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Abstract. A principal bundle over the connected sum of two
manifolds need not be diffeomorphic or even homotopy equivalent
to a non-trivial connected sum of manifolds. We show however that
the homology of the total space of a bundle formed as a pullback
of a bundle over one of the summands is the same as if it had that
bundle as a summand. See Theorem 3.3. An application appears
in [2].

Examples are given, including one where the total space of the
pullback is not homotopy equivalent to a connected sum with that
as a summand and some in which it is.

Finally, we describe the homology of the total space of a princi-
pal U(1) bundle over a 6-manifold of the type described by Wall’s
theorem. It is a connected sum of an even number of copies of
S3×S4 with a 7-manifold whose homology is Z/k in degree 4 (and
Z in degrees 0 and 7, and zero in all other degrees).

1. Introduction

Let A be a connected sum A ∼= B#C of n-manifolds. See for example
Hatcher [1] for the definition of connected sum. Let F → L → C be a
bundle over C where F is a manifold.
Using the definition we get a map A → C. Let F → M → A be the

pullback of the bundle F → L → C to A.
Letting B′ denote the complement of a chart in B and setting X ′ :=

(B′ × F )/(∗ × F ) we prove the following. There is a cofibration M →
L → ΣX ′ for which the corresponding long exact homology/cohomology
sequences split to give

H∗(M) ∼= H∗(X
′)⊕H∗(L) and H∗(M) ∼= H∗(X ′)⊕H∗(L).

(See Theorems 3.1 and 3.3.)
These results suggest the possibility that M is the connected sum

of L and some manifold X whose (n− 1) skeleton is homotopy equiva-
lent to X ′ but we give an example to show that this is not necessarily
the case. (See Example 3.4). As we shall see, if M ≃ X#L then
the cofibration sequence X ′ → M → L would have to split to give
M ≃ X ′ ∨ L, but this fails in Example 3.4.
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In the final section, we consider bundles over some 6-manifolds in-
cluding the case where A is a symplectic manifold and the M is the
total space of its associated prequantum line bundle. We find that in
that case M ≃ #2r(S3×S4)#L where L is a 7-manifold whose nonzero
cohomology groups are Z in degrees 0, 7 and Z/k in degree 4, where r
and k are determined by the cohomology of A. (See Theorem 4.1.)
The authors would like to thank Sebastian Chenery who pointed out

an error in an earlier version of this paper.
For topological spaces X and Y , let X ∼= Y denote “X is home-

omorphic to Y ” and let X ≃ Y denote “X is homotopy equivalent
to Y ”.

2. Connected Sums

Let Dn denote the closed disk Dn := {x ∈ R
n | ‖x‖ ≤ 1}.

Lemma 2.1. For any points a, b in the interior of Dn there exists a
self-diffeomorphism f : Dn → Dn such that f(a) = b and f |∂Dn is the
identity.

Proof. Set f(a) = b. For x 6= a, let Xx be the point at which the
production of the line segment joining a to x meets ∂Dn. Then

x = ta+ (1− t)Xx

for some t. Set f(x) = tb+ (1− t)Xx. �

More generally, we have

Lemma 2.2. Let Up, Vq be subcharts of Dn. Then there exists a self-
diffeomorphism f : Dn → Dn such that the restriction of f to Up is
the standard diffeomorphism on open balls and such that f |∂Dn is the
identity.

For a point p in an n-manifold X, define a subchart around p to be
an open neighbourhood Up of p which is diffeomorphic to an open ball
in R

n within some chart of X.
For a connected n-manifold X, let X ′ = X \Dn denote the comple-

ment of a subchart of X.

Lemma 2.3. Up to diffeomorphism, X ′ is independent of the choice
of the subchart removed.

