, resulting in
x ∈ W1 rW1 = ∂W1.
To show U ∩W1 6= ∅:

U ∩ C is homeomorphic to an open subset of Sn−1 (since C ∼= Sn−1 by hypothesis) so it
contains the closure of an (n − 1)-sphere. Let C1 be this closure. Under the homeomorphism
C ∼= Sn−1, C1

∼= Nr[x] for some r and x. Thus C1 ⊂ C is an (n − 1)-cell. Let C2 = C r C1.
Then C2 is also an (n − 1)-cell (up to homeomorphism it is the closure of the complement of
Nr[x] in S

n−1) and C1∪C2 = C which is closed. By Theorem 15.1.2, C2 does not separate S
n so

∃ path α in SnrC2 joining p ∈ W1 to q ∈ W2. (Imα)∩(W1rW1) = α
(
α−1(W1)rα−1(W1)

)
. If

this is empty then α−1(W1) = α−1(W1). However the equality of these open and closed subsets
of I means that either α(W1) = ∅ or α−1(W1) = I. We know α−1(W1) 6= ∅ since 0 ∈ α−1(W1)
(since p = α(0) ∈ W1). And 1 /∈ α−1(W1) since q /∈ W1. Therefore (Imα) ∩ (W1 rW1) 6= ∅.
Thus ∃y ∈ (Imα) ∩ (W1 rW1) ⊂ ∂W1 ⊂ C = C1 ∪ C2. Since Imα ⊂ Sn r C2, y /∈ C2 so
y ∈ C1 ⊂ U . Hence y ∈ U ∩W1.

√
So ∂W1 = C. Similarly ∂W2 = C, as desired.

Corollary 15.1.7 (Jordan Curve Theorem - standard version): Supppose n > 1. Let C be
asubspace of Rn which is homeomorphic to Sn−1. Then Rn r C has precisely two components
(one bounded, one unbounded — known as the “inside of C” and “outside of C” respectively)
and C is their common boundary.

Proof: Include Rn into Sn, writing Rn = Sn = {P}. Then Sn r C is the union of two
componentsW1, W2 whose common boundary is C. One of the components, sayW1 contains P
so W1 r {P}, W2 are the components of Rn r C and their common boundary is C.

Theorem 15.1.8 (Invariance of Domain): Let V be open in Rn and let f : V → Rn be
continuous and injective. Then f(V ) is open in Rn and f : V → f(V ) is a homeomorphism.

Remark 15.1.9 Compare the inverse function theorem which asserts this under the stronger
hypothesis that f is continuously differentiable with non-singular Jacobian, but also asserts
differentiability of the inverse map.
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Proof:
Include Rn into Sn. Let U be an open subset of V . Let y ∈ f(U). We show that f(U)

contains an open neighbourhood of y.
Write y = f(x), Find ǫ s.t. Nǫ[x] ⊂ U . Set A := Nǫ[x] r Nǫ(x). So A is homeomorphic

to Sn−1. Since f
∣∣
Nǫ[x]

⊂ U is a homeomorphism (an injective map from a compact set to

a Hausdorff space), f(A) is homeomorphic to Sn−1. Therefore f(A) separates Sn into two
components W1 and W2 which are open in Sn.

Nǫ(x) is connected and disjoint from A, so f
(
Nǫ(x)

)
is connected and disjoint from f(A).

Thus f
(
Nǫ(x)

)
is contained entirely within either W1 or W2. Say f

(
Nǫ(x)

)
⊂ W1.

Sn r f(A)r f
(
Nǫ(x)

)
= Sn r f

(
A ∪Nǫ(x)

)
= Sn r f

(
Nǫ[x]

)

(which the later argument will show is equal to Sn rW c
2 = W2). Since f

(
Nǫ[x]

)
is an n-cell, it

does not disconnect Sn, i.e. Sn r f
(
Nǫ[x]

)
is connected. Because f

(
Nǫ[x]

)
⊂ W1 ⊂ W c

2 which
is equivalent to W2 ⊂ Sn r f

(
Nǫ[x]

)
, we get W2 = Sn r f

(
Nǫ[x]

)
(as remarked earlier), since

W2 is a path component of Sn. Hence f
(
Nǫ[x]

)
= W c

2 = W1. Thus f
(
Nǫ(x)

)
= W1. (i.e. If

z ∈ W1 r f
(
Nǫ(x)

)
then z ∈ Sn r f(A)r f

(
Nǫ(x)

)
= Sn r f

(
Nǫ[x]

)
= Sn rW c = W2, which

contradicts W1 ∩W2 = ∅.)
Therefore we have shown that ∃ an open set W1 s.t. y ∈ W1 ⊂ f(U) and thus f(U) is

open. Applying the above argument with U := V gives that f(V ) is open. It also shows that
f : V → f(V ) is an open map, so it is a homeomorphism.

157



Chapter 16

Homology of CW -complexes

Let X be a CW -complex.
If T : ∆n → X ∈ Sn(X) is a generator, then ImT is compact so ImT ⊂ X(p) for some p.

Therefore S∗(X) = ∪pS∗(X
(p)).

How does this tell us H∗(X) in terms of the H∗(X
(p))’s?

16.1 Direct Limits

Definition 16.1.1 A partially ordered set J is called a directed set if ∀i, j ∈ J ∃k s.t. i ≤ k
and j ≤ k.

Definition 16.1.2 Given a directed set J , a directed system of abelian groups indexed by J
consists of:

1. An abelian group Gj for each j ∈ J ;

2. For each pair i, j ∈ J a group homomorphism φj,i : Gi → Gj s.t. φj,j = 1Gj
and

φk,j ◦ φj,i = φk,i.

Examples

1. J = Z+; Gn =Mn(k) (n× n matrices over a field k )

φij :Mi(k)→Mj(k) by A 7→
(
A 0
0 0

)
.

2. J = {finite subcomplexes of a CW complex X, ordered by inclusion}
GY = Hp(Y ) (where Y is a finite subcomplex of X)
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3. X topological space; J = {open subsets of X ordered by inclusion}
GU = Hp(U).

4. J = Z+; Gn = Z; φj,i : Z→ Z by 1 7→ pj−i

Definition 16.1.3 The direct limit of the direct system {Gj}j∈J consists of an abelian group G
and homomorphisms φj : Gj → G s.t.

1.

Gi

φj,i - Gj

@
@
@
@
@

φi

R 	�
�
�
�
�

φj

G

commutes ∀i, j

2. G is univesal w.r.t. property (1). i.e., given H and homomorphisms ψj : Gj → H s.t.
ψi ◦ φj,i = ψj, ∃! θ : G→ H s.t. ∀i, j

Gi

φj,i - Gj

@
@
@
@
@

φi

R

A
A
A
A
A
A
A
A
A
A
A
A
A

ψi

U

	�
�
�
�
�

φj

��
�
�
�
�
�
�
�
�
�
�
�
�

ψj

G

H

θ

?

We write G = lim−→J
{Gj}.

Note: By the usual categorical argument, a direct system has at most one direct limit up to
isomorphism. As we shall see, every direct system of abelian groups has a direct limit.

Observe that if φj,i is an inclusion map ∀i, j then G = ∪j∈JGj is the direct limit of the
system.

Theorem 16.1.4 Every direct direct system of abelian groups has a direct limit.
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Proof: Let H = ⊕j∈JGj with αj : Gj → H the canonical inclusion.
Let G = H/∼ where αi(g) ∼ αj(g) ∀i, j and ∀g ∈ Gi. More precisely, G = H/H ′ where H ′

is the subgroup of H generated by {αi(g)− αjφj,i(g)}.
Let π : H → G be the quotient map.

Define φj to be the composite Gj
αj- H

φ- G.
Then ∀i, j and ∀g ∈ G, φjφj,i(g) = παjφj,i(g) = παi(g) = φi(g).
Also, given k and maps ψj : Gj → K s.t. ψi ◦ φj,i = ψj: The maps ψj induce a unique map

θ : H → K (by the universal property of direct sum). Furthermore, since ψi ◦ φj,i = ψj, θ
∣∣
H′ is

the trivial map so by the universal property of quotient

H - K

..
..
..
..
..
..
..

θ

�

G

π

?

Remark 16.1.5 The definitions make sense and this proof still works even if the poset J is not
a direct system. There is a more general notion called colimit when the poset J is not directed.

From now on we will omit the inclusion maps αj.

Notice: Any element of G has a representative of the form φk(g) for some g ∈ Gk.
Proof: Let X = (gj)j∈J represent an element of G. Since x has only finitely many nonzero
components, the definition of direct system implies that ∃k ∈ J s.t. j ≤ k ∀j s.t. gj 6= 0. Then
adding φk,j(gj) − gj to x for all j s.t. gj 6= 0 gives a new representative for x with only one
nonzero component. (i.e. for some k, x = φk(g) with g ∈ Gk.)

Lemma 16.1.6 If g ∈ Gk s.t. φ)k(g) = 0 then φm,k(g) = 0 for some m.

Proof:
Notation: For “homogeneous” elements of ⊕α∈JGα (i.e. elements with just 1 nonzero compo-
nent) write |h| = α to mean that h ∈ Gα, or more precisely that the only nonzero component
of h lies in Gα.

φk(g) = 0⇒ g ∈ H ′ ⇒

g =
n∑

t=1

φjt,itgt − gt where gt ∈ Git (16.1)
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Find m s.t. k ≤ m and ir ≤ m and jr ≤ m ∀r. Set g′ = φm,kg.
Adding g′ − g = φm.kg − g to equation 16.1 gives

g′ =
n∑

t+0

φjt,itgt − gt where g0 = g (16.2)

Note that for any α < m, collecting terms on RHS in Gα gives 0, since LHS is 0 in degree α.
Among S := {i0, . . . , in, j0, . . . , jn,m} find α which is minimal. (i.e. each other index

occuring is either greater or not comparable) Since jt it, α is one of the i’s so this means
J − t 6= α for any t.

For each t with |gt| = α, add gt − φm,|gt|gt to both sides of equation 16.2.
As noted above,

∑
{t||gt|=α} gt = 0 so

∑
{t||gt|=α} φm,|gt|gt is also 0 and so we are actually

adding 0 to the equation. However we can rewrite it using:

φjt,itgt − gt + gt − φm,|gt|gt = φjt,itgt − φm,|gt|gt ======
(|gt|=it)

φjt,itgt − φm,jtφjt,itgt = φm,jt g̃t where
g̃t = −φjt,itgt. Therefore we now have a new expression of the form g′ =

∑
φjt,itg)t − gt;

however the new2 set S is smaller than before since it no longer contains α (and no new index
was added).

Repeat this process until the set S consists of just {m}. Then no i’s are left in S (since
it < m ∀t) which means that there are no terms left in the sum. That is, Equation 16.1 reads
g′ = 0, as required.

Notice that from the construction: If J is totally ordered and ∃N s.t. φn,k is an isomorphism
∀k, n ≥ N (in which case we say the system stabilizes) then the direct limit is isomorphism to
the “stable” group GN .

Remark 16.1.7 Above can be dualized by turning the arrows around: That is, define
Inversely directed system = poset J s.t. ∀k, n ∈ J ∃j ∈ J s.t. j ≤ k, j ≤ n.
Define an inverse system of abelian groups to be a collection of abelian groups Gj and “com-

patible” group homomorphisms φk,j indexed by the inverse system. The inverse limit, lim←−J
Gj,

of the inverse system is defined as an abelian group which has the property that there exists a
“compatible” collection of homomorphisms φk : lim←−J

Gj → Gk and such that given any group H
with the same properties ∃! θ : H lim←−J

Gj making the diagrams commute. The construction of
a group satisfying this definition is given by lim←−J

Gj = {(xj) ∈
∏

j∈J Gj | φk,jxj = xk}.

Theorem 16.1.8 (“Homology commutes with direct limits”)
Let C = lim−→(Cj)∗. Then H(C) = lim−→J

H∗(Cj).

Remark 16.1.9 Even if lim−→J
Cj is just a union, {H∗(Cj)} may be a non-trivial direct system.

(Homology need not preserve monomorphisms.)
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Proof: Let ψj,i : (Ci)∗ → (Cj)∗ be the maps in the direct system lim−→J
Cj. Definition of maps

φj,i : H(Ci∗)→ H(Cj∗) is φj,i = (ψj,i)∗.

H(Ci∗)
φj,i = (ψj,i)∗ - H(Cj∗)

@
@
@
@
@

φi

R

A
A
A
A
A
A
A
A
A
A
A
A
A

(ψi)∗

U

	�
�
�
�
�

φj

��
�
�
�
�
�
�
�
�
�
�
�
�

(ψj)∗
lim−→
J

H(Cj)

H(C)

θ

?

Claim θ is onto:
Given [x] ∈ H(C), where x ∈ C, find a representative xk ∈ Ck∗ for x. (That is, x = ψkxk).
Since x represents a homology class, ∂x = 0. Hence ψk∂xk = ∂ψkxk = ∂x = 0. Replacing

xk by xm = φm,kxk for some m, get a new representative for x s.t. ∂xm = 0. Therefore xm
represents a homology class [xm] ∈ H(Cm∗) and

[xm]

@
@
@
@
@R

[x]

H(Cm∗) - lim−→
J

H(Cj)

@
@
@
@
@R 	�

�
�
�
�

θ

H(C)
shows ∈ Im θ.

Claim θ is 1− 1:
Let y ∈ limJ H(Cj) s.t. θ(y) = 0.
Find a representative [xk] ∈ H(Ck∗) for y, where xk ∈ Xk∗. (That is, y = φk(xk).)

[xk] - [y]

H(Ck∗) - lim−→
J

H(Cj)

@
@
@
@
@

ψk∗
R 	�

�
�
�
�

θ

H(C)
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Since θy = 0, [ψkxk] = 0 in H(C). That is, ∃v ∈ C s.t. ∂v = ψkxk.
May choose l s.t. v = ψl∗(wl).
Find m s.t. k, l ≤ m. Then replacing xk, wl by their images in (Cm)∗ we get that x− ∂wm

stabilizes to 0 so that ∃m′ ≥ m s.t. [xm′ ] = [∂wm′ ] = 0. Hence y = 0.

Theorem 16.1.10 H∗(X) = lim−→p
H∗(X

(p))

Proof: Every compact subset of X is contained in X(N) for some N , so by A8, S∗(X) =
∪pS(X

(p)) = lim−→p
S∗(X

(p)). Therefore H∗(X) = lim−→p
H∗(X

(p)).

Theorem 16.1.11 If X = ∪∞
n=1Vn where Vn open in X and Vn ⊂ Vn+1 then H∗(X) =

lim−→n
H∗(Vn).

Proof: Sufficient to show that S∗(X) ∪∞
n=1 S∗(Vn).

If T ∈ S∗(X) is a generator then ImT is compact.
{Vn} covers X so ImT ⊂ Vn for some n (since Vn’s nested).
Hence T ∈ S∗(Vn) for that n.
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16.2 Cellular Homology

Let X be a CW -complex.
By convention X(p) = ∅ if p < 0.
Let Dp(X) = Hp(X

(p), X(p−1)).
Define ∂D : Dp(X) → Dp−1(X) to be the connecting homorphism from the exact sequence

of the triple (X(p), X(p−1), X(p−2)). Therefore ∂D factors as

Hp(X
(p), X(p−1))

∂- Hp−1(X
(p−1))

j∗- Hp(X
(p−1), X(p−2)).

Hence ∂2D = 0 since

Hp(X
(p), X(p−1))

∂- Hp−1(X
(p−1))

j∗- Hp−1(X
(p−1), X(p−2))

∂- Hp−2(X
(p−2))

j∗- Hp−2(X
(p−2), X(p−3)

contains the consecutive maps Hp−1(X
(p−1))

j∗- Hp−1(X
(p−1), X(p−2))

∂ - Hp−2(X
(p−2))

which is 0 from the exact sequence of the pair (X(p−1), X(p−2)).
Therefore

(
D∗(X), ∂D

)
forms a chain complex called the cellular chain complex of X. Its

homology is called the cellular homology of X, written Hcell
∗ (X).

Lemma 16.2.1 Hq(X
(p), X(p−1)) ∼=

{
Fab{p− cells of X} q = p

0 otherwise

Proof: In each p-cell of X, select a point xj.
Notice that X(p−1) ∪ (epj − xj) ≃ X(p−1). That is, X(p−1) ∪ (epj − xj) is the subspace of X(p)

formed by attaching Dp to X(p−1) along ∂Dp. X(p−1)∪(epj−xj) is formed by attaching Dp−{∗}
to X(p−1) along ∂Dp. But using the homotopy equivalence Dp − {∗} ≃ ∂Dp can construct a
continuous deformation of X(p−1) ∪ (epj − xj) back to X(p−1). (i.e. gradually enlarge the hole.)

X(p−1) ≃ X(p−1) ∪
( ⋃

p−cells of X

(epj r {xj})
)

Note: If A ⊂
j- B ⊂ X where j is a homotopy equivalence then H∗(X,A)

∼=- H∗(X,B) using

- Hq(A) - Hq(X) - Hq(X,A) - Hq−1(A) - Hq−1(X) -

- Hq(B)

∼=
?

- Hq(X)

wwwwwwwww
- Hq(X,B)

?
- Hq−1(B)

∼=
?

- Hq−1(X)

wwwwwwwww
-
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and the 5-lemma. (This avoids using the homotopy axiom directly, which would require a
homotopy equivalence of pairs.)

Therefore

H∗(X
(p), X(p−1)) ∼= H∗

(
X(p), X(p−1) ∪

( ⋃

p−cells of X

(epj r {xj})
))

Notice that X(p−1) ∪
( ⋃

p−cells of X

(epj r xj)
)
= X(p) r (∪{xj}) which is open.

By excision

H∗

(
X(p), X(p−1) ∪

( ⋃

p−cells of X

(epj r {xj})
))

∼= H∗

(( ⋃

p−cells of X

(epj)
)
,
( ⋃

p−cells of X

(epj r {xj})
))

∼=
⊕

p−cells of X

H∗

(
epj , e

p
j r {xj}

)

where we have excised the closed set X(p−1) from the open set X(p) r
(
∪{xj}

)
.

Up to homeomorphism, epj =
◦

Dp and Hq

(
◦

Dp,
◦

Dp r{∗}
)

=

{
Z q = p

0 otherwise
since

Hq(
◦

Dp r{∗}) - Hq(
◦

Dp) - Hq(
◦

Dp,
◦

Dp r{∗})
∼=- Hq−1(

◦

Dp −{∗}) - Hq−1(
◦

Dp) -

0

ww
Hq−1(S

p−1)

w

Hence

Hq(X
(p), X(p−1)) =





⊕

p−cells of X

Z if q = p ;

0 otherwise

∼=
{
Fab{p−cells of X} if q = p ;

0 otherwise.

Lemma 16.2.2 Hq(X
(n)) =

{
Hq(X) q < n ;

0 q > n.

