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Abstract. Given an n-dimensional variety Z with rational singulari-
ties, we conjecture that if f : Y → Z is a resolution of singularities whose
reduced exceptional divisor E has simple normal crossings, then

Rn−1f∗ΩY (logE) = 0.

We prove this when Z has isolated singularities and when it is a toric
variety. We deduce that for a divisor D with isolated rational singulari-
ties on a smooth complex n-dimensional variety X, the generation level
of Saito’s Hodge filtration on the localization OX(∗D) is at most n− 3.

A. Introduction

We propose the following local vanishing conjecture for log resolutions of
varieties with rational singularities:

Conjecture A. If Z is a complex variety of dimension n ≥ 2, with rational
singularities, and f : Y → Z is a resolution of singularities whose reduced
exceptional divisor E has simple normal crossings, then

Rn−1f∗ΩY (logE) = 0.

The related local vanishing

Rn−1f∗
(
ΩY (logE)⊗ OY (−E)

)
= 0

is already known; it is a variant of the Steenbrink-type vanishing theorem
[GKKP11, Theorem 14.1], as explained in §3.

The main purpose of this paper is to answer in the affirmative the case
of isolated singularities.

Theorem B. Conjecture A holds when Z has isolated singularities.

The proof relies on results from both birational geometry and Hodge
theory. One ingredient is the Steenbrink-type vanishing from [GKKP11]
mentioned above. With the help of this theorem, we reduce our statement
to a problem in Hodge theory. In the case of surfaces, it can be solved using
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the Hodge Index theorem. In higher dimension however, the solution relies
on more subtle results of de Cataldo-Migliorini [dCM05], [dCM07] on the
Hodge theory of algebraic maps, combined with rudiments of mixed Hodge
theory.

We also show the following statement, relying on standard facts from the
theory of toric varieties.

Theorem C. Conjecture A holds when Z is a toric variety.

One source of interest in Conjecture A is the fact that, according to a crite-
rion in [MP16a], it leads to a bound on the generation level of Saito’s Hodge
filtration for hypersurfaces with rational singularities. Given a smooth com-
plex varietyX, and a reduced divisorD onX, let OX(∗D) be the DX -module
of rational functions with poles along D, i.e. the localization of OX along
D. Saito’s theory of mixed Hodge modules [Sai90] endows it with a Hodge
filtration FkOX(∗D), k ≥ 0, compatible with the standard filtration on DX ,
where F`DX consists of differential operators of order at most `.

Saito introduced in [Sai09] a measure of the complexity of this filtration;
one says that it is generated at level k if

F`DX · FkOX(∗D) = Fk+`OX(∗D) for all ` ≥ 0.

The smallest integer k with this property is called the generating level. It
was shown in [MP16a, Theorem B] that if X has dimension n ≥ 2, then
F•OX(∗D) is always generated at level n − 2. This bound is sharp even
when n ≥ 3; see e.g. [MP16a, Example 17.9]. We propose an improvement
in the case of rational singularities:

Conjecture D. If D has only rational singularities and n ≥ 3, then the
Hodge filtration F•OX(∗D) is generated at level n− 3.

When D has an isolated quasihomogeneous singularity, a stronger bound
was given by Saito in [Sai09, Theorem 0.7]: the generating level of F•OX(∗D)
is [n−αf ]−1, where αf is the microlocal log canonical threshold of D, i.e. the
negative of the largest root of its reduced Bernstein-Sato polynomial. It is
known that the singularity being rational is equivalent to αf > 1; see [Sai93,
Theorem 0.4]. We note that for isolated semiquasihomogeneous singularities
the generating level can be even lower. In particular, the example in Remark
(i) after 5.4 in [Sai09] provides a singularity which is not rational (as αf < 1),
but with generating level at most n−3. This shows that the converse of the
statement of Conjecture D is not true in general.

A consequence of Theorem B is the fact that Conjecture D holds when-
ever the divisor D has isolated singularities. More precisely, we show the
following:

Theorem E. Conjecture D is equivalent to Conjecture A when Z is a hyper-
surface. In particular, Conjecture D holds when the divisor D has isolated
singularities.
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It is natural to ask more boldly whether Saito’s formula [n− αf ]− 1 for
the generating level holds for all rational singularities.

