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Abstract. We study the Du Bois complex of a hypersurface Z in a smooth complex al-
gebraic variety in terms of the minimal exponent α̃(Z) and give various applications. We
show that if α̃(Z) ≥ p+ 1, then the canonical morphism Ωp

Z → Ωp
Z is an isomorphism. On

the other hand, if Z is singular and α̃(Z) > p ≥ 2, then Hp−1(Ωn−p
Z ) 6= 0.

1. Introduction

One of the Hodge theoretic objects of great interest associated to a singular variety Z is
the Du Bois complex (or filtered de Rham complex) Ω•Z , defined in [DB81], and later in a
slightly different fashion in [GNAPGP88]. This is an object in the derived category of filtered
complexes on Z; when Z is smooth, it is given by the usual algebraic de Rham complex of
Z, with its “stupid” filtration. In general, the (shifted) associated graded objects

Ωp
Z := GrpFΩ•Z [p]

are objects in the derived category of coherent sheaves which provide useful generalizations
of the bundles of p-forms in the smooth case (for example, they feature in an extension of the
Akizuki-Nakano vanishing theorem to singular varieties). The 0-th filtered piece Ω0

Z appears
extensively in the literature, as it is related to what has become a quite important class
of singularities; recall that Z is said to have Du Bois singularities if the natural morphism
OZ → Ω0

Z is a quasi-isomorphism. See for instance [KS11] for a nice overview of Du Bois
singularities and their role in birational geometry. Besides some formal statements and some
special classes of singularities, little is known about Ωp

Z with p ≥ 1.

The aim of this paper is to study the behavior of these higher filtered graded pieces of
Ω•Z when Z is a hypersurface in a smooth complex variety X, using methods from the
theory of Hodge modules. We give both vanishing and non-vanishing statements about
various cohomologies of these complexes, in terms of a singularity invariant derived from the
Bernstein-Sato polynomial bZ(s), namely the minimal exponent α̃(Z). This is defined as the

negative of the greatest root of the reduced Bernstein-Sato polynomial b̃Z(s) = bZ(s)/(s+1);
it has been studied extensively in [Sai94], [Sai16], [MP19], [MP20a]. M. Saito has shown that
Z has Du Bois singularities if and only if α̃(Z) ≥ 1, which is equivalent to the pair (X,Z)
being log-canonical as Z is a hypersurface in a smooth variety (he also showed that Z has
rational singularities if and only if α̃(Z) > 1). Our main result says that a part of the Du
Bois complex becomes similarly well behaved as the minimal exponent gets larger.
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Theorem 1.1. Let Z be a reduced hypersurface in a smooth complex algebraic variety X. If
p is a nonnegative integer such that α̃(Z) ≥ p+ 1, then the canonical morphism

Ωq
Z → Ωq

Z

is a quasi-isomorphism1 for all q with 0 ≤ q ≤ p.

For any non-negative integer p, the singularities for which α̃(Z) ≥ p + 1 are sometimes
called p-log canonical, by analogy with the case p = 0. Note that the minimal exponent can
be explicitly bounded, and can also be computed for certain singularity types. For example,
we have α̃(Z) = (dim Z + 1)/m for an ordinary singularity of multiplicity m ≥ 2, and
α̃(Z) =

∑
wi for a weighted homogeneous isolated singularity of weights w1, . . . , wn; see

Section 2.4 for details.

Theorem 1.1 is in fact a special case of a stronger statement, in which the vanishing of
each individual Hi(Ωq

Z) with i > 0 is derived from a suitable lower bound on the codimension
of the locus in Z where the minimal exponent is < (p+ 1) (i.e. the co-support of the Hodge
ideal Ip(Z)); see Theorem 3.4 for the precise statement. One consequence, see Corollary 3.5,
is that if the singular locus of Z has dimension s, then for all p ≥ 0 we have

Hi(Ωp
Z) = 0 for 0 < i < n− s− p− 2.

In particular this applies to non-Du Bois singularities as well; see Remark 3.6.

In view of the connection between the Du Bois complex and sheaves of forms with log
poles on a resolution, established by Steenbrink [Ste85], Theorem 1.1 implies (in fact is
almost equivalent to) a local vanishing result for direct images of such sheaves. Continuing
to assume that Z is a reduced hypersurface in the smooth variety X, let f : Y → X be a
proper morphism that is an isomorphism over XrZ, such that Y is smooth and E = (f∗Z)red

is a simple normal crossing divisor.

Corollary 1.2. With the above notation, if p is a nonnegative integer such that α̃(Z) ≥ p+1,
then for all q, with 0 ≤ q ≤ p, we have

Rif∗Ω
q
Y (logE)(−E) = 0 for i > 0.

This is an extension of the well-known fact that if Z is Du Bois, then the canonical
morphism OZ → Rf∗OE is a quasi-isomorphism,2 which translates into the vanishing of
Rif∗OY (−E) for i > 0.

We also deduce from Theorem 1.1 the following version of global Akizuki-Nakano vanishing
for hypersurfaces with high minimal exponent.

Corollary 1.3. If Z is a reduced hypersurface in a smooth, irreducible, projective complex
algebraic variety X of dimension n, and p is a nonnegative integer such that α̃(Z) ≥ p + 1,
then for every ample line bundle L on Z, we have

Hq(Z,Ωp
Z ⊗ L) = 0 for q > n− 1− p.

Using the same approach as in the proof of Theorem 1.1, we also obtain a vanishing result
under a slightly weaker assumption on the minimal exponent:

1As part of the proof we show that Ωq
Z is reflexive when α̃(Z) ≥ p+ 1.

2These two conditions are in fact equivalent when Z is not necessarily a hypersurface in a smooth variety;
see [Ste85] and [Sch07].
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Theorem 1.4. With the above notation, for every nonnegative integer q ≤ α̃(Z) we have

Hn−q−1(Ωq
Z) = 0

unless q = n− 1 (this can only hold if either Z is smooth or q = 1 and Z is a nodal curve on
a surface). In particular, we have

(1) Rn−qf∗Ω
q
Y (logE)(−E) = 0.