Proof. Let Up, Uq be subcharts of X. In the special case where there
exists a chart W containing both Ūp and Ūq this follows from the earlier
lemma. Then for arbitrary Up, Uq, find a finite (by compactness) chain
of charts connecting Up to Vq, using connectivity.
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After removal of the subchart there is a deformation retraction

X ′ ≃ X(n−1)

to the (n− 1)-skeleton of X. Let fX : Sn−1 → X ′ denote the attaching
map of the top cell of X.
Suppose that X, Y are simply connected oriented n-manifolds.
In a connected sum, X#Y = X ′ ∪Sn−1×I Y

′ (where the orientation
on one of the inclusions Sn−1 × {0} ⊂ - X ′ or Sn−1 × {1} is reversed
so that X#Y inherits an orientation), there is a canonical projection
X#Y → X. Similarly we have X#Y → Y . The canonical projections
X#Y → X and X#Y → Y preserve the orientation class. That is,
they induce isomorphisms on Hn( ).
Collapsing the centre of the tube Sn−1 × I within X#Y gives a

map X#Y → X ′ ∨ Y ′. If we form (X#Y )′ by choosing the subchart
to be removed to be within the centre of the tube then collapsing to
produce X ′ ∨ Y ′ has collapsed a contractible subset of (X#Y )′ giving

a homotopy equivalence (X#Y )′
≃
- X ′ ∨ Y ′.

By writing Sn = Sn#Sn and considering naturality of the pinch
we see that the homotopy class of the attaching map of the top cell in
X#Y is given by fX#Y = fX+fY within πn(X)⊕πn(Y ) ⊂ πn(X

′∨Y ′).
Choosing the subchart to be removed from X#Y to be within Y ′

gives a (non-canonical) inclusion X ′ ⊂ - (X#Y )′ with (X#Y )′/X ′ ∼=
Y ′. The composite X ′ ⊂ - (X#Y )′ → X with the canonical pro-
jection is an injective map from a compact Hausdorff space, so it is
a homeomorphism to its image. Composing with the inverse of this
homeomorphism is a left splitting of the inclusion X ′ ⊂ - (X#Y )′.
Similarly there is a left splitting of the inclusion Y ′ ⊂ - (X#Y )′.

Lemma 2.4. Let M be a closed n-manifold and let A ⊂ M ′ be a
closed n-dim subset of M with ∂Ā ∼= Sn−1. Then M ∼= N#X for some
manifolds N and X with N ′ = A. Furthermore the canonical projection
M ′ → N ′ = A is a left splitting of the inclusion A ⊂ - M ′.

Proof. Set X̂ := M \ A. Then X̂ is a manifold-with-boundary with

∂X̂ = ∂Ā. Let T ∼= Sn−1 × I be a tubular neighbourhood of ∂X̂ in X̂
and set X ′ := X̂ \ T . Then

M = Ā ∪Sn−1×{0} T ∪Sn−1×{1} X ′

so M = N#X where N = A ∪(T×{0}) D
n and X = X ′ ∪(T×{1}) D

n. By
construction A ⊂ - M ′ → N ′ = A is the identity on A. �
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3. The cofibration sequence associated to a bundle over

a connected sum

For definitions and properties of principal cofibrations used in this
section see pp. 56–61 of [3].
Let B, C be closed orientable n-manifolds and let A := B#C. Sup-

pose

F → L → C

is a (locally trivial) fibre bundle whose fibre F is an orientable manifold.
Then L is a manifold of dimension n + dim(F ), which we will denote
by m.
Let F → M → A be the pullback of the bundle under the canonical

projection A → C. The total space M is a manifold of dimension m.
Let L̂ be the total space of the restriction of the bundle to

C ′ := C \ chart.

By definition,

A = B′ ∪Sn−1×I C
′

where by construction, the restriction of the bundle to B′ is trivial.
Taking inverse images under the bundle projection M -- A gives

M = (B′ × F ) ∪(Sn−1×I×F ) L̂.

In other words, we have

Sn−1 × I × F ⊂- (B′ × F ) - (B′ × F )/(Sn−1 × I × F )

L̂

?