Proof:
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If q > n:

Hq+1(X
(n)) - Hq+1(X

(n), X(n−1)) - Hq(X
(n−1))

∼=- Hq(X
(n)) - Hq(X

(n), X(n−1))

0

ww
0

ww

So Hq(X
(n)) ∼= Hq(X

(n−1)) ∼= . . . ∼= Hq(X
(−1)) ∼= Hq(∅) ∼= 0.

Similarly if q < n:

Hq+1(X
(n+1), X(n)) - Hq+1(X

(n))
∼=- Hq(X

(n+1)) - Hq(X
(n+1), X(n))

0

ww
0

ww

So Hq(X
(n)) ∼= Hq(X

(n+1)) ∼= . . . ∼= Hq(X
(p)) ∀p.

Therefore Hq(X) ∼= lim−→Hq(X
(p)) = Hq(X

(n)).

Theorem 16.2.3 H
(
D∗(X)

)
= H∗(X).

Proof: From the triples (X(n+1), X(n), X(n−2)) and (X(n), X(n−1), X(n−2)) we have

Hn(X
(n−1), X(n−2)) =========== 0 0

Hn+1(X
(n+1), X(n))

∆ - Hn(X
(n), X(n−2))

?
- Hn(X

(n+1), X(n−2)) - Hn(X
(n+1), X(n))

wwwwwwwwww

�
�
�
�
�

i∗
�

Hn(X
(n)

∂

?

Hn(X
(n), X(n−1))

j∗

?

===========Dn

Hn−1(X
(n−2), X(n−1))

∂D

?

=========Dn−1

j∗i∗ is induced by the canonical map of pairs
(
X(n), ∅

)
→
(
X(n), X(n−1)

)
so j∗∆ = j∗i∗∂ =

∂D.
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The diagram shows that ker(∂D)n ∼= Hn(X
(n), X(n−1)).

Therefore Hn(D∗) = ker(∂D)n/ Im(∂D)n ∼= Hn(X
(n), X(n−1))/ Im∆ ∼= Hn(X

(n+1), X(n−2)).

Hn(X
(n−2)) - Hn(X

(n+1))
∼=- Hn(X

(n+1), X(n−2)) - Hn−1(X
(n−2))

0

ww
0

ww

Thus Hn(D∗) ∼= Hn(X
(n+1), X(n−2)) ∼= Hn(X

(n+1)) ∼= Hn(X)

16.2.1 Application: Calculation of H∗(RP n) (for 1 ≤ n ≤ ∞)

p : Sn → RP n p = quotient map (covering projection)
Want to find “compatible” CW -complex structures on Sn and RP n (i.e. such that p is a

“cellular” map).
Sn = e+0 ∪ e−0 ∪ e+1 ∪ e−1 ∪ . . . ∪ e+n ∪ e−n where e+j = {(x0, . . . , xj) ∈ Sj | xj > 0}.
Let ej = p(e+j ) ⊂ RP n.

p
∣∣
e+j

is a homeomorphism. In fact, ej = p(e+j ) = p(e−j ) is an evenly covered open set in RP n

with p−1(ej) = e+j ∪ e−j . So ej is an open j-cell and RP n = e0 ∪ e1 ∪ . . . ∪ en is a CW -complex
structure on RP n (and p is a cellular map).

We define RP∞ := ∪nRP n = e0 ∪ e1 ∪ . . . ∪ en ∪ . . . and topologize it by declaring that
A ⊂ RP n shall be closed if and only if A ∪ en is closed in en for all n. Thus by construction
RP∞ is also a CW -complex.

p induces a map of cellular chain complexes p∗ : D∗(S
n)→ D∗(RP n).

Dj(S
n) ∼= Fab{j-cells ofSn} ∼= Z⊕ Z Dj(RP n) ∼= Z

Z⊕ Z Z⊕ Z Z⊕ Z Z⊕ Z

0 - Dn(S
n)

wwwww
∂- Dn−1(S

n)

wwwww
∂- . . .

∂- Dj(S
n)

wwwww
∂- . . .

∂- D0(S
n)

wwwww
- 0

0
?

- Dn(RP
n)

p∗
? ∂- Dn−1(RP

n)

p∗
? ∂- . . .

∂- Dj(RP
n)

p∗
? ∂- . . .

∂- D0(RP
n)

p∗
?

- 0

Z

wwww
Z

wwww
Z

wwww
Z

wwww

To determine ∂ : Dj(RP n)→ Dj−1(RP n) first determine ∂ : Dj(S
n)→ Dj−1(S

n−1).
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Let a : Sn → Sn denote the antipodal map a(x) = x.
a respects the cellular structure of Sn: a(e+j ) = e−j a(e−j ) = e+j

so it induces a chain map a∗ : D∗(S
n)→ D∗(S

n).
We pick generators for D∗(S

n) ∼= Z⊕ Z as follows.
In the summand Z ⊂ D0(S

n) corresponding to e+0 pick one of the two generators and call it
f+
0 . Then a∗(f

+
0 ) will be a generator for the other Z summand in D0(S

n) so set f−
0 := a∗f

+
0 .

Lemma 16.2.4 f+
0 − f−

0 generates Im ∂.

Proof: a induces the identity on H0(S
n) (any self-map of a connected space does), so [f−

0 ] =
a∗[f

−
0 ] = a∗[f

+
0 ] = [f+

0 ]. Hence [f+
0 ]− [f−

0 ] is the zero homology class so f+
0 − f−

0 ∈ Im ∂.
Since D∗(S

n) is a complex whose homology gives H∗(S
n) and we know H0(S

n) ∼= Z, we
conclude that f+

0 − f−
0 generates Im ∂.

Pick a generator of the Z summand of D1(S
n) corresponding to e+1 and call it f+

1 . So
∂f+

1 = m(f+
0 −f−

0 ) for some m. Replacing f+
1 by −f+

1 if necessary, we may assume that m ≥ 0.
Let f−

1 = af+
1 . Then ∂f

−
1 = m(af+

0 − af−
0 ) = m(f−

0 − a2f+
0 ) = m(f−

0 − f+
0 ) = −m(f+

0 − f−
0 ).

Since ∂
(
D1(S

n)
)
is generated by ∂f+

1 and ∂f−
1 , the only way it can be generated by f+

0 − f−
0

is if m = 1.
∂f+

1 = f+
0 − f−

0 ∂f−
1 = −(f+

0 − f−
0 )

Therefore ker ∂1 : D1(S
n) → D0(S

n) is generated by f+
1 + f−

1 . But since H1(S
n) = 0,

ker ∂1 = Im ∂2.
Pick a generator f+

2 ∈ D2(S
n) corresponding to e+2 . Then ∂f

+
2 = m(f+

1 − f−
1 ) for some m,

and as above we may assume m ≥ 0. Let f−
2 = a∗f

+
2 . Then ∂f−

2 = m(f−
1 + f+

1 ) and so as
above we conclude that m = 1.

∂f+
2 = f+

1 + f−
1 ∂f−

2 = f+
1 + f−

1 Therefore ker ∂2 is generated by f+
2 − f−

2 . As above,
pick f+

3 and f−
3 s.t. f−

3 = a∗f
+
3 , ∂f

+
3 = f+

2 − f−
2 and ∂f−

2 = −(f+
2 − f−

2 ).
Continuing, get f+

j and f−
j for j = 0, . . . , n s.t. f−

j = a∗f
+
j and ∂f+

j = ∂f−
j = f+

j−1 − f−
j−1

when j is even, while ∂f+
j = f+

j−1 − f−
j−1 and ∂f−

j = −(f+
j−1 − f−

j−1) when j is odd.
For each j, fj := p∗(fj) = p∗(f

−
j ) ∈ Dj(RP n) since p∗a∗ = p∗.

Therefore ∂fj =

{
fj−1 + fj−1 = 2fj−1 j even;

fj−1 − fj−1 = 0 j odd.

D∗(RP n) - Z - . . .
2- Z

0- Z
2- Z

0- Z - 0

n even:

Hq(RP n) =





Z q = 0

Z/(2Z) q odd, q < n

0 q even or q > n

n odd:

Hq(RP n) =





Z q = 0, n

Z/(2Z) q odd, q < n

0 q even or q > n.
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That is, Hq(RP n) =





Z n (if n odd)
...

0 4

Z/(2Z) 3

0 2

Z/(2Z) 1

Z 0.

16.2.2 Complex Projective Space

Regard S2n+1 as the unit sphere of Cn+1.
An action S1×S2n+1 of S1 on 2n+1 is given by

(
λ, (z0, . . . , zn)

)
7→ (λz0, . . . , λzn). Note that

|λz0|2 + . . .+ |λzn|2 = λ|(|z0|2 + . . .+ |zn|2) = 1 · 1 = 1 so (λz0, . . . , λzn) ∈ S2n+1.
Define as the orbit space CP n := S2n+1/S1.

The inclusions Cn ⊂
i- Cn+1, (z0, . . . , zn−1) 7→ (z0, . . . , zn−1, 0) respects the S

1 action so i
induces CP n−1 ⊂ - CP n.

Proposition 16.2.5 CP n has a CW -structure: e0 ∪ e2 ∪ . . . ∪ e2n

Proof: Suppose by induction that we have given CP n−1 a CW -structure with one cell in each
even degree up to 2n− 2: CP n−1 = e0 ∪2 ∪ . . . ∪ e2n−1.

Let z = (z0, . . . , zn) represent a point in CP n. Then z lies in CP n−1 if and only if zn = 0.
By multiplying by a suitable λ ∈ S1 we may choose to new representative for z in which zn
is real and zn ≥ 0. Unless zn = 0, z will have a unique representativve of this form. Writing
zj = xj + xj + iyj (with yn = 0) we have z = (x0, y0, . . . , xn−1, yn−1, xn, 0) with xn ≥ 0.

Let E2n
+ = {(w0, . . . , w2n) ∈ S2n | w2n ≥ 0}. E2n

+ is a 2n-cell.

Define f 2n to be the composite E2n
+

⊂ - S2n ⊂ - S2n+1 quotient- CP n. (That is, (w0, . . . , w2n) 7→
[(w0 + iw1, w2 + iw3, . . . , w2n−2 + iw2n−1, w2n)].)

e2n = {w0, . . . , w2k ∈ S2k | w2n > 0}. By the above, the restriction of f2n to e2n is a bijection.
It is also an open map (by definition of quotient topology a set map is open if an donly if its
inverse image is open and the inverse image of f 2n(U) is ∪λ∈S1λ ·U) so it is a homeomorphism.
Therefore CP n = CP n−1 ∪ e2n = e0 ∪ e2 ∪ . . . ∪ e2n is a CW -complex.

(Note: By compactness, the 3rd condition is automatic when there are only finitely many
cells.)

Can define a CW -complex CP∞ by CP∞ := ∪nCpn = e0 ∪ e2 ∪ . . . ∪ e2n ∪ . . . topologized
by A ⊂ CP∞ is closed if and only if A ∩ e2n is closed in en for all n.
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Theorem 16.2.6 Hq(CP n) =

{
Z q even, q ≤ 2n

0 q odd, q > 2n.

Proof:

0 - D2n(CP
n) - D2n−1(CP

n) - D2n−1(CP
n) - . . . - D1(CP

n) - D0(CP
n) - 0

Z

ww
0

ww
Z

ww
0

ww
Z

ww

Every 2nd group is 0 so the boundary maps are all 0. Therefore H∗(CP n) is as stated.

Remark 16.2.7 Using the same ideas as above, one can define quaternionic projective space HP n

by HP n := S4n+3/S3 where we think of S3 as the unit sphere of the quaternions H and S4n+3

as the unit sphere in HP n+1 with quaternionic multiplication as the action. n this case we get
that HP n is a CW -complex of the form HP n = e0 ∪ e4 ∪ . . . e4n. We can also define HP∞ =

∪nHP n = e0 ∪ e4 ∪ . . . e4n . . .. As above we get Hq(HP n) =

{
Z q ≡ 0(4), q ≤ 4n;

0 q 6≡ 0(4), or q > 4n.

(Details left as an exercise.)
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Chapter 17

Cohomology

Definition 17.0.8 A cochain complex (C, d) of abelian groups consists of an abelian group Cp

for each integer p together with a morphism dp : Cp → Cp−1 for each p such that dp+1 ◦ dp = 0.
The maps dp are called coboundary operators or differentials.

Aside from the fact that we have chosen to number the groups differently, the concept of
cochain complex is identical to that of chain complex. (Given a cochain complex (C, d) we could
make it into a chain complex by renumbering the groups, letting Cp := C−p, and vice versa.)
So we can make all the same homological definitions and get the same homological theorems.
A summary follows:

ker dp+1 : Cp → Cp+1 is denoted Zp(C). Its elements are called cocycles.
Im dp : Cp−1 → Cp is denoted Bp(C). Its elements are called coboundaries.
Hp(C) := Zp(C)/Bp(C) called the pth cohomology group of C.
A cochain map f : C → D consists of a group homomorphism f p for each p s.t.

Cp dp+1
- Cp+1

Dp

f p

? dp+1
- Dp+1

f p+1

?

commutes.

Proposition 17.0.9
A cochain map f induces a homomorphism denoted f ∗ : H∗(C)→ H∗(D).

Theorem 17.0.10 Let 0 → P → Q → R →) be a short exact sequence of chain complexes.
Then there is an induced natural (long) exact cohomology sequence

. . .→ Hn(P )→ Hn(Q)→ Hn(R)
δ- Hn+1(P )→ Hn+1(Q)→ . . .
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Let (C, ∂) be a chain complex. Form a cochain complex (Q, δ) as follows.
Qp := Hom(Cp,Z).

Notation: for c ∈ Cp, f ∈ Qp = Hom(C,Z) write 〈f, c〉 for f(c).
Define δ : Qp → Qp+1 bu 〈δf, c〉 := (−1)p+1〈f, ∂c〉 where c ∈ Cp+1.
∂2 = 0 implies δ2 = 0.

Remark 17.0.11 Changing one or more boundary maps by minus signs has no affect on ker-
nels or images so it does not affect homology. The sign convention (−1)p+1 chosen above makes
the signs come out better in some of the later formulas. This is the convention used in Dold,
Milnor, Mac Lane, and Selick. An explanation of the intuition behind it can be found in Dold
(page 173) or Selick (page 30). Notice Dold’s convention on page 167 chosen so that when
n = 0, ∂f = 0 implies f is a chain map. There are also other sign conventions ((−1)p or
no sign at all) in the literature (e.g. Greenberg-Harper, Eilenberg-Steenrod, Munkres, Spanier,
Whitehead) but they lead to less aesthetic formulas in several places and/or diagrams which
only commute up to sign.

Let [c] and [f ] be homology and cohomology classes in C∗, Q∗ respectively. Then 〈[f ], [c]〉
has a well-defined meaning since if c′ is another representative for c then for some d, 〈f, c′−c〉 =
〈f, ∂d〉 = ±〈δf, d〉±〈0, d〉 = 0 and similarly if f−f ′ = δg for some g then 〈f−f ′, c〉 = 〈δg, c〉 =
±〈g, ∂c〉 = 0
〈 , 〉 is often called the Kronecker product or Kronecker pairing.
Any chain map φ : C → D induces, by duality, a cochain map φ∗ : Hom(D,Z)→ Hom(C,Z).

〈φp(g), c〉 := 〈g, φpc〉.
If C is a free chain complex (i.e. Cp is a free abelian group ∀p) then there is a formula, called

the “Universal Coefficient Theorem” giving H∗
(
Hom(C,Z)

)
in terms of H∗C(). An immediate

corollary of the Universal Coefficient Theorem is that if C, D are free chain complexes and
φ : C → D s.t. φ∗ : Hp(C) → Hp(D) is an isomorphism ∀p, then φ∗ : Hp

(
Hom(D,Z)

)
→

Hp
(
Hom(C,Z)

)
is an isomorphism ∀p. We will not get to the Universal Coefficient Theorem

in this course but we will give a direct proof of this corollary now.
From algebra recall:

Theorem 17.0.12 If R is a PID and M is a free R-module than any R-submodule of M is a
free R-module. In particular: letting R = Z: A subgroup of a free abelian group is a free abelian
group.

Proposition 17.0.13 Let C be a free chain complex s.t. Hq(C) = 0 ∀ q. Then Hq
(
Hom(C,Z)

)
=

0 ∀ q.
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Proof: Cp/ ker ∂p ∼= Im ∂p = Bp−1.

Since H∗(C) = 0, ker ∂p = Im ∂p+1 = Bp. That is, 0 → Bp → Cp
∂p- Bp−1 → 0

is a short exact sequence. Since Bp−1 ⊂ Cp−1 is a free abelian group, the sequence splits:

0 → Bp → Cp

∂p-�
s

Bp−1 → 0. i.e. ∃ a subgroup Up := Im s of Cp s.t. ∂Up
∼= Bp−1 and

Cp
∼= Bp ⊕ Up with ∂(b, u) = (∂u, 0).

C

∂ ∂ ∂ ∂

- (Bp+1

? ⊕Up+1) - (Bp

? ⊕ Up) - (Bp−1

? ⊕Up−1) -

so dualizing gives a similar picture in Hom(C,Z). That is, letting Up := Hom(Up,Z) and
V p := Hom(Bp,Z):

Hom(C,Z)
- (Up−1

?
⊕Vp−1) - (Up

? ⊕ V p) - (Up+1
?
⊕Vp+1) -

So H∗
(
Hom(C,Z

)
= 0.

Corollary 17.0.14

Let 0 → C
φ- D

α- E → 0 be a short exact sequence of chain complexes. Suppose
that E is a free chain complex. If φ∗ : Hq(C) → Hq(D) is an isomorphism ∀q then so is
φ∗ : H∗

(
Hom(D,Z

)
→ H∗

(
Hom(C,Z

)
= 0..

Proof: Since Ep is free ∀p, Dp
∼= Cp ⊕ Ep and thus

Hom(Dp,Z) ∼= Hom(Cp,Z)⊕ Hom(Ep,Z). Thus in particular,

0 → Hom(E,Z)
α∗

- Hom(D,Z)
φ∗

- Hom(C,Z) → 0 is again exact (a short exact
sequence of cochain complexes). To show that φ∗ is an isomorphism on cohomology, by the
long exact sequence it suffices to show that Hom(E,Z) ∼= 0 ∀q. But Hq(E) = 0 ∀q by the

long exact homology sequence of 0→ C
φ- D

α- E → 0 so the corollary follows from the
previous proposition.

Note: The hypothesis that E be free is really needed. 0 → Z
2- Z → Z/(2Z) → 0 is short

exact but

0 - Hom(Z/(2Z) - Hom(Z,Z) - Hom(Z,Z) - 0

0

ww
Z

ww
Z

ww

is not.

Theorem 17.0.15 (Algebraic Mapping Cylinder) Let C, D be free chain complexes and let

φ : C → D. Then ∃ an injective chain homotopy equivalence j : D
≃-�
k

D̃ (with chain
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homotopy inverse k) and an injection i : C → D̃ s.t. φ = k ◦ i, i ≃ j ◦ φ, and D̃/ Im j is free,
and D̃/ Im i is free.