Note that Ωq
Z for q = bα̃(Z)c is the first graded piece of the Du Bois complex which is not

covered by Theorem 1.1. Theorem 1.4 shows that the top cohomology group thereof which
could possibly be non-trivial in fact vanishes; indeed, it is known in general that Hp(Ωq

Z) = 0
for p ≥ n− q and every q. This general vanishing is related to a theorem of Steenbrink, see
[Ste85, Theorem 2], stating that

Rif∗Ω
j
Y (logE)(−E) = 0 for i+ j > n

for Z of arbitrary codimension in X (in our special setting, this is easy to prove, see Sec-
tion 2.6).

When q = 0, the vanishing in (1) is trivial, while for q = 1 it is a special case of a result of
Greb, Kovács, Kebekus and Peternell, see [GKKP11, Theorem 14.1], which applies to general
log canonical pairs. It is also interesting to note that a related result, namely

Rn−qf∗Ω
q
Y (logE) = 0 for q ≤ dα̃(Z)e

appears in [MP20b, Corollary C]. Despite the similarity, its proof is of a very different flavor.

Changing gears, we also give a non-vanishing result for the cohomology of certain graded
pieces of the Du Bois complex when the minimal exponent is large.

Theorem 1.5. Let Z be a reduced hypersurface in a smooth n-dimensional complex algebraic
variety X, defined by f ∈ OX(X). If p ≥ 2 is an integer such that α̃(Z) > p, then for every
singular point x ∈ Z, the following hold:

i) We have an isomorphism Hp−1(Ωn−p
Z )x ' OX,x/

(
Jf + (f)

)
, where Jf is the Jacobian

ideal of f .3 In particular, Hp−1(Ωn−p
Z )x 6= 0.

ii) If x is an isolated singularity of Z and p ≥ 3, then Hp−2(Ωn−p
Z )x ' (Jf : f)/Jf . In

particular, Hp−2(Ωn−p
Z )x 6= 0 (while Hi(Ωn−p

Z )x = 0 for 0 < i < p− 2).

Regarding the statement, it is worth noting that, as before, Hp−1 is the top possible
nonzero cohomology of Ωn−p

Z ; see Section 2.6. Though the starting point is similar, the proof
is somewhat different from that of the vanishing results, in that it appeals to the V -filtration
(and its connection with the minimal exponent), as well as to duality for nearby and vanishing
cycles.

The non-vanishing result has some interesting consequences. The first stems from the fact
that if Y is a variety with quotient or toroidal singularities, then Hi(Ωp

Y ) = 0 for all i ≥ 1
and all p (for quotient singularities, see [DB81, Section 5], and for toroidal singularities, see
[GNAPGP88, Chapter V.4]). Thanks to Theorem 1.5, we deduce that in these cases minimal
exponents are surprisingly rather small:

Corollary 1.6. If a singular hypersurface Z has quotient or toroidal singularities, then 1 <
α̃(Z) ≤ 2.

3In an open subset with algebraic coordinates x1, . . . , xn, the ideal Jf is generated by ∂f/∂x1, . . . , ∂f/∂xn.
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Note that the upper bound is sharp: the hypersurface defined by x1x2−x3x4 in C4 is toric
and its minimal exponent is 2; see for instance the paragraph after Theorem 1.1. The lower
bound is due to the fact that these are rational singularities.

The second consequence is that the cohomology sheaves HiΩp
Z , with p, i ≥ 1, are not upper

semicontinuous in families. This should be contrasted with a result for p = 0 (when Z is not
necessarily a hypersurface) due to Kovács and Schwede [KS16], who have shown that nearby
deformations of Du Bois singularities are again Du Bois.

Example 1.7. Let f, g ∈ C[X1, . . . , Xn] with n ≥ 5, be chosen so that f defines a hypersur-
face with quotient singularities, with a singular point at 0 (hence α̃0(f) ≤ 2 by Corollary 1.6)
while g defines a hypersurface with a singular point at 0 and such that α̃0(g) > 2. Consider
the family of hypersurfaces parametrized by A1, defined by ht := tf + (1 − t)g. For t = 1
we have a hypersurface with quotient singularities, hence Hi(Ωp

Z(h1)) = 0 for all i ≥ 1 and

all p. On the other hand, the minimal exponent is lower semicontinuous in families (see
[MP20a, Theorem E(2)]), hence for general t we have α̃0(ht) > 2 (and the hypersurface Z(ht)
has a singular point at 0). Theorem 1.5 then implies that H1(Ωn−2

Z(ht)
) 6= 0.

The paper is organized as follows: we begin by reviewing in the next section some basic
facts about the minimal exponent, the Hodge filtration on the local cohomology H1

Z(OX),
and the graded pieces of the Du Bois complex. In particular, we recall the description of these
graded pieces in terms of the de Rham complex of H1

Z(OX). The proofs of Theorems 1.1 and
1.4 are given in Section 3, while the proof of Theorem 1.5 is the content of Section 4.

2. Review of the Du Bois complex, Hodge filtration, and minimal exponent

In this section we review some basic facts about the objects in its title that we will need
for the proofs of our main results. By a variety we mean a reduced, separated scheme of
finite type over C.

2.1. Du Bois complex. For an introduction to the Du Bois complex (sometimes called the
filtered De Rham complex ) and its basic properties, we refer to [GNAPGP88, Chapter V.3],
[PS08, Chapter 7.3], [Ste85], and to the original paper of Du Bois [DB81]. A useful list of
properties is also collected together in [KS11, Theorem 4.2].

Recall that for a variety Z, this is a filtered complex denoted (Ω•Z , F
•). We will only be

interested in its graded pieces, suitably shifted:

Ωp
Z := GrpFΩ•Z [p].

For every p this is an element in the bounded derived category of coherent sheaves on Z,
which can be nonzero only when 0 ≤ p ≤ dimZ; moreover, there is a canonical morphism

Ωp
Z → Ωp

Z ,

which is an isomorphism if Z is smooth. The variety Z is said to have Du Bois singularities
if OZ → Ω0

Z is an isomorphism.

Suppose now that Z is a closed subvariety of a smooth irreducible variety X, with dimX =
n. We consider a proper morphism f : Y → X that is an isomorphism over X r Z, with Y
smooth, and such that the inverse image of Z (with the reduced scheme structure) is a simple
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normal crossing divisor E. A key fact, due to Steenbrink [Ste85, Proposition 3.3], is that for
every p, we have an exact triangle in the derived category

(2) Rf∗Ω
p
Y (logE)(−E)→ Ωp

X −→ Ωp
Z

+1−→ .