We also propose in Theorem 12.1 a reduction of the full statement of
Conjecture D to the case of isolated singularities treated here. It is based
on a conjectural statement of independent interest regarding Hodge ideals
[MP16a], an alternative way of approaching the study of F•OX(∗D). More
precisely, the statement is about their m-adic approximation, and is known
to hold for multiplier ideals; see Conjecture 11.1 and Example 11.2.

Acknowledgements. We thank Mark Andrea de Cataldo for useful con-
versations and Sándor Kovács for his comments on a preliminary version of
this paper. We are also grateful to the referee for suggesting a quicker and
more conceptual argument for the main result in §7.

B. The proof for isolated singularities

Our goal in this section is to prove Conjecture A in the case of varieties
with isolated singularities.

1. Preliminaries. We fix a variety Z with rational singularities and a
resolution f : Y → Z as in Conjecture A, with reduced exceptional divisor

E =
∑d

i=1Ei, where the Ei are mutually distinct prime divisors.

Lemma 1.1. The assertion in Conjecture A is independent of the chosen
resolution.

Proof. Given any two resolutions as in the statement, we can find one that
dominates both. Therefore it is enough to consider the case when g : W → Y
is such that h = f ◦ g is another resolution of Z whose reduced exceptional
divisor F has simple normal crossings. Note that in this case F is the sum
of the strict transform of E and the g-exceptional divisor. Therefore, since
Y is smooth and E has simple normal crossings, we deduce from [MP16a,
Theorem 31.1(ii)] that

f∗ΩW (logF ) ' ΩY (logE)

and

Rif∗ΩW (logF ) = 0 for all i > 0.

The Leray spectral sequence then gives

Rqh∗ΩW (logF ) ' Rqf∗ΩY (logE) for all q ≥ 0,

which implies the assertion. �

Remark 1.2. Note that Lemma 1.1 implies in particular that Conjecture A
holds when Z is smooth. Indeed, it allows us to take f to be the identity,
in which case the assertion is clear.
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We now begin the preparations for the proof of Theorem B. By Lemma 1.1,
the vanishing in Conjecture A does not depend on f . Hence we may and
will assume that f is a composition of blow-ups with centers lying over the
singular locus Zsing of Z. We also assume that the exceptional locus of f has
pure codimension 1 (and it is thus equal to the support of E). In particular,
f is an isomorphism over ZrZsing, and thus E lies over Zsing. The assertion
is also local on Z, hence without loss of generality we may and will assume
that Z is affine. We will identify coherent sheaves on Z with their spaces of
global sections.

2. A reformulation of the problem. We have the following:

Lemma 2.1. With the above notation, we have

Hn−1(Ei,OEi) = 0 for all 1 ≤ i ≤ d.

Proof. Since Z has rational singularities, we have

Hn−1(Y,OY ) = 0,

while the fact that f has fibers of dimension ≤ n− 1 implies

Hn
(
Y,OY (−Ei)

)
= 0 for all i.

Passing to cohomology in the short exact sequence

0 −→ OY (−Ei) −→ OY −→ OEi −→ 0

implies then the statement. �

Consider now on Y the residue short exact sequence

0 −→ ΩY −→ ΩY (logE) −→
d⊕
i=1

OEi −→ 0.

It follows from the corresponding long exact sequence and Lemma 2.1 that
we can rephrase the vanishing predicted by Conjecture A (when Z has ra-
tional singularities), as follows:

Proposition 2.2. With the above notation, we have

Hn−1
(
Y,ΩY (logE)

)
= 0

if and only if the connecting homomorphism

α :
d⊕
i=1

Hn−2(Ei,OEi) −→ Hn−1(Y,ΩY )

is surjective.



LOCAL VANISHING AND HODGE FILTRATION FOR RATIONAL SINGULARITIES 5

3. A vanishing theorem for log canonical pairs. We continue to as-
sume that Z has rational singularities. In this case, the Steenbrink-type
vanishing theorem [GKKP11, Theorem 14.1] gives

(3.1) Hn−1
(
ΩY (logE)⊗ OY (−E)

)
= 0.