Corollary 17.0.16 Let C, D be free chain complexes. Suppose φ∗C → D such that φq :
Hq(C) → Hq(D) is an isomorphism ∀q. Then φ∗ : Hq

(
Hom(D,Z)

)
→ Hq

(
Hom(C,Z)

)
is an

isomorphism ∀q.

Warning: To use this theorem to conclude that φp is an isomorphism for some particular p, we
must know that φq is an isomorphism ∀q, not just for q = p. However it will follow from the
Universal Coefficient Theorem that it is sufficient to know that φp and φp−1 are isomorphisms
to conclude that φp is an isomorphism.

Proof of Corollary (given Theorem.):

Previous lemma applied to 0 → D
j- D̃ → (D̃/ Im j) → 0 shows jq is an isomorphism

∀q, which implies that (φ ◦ j)∗ is an isomorphism, which implies that i∗ is an isomorphism.

(Exercise: f ≃ g ⇒ f ∗ ≃ g∗.) Applying the lemma to 0 → C
i- D̃ → (D̃/ Im i) → 0 shows

that iq is an isomorphism ∀q. Therefore φq is an isomorphism ∀q.

17.0.3 Digression: Mapping Cylinders

Let f : X → Y . If f is an injection then ∃ relative homology groups H∗(Y,X) which “measure
the difference” between H∗(X) and H∗(Y ) and this is often convenient. What if f is not an
injection? Then we can replace Y by a homotopy equivalent but “larger” space Ỹ , called the
mapping cylinder of f , such that

X
f - Y

@
@
@
@
@

i

R

Y

j ≃
?

homotopy commutes (j ◦ f ≃ i) with i an injection. The construction is as follows: Ỹ :=
(X × I) ∪f ′ Y where f ′ : X × {0} → Y by (a, 0) 7→ f(x).

X ⊂ - Ỹ by x 7→ (x, 1). Ỹ can be “homotoped” to Y by squashing the cylinder.

Proof of Theorem 17.0.15:
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17.1 Cohomology of Spaces

For a simplicial complex K we define the simplicial cochain complex of K by C∗(K) :=
Hom

(
C∗(K),Z

)
. Its cohomology is written H∗(K) and called the simplicial cohomology of K.

For a topological space X we define its singular cohomology by H∗(X) := H∗
(
S∗(X)

)
where

S∗X := Hom
(
S∗(X),Z

)
.

And for a CW -comples, its cellular cohomology is defined as H∗
(
D∗(X)

)
where D∗X :=

Hom
(
D∗(X),Z

)
.

From the isomorphisms on homology we get immediatelyH∗(X) = H∗(|K|) andH∗
(
D∗(X)

) ∼=
H∗(X).

Can similarly define relative and reduced cohomology groups. e.g.
H∗(X,A) := H∗

(
S∗(X,A)

)
where S∗(X,A) := Hom

(
S∗(X,A),Z

)

Definition 17.1.1 (Eilenberg-Steenrod) Let A be a class of topological pairs such that:

1) (X,A) in A ⇒ (X,X), (X, ∅), (A,A), (A, ∅), and (X × I, A× I) are in A;

2) (∗, ∅) is in A
A cohomology theoryon A consists of:

E1) an abelian group Hn(X,A) for each pair (X,A) in A and each integer n;

E2) a homomorphism f ∗ : Hn(Y,B)→ Hn(X,A) for each map of pairs

f : (X,A)→ (Y,B);

E3) a homomorphism δ : Hn(X,A)→ Hn+1(A) for each integer n

such that:

A1) 1∗ = 1;

A2) (gf)∗ = f ∗g∗;

A3) δ is natural. That is, given f : (X,A)→ (Y,B), the diagram

Hn(B)
(f | A)∗ - Hn(A)

Hn+1(Y,B)

δ

? f ∗
- Hn+1(X,A)

δ

?

commutes;
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A4) Exactness:

- Hn−1(A) - Hn(X,A) - Hn(X) - Hn(A) - Hn+1(X,A) -

is exact for every pair (X,A) in A

A5) Homotopy: f ≃ g ⇒ f ∗ = g∗.

A6) Excision: If (X,A) is in A and U is an open subset of X such that U ⊂
◦

A and (X−U,A−
U) is in A then the inclusion map (X r U,A r U) → (X,A) induces an isomorphism

Hn(X,A)
∼=- Hn(X r U,Ar U) for all n;

A7) Dimension: Hn(∗) =
{
Z if n = 0;

0 if n 6= 0.

Theorem 17.1.2 Singular cohomology is a cohomology theory.

Proof: For exactness, observe that because all the complexes are free, the fact that 0 →
S∗(A) → S∗(X) → S∗(X,A) → 0 is exact (and thus S∗(X) ∼= S∗(A) ⊕ S∗(X,A) ) implies
that 0 → S∗(X,A) → S∗(X) → S∗(A) → 0 is exact. Everything else is immediate from the
previous theorem and the corresponding statment for homology (and, of course, we get the
slightly stronger version of excision, not requiring that U be open, since singular homology
satisfies that).

The following theorems also follow easily from the homological counterparts:

Theorem 17.1.3 (Mayer-Vietoris): Suppose that (X1, A)
j - (X,X2) induces an isomor-

phism on cohomology. (e.g. if X1 and X2 are open. Then there is a long exact cohomology
sequence

. . .→ Hn−1(A)
∆- Hn(X)→ Hn(X1)⊕Hn(X2)→ Hn(A)

∆- Hn+1(X)→ . . .

Theorem 17.1.4

Hn(X) ∼=
{
H̃n(X) n > 0;

H̃0(X)⊕ Z n = 0.

Also H̃q(X) ∼= Hq(X, ∗)

Theorem 17.1.5 Hq(Sn) =

{
Z q = 0, n

0 q 6= 0, n
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Proof: Use celluar cohomology. Write S=e0 ∪ en.
D∗(S

n) 0 - Z - 0 - . . . - 0 - Z - 0
nth pos. 0th pos.

D∗(Sn) 0 - Z - 0 - . . . - 0 - Z - 0
0th pos. nth pos.

Theorem 17.1.6
n even:

Hq(RP n) =





Z q = 0

Z/(2Z) q even, q < n

0 q odd or q > n

n odd:

Hq(RP n) =





Z q = 0, n

Z/(2Z) q even, q < n

0 q odd or q > n.

Theorem 17.1.7

Hq(CP n) =

{
Z q even, q ≤ 2n

0 q odd, q > 2n.

Hq(HP n) =

{
Z q ≡ 0(4);

0 q 6≡ 0(4).

Proof: Write CP n = e0 ∪ e2 ∪ . . . e2n. Write HP n = e0 ∪ e4 ∪ . . . e4n.
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17.2 Cup Products

From the last section (and the Universal Coefficient Theorem), we know that H∗(X) is com-
pletely determined by H∗(X), so why bother with cohomology at all? In any potential appli-
caiton, why not just use homology instead? One answer is that there is a natural way to put a
multiplication called the “cup product” on H∗(X) so that H∗(X) becomes a ring. This might
be used, for example, in a case where the H∗(X) and H∗(Y ) to show that X 6≃ Y if it should
turn out that the multiplications on H∗(X and H∗(Y ) were different.

Let f ∈ Sp(X) and Sq(X). Define f ∪ g ∈ Sp+1(X) as follows.
For a generator T : ∆p+q → X of Sp+q(X) we define
〈f ∪ g, T 〉 := (−1)pq

〈
f, T ◦ l(ǫ0, . . . , ǫp)

〉〈
g, T ◦ l(ǫp, . . . , ǫp+q)

〉
∈ Z

where ∆p ⊂
l(ǫ0, . . . , ǫp)- ∆p+q ⊂

T - X.
(Since g has moved T ◦ l(ǫ0, . . . , ǫp), the sign convention is in keeping with the convention

of introducing a sign of (−1)pq whenever interchanging symbols of degree p and q.)
Notation: Let 1 ∈ S0(X) be the element defined by 〈1, T 〉 = 1 for all generators T ∈ S0(X).

(Thus as a function in Hom
(
S0(X),Z

) ∼= Z, 1 = ǫ = a generator.)
The following properties follow immediately from the definitions:

1. f ∪ (g + h) = (f ∪ g) + (f ∪ h)

2. (f + g) ∪ h = (f ∪ g) + (h ∪ g)

3. (f ∪ g) ∪ h = f ∪ (g ∪ h)

4. 1 ∪ g = g ∪ 1 = g

So ∪ turns S∗(X) into a ring (with unit). It is called a graded ring with Sp(X) being the p
gradation where:

Definition 17.2.1 A ring R is called a graded ring if ∃ subgroups Rp s.t. R = ⊕pRp and the
multiplication satisfies Rp ·Rq ⊂ Rp+q.

Lemma 17.2.2 Let f ∈ Sp(X) and g ∈ Sq(X). Then δ(f ∪ g) = δf ∪ g + (−1)pf ∪ δg.

Proof: Let T : ∆p+q+1 → X be a generator of Sp+q+1(X).
〈δ(f ∪ g), T 〉

= (−1)(p+1)q
〈
δf, T ◦ l(ǫ0, . . . , ǫp)

〉〈
g, T ◦ l(ǫp, . . . , ǫp+q+1)

〉

= (−1)(pq+q(−1)p+1
〈
f, ∂T ◦ l(ǫ0, . . . , ǫp)

〉〈
g, T ◦ l(ǫp, . . . , ǫp+q+1)

〉

= (−1)pq+p+q+1
∑p+1

i=0 (−1)i
〈
f, T ◦ l(ǫ0, . . . , ǫ̂i . . . , ǫp)

〉〈
g, T ◦ l(ǫp, . . . , ǫp+q+1)

〉
.
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Similarly
(−1)pf ∪ δg

= (−1)p(−1)pq+p+q+1
∑p+q+1

i=p (−1)i−p
〈
f, T ◦ l(ǫ0, . . . , ǫp)

〉〈
g, T ◦ l(ǫp, . . . , ǫ̂i . . . , ǫp+q+1)

〉

= (−1)pq+p+q+1
∑p+q+1

i=p (−1)i
〈
f, T ◦ l(ǫ0, . . . , ǫp)

〉〈
g, T ◦ l(ǫp, . . . , ǫ̂i . . . , ǫp+q+1)

〉
.

Notice that the term of 〈δf ∪ g, T 〉 corresponding to i = p + 1 equals that of (−1)p〈δ(f ∪
δg), T 〉 corresponding to i = p except that the signs are opposite so they cancel when we form
〈δf ∪ g, T 〉+ (−1)p〈δ(f ∪ δg), T 〉. On the other hand,
〈δ(f ∪ g), T 〉

= (−1)p+q+1〈f ∪ δg, ∂T 〉

= (−1)p+q+1

p+q+1∑

i=0

(−1)i
〈
f ∪ g, T ◦ l(ǫ0, . . . , ǫ̂i . . . , ǫp+q+1)

〉

= (−1)p+q+1(−1)pq∑p
i=0(−1)i〈

f, T ◦ l(ǫ0, . . . , ǫ̂i . . . , ǫp+1)
〉〈
g, T ◦ l(ǫp+1, . . . , ǫ̂i . . . , ǫp+q+1)

〉

= (−1)pq+p+q+1

p∑

i=0

(−1)i
〈
f, T ◦ l(ǫ0, . . . , ǫ̂i . . . , ǫp+1)

〉〈
g, T ◦ l(ǫp+1, . . . , ǫ̂i . . . , ǫp+q+1)

〉

+ (−1)pq+p+q+1

p+q+1∑

i=p+1

(−1)i
〈
f, T ◦ l(ǫ0, . . . , ǫ̂i . . . , ǫp+1)

〉〈
g, T ◦ l(ǫp+1, . . . , ǫ̂i . . . , ǫp+q+1)

〉

= 〈δf ∪ g + (−1)pf ∪ δg, T 〉.

Corollary 17.2.3 If [f ] ∈ Hp(X) and [g] ∈ Hq(X) then [f ] ∪ [g] is a well defined element
of Hp+q(X).

Proof:
If δf = 0 and δg = 0 then δ(f ∪ g) = 0 by the lemma.
Also, if f −f ′ = δh then δ(h∪g) = δh∪g+(−1)p+1h∪ δg = (f −f ′)∪g+0 = f ∪g−f ′∪g.

Hence [f ∪ g] = [f ′ ∪ g].
Similarly if [g] = [g′] = δh then [f ∪ g] = [f ∪ g′].

Proposition 17.2.4 δ1 = 0

Proof:
Let T : I = ∆1 → X be a generator of S1(X).
〈δ1, T 〉 = −〈1, ∂T 〉 = −〈1, T (1)− T (0)〉 = −(1− 1) = 0
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Corollary 17.2.5 H∗(X) is a graded ring with [1] as unit.

From now on we will write 1 for [1] ∈ H0(X).

Proposition 17.2.6 Let φ : X → Y . Then φ∗ : S∗(Y ) → S∗(X) and φ∗ : H∗(Y ) → H∗(X)
are ring homomorphisms.

Proof:
〈φ∗(f ∪ g), T 〉 = 〈(f ∪ g), φ∗T 〉 = (−1)pq

〈
f, φ∗T ◦ l(ǫ0 . . . , ǫp)

〉〈
g, φ∗T ◦ l(ǫp . . . , ǫp+q)

〉
=

(−1)pq
〈
φ∗f, T ◦ l(ǫ0 . . . , ǫp)

〉〈
φ∗g, T ◦ l(ǫp . . . , ǫp+q)

〉
〈φ∗(f) ∪ φ∗(g), T 〉

Definition 17.2.7 A graded ring R = ⊕pRp is called graded commutative if for a ∈ Rp,
b ∈ Rq, ab = (−1)pqba.

Theorem 17.2.8 H∗(X) is graded commutative.

Remark 17.2.9 It is note true that S∗(X) is grade commutative. Instead, ab − (−1)pqba =
δ(something).

Proof:
Define θ : S∗(X) → S∗(X) as follows. For a generator T : ∆p → X ∈ Sp(X) define

θ(T ) = (−1) 1
2
p(p+1)T ◦ l(ǫp, ǫp−1, . . . , ǫ1, ǫ0) ∈ Sp(X).

Write λp := (−1) 1
2
p(p+1).

Lemma 17.2.10 θ is a chain map.

(The factor λp was included so that this would be true.)
Proof: For a generator T ∈ Sp(X),
∂θ(T ) = λp∂T ◦ l(ǫp, . . . , ǫ0) = λp

∑p
i=0(−1)p−iT ◦ l(ǫp, . . . , ǫ̂i, . . . , ǫ0).

θ∂(T ) = θ (
∑p

i=0(−1)iT ◦ l(ǫ0, . . . , ǫ̂i, . . . , ǫp)) = λp−1

∑p
i=0(−1)iT ◦ l(ǫp, . . . , ǫ̂i, . . . , ǫ0).

However λp(−1)p−i = λp(−1)i−p = (−1) 1
2
p(p+1)+i−p = (−1) 1

2
(p2−p)+i = (−1)iλp.

Lemma 17.2.11 θ ≃ i

Proof: Acyclic models.
If you examine the proof that sd ≃ 1 you discover that the only properties of sd use are:

1. ∀f : X → Y , f ◦ sdX = sdY ◦f
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2. sd0 = 1 : S0(X)→ S0(X).

Since θ satisfies these also, the proof can be repeated, word for word, with θ replacing sd.
Proof of Theorem (cont.):

Since θ = id : H∗(X)→ H∗(X, θ∗ = id : H∗(X)→ H∗(X).
Let [f ] ∈ Hp(X), [g] ∈ Hq(X). For a generator T ∈ Sp+q(X):

〈θ∗(f ∪ g), T 〉 = 〈(f ∪ g), θT 〉
= λp+q〈(f ∪ g), θT ◦ l(ǫp+q, . . . , ǫ0)

〉

= λp+q(−1)pq
〈
f, T ◦ l(ǫp+q, . . . , ǫq)

〉〈
g, T ◦ l(ǫq, . . . , ǫ0)

〉

= λp+q(−1)pq
〈
f, λpθT ◦ l(ǫq, . . . , ǫp+q)

〉〈
g, λqθT ◦ l(ǫ0, . . . , ǫq)

〉

= λp+qλpλq(−1)pq
〈
θ∗f, θT ◦ l(ǫq, . . . , ǫp+q)

〉〈
θ∗g, T ◦ l(ǫ0, . . . , ǫq)

〉

= λp+qλpλq〈θ∗f ∪ θ∗g, T 〉

So θ∗(f ∪ g) = λp+qλpλqθ
∗g ∪ θ∗f .

Hence [f ∪ g] = [θ∗(f ∪ g)] = λp+qλpλq[θ
∗g] ∪ [θ∗f ] = λp+qλqλq[g] ∪ [f ].

However
λp+qλpλq = (−1) 1

2
(p+q)(p+q+1)+ 1

2
p(p+1)+ 1

2
q(q+1)

= (−1) 1
2
(p2+2pq+q2+p+q+p2+p+q2+q)

= (−1) 1
2
(2p2+2pq+2q2+2p+2q)

= (−1)p2+pq+q2+p+q

= (−1)pq(−1)p(p+1)(−1)q(q+1) = (−1)pq.

This is a “real” sign: does not depend upon the sign conventions.

17.2.1 Relative Cup Products

Let j : A ⊂ - X.

0→ S∗(A) ⊂
j∗- S∗(X)

c∗- S∗(X,A)→ 0.

0→ S∗(X,A) ⊂
c∗- S∗(X)

j∗- S∗(A)→ 0.
Let f ∈ Sp(X) and let g ∈ Sq(X,A).
j∗ is a ring homomorphism, so S∗(X,A) is an ideal in S∗(X). i.e. f ∪ c∗g ∈ Sp+q(X,A).
Write f ∪ g for f ∪ c∗g) ∈ Sp+q(X,A) ⊂ S∗(X). That is, c∗(f ∪ g) := f ∪ c∗g. (Explicitly,

observe that j∗(f ∪ c∗g) = jf ∪ j∗c∗g = j∗f ∪ 0 = 0 so f ∪ c∗g ∈ Im c∗ and therefore it defines
an element of Sp+q which we are writing as f ∪ g.) In computer science language, we are
“overloading” the symbol ∪, meaning that its interpretation depends upon its arguments.
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Similarly if f ∈ Sp(X,A) and ‘g ∈ Sq(X) we can define an element of Sp+q(X,A) denoted
again f ∪ g by c∗(f ∪ g) := f ∪ c∗g.

If δf = 0 and δg = 0 then c∗δ(f ∪ g) = δc∗(f ∪ g) = δ(f ∪ cg) = 0, and so δ(f ∪ g) = 0 since
c∗ is a monomorphism. Therefore [f ] ∪ [g] ∈ Hp+q(X,A).
Check that it this is well defined:

If f−f ′ = δh then c∗δ(h∪g) = δ(h∪c∗g) = δh∪c∗g = f ∪c∗g−f ′∪c∗g = c∗(f ∪g−f ′∪g).
Therefore δ(h ∪ g) = f ∪ g − f ′ ∪ g so [f ∪ g] = [f ′ ∪ g]. Also if g − g′ = δk then c∗δ(f ∪ k) =
δ(f ∪ c∗k) = ±

(
f ∪ c∗(g − g′)

)
= ±c∗(f ∪ g − f ∪ g′). Hence δ(f ∪ k) = ±(f ∪ g − f ∪ g′) so

[f ∪ g] = [f ∪ g′] in H ′(X,A). Therefore f ∪ g is well defined.