We briefly recall the argument, for the benefit of the reader. Since f is an isomorphism over
X r Z and X and Y are smooth, we have an exact triangle

(3) Ωp
X −→ Rf∗Ω

p
Y ⊕ Ωp

Z −→ Rf∗Ω
p
E

+1−→
(see [DB81, Proposition 3.9]). We apply the octahedral axiom for the composition

Rf∗Ω
p
Y

α−→ Rf∗Ω
p
Y ⊕ Ωp

Z

β−→ Rf∗Ω
p
E ,

where α = (id, 0) and β is given by the sum of the obvious morphisms. If Q = cone(β ◦ α),
then we deduce using (3) that we have an exact triangle

Ωp
Z −→ Q −→ Ωp

X [1]
+1−→ .

On the other hand, recall that Ωp
E = Ωp

Y /Ω
p
Y (logE)(−E) (see [PS08, Example 7.25]), which

immediately implies that Q[−1] ' Rf∗Ω
p
Y (logE)(−E). We thus obtain (2).

2.2. A consequence of Grothendieck duality. Let us keep the same notation as in the

previous paragraph. Note that since
(
Ωp
Y (logE)(−E)

)∨
= Ωn−p

Y (logE)⊗ω−1
Y , it follows from

Grothendieck duality that

(4) RHomOX

(
Rf∗Ω

p
Y (logE)(−E), ωX

)
' Rf∗Ω

n−p
Y (logE).

Of course, since RHomOX

(
−, ωX

)
is a duality, we deduce from (4) that we also have

(5) RHomOX

(
Rf∗Ω

n−p
Y (logE), ωX

)
' Rf∗Ω

p
Y (logE)(−E).

Assumption: From now on we assume in addition that Z is a (nonempty) reduced hyper-
surface in a smooth, irreducible variety X of dimension n.

2.3. Filtered DX-modules and duality. Let DX be the sheaf of differential operators on
X. Recall that if M is a left DX -module on X, then the de Rham complex of M is the
complex DRX(M):

0→M→ Ω1
X ⊗OX

M→ · · · → Ωn
X ⊗OX

M→ 0,

placed in cohomological degrees −n, . . . , 0, with the differentials defined using the usual de
Rham differential and the integrable connection on M. If (M, F ) is a filtered DX -module
(so that the filtration is compatible with the order filtration on DX), then DRX(M) carries
an induced filtration, with FpDRX(M) being the subcomplex:

0→ FpM→ Ω1
X ⊗OX

Fp+1M→ . . .→ Ωn
X ⊗OX

Fp+nM→ 0.

We will be interested in the filteredDX -modules associated to certain mixed Hodge modules
in the sense of M. Saito’s theory, see [Sai88], [Sai90]. For such filtered DX -modules there is
a duality functor D, satisfying the following compatibility with the Grothendieck dual of the
de Rham complex:

(6) GrFp DRX

(
D(M)

)
' RHomOX

(
GrF−pDRX(M), ωX [n]

)
for every p (see [Sai88, Section 2.4] and also [Sai94, Remark 2.6]).
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2.4. Localization, Hodge filtration, and minimal exponent. The DX -module we are
interested in is OX(∗Z), the sheaf of rational functions on X with poles along Z. This
underlies a mixed Hodge module, hence in particular carries a Hodge filtration; for a detailed
study of this filtration, see [MP19]. It is known that the Hodge filtration is contained in the
pole order filtration, i.e. for every p ≥ 0 we have FpOX(∗Z) ⊆ OX

(
(p+ 1)Z

)
, which leads to

the definition of the p-th Hodge ideal Ip(Z) by the formula

FpOX(∗Z) = OX
(
(p+ 1)Z

)
⊗ Ip(Z).

Note also that we have a short exact sequence

0 −→ OX −→ OX(∗Z) −→ H1
Z(OX) := OX(∗Z)/OX −→ 0

of filtered DX -modules, where OX underlies the trivial mixed Hodge module QH
X [n] and its

filtration satisfies GrFq OX = 0 for all q 6= 0, while H1
Z(OX) coincides with the first local

cohomology sheaf of OX along Z, and its Hodge filtration is induced by that on OX(∗Z).

We now turn to the minimal exponent α̃(Z) of Z, which was originally defined by Saito
in [Sai94] as the negative of the greatest root of the reduced Bernstein-Sato polynomial
bZ(s)/(s+1); it is therefore a refinement of the log canonical threshold lct(Z), which satisfies

lct(Z) = min{α̃(Z), 1}.

By convention, we have α̃(Z) =∞ if and only if bZ(s) = s+ 1, which is the case if and only
if Z is smooth. There is also a local version α̃x(Z) of this invariant around each point x ∈ Z,
such that α̃(Z) = min

x∈Z
α̃x(Z). See [MP20a, Section 6] for a general discussion and study of

the minimal exponent.

It turns out that the minimal exponent governs the complexity of the Hodge filtration in
various ways. For instance, it determines how far the Hodge filtration agrees with the pole
order filtration: for a nonnegative integer p, we have

α̃(Z) ≥ p+ 1 ⇐⇒ FkOX(∗Z) = PkOX(∗Z) for k ≤ p ⇐⇒ Ik(Z) = OX for k ≤ p

(see [Sai16, Corollary 1], and also [MP20a, Corollary C]). Under these equivalent conditions
we also say that the pair (X,D) is p-log-canonical, as the case p = 0 is precisely the case of
log-canonical pairs. It is this interpretation of the minimal exponent that will be used in this
paper.

We have the following numerical criteria for minimal exponents, which can be applied in
the context of the results in the Introduction:

• α̃(Z) ≥ 1 ⇐⇒ Z has du Bois singularities ⇐⇒ (X,Z) is log-canonical. See
[Sai09, Theorem 0.5] for the first equivalence, and [KS11, Corollary 6.6] for the second.
• α̃(Z) > 1 ⇐⇒ Z has rational singularities; see [Sai93, Theorem 0.4].
• If a point x ∈ Z has multiplicity m ≥ 2, while the singular locus of its projectivized

tangent cone P(CxZ) has dimension r (with r = −1 if P(CxZ) is smooth), then

(7)
n− r − 1

m
≤ α̃x(Z) ≤ n

m
;

see [MP20a, Theorem E]. (The inequality α̃x(Z) ≤ n
2 also follows from [Sai94, Theo-

rem 0.4].) In particular α̃x(Z) = n
m if x is an ordinary singular point.