⊂ - M
?

- M/L̂

w

w

w

w

w

w

w

w

w

where the left square is a pushout.
The space

M/L̂ = (B′ × F )/(Sn−1 × I × F )
=

(

B′/(Sn−1 × I)× F
)

/(∗ × F )
= (B × F )/(∗ × F ).

has the same homology as B ∨ (B ∧ F ). In fact, if F is a suspension
then (B × F )/(∗ × F ) ≃ B ∨ (B ∧ F ). (Selick, [3] Prop 7.7.8)
Set X ′ := (B′ × F )/(∗ × F ).
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Theorem 3.1. There is a cofibration diagram

M ′ - L′ - ΣX ′

M
?

- L
?

- ΣX ′

w

w

w

w

w

w

w

w

w

w

(i.e. the rows are cofibrations and the right square is a pushout.)

Proof. We had

M/L̂ = (B′ × F )/(Sn−1 × I × F )

Also, since L = L̂ ∪Sn−1×I×F F we have

L/L̂ = (Sn × F )/(∗ × F )

(which can be regarded as the special case B = Sn of the preceding).
Thus we have a diagram

X ′

L̂ - M - M/L̂ = (B × F )/(∗ × F )

?

L̂

w

w

w

w

w

w

w

w

w

- L
?

- L/L̂ = (Sn × F )/(∗ × F )

?

ΣX ′
?

==============ΣX ′
?

in which the top right square is a pushout, the rows and right columns
are cofibrations and which yields the cofibration M → L → ΣX ′.
Deleting a chart from L and deleting its preimage from M gives the
first row of the theorem. �

From the long exact homology sequence of the cofibration we get

Corollary 3.2. The lift M → L of the canonical projection preserves
the orientation class. That is, it induces isomorphisms on Hm( ), where
m = dimL = dimM .
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This Corollary can be proved in other ways such as naturality of the
Serre spectral sequence.
Let f : X → Y be a differentiable map between compact oriented m-

manifolds. Let DX : Hk(X) ∼= Hn−k(X) and DY : Hk(Y ) ∼= Hn−k(Y )
be the Poincaré Duality isomorphisms. Suppose f has degree λ (mul-
tiplies by λ on Hn( )). Then f∗ ◦ DX ◦ f ∗ = λDY . In particular, if f
preserves the orientation class (that is, has degree 1) then f ∗ is injective
and f∗ is surjective. Applying this to M → L shows

Theorem 3.3. (Decomposition Theorem)
In the long exact homology sequence of the cofibration, the connect-

ing map ∂ : Hq(L) → Hq−1(X
′) is zero. Likewise, in the long exact

cohomology sequence, the map δ : Hq−1(X ′) → Hq(L) is zero. Thus if
H∗(X

′) is torsion free then for 0 < q < m we have

Hq(M) ∼= Hq(X
′)⊕Hq(L) and Hq(M) ∼= Hq(X ′)⊕Hq(L).

This suggests that perhaps there is a manifold X such that M ≃
X#L where X is homotopy equivalent to the one-point compactifica-
tion of X ′, but this is not necessarily true.

Example 3.4. Consider A = CP 2 and write A = B#C where

B = CP 2 and C = S4.

Consider the trivial bundle S7 × S4 → S4. Then M = S7 × CP 2;
B′ = S2; C ′ = ∗; A′ = B′ ∨ C ′ = S2 while

M ′ = (F × A)′ = (F × A′) ∪F ′×A′ (F ′ × A)

= (S7 × S2) ∪∗×S2 (∗ × CP 2) = CP 2 ∨ S7 ∨ S9

and L = S4 × S7 so L′ = S4 ∨ S7. Our cofibration is

(S2 × S7)/(∗ × S7) → M ′ → S4 ∨ S7

which becomes S2∨S9 → CP 2∨S7∨S9 → S4∨S7. This does not split
so in this example M does not become homotopy equivalent to X#L
for any X.