We note that the result in loc. cit. is stated for log canonical pairs (Z,D).
However, when D = 0, the result also holds if we only assume that Z has
Du Bois singularities (this is the only condition that is used in the proof,
via [GKKP11, Theorem 13.3]). In our case this condition is satisfied since
rational singularities are Du Bois by [Kov99, Theorem S].

Note that we also have

(3.2) Hn
(
ΩY (logE)⊗ OY (−E)

)
= 0,

due to the fact that all fibers of f have dimension ≤ n − 1. These two
vanishing statements will be used later in combination with Proposition 2.2.

4. A complex describing ΩY (logE)(−E). In order to make use of Propo-
sition 2.2 we will need the following, likely familiar to experts:

Lemma 4.1. Suppose that E =
∑d

i=1Ei is a simple normal crossing divisor
on the smooth, n-dimensional variety Y . If for every J ⊆ {1, . . . , d} we
denote

EJ :=
⋂
i∈J

Ei,

then there is an exact complex

0→ ΩY (logE)⊗ OY (−E)→ C0 = ΩY
d1→ C1 → . . .

dn−2

→ Cn−1 → 0,

where

Cp =
⊕
|J |=p

ΩEJ
for all 1 ≤ p ≤ n− 1,

and the maps di are induced, up to sign, by the obvious restriction maps.

Proof. This is a local assertion, hence we may assume that we have an
algebraic system of coordinates x1, . . . , xn on Y such that Ei is defined by xi
for 1 ≤ i ≤ d. The coordinates x1, . . . , xd define a smooth map ϕ : Y → Ad

such that E = ϕ∗H, where H is the sum of the coordinate hyperplanes.
Since exactness is preserved by flat pull-back, it is enough to prove the
lemma when Y = Ad and Ei is defined by xi.

In this case, all the terms in the complex carry a natural Nd-grading
(where each dxi has degree 0), with the maps preserving the grading. There-
fore it is enough to check exactness in each degree. Note that the kernel of

ΩAd −→
d⊕
i=1

ΩEi
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consists of those
∑

i fidxi such that fi is divisible by xj for every j 6= i.
Therefore this kernel is precisely ΩY (logE) ⊗ OY (−E). Consequently we
only need to check the exactness of the complex in the lemma at each Ci,
with 1 ≤ i ≤ d− 1.

Let’s consider u = (u1, . . . , ud) ∈ Nd. Note that

Cpu =
⊕
J

⊕
j

Cxudxj ,

where the sum is taken over those subsets J ⊆ {1, . . . , d} with |J | = p
and such that ui = 0 for all i ∈ J , and over all j 6∈ J . Equivalently, j
runs over {1, . . . , d} and for every j, the set J varies over the subsets of
{i ∈ {1, . . . , d} | ui = 0}r {j} with p elements. We thus see that the degree
u component of the complex

0 −→ C0 −→ C1 −→ . . . −→ Cd−1 −→ 0

is a direct sum of d complexes, each of them isomorphic to the complex
computing the reduced simplicial cohomology of the full simplicial complex
on a suitable set. Each such complex has no cohomology in positive degrees
(and it has cohomology in degree 0 if and only if the corresponding set is
empty). This proves the exactness of the complex in the lemma at each Ci,
for i ≥ 1. �

5. The proof of Conjecture A for n = 2. When the dimension of Z
is 2, the required vanishing is easy to obtain using the reformulation in
Proposition 2.2. In this case the complex in Lemma 4.1 is simply

0 −→ ΩY (logE)⊗ OY (−E) −→ ΩY −→
d⊕
i=1

ΩEi −→ 0.

Using (3.1) and (3.2), we see that the induced map

(5.1) β : H1(Y,ΩY ) −→
d⊕
i=1

H1(Ei,ΩEi)

is an isomorphism.