• If Z has a weighted homogeneous isolated singularity, where the variable xi has weight
wi, then α̃(Z) =

∑
wi; see [Sai09, 4.1.5].
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• Let µ : Y → X be a log resolution of the pair (X,Z), chosen such that it is an

isomorphism over X rZ and such that the strict transform Z̃ of Z is smooth. Define
integers ai and bi by the expressions

µ∗Z = Z̃ +
m∑
i=1

aiFi and KY/X =
m∑
i=1

biFi,

where F1, . . . , Fm are the prime exceptional divisors, and set

γ := min
i=1,...,m

{
bi + 1

ai

}
.

Then we have α̃(Z) ≥ γ; see [MP20a, Corollary D], cf. also [DM20, Corollary 1.5].
• The minimal exponent also provides a bound for the generation level of the Hodge

filtration F•OX(∗Z), shown in [MP20b, Theorem A] to be at most n− 1− dα̃(Z)e.

It is shown in [MP20b, Proposition 7.4] that if Z is singular and α̃(Z) > p, for a nonnegative
integer p, then the codimension in Z of the singular locus Zsing is at least 2p. We will need
the following variant, that can be proved along the same lines:

Lemma 2.1. If Z is a singular effective divisor on the smooth variety X and if α̃(Z) ≥ p+1
for a nonnegative integer p, then

codimZ(Zsing) ≥ 2p+ 1.

Proof. We may and will assume that Z is affine. If q = dim(Zsing), then after successively
cutting X with q general hyperplane sections, we obtain a smooth closed subvariety Y of X,
of codimension q, such that the divisor Z|Y is singular. Moreover, we have α̃(Z|Y ) ≥ α̃(Z) ≥
p + 1 by [MP20b, Lemma 7.5]. In this case, it follows from (7) that p + 1 ≤ n−q

2 , hence
r = n− 1− q ≥ 2p+ 1. �

2.5. The graded pieces of the Du Bois complex via the De Rham complex of
H1
Z(OX). The connection between the graded pieces of the Du Bois complex and the Hodge

filtration on OX(∗Z) is provided by the following result:

Lemma 2.2. For every p, there is an isomorphism

(8) Ωp
Z ' RHomOX

(
GrFp−nDRX(H1

Z(OX)), ωX
)
[p+ 1].

Proof. Let f : Y → X be a morphism as in Section 2.1 assumed, in addition, to be projective.
The explicit filtered resolution of the right DY -module ωY (∗E) corresponding to OY (∗E)
given in [MP19, Proposition 3.1] implies that we have

GrFp−nDRY

(
OY (∗E)

)
' Ωn−p

Y (logE)[p];

cf. [MP19, Theorem 6.1]. Since OX(∗Z) is the push-forward of OY (∗E) (in the category of
mixed Hodge modules), we obtain using Saito’s Strictness Theorem (see [Sai88, Section 2.3.7],
cf. [MP19, Section C.4]) that

GrFp−nDRX

(
OX(∗Z)

)
' Rf∗Ω

n−p
Y (logE)[p].

Moreover, the canonical morphism

GrFp−nDRX(OX)→ GrFp−nDRX

(
OX(∗Z)

)
gets identified with the canonical morphism

α : Ωn−p
X [p]→ Rf∗Ω

n−p
Y (logE)[p].



8 MIRCEA MUSTAŢĂ, SEBASTIÁN OLANO, MIHNEA POPA, AND JAKUB WITASZEK

Since GrFp−nDRX(−) is an exact functor, we have an exact sequence of complexes

0→ GrFp−nDRX(OX)→ GrFp−nDRX

(
OX(∗Z)

)
→ GrFp−nDRX(H1

Z(OX))→ 0,

which induces an exact triangle

RHomOX

(
GrFp−nDRX(H1

Z(OX)), ωX
)
−→ RHomOX

(
GrFp−nDRX(OX(∗Z)), ωX

) β−→

β−→ RHomOX

(
GrFp−nDRX(OX), ωX)

+1−→ .

In addition, using the previous discussion, we see that β gets identified with the Grothendieck
dual of α, which in turn is identified via (5) with the morphism

Rf∗Ω
p
Y (logE)(−E)[−p] −→ Ωp

X [−p].

The isomorphism in (8) thus follows from the exact triangle (2). �

We finally note that because of the compatibility between duality for mixed Hodge mod-
ules and duality for the corresponding De Rham complexes in (6), the isomorphism (8) is
equivalent to the isomorphism

(9) Ωp
Z ' GrFn−pDRX

(
D(H1

Z(OX))
)
[p+ 1− n].

This result was originally obtained by Saito, see [Sai09, Section 2].

2.6. Steenbrink’s vanishing theorem. Let f : Y → X be a proper morphism that is an
isomorphism over XrZ, with Y smooth and E = f∗(D)red a simple normal crossing divisor.
Recall that n = dimX. Since the de Rham complex of any filtered DX -module is supported
in nonpositive degrees, it follows from (9) that

Hq(Ωp
Z) = 0 for all q ≥ n− p.

(This is a special case of a vanishing result that holds for arbitrary varieties Z; see [PS08,
Theorem 7.29].) This in turn implies via the exact triangle (2) the fact that

Rqf∗Ω
p
Y (logE)(−E) = 0 for q > n− p,

the assertion of Steenbrink’s vanishing theorem in our setting (see [Ste85, Theorem 2]).

3. Proof of the vanishing results

In this section we fix a smooth, irreducible variety X of dimension n and a reduced hyper-
surface Z in X. Before proving Theorem 1.1 and related results, we make some preliminary
considerations.

We denote by P• the pole order filtration on OX(∗Z), that is

PkOX(∗Z) = OX
(
(k + 1)Z

)
for k ≥ 0

and PkOX(∗Z) = 0 for k < 0. We also denote by P• the induced filtration on H1
Z(OX) =

OX(∗Z)/OX . For every nonnegative integer k, with k ≤ n, consider the complex

C•k = Grk−nDRX

(
H1
Z(OX), P

)
.