Lemma 17.2.12 Let φ : (X,A) → (Y,B) be a map of pairs. Let f ∈ Sp(Y ) and let g ∈
Sq(Y,B). Then φ∗(f ∪ g) = (φ∗f ∪ φ∗g) ∈ Sq(X,A).

0 - S∗(Y,B)
c∗B- S∗(Y ) - S∗(B) - 0

0 - S∗(X,A)

φ∗

? c∗A- S∗(X)

φ∗

?
- S∗(A)

φ∗

?
- 0

c∗Aφ
∗(f ∪ g) = φ∗c∗B(f ∪ g)

(definition of rel. cup)
= φ∗(f ∪ c∗Bg)

(φ∗ring homom.)
= φ∗f ∪ φ∗g

= φ∗f ∪ c∗Aφ∗g
(definition of rel. cup)

= c∗A(φ
∗f ∪ φ∗g)

Since c∗A is a monomorphism. φ∗(f ∪ g) = φ∗f ∪ φ∗g).

17.3 Cap Products

Given g ∈ Sq(X) and x ∈ Sp+q(X) define g ∩ x ∈ Sp(X) by 〈f, g ∩ x >:= 〈f ∪ g, x〉 for all
f ∈ Sp(X).
Note: This uniquely defines g ∩ x (if it defines it all; i.e. ∃ at most one element satisfying this
definition) since:

Given an abelian group G, write G∗ Hom(G,Z), If G is free abelian then the canonical map
G→ G∗∗ is a monomorphism.
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Proof: The corresponding statement for vector spaces is standard. Since G is free abelian, can
choose a basis and repeat the vector space proof, or:

Let V = G ⊗ Q. Since G is free abelian the map G → V given by g 7→ g ⊗ 1 is a

monomorphism so

G > - V

G∗∗
?

- V ∗∗
?

∨
shows G→ G∗∗ is a monomorphism.

Remark 17.3.1 Even in the vector space case, V → V ∗∗ is not an isomorphism unless V is
finite dimensional.

Explicitly, for a generator T : ∆p+q → X of Sp+q(X), the above “definition” for g ∩ x is
becomes g ∪ T = (−1)pq

〈
g, T ◦ l(ǫp, . . . , ǫp+q)

〉
T ◦ l(ǫ0, . . . , ǫp)

(This formula shows that there does indeed exist an element satisfying the above definition.)
Proof: ∀f ∈ Sp(X),

(−1)pq
〈
f,
〈
g, T ◦ l(ǫp, . . . , ǫp+q)

〉
, T ◦ l(ǫ0, . . . , ǫp)

〉

= (−1)pq
〈
f, T ◦ l(ǫ0, . . . , ǫp)

〉〈
g, T ◦ l(ǫp, . . . , ǫp+q)

〉
= 〈f ∪ g, T 〉

Lemma 17.3.2 If g ∈ Sq(X), x ∈ Sp+q(X) then ∂(g ∩ x) = δg ∩ x+ (−1)q(g ∩ ∂x).

Proof: Given f ∈ Sp−1(X),

〈f, g ∩ ∂x〉 = 〈f ∪ g, ∂x〉
= (−1)p+q〈δ(f ∪ g), x〉
= (−1)p+q〈δf ∪ g + (−1)p−1f ∪ δg), x〉
= (−1)p+q〈δf ∪ g〉+ (−1)q−1〈f ∪ δg), x〉
= (−1)p+q〈δf, g ∩ x〉+ (−1)q−1〈f, δg ∩ x〉
= (−1)p+q(−1)p〈f, ∂(g ∩ x)〉+ (−1)q−1〈f, δg ∩ x.〉

Therefore g∩∂x = (−1)−q∂(g∩x)〉+(−1)q−1δg∩x〉 or equivalently ∂(g∩x) = δg∩x+(−1)q(g∩
∂x).

It follows that if [g] ∈ Hq(X), [x] ∈ Hp+q(X), then [g] ∩ [x] is an element of Hp(X). (Proof
that it is well defined left as an exercise.)

There are also two versions of a relative cap product:

Let j : A ⊂ - X.

0→ S∗(A) ⊂
j∗- S∗(X)

c∗- S∗(X,A)→ 0.
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0→ S∗(X,A) ⊂
c∗- S∗(X)

j∗- S∗(A)→ 0.
Let g ∈ Sq(X) and let x ∈ Sp+q(X,A).
Define g ∩ x ∈ Sp(X,A) by 〈f, g ∩ x〉 = f ∪ g, x > for f ∈ Sp(X,A) (where f ∪ g is the

relative cup product).
Or: If g ∈ Sq(X,A), x ∈ Sp+q(X,A) can define g ∩ x ∈ Sp(X) by 〈f, g ∩ x〉 = f ∪ g, x > for
f ∈ Sp(X) (where again f ∪ g is the relative cup product).

In each case, whenever g and x represent homology classes, [g]∩[x] is a well defined homology
class of Hp(X,A) or Hp(X) respectively. (Exercise)

Lemma 17.3.3 Let φ : (X,A) → (Y,B). Let g ∈ Sq(Y,B) and let x ∈ Sp+q(X,A). Then
φ∗(φ

∗g ∩ x) = g ∩ φ∗x in Sp(Y ).

Proof: Let ∈ Sp(Y ). Then

〈f, φ∗(φ
∗g ∩ x)〉

= 〈φ∗f, φ∗g ∩ x〉
= 〈φ∗f ∪ φ∗g, x〉 (where ∪ is the relatively cup product)
(lemma 17.2.12)

= 〈φ∗(f ∪ g), x〉
= 〈f ∪ g, φ∗x〉
= 〈f, g ∩ φ∗x〉

so φ∗(φ
∗g ∩ x) = g ∩ φ∗x.

Lemma 17.3.4 Suppose Y ⊂ X. Suppose Y = Y1 ∪ Y2 and X = X1 ∪X2 where Yǫ and Xǫ are
open in X. Let A = X1 ∩ X2, B = Y1 ∩ Y2. Suppose also that Xǫ ∪ Yǫ = X for ǫ = 1, 2. Let
[v] ∈ Hn(X,B). Then the following diagram commutes ∀q ≤ n:

Hq−1(X,B)
∆∗

- Hq(X, Y )

Hq(A,A ∩ Y )

∼= (excision)

?

Hn−q+1(X)

∩[v]

? ∆∗ - Hn−q(A)

∩[v′]
?
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where:

[v] [v′]

Hn(X,B) - Hn(X, Y ) �
∼=

(excision)
Hn(A,A ∩ Y )

defines [v’] and ∆∗ and ∆∗ are the connectiing homomorphisms from the Mayer-Vietoris se-
quences

. . . Hn−q+1(X)
∆∗- Hn−q(A)→ Hn−q(X1)⊕Hn−q(X2)→ Hn−q(X)

∆∗- . . .

. . . Hq−1(X,B)
∆∗

- Hq(X, Y )→ Hq(X, Y1)⊕Hq(X, Y2)→ Hq(X,B)
∆∗- . . .

Proof: By definition of ∆∗ and ∆∗ they factor as show below:

∆∗

����������� PPPPPPPPPPPq
Hq−1(X,B) - Hq−1(Y1, B) �

∼=
(excision)

Hq−1(Y, Y1)
δ∗ - Hq(X, Y )

commutes? Hq(A,A ∩ Y )
?

Hn−q+1(X)

∩[v]

?
� Hn−q+1(X,X1) �

∼=
(excision)

Hn−q+1(X1, A)
∂∗ - Hn−q(A)

∩[v′]
?

PPPPPPPPPPP ∆∗ �����������1

where ∂∗ and ∂∗ are connecting maps from long exact sequences.
The open sets {X1 ∩ Y2, X2 ∩ Y1, A} cover X because:

(X1 ∩ Y2) ∪ (X2 ∩ Y1) ∪ A = (X1 ∩ Y2) ∪ (X2 ∩ Y1) ∪ (X1 ∩X2)
= (X1 ∩ Y2) ∪

(
X2 ∩ (Y1 ∪X1)

)

= (X1 ∩ Y2) ∪X2

= (X1 ∪X2) ∩ (Y2 ∪X2) = X ∩X = X

Therefore by corollary 14.2.31 (used in the proof of excision,) [v] has a representative u ∈ Sn(X)
where u = u1+u2+u

′ with u1 ∈ Sn(X1∩Y2), u2 ∈ Sn(X2∩Y1), u′ ∈ Sn(A), and ∂u ∈ Sn−1(B).
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That is, by corollary 14.2.31, SA
∗ (X,B)→ S∗(X,B) induces an isomorphism on homology,

where A = {X1∩Y2, X2∩Y1, A}. Therefore ∃ a representative ũ of [v] lying in SA
n (X,B) which

means that if we take a preimage u of ũ back in SA
n (X) then u = u1 + u2 + u′ as above with

∂y ∈ Sn−1(B).
Notice that since u1, u2 ∈ Sn(Y ), then their images in Sn(X, Y ) vanish so that the image

of [v] under Hn(X,B) → Hn(X, Y ) is represented by the reduction of u′ mod Sn(Y ). Hence
[v′] = [u′] mod Sn(Y ).

Left-bottom image of [f ] ∈ Hq−1(X,B) is

∆∗(f ∩ u) = ∆∗(f ∩ u1] + ∆∗(f ∩ u2] + ∆∗(f ∩ u′].
However U2 ∈ Sn(X2 ∪ Y1) ⊂ Sn(X2) and u

′ ∈ Sn(A) ⊂ Sn(X2).
Therefore f ∩ u2 ∈ Sn−q+1(X2) and f ∪ u′ ∈ Sn−q+1(X2). (More precisely, if j2 : X2

⊂ - X
then j2∗(j

∗
2f ∩ u2) = f ∩ j2∗u2 = f ∩ u2, identifying u2 with its image under the monomor-

phism j2∗. So f ∩ u2 ∈ Im j2∗. )
Hence f ∩ u2 and f ∩ u′ die under the map Sn−1+1(X) → Sn−q+1(X,X2), (which is part

of ∆∗) and thus ∆∗[f ∩ u] = ∆∗[f ∩ u1].
Notice that ∆∗[f ∩ u1] = ∂[f ∩ u1] because as above f ∩ u1 ∈ S∗(X1) and so its reduction

mod S∗(A) gives the image under the excision isomorphism and thus it serves as a suitable
pre-image of the reduction to be used when computing the connecting homomorphism ∂.

Finally, ∂[f ∩ u1] = [∂f ∩ u1] + (−1)q−1[f ∩ ∂u1] = (−1)q−1[f ∩ ∂u1], since f is a cocycle.
To summarize, the left-bottom image of [f ] is (−1)q−1[f ∩ ∂u1]
To compute the other way around the figure:
The image of [f ] under Hq−1(X,B) → Hq−1(Y2, B) is represented by the restriction of

f to Sq−1(Y2). The image under the excision isomorphism is represented by a cocycle f ′ ∈
Sq−1(Y, Y1) whose restriction to Y2 is homologous to f

∣∣
Sq−1(Y2)

within Sq−1(Y2, B). That is,

∃ ∈ Sq−2(Y2, B) s.t. f ′
∣∣
Sq−1

(Y2) = f
∣∣
Sq−1

(Y2) + δg.

We modify f ′ so as to eliminate δg as follows:
g ∈ Sq−2(Y2, B) is defined on Sq−2(Y2). Extend it to a g′ defined on Sq−2(Y2) by defining

it to be zero on all generators of Sq−2(Y ) lying outside Sq−2(Y2). (We are using, in effect,
that Sq−2(Y2) ⊂ - Sq−2(Y ) splits.) Let f ′′ = f ′ − δg′ ∈ Sq−1(Y ). Then f ′′ is still a cocycle,
[f ′′] = [f ′] and f ′′

∣∣
Sq−1

(Y2) = f
∣∣
Sq−1

(Y2). Extend f ′′ to an element f̃ ∈ Sq−1(X) (for example,

by setting it to be zero on generators outside Sq−1(Y ). Note: f̃ need no longer be a cocycle.) f̃
is thus a pre-image of f ′′ under the surjection Sq−1(X, Y1) -- Sq−1(Y, Y2) and so is a suitable
element for computing δ∗[f ′′]. That is δ∗[f ′′] = [δf̃ ]. (It needn’t be the 0 homology class because
f̃ /∈ Sq(X, Y ): it isn’t zero on S∗(Y ). ) So ∆∗[f ] = [δf̃ ].

Thus the top-right image of [f ] is [δf̃ ] ∩ [v′] = [δf̃ ∩ u′] (where, more precisely, we should
write the restriction of δf̃ to S∗(A) rather than δf̃ . )
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Since u′ ∈ S∗(A), f̃ ∩ u′ ∈ S∗(A), so [∂(f̃ ∩ u′)] = 0 in Sn−q(A).
∂(f̃ ∩ u′) = δf̃ ∩ u′ + (−1)q−1f̃ ∩ ∂u′ so [∂(f̃ ∩ u′)] = −(−1)q−1[f̃ ∩ ∂u′].
Therefore it remains to show that [f̃ ∩ ∂u′] = −[f ∩ ∂u1].
However f̃ ∩ ∂u′ = f̃ ∩ ∂u− f̃ ∩ ∂u1 − f̃ ∩ ∂u2.
∂u ∈ Sn−1(B) ⊂ Sn−1(Y1) and u2 ∈ Sn(X2 ∩ Y1) ⊂ Sn−1(Y1) and so ∂u1 ∈ Sn−1(Y2).
Similarly ∂U1 ∈ Sn−1(Y2).
But f̃

∣∣
S∗(Y )

= f ′′
∣∣
S∗(Y )

and f̃
∣∣
S∗(Y2)

= f ′′
∣∣
S∗(Y2)

= f
∣∣
S∗(Y2)

. Hence f̃ ∩ ∂u = f ′′ ∩ ∂u,
f̃ ∩ ∂u2 = f ′′ ∩ ∂u2, f̃ ∩ ∂u1 = f ′′ ∩ ∂u2.

The first two terms are zero, since f ′′
∣∣
Y1

= 0. Thus [f̃ ∩ ∂u′] = −[f ∩ ∂u1], as desired.
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Chapter 18

Homology and Cohomology with
Coefficients

18.1 Tensor Product

Let R be a commutative ring and let M and N be R-modules.
The tensor product M ⊗R N is the R-module with the universal property

M ×N R bilinear - X

@
@
@
@
@R ..

..
..
..
..
..
..

∃!
�

M ⊗R N

Explicity, M ⊗R N = Fab(M ×N)/∼ where
(m,n1 + n2) ∼ (m,n1) + (m,n2)
(m1 +m2, n) ∼ (m1, n) + (m2, n)
(mr, n) ∼ (m, rn)
with the R-modules structure f(m,n) := (rm, n) = (m, rn),
[(m,n)] in M ⊗R N is written m⊗ n.
Thus elements of M ⊗R N are of the form

∑
i=1k mi ⊗ ni.

188



18.2 (Co)Homology with Coefficients

Let C be a chain complex and let G be an abelian group. Define a chain complex denoted C⊗G
by C×G)p := Cp⊗G with boundary operator defined to be d×1G : Cp⊗G→ Cp−1⊗G, where
d is the boundary operator on C. Similarly if C is a cochain complex, can define a cochain
complex C ⊗G by C ⊗G)p := Cp ⊗G with boundary operator d⊗ 1G.

There is a version of the Universal Coefficient Theorem which gives the homology (resp.
cohomology) of C ⊗G in terms of the homology (resp. cohomology) of C whenever C is either
free abelian or G is free abelian. However we will now give a direct proof that if C, D are
free chain complexes and φ : C → D s.t. φ∗ : H∗(C) → H∗(D) is an isomorphism then
φ∗ ⊗G : H∗(C ⊗G)→ H∗(D ⊗G) is an isomorphism.

Proposition 18.2.1 Let C be a free chain complex s.t. Hq(C) = 0 ∀q. Then Hq(C⊗G) = 0 ∀q.

Proof: As in the proof that Hq(HomC,Z) = 0, we can describe C as follows:

C

∂ ∂ ∂ ∂

- (Bp+1

? ⊕Up+1) - (Bp

? ⊕ Up) - (Bp−1

? ⊕Up−1) -

where Cp
∼= Bp ⊕ Up with ∂p : Up

∼= Bp−1.
Therefore

C ⊗G
∂ ⊗ 1G ∂ ⊗ 1G

- (Bp+1 ⊗G
? ⊕Up+1 ⊗G) - (Bp ⊗G

? ⊕Up ⊗G) - (Bp−1 ⊗G
? ⊕Up−1 ⊗G) -

so Hp(C) = 0 ∀p.

Proposition 18.2.2 Let 0→ C
φ- D → E →) be a short exact sequence of chain complexes

s.t. E is a free chain complex. If φ∗ : Hq(C)
∼=- Hq(D) ∀q then φ∗ ⊗ G : Hq(C ⊗ G) →

Hq(D ⊗G) is an isomorphism ∀q.

Proof: Since Ep is free ∀ p, Dp
∼= Cp ⊕ Ep and thus Dp ⊗G ∼= Cp ⊗G⊕ Ep ⊗G.

Hence 0 → C ⊗ G
φ⊗G- D ⊗ G - E ⊗ G → 0 is again a short exact sequence so

Hq(E) = 0 ∀q ⇒ Hq(E ⊗G) = 0∀q ⇒ φq ⊗G is an isomorphism ∀q.

Without the freeness condition, 0 → Z
2- Z → Z/(2Z) → 0 is exact but tensoring with

G = Z/(2Z) gives 0→ Z/(2/Z)
2- Z/(2/ZZ)→ Z/(2Z)→ 0 which is not exact.
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Theorem 18.2.3 Let C, D be free chain complexes such that φ∗ is an isomorphism on (co)homology
∀q. Then φ∗ ⊗G is an isomorphism on (co)homology ∀ q.

Proof: The homology case follows from the preceding propositions, given the earlier theorem
on existence of algebraic mapping cones. This also proves the cohomology statement, since a
cochain complex is merely a chain complex with the groups renumbered.