On the other hand, note that α in Proposition 2.2 maps the element
1 ∈ H0(Ei,OEi) ' C to the class cl(Ei), that is to the image of O(Ei) via
the map

Pic(Y ) −→ H1(Y,ΩY )

induced by O∗Y → ΩY , u→ dlog(u). Furthermore, it is well-known (see, for
example, [Har77, Exercise V.1.8]) that the image of cl(Ei) in H1(Ej ,ΩEj ) '
C is the intersection product (Ei · Ej). We conclude that, via the isomor-
phism (5.1), the map α is given by the matrix (Ei · Ej)1≤i,j≤d. The fact
that this matrix is non-singular (in fact, negative definite) is a well-known
consequence of the Hodge Index theorem.
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6. The set-up in higher dimension. From now on we assume that n ≥ 3.
We also assume that Z has isolated singularities and in fact, after restricting
to suitable affine open subsets, that Zsing is a point and that E lies over it.
In particular all Ei are smooth projective varieties, of dimension n− 1. We
consider the morphism

β : Hn−1(Y,ΩY ) −→
d⊕
i=1

Hn−1(Ei,ΩEi)

induced by the map C0 → C1 in Lemma 4.1. For p ≥ 1, we also consider

Mp := ker(dp+1) ⊆ Cp.

The vanishing statements (3.1) and (3.2) imply that the map C0 → M1

induces an isomorphism

(6.1) Hn−1(Y,ΩY ) ' Hn−1(Y,M1).

Note that for every p we have

dim Supp(Mp) ≤ dim Supp(Cp) = n− p.

In particular, from the exact sequence

0→M1 → C1 →M2 → 0

we deduce that the induced morphism

ϕ1 : Hn−1(Y,M1)→ Hn−1(Y, C1)

is surjective. By combining this with (6.1), we conclude that β is always
surjective.

On the other hand, it follows from Poincaré duality and Hodge symmetry
that for every i with 1 ≤ i ≤ d, we have

hn−2(Ei,OEi) = h0,n−2(Ei) = hn−1,1(Ei) = h1,n−1(Ei) = hn−1(Ei,ΩEi).

Therefore the source and target of β◦α have the same dimension. We deduce
the following:

Lemma 6.2. With the above notation, the following are equivalent:

i) α is surjective.
ii) α and β are isomorphisms.

iii) α and β are injective.

Proof. Note that if α is surjective, since β is also surjective, we conclude
that β ◦α is surjective as well, hence it is an isomorphism. This implies that
α is injective, hence an isomorphism, and therefore β is an isomorphism as
well. The other implications are clear. �
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7. The map β. In order to simplify the notation, we define

E(p) :=
∐
|J |=p

EJ ,

with the convention that E(0) = Y . Thus in Lemma 4.1 we have Cp = ΩE(p)

for 0 ≤ p ≤ n− 1. We reinterpret the map β as

β : Hn−1(Y,ΩY ) −→ Hn−1(E(1),ΩE(1)).

Proposition 7.1. With the above notation, if n ≥ 3, then β is an isomor-
phism.

Before giving the proof of the proposition, we make some preparations.
All cohomology groups below are considered to be with complex coefficients.
Recall that for a simple normal crossing divisor E as above, the weight k
piece of the mixed Hodge structure on the cohomology of E can be computed
using the complex

0 −→ Hk
(
E(1)

) δ1−→ Hk
(
E(2)

) δ2−→ · · · δl−→ Hk
(
E(l + 1)

) δl+1−→ · · · .
(See e.g. [Elz83, Part II, 1].) More precisely, we have

GrWk H
k+l(E) = ker δl+1/ im δl.

The Hodge space Hp,q
(
GrWk H

k+l(E)
)

is obtained by applying Hp,q to this
complex and passing to cohomology, as above.

The following result of Steenbrink [Ste83, Corollary 1.12] is crucial in
what follows:

Lemma 7.2. Let Z be an algebraic variety of dimension n with an isolated
singularity x ∈ Z. If f : Y → Z is a resolution such that f−1(x) = E is a
simple normal crossing divisor and f is an isomorphism over Z r {x}, then

GrWr H
k(E) = 0 for r 6= k if k ≥ n.

In other words, Hk(E) has a pure Hodge structure of weight k for k ≥ n.

Next, in the notation of Lemma 4.1, we set

C≥1 := C1 → · · · → Cn−1 → 0.