In other words, C•k is the following complex, placed in cohomological degrees −k, . . . , 0:

0→ Ωn−k
X ⊗OX

OZ(Z)→ Ωn−k+1
X ⊗OX

OZ(2Z)→ . . .→ ωX ⊗OX
OZ
(
(k + 1)Z

)
→ 0.
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If f is a local equation defining Z, then the differential of the complex at Ωn−k+i
X ⊗OZ

(
(i+1)Z)

acts as
η ⊗ [1/f i+1] 7→ −(i+ 1)(η ∧ df)⊗ [1/f i+2].

Since the Hodge filtration F• on OX(∗Z) satisfies FiOX(∗Z) ⊆ PiOX(∗Z) for all i, we
have a canonical morphism

ϕk : Grk−nDRX

(
H1
Z(OX), F

)
→ C•k .

Moreover, as explained in Section 2.4, we have α̃(Z) ≥ p + 1 if and only if FkOX(∗Z) =
PkOX(∗Z) for all k ≤ p, or equivalently, FkH1

Z(OX) = PkH1
Z(OX) for all k ≤ p. We thus see

that if α̃(Z) ≥ p, then ϕip is an isomorphism for all i 6= 0 and ϕ0
p is injective, and in addition

this last map is an isomorphism if and only if α̃(Z) ≥ p+ 1. We thus obtain the following:

Lemma 3.1. For every p ≥ 0, the following assertions are equivalent:

i) α̃(Z) ≥ p+ 1.
ii) ϕk is an isomorphism of complexes for all 0 ≤ k ≤ p.

iii) ϕk is an isomorphism in the derived category for all 0 ≤ k ≤ p.

We will use the following consequence:

Proposition 3.2. For every p ≥ 0, we have α̃(Z) ≥ p + 1 if and only if for all 0 ≤ k ≤ p
the morphism ϕk induces an isomorphism

ψk : RHomOX

(
C•k , ωX [n]

)
→ Ωk

Z [n− k − 1].

Proof. Since RHomOX

(
−, ωX [n]

)
is a duality, it follows that for every k, the morphism ϕk is

an isomorphism if and only if ψk = RHomOX

(
ϕk, ωX [n]

)
is an isomorphism. The assertion in

the proposition follows from Lemma 3.1 and the fact that for every k, we have an isomorphism

RHomOX

(
Grk−nDRX(H1

Z(OX)), ωX [n]
)
' Ωk

Z [n− k − 1]

provided by Lemma 2.2. �

We can now prove the first result stated in the Introduction.

Proof of Theorem 1.1. We begin by showing that if α̃(Z) ≥ p+ 1, then Hj(Ωk
Z) = 0 for j ≥ 1

and 0 ≤ k ≤ p. By Proposition 3.2, it is enough to show that

(10) ExtjOX
(C•k , ωX) = 0 for all 0 ≤ k ≤ p and j > k + 1.

In order to prove this we may work locally, and thus assume that Z is defined in X by some
f ∈ OX(X). In this case, it follows from our description of the complex C•k that if A• is the
complex

0 −→ OX
df−→ Ω1

X
−∧df−→ · · · −∧df−→ Ωn

X −→ 0,

placed in cohomological degrees −n, . . . , 0, then C•k is isomorphic to the “stupid” truncation

σ≥−k(A•|Z).

In particular, we see that for every k there is a short exact sequence of complexes

(11) 0 −→ C•k−1 −→ C•k −→ Ωn−k
X |Z [k] −→ 0.

For every vector bundle E on X, we have

(12) Ext1OX
(E|Z , ωX) ' E∨ ⊗OX

ωZ and ExtjOX
(E|Z , ωX) = 0 for j 6= 1.
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For future reference, we first note that since Z = div(f), we have ωZ ' ωX |Z and thus the
first isomorphism in (12) gives

(13) Ext1OX
(Ωn−k

X |Z , ωX) ' Ωk
X for every k.

Using the vanishings in (12), we deduce from (11) that

ExtjOX
(C•k−1, ωX) ' ExtjOX

(C•k , ωX)

for all j 6= k, k + 1. The assertion in (10) now follows by an easy induction on k.

We next turn to the description of H0(Ωk
Z) for 0 ≤ k ≤ p. The assertion is trivial if Z

is smooth, hence from now on we assume that Z is singular. In this case, we have seen in
Section 2.4 that α̃(Z) ≤ n

2 , hence p + 1 ≤ n
2 . As before, we may and will assume that X is

affine and Z is defined by f ∈ OX(X).

Since Hi(Ωk
Z) = 0 for all i < 0, it follows from Proposition 3.2 and what we have already

proved above that for 0 ≤ k ≤ p we have

(14) Extk+1
OX

(C•k , ωX) ' H0(Ωk
Z) and ExtjOX

(C•k , ωX) = 0 for j 6= k + 1.

For k = 0 we deduce using (13):

Ext1OX
(C•0 , ωX) = Ext1OX

(ωX |Z , ωX) ' OZ .

From now on, we assume that p ≥ 1 and consider k such that 1 ≤ k ≤ p. Since the
canonical morphism Ωk

Z → H0(Ωk
Z) is an isomorphism over the smooth locus of Z, in order

to conclude that it is an isomorphism everywhere it is enough to show that if J is the ideal
defining the singular locus Zsing in Z, then

(15) depth
(
J ,H0(Ωk

Z)
)
≥ 2 and depth(J ,Ωk

Z) ≥ 2.

Indeed, recall that for every coherent sheaf F on Z, we have an exact sequence

0→ H0
J (F)→ F(Z)→ F(Z r Zsing)→ H1

J (F),

and if depth(J , F ) ≥ 2, then H0
J (F) = 0 = H1

J (F) (see [Har67, Theorem 3.8]).

Note that if r = codimZ(Zsing), since Z is Cohen-Macaulay, we have depth(J , E) = r for
every locally free sheaf E on Z. The first inequality in (15) actually holds for all varieties
with rational singularities; see Remark 3.3 below. In our case however there is also a quick
argument: the exact sequences (11), together with the isomorphisms in (14) give an exact
sequence

0→ H0(Ωk−1
Z )→ Ωk

X |Z → H0(Ωk
Z)→ 0,

where the description of the term in the middle follows from (13). We thus conclude that

depth
(
J ,H0(Ωk

Z)
)
≥ min

{
depth(J ,Ωk

X |Z),depth
(
J ,H0(Ωk−1

Z )
)
− 1
}

= min
{
r, depth

(
J ,H0(Ωk−1

Z )
)
− 1
}

(see, for example, [BH93, Proposition 1.2.9]). Since we have already seen that H0(Ω0
Z) ' OZ ,

iterating this argument k times gives

depth
(
J ,H0(Ωk

Z)
)
≥ r − k ≥ r − p.