For a simplicial complex K, we define the simplicial homology of K with coefficients in G,
denoted H∗(K;G) by H∗(K;G) := H∗

(
C∗(K) ⊗ G

)
. Similarly if X is a topological space, its

singular homology with coefficients in G is defined by H∗(X;G) := H∗

(
S∗(X) ⊗ G

)
and if X

is a CW -comples, its cellular homology with coefficients in G is H∗

(
D∗(X)⊗G

)
. Can likewise

define H∗(K;G) := H∗

(
C∗(K)⊗G

)
. H∗(X;G) := H∗

(
S∗(X)⊗G

)
and cellular cohomology of

a CW -complex X as H∗
(
S∗(X)⊗G

)
. We can also define relative and reduced homology and

cohomology groups with coefficients in G.
From the preceding theorem we get H∗(K;G) := H∗

(
|K|;G

)
and H∗(K;G) := H∗

(
|K|;G

)

and H∗(D(X);G) := H∗(X;G and H∗(D(X);G) := H∗(X;G. It is also immediate that
H∗(X;G) and H∗(X;G) satisfy all the axioms for a homology (resp. cohomology) theory
except for A7 which has to be replaced by

Hp(∗;G) =
{
0 p 6= 0;

G p = 0;
Hp(∗;G) =

{
0; p 6= 0

G p = 0.

Similarly Mayer-Vietoris works, Also H̃∗(X;G) satisfies

Hn(X;G) =

{
H̃(X;G) n > 0;

H0(G)⊕G n = 0;

and H̃n(X;G) ∼= Hn

(
(X, ∗);G

)
. The cohomology versions work also.

If G→ H is a homomorphism of abelian groups, then it induces a (co)chain map C ⊗G→
C ⊗H for any (co)chain complex C and thus induces H∗(X;G)→ H∗(X;H) and H∗(X;G)→
H∗(X;H) (notice that the direction of latter arrow does not get reversed).

If G happens to have an R-module structure for some commutative ring R (with 1) then for
any abelian group A, A⊗G becomes an R-module by defining on generators r(a⊗g) := a⊗ rg.
In this case, for c ∈ Cp¡ g ∈ G:

r
(
∂(c⊗g)

)
= r(∂c⊗g) = ∂c⊗rg = ∂(c⊗rg) = ∂

(
r(c⊗g)

)
. That is, the boundary operator

on C ⊗G becomes an R-module homomorphism, so ker ∂ and Im ∂ are R-modules and so their
quotient, H∗(C ⊗G) inherits an R-module structure.

Suppose now that G is a ring R (commutative, with 1) and C is a free chain complex.
The Kronecker product induces a bilinear pairing between C ⊗ R and Hom(C,Z) ⊗ R with
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values in R, which is again called the Kronecker product. Explicitly, given generators f ⊗ r
of Hom(C,Z)⊗R and c⊗ r′ of C ⊗R, 〈f ⊗ r, c⊗ r′〉 := rr〈f, c〉, where the multiplication takes
place in R after taking the image of the integer-valued Kronecker prduct 〈f, c〉 under the unique
ring homomorphism Z → R (sending 1 ∈ Z to 1 ∈ R). This results in a bilinear R-module
pairing (also called the Kronecker product) between the homology and cohomology groups as
well.

We can also define cup products on cohomology with coefficients in R. Namely, for gen-
erators f ⊗ f ∈ Sp(X;R) and g ⊗ f ′ ∈ Sq(X;R) define (f ⊗ f) ∪ (g ⊗ r′) ∈ Sp+q(X;R) by
(f ⊗ f)∪ (g⊗ r′) := (f ∪ g)⊗ rr;. Thus S∗(X;R) and H∗(X;R) become graded rings (with 1)
and H∗(X;R) is graded commutative. If A → R is a ring homomorphism then it follows im-
mediately from the definitions that S∗(X;A)→ S∗(X;R) and H∗(X;A)→ H∗(X;R) are ring
homomorphisms. (Note the special case were A = Z→ R given by 1 7→ 1).

Given generators ⊗r ∈ Sq(X;R) and x⊗ r′ ∈ Sp+q(X), can define cap product by (g⊗ r)∩
(x⊗ r′) := (g ∩ x)⊗ rr. Similarly one can define the relative cup and cap products.

Remark 18.2.4 In practice, there are sometimes advantages to having a field as coefficients.
Thus, besides Z, the most common coefficients are Z/(pZ) and Q. Sometimes R = Z(p), R, or
C are also useful.

Theorem 18.2.5

Hq(S
n;R) =

{
R q = 0, n;

0 q 6= 0, n;
Hq(Sn;R) =

{
R q = 0, n;

0 q 6= 0, n;

Hq(CP
n;R) =

{
R q even, q ≤ 2n;

0 q odd or q > 2n;
Hq(CP n;R) =

{
R q even, q ≤ 2n;

0 q odd or q > 2n;

Proof: Use cellular (co)homology. e.g.
D∗(CP n ⊗R) R→ 0→ R→ 0→ R→ . . .→ R→ 0→ R→ 0

Theorem 18.2.6

Hq(RP n;Z/(2Z)) =

{
Z/(2Z) q ≤ n;

0 q > n;

Hq(RP n;Z/(2Z)) =

{
Z/(2Z) q ≤ n;

0 q > n;

Hq(RP n;Q) = Hq(RP n;Q) =

{
Q q = n when n is even, or q = 0;

0 otherwise.
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Proof: Use cellular (co)homology.

D∗(RP n) Z→ Z→ . . .
0- Z

2- Z
0- Z→ 0

Therefore
D∗(RP n ⊗ Z/(2Z))

Z/(2Z)→ Z/(2Z)→ . . .
0- Z/(2Z)

2=0- Z/(2Z)
0- Z/(2Z)→ 0

Thus Hq(RP n;Z/(2Z)) =

{
Z/(2Z) q ≤ n;

0 q > n,

D∗(RP n ⊗Q) Q→ Q→ . . .
0- Q

2

∼=
- Q

0- Q→ 0

Since 2 : Q→ Q is an isomorphism (with mult. by 1/2 as inverse), H∗(RP n;Q) is as stated.
Similarly one gets the cohomology results.

Remark 18.2.7 If R is a field, then it follows from the Universal Coefficient Theorem that
H∗(X;R) ∼= Hom

R−mods
(
H∗(X,R), R

)
.
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Chapter 19

Orientation for Manifolds

Recall

Definition 19.0.8 A (paracompact) Hausdorff space M is called an n-dimensional manifold
of for each x ∈M ∃ open neighbourhood U of x s.t. U is homeomorphic to Rn.

U is called an open coordinate neighbourhood. (If the neighbourhoods are diffeomorphic
to Rn then M is a called a differentiable manifold. Similarly can define C∞ manifolds, etc.)

Let M denote an n-dimensional manifold. Given open coordinate neighbourhood V of x,
can choose smaller open neighbourhood U of x s.t. the homeomorphism of V to Rn restricts
to a homeomorphism of U with an open ball of radius 1. Thus U is also homeomorphic to Rn.
From now on whenever we pick a coordinate neighbourhood U of x we shall always assume
that we have chosen one which is contained in a larger coordinate neighbourhood V as above
so that U ⊂ V and V r U ≃ Sn−1.

Proposition 19.0.9 ∀x ∈M ,

Hq(M,M r {x}) ∼=
{
Z q = n

0; q 6= n.
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Proof: Let U be an open coordinate neighbourhood of x. ThenM r U =MrU ⊂M−{x} =
Int(M r {x}) so

Hq(M,M r {x})
(excision)∼= Hq(U,U r {x})
∼= Hq(R,Rr {x})
(long exact sequence)∼= H̃q−1(Rr {x})
∼= H̃q−1(S

n−1)

∼=
{
Z q = n

0 q 6= n

Definition 19.0.10 A choice of one of the two generators for Hn(M,M r {x}) ∼= Z is called
a local orientation for M and x.

Notation: Given x ∈ A ⊂ K ⊂ M , let jAx : (M,M r A)→ (M,M −r{x}) denote the map of
pairs induced by inclusions. If A = K =M , just write jx for jAx .

Lemma 19.0.11 1. Given open neighbourhood W of x, ∃ open neighbourhood U of x s.t.
U ⊂ W and jUy ∗

: H∗(M,M r U)→ H∗(M,M r {y}) is an isomorphism ∀y ∈ U .
2. Let ζ ∈ Hn(M,M rW ). Let U be any open neighbourhood of x satisfying part (1) (i.e.

jUy ∗
iso. ∀y ∈ U .) If α ∈ Hn(M,M r U) s.t. jUy ∗

(α) = jWy ∗
(ζ) for some y ∈ U then

jUy ∗
(α) = jWy ∗

(ζ) ∀y ∈ U .
Proof: Within W find a pair U ⊂ V of open coordinate neighbourhoods of x (as outlined
earlier) s.t. V r U ≃ Sn−1. Then ∀y ∈ U

ζ

	�
�
�
�
�

α

H∗(M,M rW )

	�
�
�
�
�

j∗
@
@
@
@
@

jWy ∗

R

H∗(M,M r U)
jUy ∗ - H∗(M,M r {y})

H∗(V, V r U)

∼= (excision)

? ∼=
(homotopy)

- H∗(V, V r {y})

∼= (excision)

?
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Therefore jUy ∗
is an isomorphism as required in (1). If y0 ∈ U s.t. jUy0(α) = jWy0 (ζ) then the

diagram with y = y0 shows that j∗(ζ) = α. Hence the diagram with arbitrary y ∈ U gives
jUy (α) = jWy (ζ).

Theorem 19.0.12 Let K be compact, K ⊂M . Then

1. Hq(M,M rK) = 0 q > n

2. For ζ ∈ Hn(M,M rK) if jKx (ζ) = 0, then ζ = 0.

Proof:
Case 1: M = Rn, K compact convex subset.

Then for x ∈ K, Rn rK ∼= Rn r {x}, so (1) and (2) are immediate.
√

Case 2: K = K1 ∪K2 when theorem is known for K1, K2, and K1 ∩K2.
Apply (relative) Mayer-Vietoris to open sets M rK1, M rK2.
(M rK1) ∩ (M rK2) =M r (K1 ∪K2) =M rK
(M rK1) ∪ (M rK2) =M r (K1 ∩K2)

0
‖

- Hn+1

(
M,M r (K1 ∩K2)

) ∆- Hn(M,M rK)
(jK1∗

,jK2∗
)

-

Hn(M,M rK2)⊕Hn(M,M rK2) - Hn

(
M,M r (K1 ∩K2)

)

(1) follows immediately. For (2):
∀x ∈ K1

Hn(M,M rK)
jK1 - Hn(M,M rK1)

@
@
@
@
@

jKx ∗

R 	�
�
�
�
�

jK1
x ∗

Hn(M,M r {x})

Hence jKx X

(
jK1(ζ)

)
= jKx ∗(ζ) = 0. So (since true ∀x ∈ K1, by the theorem applied to K1

gives jK1(ζ) = 0. Similarly jK1(ζ) = 0.
But by exactness, ker(jK1 , jK2) = 0 so ζ = 0.

√
Case 3: M = Rn, K = K1 ∪ . . . ∪Kr where Ki is compact and convex.

Follows by induction on r from Cases 1 and 2.
Note: Intersection of convex sets is convex. To prove the theorem for, say, K1 ∪K2 ∪K3 will
have to know it already for (K1∪K2)∩K3. This will be done by a subsidiary induction. It can
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best be phrased by taking as the induction hypothesis that the theorem holds for any union of
r − 1 compact convex subsets). √

.
Case 4: M = Rn, K arbitrary compact set.
(This is the heart of the proof of the theorem.)

Hq(Rn,Rn rK)
(exactness)∼= Hq−1(Rn rK).

Given z ∈ Hq−1(Rn −K), by axiom A8, ∃ compact set (depending on z) Lz
⊂

j- Rn rK
s.t. z = ι∗(z

′) for some z′ ∈ Hq−1(Lz).
Given A s.t. K ⊂ A ⊂ (Lz)

c,
z′

	�
�
�
�
�

az

Hq−1(Lz)

	�
�
�
�
� @

@
@
@
@

i∗

R

Hq−1(R
n r A)

i′∗ - Hq−1(R
n rK)

shows z = i′∗(az) for some az ∈ Hq−1(R− A).
Will also use az and z to denote their isomorphic images under Hq(Rn,RrA) ∼= Hq−1(Rnr

A), etc.
Wish to select Az s.t. Az is a finite union of compact convex sets and K ⊂ Az ⊂ (Lz)

c.
Cover K by open balls whose closures are disjoint from Lz (using normality). By compact-

ness can choose a finite subcover and let Az be the union of their closures. By Case 3, the
theorem holds for Az.

If q > n, by (1) of the theorem applied to AZ , Az = 0 so z = 0. Hence (1) holds for K.
To prove (2):

Suppose z = ζ where jx
K
∗ (ζ) = 0 ∀x ∈ K. It suffices to show that j

Aζ
x ∗(aζ) = 0 ∀x ∈ Aζ

since we can apply (2) of the theorem for Aζ to conclude that aζ = 0 so that ζ = 0. (It is

immediate that j
Aζ
x ∗(aζ) = 0 if x ∈ K ⊂ Aζ . )

Write Aζ = B1 ∪ . . . Br where Bi is a closed n-ball s.t. Bi ∩K 6= ∅ (using defn. of Aζ).
Given x ∈ Aζ , suppose x ∈ Bi and find y ∈ Bi ∩K.
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az

Hn(R
n,Rn r Aζ)

/�
�
�
�
�
�
�
�
�
�
�
�
�

j
Aζ
x∗

HHHHHHHHHHHH

i′∗

j
Hn(R

n,Rn rBi)

γ∗

?
Hn(R

n,Rn rK)

+�
�
�
�
�
�
�
�
�

jBi
z∗ ∼= ←(Bi convex) →

@
@
@
@
@

jBi
y∗∼=
R 	�

�
�
�
�

jKz∗

Hn

(
R,Rr {x}

)
Hn

(
R,Rr {y}

)

Since jKy ∗
(ζ) = 0 by hypothesis, jBi

y ∗
γ∗(aζ) = 0 so γ∗(aζ) = 0 so that j

Aζ
x ∗(aζ) = jBi

x ∗(aζ) = 0.

Thus j
Aζ
x ∗(aζ) = 0, as desired.

√
Case 5: K ⊂ U ⊂M , where U is an open coordinate neighbourhood.

Follows immediate from Case 4 since H∗(M,M rK)
(excision)∼= H∗(U,U rK).

√
Case 6: General Case

By covering K with coordinate neighbourhoods whose closures are contained in larger co-
ordinate neighbourhoods, write K = K1 ∪ . . . Kr where for each i, Ki ⊂ Ui with Ui is an open
coordinate neighbourhood. Then use Case 5, Case 2, and induction on r.

Theorem 19.0.13 For each x ∈ M , let αx be a generator of Hn(M,M r {x}). Suppose that
these generators are compatible in the sense that ∀x ∃ open coordinate neighbourhood Ux of x
and ∃αUx

∈ Hn(M,MrUx) s.t. j
Ux
y = αy ∀y ∈ Ux. Then given K ⊂M , ∃!αK ∈ Hn(M,MrK)

s.t. jKy ∗
(αK) = αy ∀y ∈ K.

Proof: Unique is immediate from the previous theorem. To prove existence:
Case 1: K ⊂ Ux for some x

Use αK = j∗(αUx
) where j∗ : Hn(M,M r Ux)→ Hn(M.M rK).

Case 2: K = K1 ∪K2 where αK1 , αK2 exist.

Hn+1

(
M,M r (K1 ∩K2)

)
→ Hn(M,M rK)

(jK1
,jK2

)-

Hn(M,M rK1)⊕Hn(M,M rK2)
j′∗−j′′∗- Hn

(
M,M r (K1 ∩K2)

)
→

For any x ∈ K1 ∩ K2, j
K1∩K2
x∗

(j′∗ − j′′∗ )(αK1 , αK2) = jK1
x∗

(αK1) − jK2
x∗

(αK2) = αx − αx = 0
Therefore by the previous theorem applied to K1∪K2, (j

′
∗−j′′∗ )(αK1 , αK2) = 0 so from the exact

197



sequence ∃αK ∈ Hn(M,M rK) s.t. jK1(αK) = αK1 and jK2(αK) = αK2 . Then αK satisfies the
conditions of the theorem. (To check it from y, find ǫ ∈ Kǫ and use naturality.)
Case 3: General case

Write K = K1 ∪ . . . ∪Kr with each Ki ⊂ Ux for some x by covering K with open sets each
having its closure in some Ux. Now use Cases 1, 2 and induction on r.

Remember: jx means jMx .

Definition 19.0.14 Suppose M is a compact n-dimensional manifold. If ∃ζ ∈ Hn(M) s.t.
jx∗

(ζ) is a local orientation for M at x for each x ∈ M then M is called orientable and ζ is
called a (global) orientation for M .

If M is not compact than such a global orientation class will not exist. (Consider, for
example, M = Rn). More generally we define:

Definition 19.0.15 An orientation for M consists of a family of elements {ζK}K⊂M with
ζK ∈ Hn(M,M rK) such that JK

x∗
(ζK) is a local orientation for M at x ∀x ∈ K, K compact

and furthermore if x ∈ K1 ∩K2 then jK1
x∗

(ζK1) = jK2
x∗

(ζK2).

Of course, this second definition works equally well in the compact case, since a global class
can be restricted.

The preceding theorem says that if M has a “compatible” collection of local orientations at
each point then M is orientable.

Corollary 19.0.16 LetM be orientable and connected. Then any two orientations ofM which
induce the same local orientation at any point are equal.

Proof: Let {αy}y∈M and {βy}y∈M be the sets of local orientations induced by the two orien-
tations {ζK⊂M and {ζ ′K⊂M .

By earlier lemma, if the orientations agree at x then they agree on an open neighbourhood
of x (∃U s.t. JU

y∗ : H∗(M.M r U)→ H∗(M,M r {y}) is iso. ∀y ∈ U ) so A = {x | αx = βx} is
open.

On the other hand, if αx 6= βx, then αx = −βx (there are only 2 generators of Z and they
are related in this way) so by the same lemma ∃ open set U containing x s.t. αy = −βy ∀y ∈ U .
Hence B = {x | αx 6= βx} is also open.

Since A ∪ B = M and A ∩ B = ∅, by connectivity of M one of A, B is ∅. By hypothesis
A 6= ∅ so B = ∅ and A = M . Hence αx = βx ∀x ∈ M , which by earlier theorem says that
ζK = ζ ′K ∀ K.

198



Corollary 19.0.17 If M is connected and orientable then it has precisely 2 orientations and
a choice of orientations at one point uniquely determines one of the orientations.

Theorem 19.0.18 Let X be a connected nonorientable (compact) manifold. Then there is a
2-fold covering space p : E → X s.t. E is a connected orientable (compact) manifold.

Proof: Let E := {(x, αx) | x ∈ X and αx is a local orientation for X at x}. Set p(x, αx) := x.
Topologize E as follows.
Given open set U ⊂ X and element αU ∈ Hn(X,X r U) s.t. jUx ∗(αU) is a generator of

Hn(X,X r {x}) for all x ∈ U , let 〈U, αU〉 = {(x, jUx ∗

(
αU)

)
} ⊂ E.