By definition of M1 in the previous section, the map M1 → C1 induces a
quasi-isomorphism

M1 ∼−→ C≥1,

and so

(7.3) Hn−1(Y,M1) ' Hn−1(Y, C≥1).

On the other hand, we have:

Lemma 7.4. With the notation above

Hn−1(Y, C≥1) ' Gr1
FH

n(E).
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Proof. Recall that the Hodge filtration on Tot
(
Ω•E(·)

)
is defined as

F k = Tot(τ≥kΩ•E(·)),

where Tot is the total complex associated to a double complex, and τ≥k de-
notes the standard truncation at the k-th term (see e.g. [CEZGL14, Section
3.2.4.2]). This means that

Gr1
F Tot

(
Ω•E(·)

)
=
(
0→ Ω1

E(1) → · · · → Ω1
E(n−1) → 0

)
= C≥1[−1].

The Hodge filtration of Hn(E,C) is defined by this filtration, together with
the quasi-isomorphism

CE ' Tot
(
Ω•E(·)

)
.

Moreover, the spectral sequence associated to this filtration degenerates at
E1 (see e.g. [Elz83, Theorem 3.3]), which implies:

Hn
(
Y,Gr1

F Tot
(
Ω∗E(·)

))
' Gr1

FHn
(
Y,Tot

(
Ω∗E(·)

))
.

Using the descriptions above, we deduce the isomorphism

Hn−1(Y, C≥1) ' Gr1
FH

n(E).

�

Proof of Proposition 7.1. 1 We have already seen that the map

ϕ1 : Hn−1(Y,M1)→ Hn−1(Y, C1)

is surjective. On the other hand, by (7.3) and Lemma 7.4,

Hn−1(Y,M1) ' Gr1
FH

n(E).

As Hn(E) has a pure Hodge structure of weight n by Lemma 7.2, and E is
n− 1 dimensional,

Gr1
FH

n(E) ' H1,n−1(Hn(E)).

For dimension reasons, the H1,n−1 piece of the complex computing the
weight n piece of the Hodge structure on the cohomology of E is

0→ H1,n−1(E(1))→ 0,

hence

H1,n−1(Hn(E)) = H1,n−1(GrWn H
n(E)) ' H1,n−1(E(1)).

Finally, recall that

Hn−1(Y, C1) = Hn−1(E(1),Ω1
E(1)) ' H

1,n−1(E(1)).

Since ϕ1 is a surjective morphism between two vector spaces that are ab-
stractly isomorphic, it follows that ϕ1 is an isomorphism. As we have seen
in (6.1), the map

Hn−1(Y,ΩY ) −→ Hn−1(Y,M1)

1We thank the referee for suggesting this approach, which is shorter and more concep-
tual than our original proof.
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is also an isomorphism. The composition of these two maps is β, which is
thus an isomorphism too. �

8. The map α. Since we have seen in Proposition 7.1 that β is an isomor-
phism, Lemma 6.2 implies that in order to finish the proof of Theorem B,
it suffices to show that α is injective. This is equivalent to the following:

Proposition 8.1. The map β ◦ α : H0,n−2
(
E(1)

)
→ H1,n−1

(
E(1)

)
is an

isomorphism.

Note that since Z has an isolated singularity, by possibly restricting to an
open affine as before, we may assume that Z is an open subset of a projective
variety Z such that Z r Zsing is smooth. Indeed, if Z is affine, we may
choose an open embedding Z ↪→ W , with W a projective variety. Consider
a resolution of singularities ϕ : V → W r Zsing given by a composition of
blow-ups with centers over the singular locus of W rZsing. In particular, ϕ
is an isomorphism over ZrZsing. By blowing up W along the same sequence

of centers, we obtain a projective variety Z in which Z embeds as an open
subset and such that Z r Zsing is smooth.

Recall that the morphism f : Y → Z is a composition of blow-ups with
centers lying over Zsing. By blowing up Z along the same sequence of centers,

we obtain a smooth, projective variety Y , with a morphism g : Y → Z which
is an isomorphism over Z r Zsing. Note that f is obtained by restricting g
to Y = g−1(Z).