On the other hand, since α̃(Z) ≥ p + 1, it follows from Lemma 2.1 that r − p ≥ p + 1 ≥ 2,
hence we get the first inequality in (15).
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The second inequality in (15) follows similarly: note first that we have the presentation

OZ
df−→ Ω1

X |Z −→ Ω1
Z −→ 0

and that the zero-locus of df is Zsing, whose codimension in Z is r ≥ 2p + 1 ≥ k. Since
Z is Cohen-Macaulay, it follows from the description of depth via Koszul homology (see
[Mat89, Theorem 16.8]) that we have an exact complex

0 −→ OZ
df−→ Ω1

X |Z
−∧df−→ . . .

−∧df−→ Ωk
X |Z −→ Ωk

Z → 0

(note that exactness at the last two terms holds in general). Breaking this into short exact
sequences and using again Lemma 2.1, we see that

depth(J ,Ωk
Z) ≥ r − k ≥ r − p ≥ p+ 1 ≥ 2.

This completes the proof of the theorem. �

Remark 3.3. Under the assumptions of Theorem 1.1, if p ≥ 1, then one can describe in fact
the sheaves H0(Ωq

Z) for all q with 0 ≤ q ≤ n. Indeed, we have seen that the condition
α̃(Z) ≥ 2 implies that Z has rational singularities by [Sai93, Theorem 0.4]. Since Z is a
hypersurface, this is equivalent to Z having klt singularities by [Kol97, Corollary 11.13]. In
this case, it was shown in [HJ14, Theorem 5.4] that if j : Zsm ↪→ Z is the inclusion of the
smooth locus, then

H0(Ωq
Z) ' j∗Ωq

Zsm
' (Ωq

Z)∨∨

for all q, via an identification with the sheaves of h-differentials. More recently, this was shown
to hold for all varieties with rational singularities by Kebekus-Schnell [KS18, Corollary 1.12].

While the statement and argument for the vanishing in Theorem 1.1 are particularly trans-
parent, a stronger statement can be made about the vanishing of individual cohomologies, in
terms of the size of the loci in Z where the minimal exponent is small.

Theorem 3.4. If Z is a reduced hypersurface in a smooth variety X, and for some integer
p > 0 the locus Zp consisting of the points of Z where α̃x(Z) < p+ 1 (equivalently, the closed
subscheme defined by the Hodge ideal Ip(Z)) satisfies codimXZp > i+ p+ 2 for some i ≥ 1,
then Hi(Ωp

Z) = 0.

Proof. We use freely the notation and arguments from the proof of Theorem 1.1. Note
first that the morphism ϕp in Lemma 3.1 has the property that both A• = ker(ϕp) and
B• = coker(ϕp) have all terms supported on Zp. Moreover, these complexes are con-
centrated in cohomological degrees ≤ 0. We have seen in the proof of Theorem 1.1 that

Exti+p+1
OX

(C•p , ωX) = 0. The short exact sequences

0 = Exti+p+1
OX

(C•p , ωX)→ Exti+p+1
OX

(
im(ϕp), ωX

)
→ Exti+p+2

OX
(B•, ωX)

and

Exti+p+1
OX

(im(ϕp), ωX)→ Exti+p+1
OX

(
Grp−nDRX(H1

Z(OX)), ωX
)

= Hi(Ωp
Z)→ Exti+p+1

OX
(A•, ωX)

imply that in order to conclude it suffices to show that

Exti+p+1
OX

(A•, ωX) = Exti+p+2
OX

(B•, ωX) = 0.
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It is thus enough to show that if F• is a complex on X concentrated in degrees ≤ 0 and
codimXSupp(Fq) > m for all q, then ExtmOX

(F•, ωX) = 0. This follows from the hypercoho-
mology spectral sequence

Ei,j1 = ExtjOX
(F−i, ωX)⇒ Exti+jOX

(F•, ωX),

since when i + j = m, we have Ei,j1 = 0: indeed, we may assume that i ≥ 0, hence j =

m− i ≤ m and then ExtjOX
(F−i, ωX) = 0 as codimXSupp(F−i) > m ≥ j. �

An immediate consequence is a range of automatic vanishing in terms of the size of the
singular locus of Z.

Corollary 3.5. If the singular locus of the hypersurface Z has dimension s, then for all
p ≥ 0 we have

Hi(Ωp
Z) = 0 for 1 ≤ i < n− s− p− 2.

Remark 3.6. The results above are of course relevant even in the non-Du Bois case, or
equivalently when we have α̃x(Z) < 1 at some points, as Theorem 3.4 implies thatHi(Ω0

Z) = 0
for i < n−s−2 if s is the dimension of the non-Du Bois locus. For instance, if Z has isolated
singularities, then HiΩ0

Z 6= 0 can happen only for i = 0 and i = n − 2, and it does happen
for both if Z is not Du Bois.4

We next deduce the two corollaries of Theorem 1.1.

Proof of Corollary 1.2. Since the morphism Ωk
X → Ωk

Z is surjective for every k ≥ 0, the
assertion follows directly from Theorem 1.1 via the exact triangle (2). It is worth noting that
Corollary 1.2 is in fact equivalent to the vanishings HiΩq

Z = 0 for i > 0, plus the surjectivity
of the natural map Ωq

X → H0Ωq
Z , for all 0 ≤ q ≤ p. �

Proof of Corollary 1.3. The assertion follows directly from Theorem 1.1 and the version of
the Akizuki-Nakano vanishing theorem for the graded pieces of the Du Bois complex:

H i(Z,Ωj
Z ⊗ L) = 0 for i+ j > dimZ

(see [PS08, Theorem 7.29]). �

Using a similar approach to that in the proof of Theorem 1.1, we obtain the vanishing
result in Theorem 1.4, as follows.

Proof of Theorem 1.4. We may and will assume that Z is singular, in which case our hypothe-
sis implies q ≤ n/2; in particular, we have q 6= n. It is enough to prove that Hn−q−1(Ωq

Z) = 0:
indeed, the vanishing of Rn−qf∗Ω

q
X(logE)(−E) then follows from the exact triangle (2) since

q 6= n gives Hn−q(Ωq
X) = 0.