To show that these sets form a base for a topology:
Suppose 〈U, αU〉 ∩ 〈U, αU〉 6= ∅. Let (x, αx) ∈ 〈U, αU〉 ∩ 〈U, αU〉. By earlier lemma ∃ open

nbhd U of x, U ⊂ U ′ ∩ U” s.t. jUx ∗ is an isomorphism ∀y ∈ U . Let αU = (jUx )
−1
∗ (αx). Show

〈U, αU〉 ⊂ 〈U, 〉αU ′ ∩ 〈U”, αU”〉.
Let

(
w, jUw ∗(αU)

)
∈ 〈U, αU〉. To show

(
w, jUw ∗(αU)

)
∈ 〈U ′, α′

U〉 we must show jUw ∗(αU) =

jU
′

w ∗(αU ′). However jUx ∗(αU)
)
= jU

′

x ∗(αU ′)
)
, so by part 2 of the lemma that produced U , we

have jUy ∗
(αU) = jU

′

y ∗
(αU ′) for all y ∈ U and in particular for y = w. Therefore

(
w, jUw ∗(αU)

)
∈

〈U ′, α′
U〉 and similarly

(
w, jUw ∗(αU)

)
∈ 〈U”, αU”〉.

So {〈U, αU〉} forms a base for a topology.
By (1) of the Lemma, X can be covered by open sets U s.t. jUy∗ is an isomorphism for all

y ∈ U .
For such sets

p−1(U) = 〈U, ρ〉 ∐ 〈U,−ρ〉
where

ζ,−ζ ∈ Hn(X,X r U) ∼= Hn(X,X r {y}) ∼= Z

are the two generators and the restrictions ρ : 〈U, ζ〉 → U and ρ : 〈U,−ζ〉 → U are homeomor-
phisms. So ρ is a 2-fold covering projection.

Therefore E is a manifold.
X is compact, so E is compact since a finite cover of a compact Hausdorff space is compact.
(Proof: Cover the base with evenly covered open sets. By normality, we can find another

open cover in which the closures of the sets are contained in evenly covered open sets. Take
a finite subcover. Then the inverse images of the closures of these sets under the covering
projections write the total space as a finite union of compact sets.)

To show E is orientable:
Given (x, αx) ∈ E, by (1) of the Lemma, there is an open neighbourhood Ux of x s.t. jUx

y ∗
is an isomorphism for all y ∈ Ux.
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Let αUx
= (jUx

x∗ )
−1(αx). So < Ux,αUx

> is an open neighbourhood of (x, αx) s.t. the
restriction of p to < Ux, αUx

> is a homeomorphism.
So

Hn

(
E,Er{(x, αx)}

) ∼= Hn

(
〈Ux, αUx

〉, 〈Ux, αUx
〉r{(x, αx)}

) ∼= Hn(Ux, Uxr{x}) ∼= Hn(X,Xr{x}) ∼= Z.

Let β(x,αx) ∈ Hn

(
E,E r {(x, αx)}

)
correspond to αx under this isomorphism.

By (2) of the Lemma (and naturality of the above isomorphism), we see that these local
orientations βx are “compatible” in the sense of the earlier Theorem. The required open neigh-
bourhood is 〈Ux, αUx

〉. Note that j
<Ux,αUx>

(e,αe)∗
is an isomorphism for all (e, αe) ∈ 〈Ux, αUx

〉 to get
the required homology class.

So by that Theorem, the classes β(x,αx) determine an orientation so that E is orientable.
Finally, to show E is connected:
If E had two components (as a 2-fold cover of a connected space, it can have at most 2),

each would be a covering space of X (a component of a covering space of a connected space is
a covering space). So each would be a 1-fold cover and thus a homeomorphism.

But then each component would be nonorientable (since X is) which would mean that E is
nonorientable. This is a contradiction. So E is connected.

Corollary 19.0.19 If M is simply connected, then M is orientable. (More generally, if π1(M)
does not have a subgroup of index 2 then M is orientable.)

Proof: M has no 2-fold covering space.

19.1 Orientability with Coefficients

Let R be a commutative ring with 1/ We can make the same definitions of orientability using
homology with R-coefficients (e.g., a local orientation is a generator of Hn(M,M r {x}) ∼= R)
although the theorems might not all work. In practice, besides Z the only useful coefficient ring
for the purpose of orientations is R = Z/(2Z). In that case there is only one generator so all
compatiblity conditions are automatic. This means that every manifold is (Z/(2Z)-orientable.
Sometimes theorems which hold (using Z-coefficients) only for orientable manifolds can be
extended to non-orientable manifolds if (Z/(2Z)-coeffiecients are used.

Example 19.1.1 Consider RP 2. It is a 2-dimensional manifold.

Hq(RP
2) =





Z q = 0

Z/(2Z) q = 1

0 q = 2

Hq

(
RP 2;Z/(2Z)

)
=





Z/(2Z) q = 0

Z/(2Z) q = 1

Z/(2Z) q = 2
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Examining the Z-coefficients, since H2(RP 2) = 0 there can be no global orientation class, so
RP 2 is non-orientable. Notice that there is a candidate for a global Z/(2Z)-orientation calss,
and since every manifold is Z/(2Z)-orientable it must indeed be a Z/(2Z)-orientation class.
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Chapter 20

Poincaré Duality

Let M be an oriented n-dimensional manifold and let {ζK}( K⊂M

L compact
) be its chosen orienta-

tion, where ζK ∈ Hn)M,M rK). If M is compact, let ζ = ζM .
(The following also works in M is non-orientable provided Z/(2/ZZ)-coefficients are used.)
Consider first the case where M is compact.
Let D : H i(M)→ Hn−i(M) by D(z) = z ∩ ζ.

Theorem 20.0.2 (Poincaré Duality) D : H i(M)→ Hn−i(M) is an isomorphism ∀i.

In the case where M is not compact:
For each compact K ⊂M , define DK : H i(M,M rK)→ Hn−i(M) by DK(z) = z ∩ ζK .
If K ⊂ L ⊂ M , K,L compact, then by theorem 19.0.12 jLK∗

(ζL) = ζK where jLK : (M.M r
L)→ (M,M rK).

Therefore

H i(M,M rK)

@
@
@
@
@

DK

R

Hn−i(M)

�
�
�
�
�

DL

�

H i(M,M r L)

jL
∗

K

?
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commutes since DK(z) = z ∩ ζK = z ∩ jLK∗
(ζL)

lemma 17.3.3
= jL

∗

K z ∩ ζL = DLj
L
K

∗
(z). Thus the

various maps DK induce (by universal property) a unique map

D : lim−→
K⊂M

K compact

H i(M,M rK)→ Hn−i(M)

where the partial ordering is induced by inclusion.

Notation: Write H i
c(M) = lim−→

K⊂M

K compact

H i(M,M rK).

H∗
c (M) is called the cohomology of M with compact support. An element of H∗

c (M) is
represented by a singular cochain which vanishes outside of some compact set. Of course,
if M is already compact then each element in the direct system maps into H i(M) so that
H i

c(M) = H i(M) in this case.

Theorem 20.0.3 (Poincaré Duality) D : H i
c(M)→ Hn−i(M) is an isomorphism ∀i.

Proof:
Case 1: M = R

Lemma 20.0.4 Let B ⊂ Rn be a closed ball. Then DB : H i(R,R r B) → Hn−i(Rn) is an
isomorphism ∀i.

Proof: Hq(R,RrB) ∼= Hq(R,Rr{∗} ∼= H̃q−1(Rnr{∗}) ∼= H̃q−1(S
n−1). SimilarlyHq(Rn,Rnr

B) ∼= H̃q−1(Sn−1). Thus if i 6= n the lemma is trivial since both groups are 0.
For i=n:

The groups are isomorphic (both are Z). Must show that DB is an isomorphism.
ζB is a generator of Hn(R,RrB) ∼= Z. Find generator f ∈ Hn(Rn,RnrB) s.t. 〈f, ζB〉 = 1.

To see that one of the two generators of Hn(Rn,Rn rB) must have this property, examine the
Kronecker pairing of H̃n−1(S

n−1) with H̃n−1(Sn−1). Using the cellular chain complex 0→ Z→
0 . . . → 0 makes it obvious that the Kronecker pariting gives an ismorphism H̃n−1(S

n−1) ∼=
Hom

(
H̃n−1(S

n−1),Z
) ∼= Z and that the ring identity 1 ∈ H0(Rn) is a generator. Thus

〈1, DB(f)〉 = 〈1, f ∩ ζB〉 = 〈1 ∪ f, ζB〉 = 〈f, ζB〉 = 1
so that DB(f) must be a generator of H0(Rn). Hence DB is an isomorphism.

Proof of theorem in case 1: Let α ∈ H i
c(R

n) = lim−→
K⊂Rn

K compact

H i(Rn,RnrK). Pick a represen-

tative f ∈ H i(Rn,RnrK) of α for some compact K ⊂ Rn. Let B be a closed ball containing K.
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Replacing f by jBK
∗
(f) gives a new representative for α lying in H i(Rn,Rn r B), and by def-

inition of D, D(α) − DB(f). Since DB is an isomorphism by the lemma, if D(α) = 0 then
f = 0 and so α = 0. Hence D is 1− 1. Conversely, given x ∈ Hn−i(Rn), ∃f ∈ H i(Rn,Rn r B)
s.t. DB(f) = x and so the element α of H i

c(R
n) represented by f satisfies D(α) = DB(f) = x.

Hence D is onto.
(In effect, there is a cofinal subsystem which has stabilized. Therefore the direct limit map

is the same as the map induced by this stabilized subsystem.)
√

Case 2: M = U ∩ V where U , V are open subsets of M (thus submanifolds) s.t. the theorem
is known for U , V , and W := U ∩ V
Proof: Let K, L be compact subsets of U , V respectively. Let A = K ∩L, N = K ∪L. Then
we have a Mayer-Vietoris sequence

Hq(M,M r A) → Hq(M,M rK)⊕Hq(M,M r L)→Hq(M,M rN) → Hq+1(M,M r A)

Hq(W,W r A)

∼= (excision)

?
- Hq(U,U rK)⊕Hq(V, V r L)

∼= (excision)

?
→Hq(M,M rN)

wwwwwwwww
- Hq+1(W,W r A)

∼=
?

Lemma 20.0.5

Hq−1(M,M rN) → Hq(W,W r A) → Hq(U,U rK)⊕Hq(V, V r L) → Hq(M,M rN)

©1 ©2 ©3

Hn−q+1(M)

DN

? ∆∗ - Hn−q(W )

DA

?
−→ Hn−q(U)⊕Hn−q(V )

DK ⊕DK

?
−→ Hn−q(M)

DN

?

commutes.
Proof:
For square©2: Let jUW : (W,W rA)→ (U,UrA) denote the inclusion map of pairs. (It induces
an excision isomorphism.)
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f̃ ∈ Hq(U,U r A)
jK

∗

A- Hq(U,U rK)

f ∈ Hq(W,W r A)

jU
∗

W
∼=
? jK

∗

A- Hq(U,U rK)

wwwwwwwww

?

Hn−q(W )

DA

? jU
∗

W - Hn−q(U)

DK

?

Let f ∈ Hq(W,W r A).
By the excision isomorphism, ∃f̃ ∈ Hq(U,U r A) s.t. jUW

∗
(f̃) = f .

Let ζUA ∈ Hn(U,U −A) be the restriction of ζk to A. i.e. ζUA := jKA ∗ζK . By compatibility of
orientations, jUW ∗(ζA) = ζUA (where ζA means ζWA ).

jUW ∗DAf = jUW ∗(f ∩ ζA)
= jUW ∗

(
jUW

∗
(f̃) ∩ ζA

)

(lemma 17.3.3)
= f̃ ∩ jUW ∗ζA

= f̃ ∩ ζUA
= f̃ ∩ jKA ∗ζK
(map of pairs is (U,U rK)→ (U,U r A) whose restriction to U is 1)

(lemma 17.3.3)
= jKA

∗
f̃ ∩ ζK

= DKj
K
A

∗
f̃

so the diagram commutes. Get the same diagram with V replacing U , so square ©2 commutes.
Similarly, doing the same arguments with the pairs (M,U) replacing (U,W ) and then (M,V )

replacing U,W ), we get that the third square commutes.
For square ©1:
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Hq−1(M,M rN)
∆∗

- Hq(M,M r A)

? Hq(W,W r A)

∼=
?

Hn−q+1(M)

DN

? ∆∗ - Hn−q(W )

DA

?

apply lemma 17.3.4

Hq−1(X,B)
∆∗

- Hq(X, Y )

Hq(A,A ∩ Y )

∼= (excision)

?

Hn−q+1(X)

∩[v]

? ∆∗ - Hn−q(A)

∩[v′]
?

in the case:
X :=M ; X1 := U ; X2 := V ; Y :=M r A; Y1 :=M rK; [v] := ζN .
(Thus A = U ∩ V = W and B = Y1 ∩ Y2 = M r (K ∪ L) = M r N . Note: X1 ∩ Y1 =

U ∩ (M rK) =M since K ⊂ U .)
√

Proof of Case 2 (cont.): Passing to the limit gives a commutative diagram with exact rows
(recall the homology commutes with direct limits so exactness is preserved)
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Hq
c (W ) → Hq

c (U)⊕Hq
c (V )

∆∗
- Hq+1

c (M) → Hq+1
c (W ) → Hq+1

c (U)⊕Hq+1
c (V )

Hn−q(W )

D ∼=
?

→Hn−q(U)⊕Hn−q(V )

(D ⊕D) ∼=
? ∆∗- Hn−q−1(M)

D

?
→Hn−q−1(W )

D ∼=
?

→Hn−q−1(U)⊕Hn−q−1(V )

∼=
?

so by the 5-lemma, D : Hq
c (M)→ Hn−q(M) is an isomorphism.

√

Case 3: M is the union of a nested family of open sets Uα where the duality theorem is known
for each Uα.

Since M = ∪αUα and Uα is open, S∗(M) = ∪αS∗(Uα) so H∗(M) = lim−→α
H∗(Uα).

Similarly each generator of S∗
c (M) vanishes outside some compact K, where S∗

c (M) :=
lim−→
K⊂M

K compact

S∗(M,M rK). Since homology commutes with direct limits, H∗
c (M) = H

(
Sc
∗(M)

)
.

Find Uα0 s.t. K ⊂ Uα0 s.t. K ⊂ Uα0 . Then f ∈ ImS∗
c (Uα0). Thus again S

∗
c (M) = ∪αs

∗
c(Uα)

and so H∗
c (M) = lim−→α

H∗
c (Uα).

√

Case 4: M is an open subset of Rn

If V is a convex open subset of M , then the theorem holds for V by Case 1. (i.e. V is
homemorphic Rn.)

If V , W are converx open then so is V ∩W so the theorem holds for V ∪W by Case 2.
Hence if V = V1 ∪ . . . ∪ Vk where Vi is convex open, then the theorem holds for V .
Write M = ∪∞

i=1Vi by letting {Vi} be
{Nr(x) | Nr(x) ⊂M, r rational, x has rational coordinates} (which is countable).

Let Wl = ∪k
i=1Vi. Then by the above, the theorem holds for Wk ∀k, {Wk} are nested, and

M = ∪∞
k=1Wk. Therefore the theorem holds for M by Case 3.

√

Case 5: General Case
By Zorn’s Lemma ∃ a maximal open subset U of M s.t.the theorem holds for U . If U 6=M ,

find x ∈ M r U and find an open coordinate neighbourhood C of x. Then by Case 4, the
theorem holds for V and U ∩ V so by Case 2 the theorem holds for U ∪ V .⇒⇐.

Therefore U =M .
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20.1 Cohomology Ring Calculations

Sn

degree H∗ H∗

n Z Z
n− 1 0 0

...
...

1 0 0
0 Z Z

S1 × S1

degree H∗ H∗

2 Z Z
1 Z⊕ Z Z⊕ Z
0 Z Z

CP n

degree H∗ H∗

2n Z Z
2n− 1 0 0
2n− 2 Z Z

...
...

1 0 0
0 Z Z

RP 2n+1

degree H∗ H∗

2n+ 1 Z Z
2n 0 Z/(2Z)

2n− 1 Z/(2Z) 0
...

...
3 Z/(2Z) 0
2 0 Z/(2Z)
1 Z/(2Z) 0
0 Z Z

RP 2 (nonorientable)

degree H∗ H∗

2 0 Z/(2Z)
1 Z/(2Z) 0
0 Z Z

RP 2

degree H∗( ;Z/(2Z) H∗( ;Z/(2Z)

2 Z/(2Z) Z/(2Z)
1 Z/(2Z) Z/(2Z)
0 Z/(2Z) Z/(2Z)

Cup Products:

H∗(Sn):
Group generators: 1 ∈ H0(Sn), x ∈ Hn(Sn).
No choices: 1 ∪ 1 = 1 1 ∪ x = x ∪ 1 = x x ∪ x = 0

√

Before proceding to the other spaces we need a lemma.
Let X be a connected compact oriented manifold s.t. all the boundary maps in some cellular

chain complex for X are trivial. (e.g. X = Sn; S1×S1; CP n. Also X = RP n if we use Z/(2Z)
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coefficients.)
Hn(X) ∼= H0(X) ∼= Z (in the cases with Z-coefficients). Let µ be a generator of Hn(X).

Replacing µ by −µ is necessary, we may assume that 〈µ, ζ〉 = 1, where ζ ∈ Hn(X) the chosen
orientation. Let g ∈ Hq(X) be a basis element. (Note: The boundary maps equal to 0 implies
that Hq(X) ∼= Hom

(
Dq(X),Z

)
is a free abelian group.)

Lemma 20.1.1 ∃f ∈ Hn−q(X) s.t. f ∪ g = µ

Proof: Being a basis element, g is not divisible by p for any p so neither is D(g) ∈ Hn−q(X)
(since D is an isomorphism). Therefore by the hypothesis on the cellular chain complex for X,
∃f ∈ Hn−q(X) s.t. 〈µ, ζ〉 = 1 = 〈f,D(g)〉〈f, g ∩ ζ〉 = 〈f ∪ g, ζ〉 Hence f ∪ g is a generator of
Hn(X) and f ∪ g = ±µ.

H∗(S1 × S1).
Group generators: 1 ∈ H0( ), y, z ∈ H1( ), µ ∈ H2( ).

S×S1 π1- (S1) π∗
1(x) = y, π∗

2(x) = z.
Since x2 = 0 in H∗(S1), y2 = (π∗

1x)
2 = 0 (ring homomorphism). Similarly z2 = 0.

By the lemma, y ∪ f = µ for some f so f = ±z.
Reversing the roles of y and z if necessary, y ∪ z = µ and z ∪ y = (−1)1·1y ∪ z = −µ.
Aside from the multiplications by the identity and the multiplications which must be 0 for

degree reasons, this describes all of the cup products in H∗(S1 × S1).
√

Lemma 20.1.2 Let X = Y ∨Z so that H̃∗(X) ∼= H̃∗(Y )⊕H̃∗(Z) If f ∈ Hp(X) and g ∈ Hq(Z)
then f ∪ g = 0 in Hp+q(X).