We have a commutative diagram

Hn−2
(
E(1),OE(1)

)
Hn−1(Y ,ΩY ) Hn−1

(
E(1),ΩE(1)

)
Hn−2

(
E(1),OE(1)

)
Hn−1(Y,ΩY ) Hn−1

(
E(1),ΩE(1)

)
,

α

Id

β

Id

α β

in which the middle vertical map is the pull-back induced by inclusion, and
α, β are defined in the same way as α, β (but considering E as divisor on
the variety Y ).

Note that the map

α : Hn−2
(
E(1),OE(1)

)
−→ Hn−1(Y ,ΩY )

is a Gysin map. It can be seen as a direct summand in the composition

Hn−2
(
E(1)

) P.D.−→ Hn

(
E(1)

) i∗−→ Hn(Y )
P.D.−→ Hn(Y ),

where i : E(1) ↪→ Y is the inclusion map on each of the components, and
the external maps are isomorphisms given by Poincaré duality.

Example 8.2. We treat the case n = 3 first. In [dCM07], the authors define
an intersection pairing on H3(E). Indeed, in §2.2 in loc. cit. the case l = 0,
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which means E is a fiber as in our situation, corresponds to a pairing given
by

H3(E)
j∗−→ H3(Y )

P.D.−→ H3(Y )
j∗−→ H3(E) ' (H3(E))∗

where j : E ↪→ Y is the inclusion. Let T : H3(E)→ H3(E) be this composi-
tion. By [dCM07, Corollary 2.3.6] this pairing is nondegenerate (that is, T
is an isomorphism), and our task is to relate it to the cohomology of E(1).

As stated earlier, and also proved in [dCM07], H3(E) has a pure weight
3 Hodge structure. Given that E(2) is 1-dimensional, we obtain that the
complex calculating the third graded piece of the mixed Hodge structure
of E is simply 0 → H3

(
E(1)

)
→ 0, and therefore we get an isomorphism

H3(E) ' H3
(
E(1)

)
, induced by the canonical map E(1)→ E.

We thus conclude that the dual map

H3

(
E(1)

)
'
(
H3(E(1))

)∗ −→ (
H3(E)

)∗ ' H3(E)

is also an isomorphism. Since Poincaré duality on each component of E(1)
induces an isomorphism between H1(E(1)) and H3(E(1)), we finally obtain
that the composition

H1(E(1))
P.D.−→ H3(E(1)) −→ H3(E)

T−→ H3(E) −→ H3(E(1))

is an isomorphism. The map β ◦α = β ◦α is a Hodge summand of this map,
hence it is an isomorphism as well.

In the general case, we again consider the bilinear pairing given by

Hn(E)
j∗−→ Hn(Y )

P.D.−→ Hn(Y )
j∗−→ Hn(E) '

(
Hn(E)

)∗
,

where j : E ↪→ Y is the inclusion, and we denote by T : Hn(E) → Hn(E)
the composition of these maps.

Specializing [dCM05, Theorem 2.1.10] to our particular situation of an
isolated singularity says that this pairing is nondegenerate as well, that
is, T is an isomorphism. Indeed, since E is compact Borel-Moore homol-
ogy coincides with singular homology, and the refined intersection form
Hn,0(E)→ Hn

0 (E) in [dCM05, Theorem 2.1.10], whose construction is anal-

ogous to that of T , is an isomorphism; here the index 0 denotes the 0th

graded quotient in the perverse filtration on the two sides. Now as de-
scribed in [dCM05, Corollary 2.1.12], in the case of a log resolution of an
isolated singularity, we have Hn(E) = Hn

0 (E). On the other hand, since
Hn,0(E) is a subquotient of Hn(E), by dimension reasons we must have
Hn,0(E) = Hn(E) as well. Therefore in this case the theorem says precisely
that the map T is an isomorphism.

We are now ready to prove the main result of the section.

Proof of Proposition 8.1. Consider the composition

Hn−2
(
E(1)

) P.D.−→ Hn

(
E(1)

) k∗−→ Hn(E)
T−→ Hn(E)

k∗−→ Hn
(
E(1)

)
,
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where k : E(1)→ E is the inclusion on each component. In this sequence of
maps, only k∗ and k∗ are potentially not isomorphisms.