Furthermore, we may assume that q ≤ n − 2: if q = n − 1, the fact that q ≤ n/2 implies
n = 2. Moreover, the hypothesis that α̃(Z) ≥ q = 1 gives that (X,Z) is log canonical and it
is well known that this can only happen for nodal curves (note that in this case we clearly
have H0(Ω1

Z) 6= 0).

Using Lemma 2.2, we see that

Hn−q−1(Ωq
Z) ' ExtnOX

(
Grq−nDRX(H1

Z(OX)), ωX
)
.

4Note that Hn−1(Ω0
Z) = 0 by Theorem 1.4.
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Note now that since α̃(Z) ≥ q, the morphism of complexes

ϕq : Grq−nDRX(H1
Z(OX))→ C•q

is injective (see the discussion before Lemma 3.1), and its cokernel is a sheaf F (supported
in cohomological degree 0). We thus have an exact sequence

ExtnOX
(C•q , ωX)→ ExtnOX

(
Grq−nDRX(H1

Z(OX)), ωX
)
→ Extn+1

OX
(F , ωX) = 0,

hence it is enough to show that ExtnOX
(C•q , ωX) = 0.

Arguing as in the proof of Theorem 1.1, working locally we may assume that Z is defined
in X by a global equation. In this case we have a short exact sequence of complexes

0→ C•q−1 → C•q → Ωn−q
X |Z [q]→ 0.

We deduce the exact sequence

Extn−qOX
(Ωn−q

X |Z , ωX)→ ExtnOX
(C•q , ωX)→ ExtnOX

(C•q−1, ωX).

The first term vanishes since q 6= n− 1 and the third term vanishes since q 6= n, as we have
seen in (14). We thus have ExtnOX

(C•q , ωX) = 0, completing the proof of the theorem. �

4. Proof of the non-vanishing result

The proof of Theorem 1.5 makes use of the V -filtration, so we begin with a very brief
review of this notion. For more details, we refer for example to [Sai88, Section 3.1] or
[MP20a, Section 2]. Suppose that X is a smooth, irreducible, complex algebraic variety of
dimension n, and Z is a hypersurface in X defined by f ∈ OX(X). It is common to denote by
Bf the D-module push-forward ι+OX , where ι : X ↪→W = X ×A1 is the graph embedding
ι(x) =

(
x, f(x)

)
. If t denotes the coordinate on A1, then there is an isomorphism

Bf ' OX [t]f−t/OX [t] '
⊕
i≥0

OX · ∂itδ,

where δ denotes the class of 1
f−t , and the actions of t and of a derivation P ∈ DerC(OX) are

given by

t · h∂itδ = fh∂itδ − ih∂i−1
t δ and P · h∂itδ = P (h)∂itδ − P (f)h∂i+1

t δ.

The DW -module Bf carries a (Hodge) filtration given by

Fp+1Bf =
⊕

0≤i≤p
OX · ∂itδ.

This filtered DX -module underlies a pure Hodge module of weight n.

When dealing with duality, it is more common to use right DX -modules. In order to avoid
confusion when citing various results, we will follow this tradition. Recall that there is a
canonical equivalence of categories between left and right DX -modules such that ifMr is the
right DX -module corresponding to the left DX -module M, then we have an isomorphism of
OX -modules

(16) Mr ' ωX ⊗OX
M.

For example, the right DX -module corresponding to OX is ωX and the right DX -module
corresponding to H1

Z(OX) is H1
Z(ωX).

We similarly have an equivalence between filtered left and right DX -modules and the
standard convention is that if (Mr, F ) corresponds to (M, F ), then the isomorphism (16)
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identifies Fp−nMr with ωX ⊗OX
FpM. Similar considerations apply of course on X ×A1.

Various D-module operations (including duality) are compatible with these equivalences. For
example, the right D-module corresponding to Bf is

Br
f := ι+ωX = ωX ⊗OX

Bf .

We also note that the filtered De Rham complex associated to (Mr, F ) can be taken to be
the filtered De Rham complex of (M, F ); in particular, we have

GrF• DRX

(
H1
Z(ωX)

)
= GrF• DRX

(
H1
Z(OX)

)
.

The V -filtration on Bf is a decreasing, exhaustive, discrete, and left continuous filtration
(V αBf )α∈Q parametrized by rational numbers. It is characterized uniquely by a number of
properties listed for instance in [Sai88, Section 3.1]. The Hodge filtration on Bf induces a
filtration on each V αBf and thus on GrαVBf = V αBf/V

>αBf as well. We have a correspond-
ing V -filtration on Br

f given by V αBr
f = ωX⊗OX

V αBf . Note that since the Hodge filtrations
on GrαVBf and GrαVB

r
f are induced by those on Bf and Br

f , respectively, these satisfy

(17) Fp−n−1GrαVB
r
f = ωX ⊗OX

FpGrαVBf .

An important fact is a result of Saito, see [Sai16, (1.3.8)], describing the minimal exponent
via the V -filtration: if q is a non-negative integer and α ∈ (0, 1] is a rational number, then

(18) α̃(Z) ≥ q + α ⇐⇒ ∂qt δ ∈ V αBf .

This setting is relevant for us since the filtered right DX -module H1
Z(ωX), corresponding

to the DX -module appearing in Lemma 2.2, is isomorphic to the cokernel of the morphism
of filtered DX -modules

Gr0
VB

r
f
·t−→ Gr1

VB
r
f

between the vanishing cycles and (a Tate twist of) the nearby cycles of f (see [Sai90, Sec-
tion 2.24]). It follows that D

(
H1
Z(ωX)

)
is isomorphic to the kernel of the dual morphism

(19) D(Gr1
VB

r
f )→ D(Gr0

VB
r
f ),

where D is the duality functor on filtered D-modules; see [Sai88, Section 2.4]. Since Br
f

underlies a pure polarizable Hodge module of weight n, we have an isomorphism D(Br
f ) '

Br
f (n). Here, for a filtered D-module (M, F ), we use the notation (M, F )(q) for the filtered

D-module (M, F [q]), where F [q]iM = Fi−qM. Using the compatibility between duality and
vanishing/nearby cycles proved by Saito in [Sai89, Theorem 1.6], we also have isomorphisms
of filtered (right) DX -modules

D(Gr1
VB

r
f ) ' Gr1

VB
r
f (n+ 1) and D(Gr0

VB
r
f ) ' Gr0

VB
r
f (n).