4. Bundles over 6-manifolds

Let A be a simply connected 6-manifold such that H∗(A) is torsion-
free. Suppose H2(A) = Z.
Let x ∈ H2(A) be a generator and let V ∈ H6(A) be the volume

form. Then x3 = kV for some integer k.
By Wall [4], we can write A = B#C where B = (S3 × S3)#r

for some r and C is a simply connected torsion-free 6-manifold with
H3(C) = 0 and H2(C) = Z.
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Associated to x there are complex line bundles over A and C classi-
fied by x. Let M and L denote the sphere bundles of these line bundles.
Then there are S1-bundles S1 → M → A and S1 → L → C. Note that
the long exact homotopy sequence tells us that π1(M) = π2(M) = 0
and πq(M) = πq(A) for q 6= 1.
Although M is a S1 bundle over A, it does not immediately follow

from Wall’s result that M also admits a decomposition as a connected
sum. We shall see that this is in fact true. This is the content of our
Theorem 4.1 below.
As in Ho-Jeffrey-Selick-Xia [2] we calculate that the cohomology of

the 7-manifold L is given by Hq(L) =











Z q = 0, 7;

Z/k q = 4;

0 otherwise.

Theorem 4.1. We have

M ≃ #2r(S3 × S4)#L,

where the homology of the space L is specified above.

Proof. In the notation of the preceding section applied to S1 → M → A
we have B′ = ∨2rS

3, L′ = P 4(k) and

X ′ := (B′ × S1)/(∗ × S1) ≃ B′ ∨ (B′ ∧ S1) ∨2r (S
3 ∨ Σ3S1)

where P n(k) denotes the Moore space Sn−1∪k e
n. Thus our cofibration

sequence becomes

∨2r(S
3 ∨ Σ3S1) → M ′ → P 4(k)

or equivalently

∨2r(S
3 ∨ S4) → M ′ → P 4(k).

The composition of the bundle map M ′ → A′ with the canonical
projection A′ → B′ provides a splitting of the restriction of

∨2r(S
3 ∨ S4) → M ′

to ∨2rS
3.

For degree reasons, the cofibration

∨2r(S
3 ∨ S4) → M ′ → P 4(k)

is principal, induced from some attaching map P 3(k) → ∨2r(S
3 ∨ S4)

whose image (for degree reasons) lands in ∨2rS
3. Since the restriction

of ∨2r(S
3 ∨ S4) → M ′ to ∨2rS

3 splits, this implies that this attaching
map is trivial. Thus the cofibration splits to give

M ′ ≃ ∨2r(S
3 ∨ S4) ∨2r P

4(k).
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To obtain M from M ′ we attach the top cell giving

Hq(M) = Hq(M ′)⊕Hq(S7) =



















Z q = 0, 7;

Z
2r q = 3;

Z
2r ⊕ Z/k q = 4;

0 otherwise.

Letting Ṽ denote the generator of H7(M), using Poincaré duality we
can pair the generators 〈u1, u2, . . . u2r〉 of Z in degrees 3 with the gener-
ators 〈v1, v2, . . . v2r〉 of Z in degrees 4 so that uivj = δijṼ . If we reduce
to Z/k coefficients, there is also a nonzero cup product ab where a, b
are generators of H3(M ;Z/k) and H4(M ;Z/k) respectively.
Examining the cohomology of M , we see that

H∗(M) = H∗
(

#2r(S3 × S4)#L
)

where Hq(L) =











Z q = 0, 7

Z/k q = 4

0 otherwise.
The attaching maps fM and f#2r(S3×S4)#L are both

[ι31, ι
4
1] + [ι32, ι

4
2] + . . .+ [ι3r, ι

4
r] + fL

where the Whitehead product [ι3, ι4] is the attaching map

fS3×S4 ,

and so
M ≃ #2r(S3 × S4)#L.

�
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