Proof: Let i : Y → Y ∨ Z by y 7→ (y, ∗) and j : Z → Y ∨ Z by z 7→ (∗, z) denote the
injections.

i∗ : H̃∗(Y ) ⊕ H̃∗(Z) → H̃∗(Y ) is the first projection and j∗ is the second projection. Thus
for x ∈ H̃∗(Y )⊕ H̃∗(Z), x = 0 is equivalent to i∗x = 0 and j∗x = 0.

i∗(f ∪ g) = i∗f ∪ i∗g = f ∪ 0 since g = (0, g) ∈ H∗(Z) has no H∗(Y ) component. Thus
i∗(f ∪ g) = 0. Similarly j∗(f ∪ g) = 0. Thus f ∪ g = 0.

Corollary 20.1.3 S1 × S1 6≃ S1 ∨ S1 ∨ S2 (although they have the same homology groups).

H∗(CP n):
Let xj ∈ H2j(CP n) be a generator, choosing x0 = 1 and xµ. Set x := x1.
n = 2: Basis is 1, x = x1, µ = x2.
By the lemma, ∃g s.t. x∪ g = µ, and so g must be ±x. Replacing µ by −µ if necessary, we

may assume x ∪ x = µ. Aside from the multiplications by the identity and those that must be
0 for degree reasons, this describes all of the multiplications in H∗(CP 2).
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n = 3:
Consider i : CP n−1 ⊂ - CP n. It is clear from the cellular chain complex that i∗(xj) = xj

for j ≤ n − 1 (and i∗xn = 0 for degree reasons). So in H∗(CP 3), x ∪ x = x2 (else applying i∗

gives a contradiction to the above calculations in H∗(CP 2) ). Now by the lemma, x ∪ (x ∪ x)
must be a generator of H6(CP 3), so x ∪ x ∪ x = µ (or at least we can choose µ so that this is
true). This describe all the non-obvious multiplications in H∗(CP 3).

For general n: Using induction on n and the same argument as in the previous cases,
xj = x ∪ x ∪ · · · x (j times). In other words, as a graded ring H ∗ (CP n) ∼= Z[x]/(xn+1) with
degree x = 2. Passing to the limit gives H∗(CP∞) = Z[x].

√

If we use Z/(2Z) coefficients, the same method shows thatH∗(RP n);Z/(2Z) ∼= Z/(2Z)[x]/(xn+1)
with degree x = 1 and H ∗ (RP∞);Z/(2Z) ∼= Z/(2Z)[x].
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Chapter 21

Classification of Surfaces

Definition 21.0.4 A surface is a 2-dimensional manifold.

Definition 21.0.5 Let S1 and S2 be two manifolds of dimension n. The connected sum S1#S2

is the manifold obtained by removing a disk Dn from S1 and S2 and gluing the resulting manifold
with boundary S1 ∐ S1 to the cylinder S1 × [0, 1].

Theorem 21.0.6 (a) Any compact orientable surface is homeomorphic to a sphere, or to the
connected sum

T 2# . . .#T 2

.
(b) Any compact nonorientable surface is homeomorphic to the connected sum

P# . . . P#

where P is the projective plane RP 2.

Alternative version of part (b) of Theorem 21.0.6:

Theorem 21.0.7 Any compact orientable surface is homeomorphic to the connected sum of an
orientable surface with either one copy of the projective plane P or one copy of the Klein bottle
K.

Proof of Theorem 21.0.6:

Definition 21.0.8 Euler Characteristic
The Euler characteristic of a topological space M is the alternating sum of the dimensions

of the homology groups (with rational coefficients):
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χ(M) = h0(M)− h1(M) + . . .

where hj(M) = dimHj(M ;Q).

For a manifold of dimension 2 equipped with a triangulation, the Euler characteristic is given
by

χ(M) = V − E + F

where V is the number of vertices, E the number of edges and F the number of faces. The
Euler characteristic is independent of the choice of triangulation.

Proposition 21.0.9 The Euler characteristic of a connected sum of surfaces S1 and S2 is given
by

χ(S1#S2) = χ(S1) + χ(S2)− 2

(This is proved by counting the number of vertices, edges and faces in a natural triangulation
of the connected sum.)

Lemma 21.0.10 The Euler characteristics of surfaces are as follows:

genus = 0
χ(S2) = 2

genus = g
χ(T 2# . . . T 2) = 2− 2g

(the genus is the number of copies of T 2)

(connected sum of n copies of the projective plane)

χ(P# . . .#P ) = 2− n

(connected sum of K with genus g orientable surface)

χ(K#T 2# . . .#T 2) = −2g

(connected sum of P with genus g orientable surface)

χ(P#T 2# . . .#T 2) = 1− 2g
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Lemma 21.0.11 Surfaces are classified by:
(i) whether they are orientable or nonorientable
(ii) their Euler characteristic

Proof of Theorem 21.0.6:
1. Take a triangulation of the surface S. Glue together some (not all) of the edges to form

a surface D which is a closed disk. (This comes from a Lemma which asserts that if we glue
together two disks along a common segment of their boundaries, the result is again a disk.)
The edges along the boundary of D form a word where each edge is designated by a letter x1
or x2, with the same letter used to designate edges that are glued.

2. We now have a polygon D whose edges must be identified in pairs to obtain S. We
subdivide the edges as follows.

(i) Edges of the first kind are those for which the letter designating the edge appears with
both exponents +1 and −1.

(ii) Edges of the second kind are those for which the letter designating the edge appears
with only one exponent (+1 or −1)

Adjacent edges of the first kind can be eliminated if there are at least four edges. (See
Figure 1.17, p. 22, figure #2.)

3. Identify all vertices to a single vertex. If there are at least 2 different equivalence classes,
then the polygon must have an adjacent pair of vertices which are not equivalent, call them P
and Q.

Cut along the edge c from Q to the other vertex of a. Then glue together the two edges
labelled a. The new polygon has one less vertex in the equivalence class of P . (See Figure 1.18,
p. 23, figure #3.)

Perform step 2 again if possible (eliminate adjacent edges). Then perform step 3 again,
reducing the number of vertices in the equivalence class of P . If more than one equivalence
class of vertices remains, repeat the procedure to reduce the number of equivalence classes of
vertices to 1, in other words we reduce to a polygon where all vertices are to be identified to a
single vertex.

4. Make all pairs of edges of the second king adjacent. (See Figure 1.19, p. 24, #4.) Thus
if there are no pairs of edges of the first kind, the symbol becomes

x1x1x2x2 . . . xnxn

In this case the surface is
S = P# . . .#P

(the connected sum of n copies of P ).
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Otherwise there is at least one pair of edges of the first kind (label these c) One can argue
that there is a second pair of edges of the first kind interspersed (label these d. It is possible
to transform these so they are consecutive, so the symbol includes

cdc−1d−1

This corresponds to the connected sum of one copy of T 2 with a surface with fewer edges in its
triangulation. (See Figure 1.21, p. 25, #5.) 2

Lemma 21.0.12
T 2#P ∼= P#P#P

Remark 21.0.13 P#P ∼= K This is because we can carve up the diagram representing the
Klein bottle, a square with two parallel edges identified in the same direction, and the two
remaining parallel edges identified in opposite directions. (See Figure 1.5, p. 10, #1) This is
the union of two copies of the Möbius strip along their boundary, using the fact that a Möbius
strip is the same as the complement of a disk in the real projective plane.

This reduces the proof of Lemma 21.0.12 to proving

Lemma 21.0.14 P#K ∼= P#T

This is proved by decomposing a torus and a Klein bottle as the union of two rectangles.
We excise a disk from one of the rectangles, and glue a Möbius strip to the boundary of the
excised disk (to form the connected sum of P with the torus or Klein bottle). The text (Massey,
see handout, Lemma 1.7.1) argues that the resulting objects are homeomorphic. Indeed, we
can regard this as taking the connected sum of a Möbius strip with a torus or Klein bottle,
and then gluing a disk to the boundary of the Möbius strip. The first step (connected sum of
Möbius strip with torus or Klein bottle) yields two spaces that are manifestly homeomorphic.
So they remain homeomorphic after gluing a disk to the boundary of the Möbius strip. See
Figure 1.23, p. 27, #6. 2

References: 1. William S. Massey, Algebraic Topology: An Introduction (Harcourt Brace
and World, 1967), Chapter 1.

(All figures are taken from Chapter 1 of Massey’s book.)
2. James R. Munkres, Topology (Second Edition), Chapter 12.
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Chapter 22

Group Structures on Homotopy
Classes of Maps

For basepointed spaces X, Y , recall that [X, Y ] denotes the based homotopy classes of based
maps from X to Y . In general [X, Y ] has no canonical group structure, but we define concepts
of H-group and co-H-group such that [X, Y ] has a natural group structure provided either Y
is an H-group or X is a co-H-group.

It is easy to check that if G is a topological group (regarded as a pointed space with the
identity as basepoint) then [X,G] has a group structure defined by [f ][g] = [h], where h(x) is
the product f(x)g(x) in G. But a topological group is more than we need: all we need is a
group “up to homotopy”. We generalize topological group to H-group as follows:

A pointed space (H, e) is called an H-space if ∃ a (continuous pointed) map m : H×H → H
such that

H
i1 - H ×H

@
@
@
@
@

1H
R 	�

�
�
�
�

m

H

and

H
i1 - H ×H

@
@
@
@
@

1H
R 	�

�
�
�
�

m

H
are homotopy commutative, where i1(x) := (x, e) and i2(X) := (e, x).
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An H-space is called homotopy associative if

H ×H ×H 1H ×m- H × 1H

H ×H

m×H
? m - H

m

?

If H is an H-space, a map c : H → H is called a homotopy inverse for H if

H
(1H , ∗) - H ×H

@
@
@
@
@

∗
R 	�

�
�
�
�

m

H

and

H
(∗, 1H) - H ×H

@
@
@
@
@

m
R 	�

�
�
�
�

∗

H
are homotopy commutative.

A homotopy associative H-space with a homotopy inverse is called an H-group.
An H-space is called homotopy abelian if

H
T - H ×H

@
@
@
@
@

m
R 	�

�
�
�
�

m

H

is homotopy commutative, where T is the swap map T (x, y) = (y, x).

Proposition 22.0.15 Let H be an H-group. Then ∀X, [X,H] has a natural group structure
given by [f ][g] = [m ◦ (f, g)]. If H is homotopy abelian then the group is abelian.

Remark 22.0.16 “Natural” means that any map q : W → X induces a group homomorphism
denoted q# : [X,H]→ [W,H] defined by q#([f ]) = [f ◦ q]. The assignment X 7→ [X,H] is thus
a contravariant functor.

Proof:
Associative:
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m ◦ (m× 1H) ◦ (f, g, h) = m(◦1H)×m ◦ (f, g, h) so ([f ][g])[h] = [f ]([g][h]).
Identity:

m ◦ (∗, f) = m ◦ i1 ◦ f = 1H ◦ f = f so [∗][f ] = [f ] and similarly [f ][∗] = [f ], and thus [∗]
forms a 2-sided for [X,H].
Inverse:

Given [f ], define [f ]−1 to be the class represented by c◦f . m◦(f, f−1) = m◦(1H , c)◦(f×f) =
1H ◦ f = (f×)f ◦∗ = ∗ so [f ][f−1] = [∗] and similarly [f−1][f ] = [∗]. Thus [f−1] forms a 2-sided
inverse for f .

Finally, if H is homotopy abelian then [f ][g] = m◦(f, g) = m◦T ◦(f, g) = m◦(g, f) = [g][f ],
so that [X,H] is abelian.

Two H-space structures m, m′ on X are called equivalent if m ≃ m′ (rel ∗) as maps from
X × X to X. It is clear that equivalent H-space structures on X result in the same group
structure on [W,X].

A basepoint-preserving map f : X → Y between H-spaces is called an H-map if

X ×X f × f- Y × Y

X

mX

? f - Y

mY

?

homotopy commutes.
An H-map f : X → Y induces, for any space A, a group homomorphism f# : [A,X] →

[A, Y ] given by f#([g]) = [f ◦ g].

Remark 22.0.17 The collection of H-spaces forms a category with H-maps as morphisms.

Examples

1. A topological group is clearly an H-group.

2. R8 has a continous (non-associative) multiplication as the “Cayley Numbers”, also called
“octonians” O.

3. Loop space on X:

Given pointed spacesW andX, we define the function spaceXW , also denoted Map∗(W,X).
Set XW := {continuous f : W → X}. Topologize XW as follows: For each pair (K,U)
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where K ⊂ W is compact and U ⊂ X is open, let V(K,U = {f ∈ XW | f(K) ⊂ U}. Take
the set of all such sets V(K,U) as the basis for the topology on XW .

XS1
is called the “loop space” of X and denote ΩX. Define a multiplication on ΩX which

resembles the multiplication in the group π1(X) by m(f, g) := f · g.
To show that m is continuous:

Let V(K,U) be a subbasic open set in ΩX. Write K = K ′∪K ′′ where K ′ = K∩ [0, 1/2] and
K ′′ = K∩ [1/2, 1]. Then m−1(V(K,U)) = V(L′,U)×V(L′′,U) where L

′ is the image of K ′ under
the homeomorphism [0, 1/2] → [0, 1] given by t 7→ 2t and L′′ is the image of K ′′ under
the homeomorphism [1/2, 1]→ [0, 1] given by t 7→ 2t− 1. Therefore m is continuous.

The facts that ΩX is homotopy associative, that the constant map cx0 is a homotopy
identity, and that f → f−1 (where f−1(t) = f(1 − t)) is a homotopy inverse follow,
immediately from the facts used in the proof that π1(X, x0) is a group.

ΩX is an example of an H-group which is not a group. By definition a path from f to g
in ΩX is the same as a homotopy H : f ≃ g rel(0, 1). The group [S0,ΩX] defined using the
H-space structure on ΩX is clearly the same as π1(X, x0).

Remark 22.0.18 Given continous f : X → Y , it is easy to see that there is a continous
induced map Ωf : ΩX → ΩY given by (Ωf)(α) := f ◦ α. Thus the correspondence X 7→ ΩX
defines a functor from the category of topological spaces to the category of H-spaces.

The preceding can be generalized as follows.
Observe that a pointed map A ∨ B → Y is equivalent to a pair of pointed map A → Y ,

B → Y . (In other words, A ∨ B is the coproduct of A and B in the category of pointed
topological spaces.) We write f⊥g : A ∨B → Y for the map corresponding to f and g.

A pointed space X is called a co-H-space if ∃ a (continuous pointed) map ψ : X → X ∨X
such that

X
ψ - X ∨X

@
@
@
@
@

1X
R 	�

�
�
�
�

1X⊥∗

X

and

X
ψ - X ∨X

@
@
@
@
@

1X
R 	�

�
�
�
�

∗⊥1X

X
are homotopy commutative.
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A co-H-space is called homotopy coassociative if

X
ψ - X ∨X

X ∨X

ψ

? ψ⊥1X- X ∨X ∨X

1X⊥ψ
?

If X is a co-H-space, a map c : X → X is called a homotopy inverse for X if

X
ψ - X ∨X

@
@
@
@
@

∗
R 	�

�
�
�
�

1X⊥c

X

and

X
ψ - X ∨X

@
@
@
@
@

∗
R 	�

�
�
�
�

c⊥1X

X
are homotopy commutative.

A homotopy coassociative co-H-space with a homotopy inverse is called a co-H-group.
A co-H-space is called homotopy coabelian if

X

	�
�
�
�
�

ψ

@
@
@
@
@

ψ
R

X ∨X T - X ∨X
is homotopy commutative, where T is the swap map.

Proposition 22.0.19 Let X be a co-H-group. Then for any pointed space Y , [X, Y ] has a
natural group structure. If X coabelian then [X, Y ] is abelian.

Proof: The group structure is given by [f ][g] = [(f⊥g) ◦ ψ] where f, g : X → Y . The proof is
essentially the same as the dual proof for H-groups with arrows reversed. Further, as before, a
map q : Y → Z induces a group homomorphism q# : [X, Y ]→ [X,Z] defined by q#([f ]) = [q◦f ].
(The association Y 7→ [X, Y ], q 7→ q# is a functor from topological spaces to groups.)

Example of a co-H-group:
Sn is a co-H-space for n ≥ 1. The map ψ : Sn → Sn∨Sn is given by “pinching” the equator

to a point.
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Thus for any pointed space X, πn(X) := [Sn, X] has a natural group structure for n ≥ 1,
called the nth homotopy group of X. Looking at the case n = 1, the group structure that we
get on [S1, X] is the same as that of the fundamental group.
More generally:

Let X be a topological space. Define a space denoted SX, called the (reduced) suspension
of X, by SX := (X × I)/

(
(X × {0}) ∪ (X × {1}) ∪ (∗ × I)

)
. For any X, SX becomes a

co-H-group by pinching the equator, X × {1/2}, to a point. That is, ψ : SX → SX ∨ SX by

ψ(x, t) =

{
(x, 2t) in the first copy of SX if t ≤ 1/2;

(x, 2t− 1) in the second copy of SX if t ≥ 1/2.

When t = 1/2 the definitions agree since each gives the common point at which the two copies
of SX are joined.

This generalizes the preceding example since:

Lemma 22.0.20 SSn is homeomorphic to Sn+1.

Proof: Intuitively, think of Sn+1 as the one point compactification of Rn+1 and notice that after
removal of the point at which the identifications have been made, SSn opens up to become an
open (n+1)-disk. For a formal proof, write Sk as Ik/∂(Ik) and notice that both SSn and Sn+1

becomes quotients of In+1 with exactly the same identifications.

Remark 22.0.21 As in the case of Ω, given f : X → Y there is an induced map Sf : SX →
SY defined by Sf(x, t) :=

(
f(x), t

)
and so S defines a functor from the category of pointed

spaces to itself.

Theorem 22.0.22 For each pair of pointed spaces X and Y there is a natural bijection between
the sets Map∗(SX, Y ) and Map∗(X,ΩY ). This bijection takes homotopic maps to homotopy
maps and thus induces a bijection [SX, Y ] → [X,ΩY ]. Furthermore, the group structure on
[SX, Y ] coming from the co-H-space structure on SX coincides under this bijection with that
coming from the H-space structure on ΩY .

Proof: Define φ : Map∗(SX, Y )→ Map∗(X,ΩY ) by φ(f) = g where g(x)(t) = f(x, t). Notice
that g(x)(0) = f(x, 0) = f(∗) = y0 and g(x)(1) = f(x, 1) = f(∗) = y0 since the identified
subspace

(
(X × {0}) ∪ (X × {1}) ∪ (∗ × I)

)
is used as the basepoint of SX. Thus g(x) is an

element of ΩY .
Must show that g is continuous.
Let q : X × I → SX denote the quotient map. Let V(K,U) be a subbasic open set in ΩY .

Then g−1(V(K,U)) = {x ∈ X | f(x, k) ∈ U ∀k ∈ K}. Pick x ∈ g−1(V(K,U)). By continuity
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of q and f , for each k ∈ K find basic open set Ak ×Wk ⊂ X × I s.t. x ∈ Ak, k ∈ Wk and
Ak ×Wk ⊂ (q ◦ f)−1(U). {Wk}k∈K covers I so choose a finite subcover Wk1 , . . . ,Wkn and let
A = Ak1 ∩ · · · ∩ Akn . Then x ∈ A and A ⊂ g−1(V(K,U)) so x is an interior point of g−1(V(K,U))
and since this is true for arbitrary x, g−1(V(K,U)) is open. Therefore g is continuous.