Moreover, the morphism (19) gets identified with the morphism

(20) Gr1
VB

r
f (n+ 1)

·∂t−→ Gr0
VB

r
f (n).

After this preparation, we can prove the result stated in the Introduction.

Proof of Theorem 1.5. It follows from the formula (9) for the graded pieces of the Du Bois
complex that for every i, we have

Hi(Ωn−p
Z ) ' Hi−p+1

(
GrFp DRXD(H1

Z(ωX))
)
.
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On the other hand, it follows from the previous discussion that GrFp DRXD
(
H1
Z(ωX)

)
is

isomorphic to the kernel of the morphism

GrFp−n−1DRX

(
Gr1

V (Br
f )
)
→ GrFp−nDRX

(
Gr0

V (Br
f )
)

induced by right multiplication with ∂t. If we write these complexes explicitly in terms of left
D-modules, using the identification in (17), we see that GrFp DRXD

(
H1
Z(ωX)

)
is the kernel

of the morphism of complexes

0 // Ωn−p+1
X ⊗GrF1 Gr1

VBf

��

// · · · // Ωn−1
X ⊗GrFp−1Gr1

VBf
//

��

ωX ⊗GrFp Gr1
VBf

//

��

0

0 // Ωn−p+1
X ⊗GrF2 Gr0

VBf
// · · · // Ωn−1

X ⊗GrFp Gr0
VBf

// ωX ⊗GrFp+1Gr0
VBf

// 0

placed in cohomological degrees −(p − 1), . . . , 0 and in which the vertical maps are given
by left multiplication by ∂t. Under the assumption of the theorem, we will identify the top
complex and show that in the bottom complex all terms are 0.

By (18), the condition α̃(Z) > p is equivalent to the fact that ∂pt δ ∈ V >0Bf , and in fact

∂jt δ ∈ V >0Bf for all j ≤ p. We thus see that Fp+1Bf ⊆ V >0Bf , hence GrFj Gr0
VBf = 0 for

all j ≤ p+ 1. Therefore the bottom complex in the above diagram is 0 and we conclude that

Hi(Ωn−p
Z ) ' Hi−p+1

(
GrFp−n−1DRX

(
Gr1

V (Br
f )
))
.

Again using (18), since α̃(Z) ≥ p we deduce that ∂jt δ ∈ V 1Bf for j ≤ p− 1. We conclude
that for 1 ≤ j ≤ p, we have FjV

1Bf =
⊕

i≤j−1OX · ∂itδ. Note also that FjV
>1Bf =

t·FjV >0Bf ; this is a general property of filtered D-modules underlying mixed Hodge modules,
see [Sai88, (3.2.1.2)]. This implies that for j ≤ p, we have

FjV
>1Bf + Fj−1V

1Bf = OX · δ ⊕ · · · ⊕ OX · ∂j−2
t δ ⊕ (f) · ∂j−1

t δ.

We thus conclude that the morphism

OX/(f)→ GrFj Gr1
VBf = FjV

1Bf/(FjV
>1Bf + Fj−1V

1Bf )

that maps the class of h to the class of h∂j−1
t δ, is an isomorphism.

Suppose now that we have algebraic local coordinates x1, . . . , xn in a neighborhood of
x. A straightforward computation then shows that Hi(Ωn−p

Z ) is the cohomology in degree

i− p+ 1 of the “stupid” truncation σ≥−p+1 of the Koszul complex on OX/(f) associated to

the sequence ∂f/∂x1, . . . , ∂f/∂xn. This immediately gives the formula for Hp−1(Ωn−p
Z ) in i).

Suppose now that p ≥ 3 and f has an isolated singularity at x. In this case, by Generic
Smoothness, around x the zero-locus of Jf is contained in the hypersurface defined by f ,
hence it is equal to {x}. Therefore the elements ∂f/∂x1, . . . , ∂f/∂xn form a regular sequence
in OX,x, so that

Hi(Ωn−p
Z )x ' Tor

OX,x

p−1−i(OX,x/Jf ,OZ,x)

for 1 ≤ i ≤ p−1. The assertions in ii) are immediate consequences. (The vanishing statement
also follows from Corollary 3.5, and holds for an arbitrary isolated singularity.) �
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[MP19] M. Mustaţă and M. Popa, Hodge ideals, Mem. Amer. Math. Soc. 262 (2019), no. 1268, v+80.
↑1, 6, 7

[MP20a] , Hodge ideals for Q-divisors, V -filtration, and minimal exponent, Forum Math. Sigma
8 (2020), Paper No. e19, 41. ↑1, 4, 6, 7, 13

[MP20b] , Hodge filtration, minimal exponent, and local vanishing, Invent. Math. 220 (2020),
no. 2, 453–478. ↑3, 7

[PS08] C. Peters and J. Steenbrink, Mixed Hodge structures, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics
and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 52, Springer-
Verlag, Berlin, 2008. ↑4, 5, 8, 12

[Sai88] M. Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, 849–995.
↑5, 7, 13, 14, 15

[Sai89] , Duality for vanishing cycle functors, Publ. Res. Inst. Math. Sci. 25 (1989), no. 6,
889–921. ↑14

[Sai90] , Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221–333. ↑5, 14
[Sai93] , On b-function, spectrum and rational singularity, Math. Ann. 295 (1993), no. 1, 51–74.

↑6, 11
[Sai94] , On microlocal b-function, Bull. Soc. Math. France 122 (1994), no. 2, 163–184. ↑1, 5, 6
[Sai09] , On the Hodge filtration of Hodge modules, Mosc. Math. J. 9 (2009), no. 1, 161–191,

back matter (English, with English and Russian summaries). ↑6, 8
[Sai16] , Hodge ideals and microlocal V -filtration, preprint arXiv:1612.08667 (2016). ↑1, 6, 14
[Sch07] K. Schwede, A simple characterization of du Bois singularities, Compositio Math. 143 (2007),

no. 4, 813-828. ↑2
[Ste85] J. Steenbrink, Vanishing theorems on singular spaces, Astérisque 130 (1985), 330–341. Differ-
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