Using the fact that dimE(2) = n − 2, we see that the sequence that
computes the H1,n−1 part of the weight n cohomology of E is

0→ H1,n−1
(
E(1)

)
→ 0.

Since Hn(E) has a pure Hodge structure of weight n, we conclude that

H1,n−1(E)
k∗−→ H1,n−1

(
E(1)

)
is an isomorphism.

We can define the dual Hodge structure on Hn

(
E(1)

)
by transferring that

on Hn
(
E(1)

)
, and we obtain that

H−(n−1),−1

(
E(1)

) k∗−→ H−(n−1),−1(E)

is an isomorphism. With respect to these Hodge structures, Poincaré du-
ality is an isomorphism of degree

(
− (n − 1),−(n − 1)

)
on E(1), hence

H0,n−2
(
E(1)

)
is mapped to H−(n−1),−1

(
E(1)

)
. Using that Poincaré duality

is an isomorphism of degree (−n,−n) on Y we conclude that T is a map
of degree (n, n). Putting everything together, restricting the composition of
maps at the beginning of the proof to H0,n−2

(
E(1)

)
gives an isomorphism

with H1,n−1
(
E(1)

)
. But this restriction is precisely β ◦ α = β ◦ α. �

This completes the proof of Theorem B.

C. The proof for toric varieties

Our goal in this section is to show that Conjecture A holds when Z is a
toric variety. We note that in this case it is well known that Z has rational
singularities. For the basic facts about toric varieties that we use here, we
refer to [Ful93].

Proof of Theorem C. It follows from Lemma 1.1 that the assertion in the
conjecture is independent of the resolution. We thus choose a toric resolution
of singularities f : Y → Z, with reduced exceptional divisor E; note that E
has simple normal crossings by default, since it is a torus-invariant divisor on
a smooth toric variety. Let D =

∑s
i=1Di be the sum of the non-exceptional

prime torus-invariant divisors on Y . We consider the residue short exact
sequence

(8.3) 0 −→ ΩY (logE) −→ ΩY

(
log(E +D)

)
−→

s⊕
i=1

ODi −→ 0.

Since ΩY

(
log(E + D)

)
' O⊕nY , with n = dimZ, and Z has rational singu-

larities, it follows that

Rif∗ΩY

(
log(E +D)

)
= 0 for all i > 0.
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On the other hand, each f(Di) is a prime torus-invariant divisor on Z, hence
it is a toric variety, and Di → f(Di) is a resolution of singularities.

Suppose first that n ≥ 3. Since f(Di) has rational singularities, passing
to higher direct images in (8.3) we obtain

0 =

s⊕
i=1

Rn−2f∗ODi → Rn−1f∗ΩY (logE)→ Rn−1f∗ΩY

(
log(E +D)

)
= 0,

and we conclude that Rn−1f∗ΩY (logE) = 0.

Suppose now that n = 2. In this case Z has isolated singularities, hence
we could apply Theorem B; we prefer to include a direct toric argument.
We may assume that Z is affine, in which case s = 2. Let v1 and v2 be the
primitive ray generators of the cone defining Z, corresponding to D1 and D2

respectively. Note that in this case the maps Di → f(Di) are isomorphisms.
If M is the character lattice, then

ΩY

(
log(E +D)

)
'M ⊗Z OY ,

and the long exact sequence in cohomology associated to (8.3) gives

H0
(
Y,ΩY

(
log(E+D)

))
= M⊗ZH

0(Z,OZ)
δ−→ H0(D1,OD1)⊕H0(D2,OD2)

−→ H1
(
Y,ΩY (logE)

)
−→ H1

(
Y,ΩY (log(D + E))

)
= 0.

An easy computation shows that the map δ is given by

u⊗ g 7→ (〈u, v1〉(g ◦ f)|D1 , 〈u, v2〉(g ◦ f)|D2),

hence it is clearly surjective. This implies that H1
(
Y,ΩY (logE)

)
= 0, com-

pleting the proof of the theorem. �

D. Application to the Hodge filtration

9. Generation level of the Hodge filtration. We now turn to the
connection with Saito’s filtration on OX(∗D). Suppose that X is a smooth
complex variety of dimension n and D is a reduced effective divisor on X.
We recall that OX(∗D) is obtained by localizing OX along D. This has a
natural module structure over the sheaf of differential operators DX , and as
discussed in the introduction, Saito’s theory of mixed Hodge modules [Sai90]
endows it with a Hodge filtration FkOX(∗D), k ≥ 0, compatible with the
order filtration on DX . Recall that F•OX(∗D) is generated at level k if

F`DX · FkOX(∗D) = Fk+`OX(∗D) for all ` ≥ 0.