Show φ is 1− 1:
Clearly if φ(f) = φ(f ′) then f(x, t) =

(
φ(f)(x)

)
(t) =

(
φ(f ′)(x)

)
(t) = f ′(x, t) for all x, t

so f = f ′.

Show φ is onto:
Given g : X → ΩY , define : SX → Y by f(x, t) =

(
g(x)

)
(t). For all x, f(x, 0) =

(
g(x)

)
(0) =

y0 and f(x, 1) =
(
g(x)

)
(1) = y0 and for all t, f(x0, t) =

(
g(x0)

)
(t) = cy0(t) = y0 and thus f is

well defined.
Must show that f is continuous. Given open U ⊂ Y ,

f−1(U) = {(x, t) ∈ SX |
(
g(x)

)
(t) ∈ U}.

By the universal property of the quotient map, showing that f−1(U) is open is equivalent to
showing that (f ◦ q)−1(U) is open in X × I.
For a pair (x, t) ∈ X × I:

Since g is continuous A := g−1(VI,U) ⊂ X is open. Thus A× I is an open subset of X × I
which contains (x, t), and if (a, t′) ∈ A× I then f ◦ q(a, t′) =

(
g(a)

)
(t) ∈ U since g(a) takes all

of I to U . Thus A × I ⊂ (f ◦ q)−1(U) and thus (x, t) is an interior point of A × I, and since
this is true for arbibrary (x, t), f is continuous. Therefore f lies in Map∗(SX, Y ) and clearly
φ(f) = g, so φ is onto.

It is easy to see that f ≃ f ′ ⇔ φ(f) = φ(f ′). (e.g., if H : f ≃ f ′ define
(
gs(x)

)
(t) :=

Hs(x, t).)
To show that the group structures coincide:

(ff ′)(x, t) =

{
f(x, 2t) if t ≤ 1/2;

f ′(x, 2t− 1) if t ≥ 1/2.

so
(
φ(ff ′)

)
(x) =

((
φ(f)

)
(x)·(φ(f ′)

)
(x)
)
by the definition of multiplication of paths. Therefore

φ(ff ′) = φ(f)φ(f ′). Thus φ is an isomorphism, or equivalently, the group structures coincide.

Corollary 22.0.23 πn(ΩX) ∼= πn+1(X)
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According to the previous theorem, there is a natural bijection between Map∗(SX, Y ) and
Map∗(X,ΩY ) where natural means that for any map j : A→ X.

Map∗(SX, Y )
φ- Map(X,ΩY )

Map∗(SA, Y )

(Sj)#

6

φ- Map(A,ΩY )

j#

6

commutes, and similarly for any k : Y → Z

Map∗(SX, Y )
φ- Map(X,ΩY )

Map∗(SX,Z)

(Sk)#

? φ- Map(X,ΩZ)

k#

?

For this reason, S and Ω are called adjoint functors. More generally:

Definition 22.0.24 Functors F : C → D and G : D → C are called adjoint functors if there is
a natural set bijection φ : HomC(FX, Y )→ HomD(X,GY ) for all X in ObjC and Y in ObjD.
F is called the left adjoint or co-adjoint and G is called the right adjoint or simply adjoint.

Another example: Let T : Vector Spaces/k→ Algebras/k by sending V to the tensor algebra on
V , and let J : Algebras/k→ Vector Spaces/k be the forgetful functor. Then HomAlg(TV,W ) =
HomV S(V, JW ) for any vector space V and algebra W over k.

Let X be an H-space. Then ΩX has a second H-space structure (in addition to the one
coming from the loop-space structure) given by m′ : ΩX × ΩX → ΩX with m′ is defined by
m′(α, β) = γ where γ(t) = α(t)β(t) (where α(t)β(t) denotes the product mX

(
α(t), β(t)

)
in the

H-space structure on X.

Theorem 22.0.25 Let X be an H-space. Then the H-space structure on ΩX induced from that
on X as above is equivalent to the one coming form the loop-space multiplication. Furthermore,
this common H-space structure is homotopy abelian.

Proof: In one H-space structure (αβ)(s) = α(s)β(s), while in the other the product is

(α · β)(s) :=
{
α(2s) if s ≤ 1/2;

β(2s− 1) if s ≥ 1/2.

222



We construct a homotopy by homotoping α until it becomes α·cx0 and β until it comes cx0 ·β
while at all times “multiplying” the paths in X using the H-space structure on X. Explicitly
H : ΩX × ΩX × I → ΩX by

H(α, β, t)(s) =





α
(
2s/(t+ 1)

)
β(0) if 2s ≤ 1− t;

α
(
2s/(t+ 1)

)
β
(
(2s+ t− 1)/(t+ 1)

)
if 1− t ≤ 2s ≤ 1 + t;

α(0)β
(
(2s+ t− 1)/(t+ 1)

)
if 2s ≥ 1 + t;

The definitions agree on the overlaps do the function is well defined and is continuous.
Check that H is a homotopy rel ∗:

The basepoint of ΩX × ΩX is (cx0 , cx0).
H
(
(cx0 , cx0 , t)

)
(s) = x0x0 = x0 ∀s, t. Hence H(cx0 , cx0 , t) = cx0 ∀t so H is a homotopy rel ∗.

Note: Although for arbitrary x, x0x and xx0 need not equal x, since multiplication by x0 is
only required to be homotopic to the identity rather that equal to the identity, it is nevertheless
true that x0x0 = x0 since multiplication is a basepoint-preserving map.

H(α, β, 1)(s) = α(s)β(s) ∀s which is the product of α and β in the H-space structure
induced from that on X.

Since α(0) = α(1) = β(0) = β(1) = x0,

H(α, β, 0)(s) =

{
α(2s)β(0) if 2s ≤ 1;

α(1)β(2s− 1) if 2s ≥ 1,
=

{
α(2s)x0 if 2s ≤ 1;

x0β(2s− 1) if 2s ≥ 1,
= α̃ · ˜̃β

where α̃(s) = α(s)x0 and ˜̃β(s) = x0β(s). Since multiplication by x0 is homotopy to the

identity (rel ∗), α̃ ≃ α (rel ∗) and similarly ˜̃β ≃ β (rel ∗). Thus the multiplications maps are
homotopic and so the two H-space structures are equivalent.

To show that this structure is homotopy abelian, observe there is a homotopy analogous to
H given by

J(α, β, t)(s) =





α(0)β
(
2s/(t+ 1)

)
if 2s ≤ 1− t;

α
(
(2s+ t− 1)/(t+ 1)

)
β
(
2s/(t+ 1)

)
if 1− t ≤ 2s ≤ 1 + t;

α
(
(2s+ t− 1)/(t+ 1)

)
β(1) if 2s ≥ 1 + t.

As before J1(s) = α(s)β(s) but

J0(s) =

{
x0β(2s) if 2s ≤ 1;

α(2s− 1)x0 if 2s ≥ 1.

Since J0 ≃ β · α, we get that the H-space structure is homotopy abelian.
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Corollary 22.0.26 Suppose Y is an H-space. Then for any space X the group structure on
[SX, Y ] coming from the co-H-space structure on SX agrees with that coming from the H-space
structure on Y . Furthermore this common group structure is abelian.

Proof: By Theorem 22.0.22 there is a bijection from [SX, Y ] ∼= [X,ΩY ] which is a group
isomorphism from [SX, Y ] with the group structure coming from the suspension structure
on [SX], to [X,ΩY ] with the group structure coming from the loop space H-space structure
on ΩY . It is easy to check that the group space structure on [SX, Y ] coming from the H-space
structure on Y corresponds under this bijection with that on [X,ΩY ] coming from the H-space
structure on Y . Since these H-space structures agree and are homotopy abelian, the result
follows.

Corollary 22.0.27 If Y is an H-space, π1(Y ) is abelian.

Corollary 22.0.28 For any spaces X and Y , [S2X, Y ] is abelian.

Proof: [S2X, Y ] ∼= [SX,ΩY ].

Corollary 22.0.29 πn(Y ) is abelian for all Y when n ≥ 2.
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22.1 Hurewicz Homomorphism

Suppose n ≥ 1 and let ιn be a generator of Hn(S
n). Define h : πn(X) → Hn(X) by h([f ]) :=

f∗(ιn) for a representative f : Sn → X. This is well defined by the homotopy axiom.
Check that h is a group homomorphism:
[fg] = [(f⊥g) ◦ ψ] where ψ : Sn → Sn ∨ Sn pinches the equator to a point.
Hn(S

n ∨ Sn) ∼= Z ⊕ Z generated by e1 := j1(ι), e2 := j1(ι), where j1, j2 : Sn → Sn ∨ Sn ⊂
Sn × Sn by j1(x) = (x, ∗) and j2(x) = (∗, x). ψ∗(ι) = e1 + e2. To determine (f⊥g)∗(e1) use the
commutative diagram

Sn j1- Sn ∨ Sn

@
@
@
@
@

f ≃ f · ∗
R

X

f⊥g
?

to obtain (f⊥g)∗(e1) = f∗(ι). Similary (f⊥g)∗(e2) = g∗(ι). Therefore h([fg]) = (fg)∗(ι) =
(f⊥g)∗(e1 + e2) = f∗(ι) + g∗(ι) = h[f ] + h[g] and so h is a homomorphism.

We now specialize to the case n = 1.
As before, let S∗(X) denote the singular chain complex of X. Let exp be the generator of

S1(S
1) defined by exp : ∆1 = I → S1 where exp(t) = e2πit. In S1, set v = 1 = exp(0) and

w = −1 = exp(1). Clearly ∂(exp) = v−v = 0 so [exp] is a cycle and thus represents a homology
class in H1(S

1).

Lemma 22.1.1 [exp] is a generator of H1(S
1).

Proof: Set D := [−1, 1], D+ := [0, 1] and D− := [−1, 1]. Let f be the composite ∆1 = I ∼=
D+ f̃ - S1 where f̃(t) = eπit and let g be the composite ∆1 = I ∼= D− g̃- S1 where
g̃(t) = eπi(t+1). We have isomorphisms

H1(D
+, S0)

∼=
excision

- H1(S
1, D−)

Z ∼= H̃0(S
0)

∼= ∂

?

H1(S
1)

∼=
6

w−v is a generator of H̃0(S
0) so its image under the isomorphisms is a generator of H1(S

1).
f ∈ S1(D

+) has the property that ∂f = w − v so it represents the generator of H1(D
+, S0)
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which hits w − v under the isomorphism ∂, and thus its image in S1(S
1)/S1(D

−) represents a
generator of H1(S

1, D−). f + g ∈ S1(S
1) projects to f in S1(S

1)/S1(D
−), and f + g is a cycle

so the homology class [f + g] is a generator of H1(S
1). Since exp = f · g, we conclude the proof

by the following Lemma which shows that [exp] = [f + g].

Lemma 22.1.2 Let f, g : I → X such that g(0) = f(1). Then as elements of S1(X), f · g is
homologous to f + g.

Proof: Define T : ∆2 → X by extending the map shown around the boundary:

�
�
�
�
�
�
�
�

f · g

f

g

This is possible since the map around the boundary is null homotopic.
∂T = f − f · g + g, so f · g is homologous to f + g.

We will use [exp] for ι1.

Theorem 22.1.3 (Baby Hurewicz Theorem)
Suppose X is connected. Then h : π1(X)→ H1(X) is onto and its kernel is the commutator

subgroup of π1(X). ie. H1(X) ∼= π1(X)/(commutator subgroup) = abelianization of π1(X).

Proof: Let x0 be the basepoint of X.
Show that h is onto:

Let z =
∑
niTi represent a homology class in H1(X). Thus 0 = ∂z =

∑
ni

(
Ti(1)− Ti(0)

)
.

Let γi0 and γi1 be paths joining x0 to Ti(0) and Ti(1) respectively.
Let Si = γi0 + Ti − γi1 ∈ S1(X) Thus z =

∑
niSi since the γ’s cancel out, using ∂z = 0.

(Each γi appears equally often with ǫ = 0 as with ǫ = 1.)
Set fi := γi0 · Ti · γ−1

i ∈ π1(X).

Let f̄i denote the composite I -- I/ ∼= S1 fi- X ∈ π1(X).
By the preceding Lemma, f̄i is homologous to γi0 + Ti − γi1 = Si ∈ S1(X). Therefore

h(
∏
fni

i ) = (
∏
fni

i )∗(ι1) = [
∑
nif̄i] = [

∑
niSi] = [z].

Show kerh = commutator subgroup:
H1(X) is abelian so (commutator subgroup) ⊂ kerh.
Conversely, suppose f ∈ kerh. Then, regarded as a generator of S1(X), f = ∂z for some

z ∈ S2(X).
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Write f = ∂(
∑
niTi) =

∑
ni∂Ti. Let ∂Ti = αi0 − αi1 + αi2 and for j = 0, 1, 2 choose paths

γij joining x0 to the endpoints of αij as shown, making sure to always choose the same path γij
if a given point occurs as an endpoint more than once.

Set
gi0 := γi1αi0γ

−1
i2

gi1 := γi0αi1γ
−1
i2

gi0 := γi0αi2γ
−1
i1

Set gi = gi0g
−1
i1 gi2 = γi1αi0α

−1
i1 αi2γ

−1
i1 .

Since αi0α
−1
i1 αi2 can be extended to a map on the interior (namely Ti,) it is null homotopic,

so gi ≃ ∗. Therefore
∏

i(gi)
ni = 1 ∈ π1(X). But f =

∑
ni∂Ti =

∑
ni(αi0−α−1

i1 +αi2) in the free
abelian group S1(X). This means that when terms are collected on the right, f remains with
coefficient 1 and all other terms cancel. Thus modulo the commutator subgroup the product
πi(gi)

ni can be reordered to give f with the γ′s cancelling out. Therefore, modulo commutators,
f = 1 so that f ∈ (commutator subgroup).
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Chapter 23

Universal Coefficient Theorem

Theorem 23.0.4 Universal Coefficient Theorem – homology
Let G be an abelian group. Then

Hq(X,A;G) ∼= Hq(X,A)⊗G⊕ Tor(Hq−1(X,A), G)

More precisely there is a short exact sequence

0→ Hq(X,A)⊗G→ Hq(X,A;G)→ Tor(Hq−1(X,A), G)→ 0

This sequence splits (implying the preceding statement) but not canonically (the splitting requires
some choices).

Theorem 23.0.5 Universal Coefficient Theorem – cohomology
Let G be an abelian group. Then

Hq(X,A;G) ∼= Hom(Hq(X,A), G)⊕ Ext(Hq−1(X,A), G)

More precisely there is a short exact sequence

0→ Ext(Hq−1(X,A), G)→ Hq(X,A;G)→ Hom(Hq(X,A), G)→ 0

This sequence splits (implying the preceding statement) but not canonically (the splitting requires
some choices).

Definition 23.0.6 Let R = Z and let M be a left Z-module. A free resolution of M is a
sequence of left Z-modules and an exact sequence

→ Cq
d→ Cq−1

d→ Cq−2
d→ . . .

d→ C1
d→ C0

ǫ→M → 0 (23.1)

where all the Cj are free.
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Free resolutions exist. To construct one, we choose ǫ mapping a free module C0 onto M , then
choose d mapping a free module C1 onto Ker(ǫ), etc.

Definition 23.0.7 To form Tor, we tensor the sequence (23.1) by G on the left, forming

G⊗ Cq
d∗→ G⊗ Cq−1

d∗→ . . .

The resulting sequence is not exact. We define

Torq(G,M) =
Ker(d∗ : G⊗ Cq)→ G⊗ Cq−1)

Im(d∗ : G⊗ Cq+1 → G⊗ Cq)

Similarly we define

Extq(G,M) =
Ker(d∗ : Hom(Cq, G)→ Hom(Cq+1, G)

Im(d∗ : Hom(Cq−1, G)→ Hom(Cq, G)

We use q = 1 for Ext and Tor. For q ≥ 2, we can arrange that Ext = Tor = 0.
Remark: if G = Q,R or C (a field of characteristic zero) we have Hn(X;G) = Hn(X) ⊗ G

and Hn(X;G) = Hom(Hn(X), G).
Remark: If Hn and Hn−1 are finitely generated, then Hn(X;Zp) has

• a Zp summand for every Z summand of Hn

• a Zp summand for every Zpk summand of Hn (for k ≥ 1)

• a Zp summand for every Zpk summand of Hn−1 (for k ≥ 1)

Remark: If A or B is free or torsion free, then Tor(A,B) = 0
If H is free then Ext(H,G) = 0.

Ext(Zn, G) = G/nG.

Remark: If Hn(X) and Hn−1(X) are finitely generated with torsion subgroups Tn resp.
Tn−1, then H

n(X) ∼= Hn/Tn ⊕ Tn−1.
Example:
Hj(RP n;Z2) =
Z2 when Hj = Z or Z2,
Z2 when Hj−1 = Z2.
Example: orientable 2-manifolds of genus g

degree H∗ H∗

2 Z Z
1 Z2g Z2g

0 Z Z
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Example: nonorientable 2-manifolds

degree H∗ H∗ H∗(−,Z2)

2 0 Z2 Z2

1 Zn ⊕ Z2 Zn Zn+1

0 Z Z Z2
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Chapter 24

Hodge Star Operator

Let M be a compact oriented manifold of dimension n.

Definition 24.0.8 The Hodge star operator is a linear map

∗ : Ωk(M)→ Ωn−k(M)

which satisfies

•
∗ ◦ ∗ = (−1)k(n−k)

•
α ∧ ∗α = |α|2vol

where vol is the standard volume form and |α|2 is the usual norm on α(x) viewed as an
element of ΛkT ∗

xM .

The definition of the Hodge star operator requires the choice of a Riemannian metric on the
tangent bundle to M .

Let d be the exterior differential. Then d∗ := ∗d∗ is the formal adjoint of d, in the sense
that (d∗a, b) = (a, db). This is because (∗a, ∗b) = (a, b) for any a, b ∈ ΩkM , so

(da, b) =

∫
da∗b = (−1)k

∫
ad ∗ b

(by Stokes’ theorem)
= (−1)k(n−k)(−1)k(a, ∗d ∗ b)
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Definition 24.0.9 A k-form α on M is harmonic if dα = d∗α = 0.

Theorem 24.0.10 The set of harmonic k-forms is isomorphic to Hk(M ;R).

Theorem 24.0.11 If α is a harmonic k-form on M , its Poincare dual is represented by ∗α.
The pairing between an element α and its Poincare dual is nondegenerate, i.e. for any α∫
M
α ∧ ∗α = 0 −→ α = 0.

For the definition of the Hodge star operator, see J. Roe, Elliptic Operators, Topology and
Asymptotic Methods (Pitman, 1988). I have reproduced two pages from this book (p. 18-19)
which give the definition. See the link on this website.
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