Suppose now that f : Y → X is a log resolution of (X,D) that is an
isomorphism over X rD. If E = (f∗D)red, then it was shown in [MP16a,
Theorem 17.1] that F•OX(∗D) is generated at level k if and only if

(9.1) Rqf∗Ω
n−q
Y (logE) = 0 for all q > k.

Based on this criterion, it was shown in [MP16a, Theorem B] that it is
always generated at level n − 2. We will also use it here in order to relate
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Conjectures D and A. Note that the higher-direct images that appear in
(9.1) are independent on the resolution f ; see [MP16a, Corollary 31.2].

10. Proof of Theorem E. The additional key ingredient in the proof
of Theorem E is a vanishing result for higher direct images in the case of
normal divisors. We assume that n ≥ 3 and D is normal. In particular,
we have dim(Dsing) ≤ n − 3. We consider a log resolution f : Y → X
of (X,D) that is a composition of blow-ups with centers contained in the
inverse image of Dsing, and which have simple normal crossings with the
total transform of D on the corresponding model. If E = (f∗D)red, then we

write E = D̃+F , where D̃ is the strict transform of D and F is the reduced
exceptional divisor.

Proposition 10.1. With the above notation, we have

f∗Ω
2
Y (logF ) = Ω2

X and Rqf∗Ω
2
Y (logF ) = 0 for all q ≥ 1.

Proof. By assumption, f can be written as a composition

Y = Xr
fr−→ Xr−1

fr−1−→ . . .
f1−→ X0 = X,

where fi is the blow-up of Xi−1 along Wi−1, with exceptional divisor Gi.
We denote by Fi the exceptional divisor of f1 ◦ . . . ◦ fi, hence

Fi = f∗i Fi−1 +Gi.

Using the Leray spectral sequence, it is enough to show that for every i,
with 1 ≤ i ≤ r, we have

(10.2) fi∗Ω
2
Xi

(logFi) = Ω2
Xi−1

(logFi−1) and

Rqfi∗Ω
2
Xi

(logFi) = 0 for all q ≥ 1.

If Wi−1 ⊆ Fi−1, this follows from [EV82, Lemmas 1.2 and 1.5]; cf also
[MP16a, Theorem 31.1(i)]. Suppose now that Wi−1 6⊆ Fi−1. In this case
Wi−1 is the strict transform of its image in X, hence our assumption on
f implies that codim(Wi−1, Xi−1) ≥ 3. Moreover, Wi−1 has simple normal
crossings with Fi−1; since the assertion in (10.2) is local on Xi−1, we may
assume that we have an algebraic system of coordinates x1, . . . , xn on Xi−1

such that Wi−1 is defined by (x1, . . . , xs) and each component of Fi−1 is
defined by some xj , with j > s. Let T be the divisor on Xi−1 defined by x1.
Consider the short exact sequence

0→ Ω2
Xi

(logFi)→ Ω2
Xi

(
log(Fi + T̃ )

)
→ Ω1

T̃
(logFi|T̃ )→ 0,

where T̃ is the strict transform of T on Xi. It follows from the same refer-
ences as above that

fi∗Ω
2
Xi

(
log(Fi + T̃ )

)
= Ω2

Xi−1

(
log(Fi−1 + T )

)
and

Rqfi∗Ω
2
Xi

(
log(Fi + T̃ )

)
= 0 for all q ≥ 1.
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On the other hand, since codim(Wi−1, Xi−1) ≥ 3, we have that Fi|T̃ is

the sum of the exceptional divisor of h : T̃ → T with the strict transform,
with respect to this map, of Fi−1|T . Therefore it follows from [MP16a,
Theorem 31.1(ii)] that we have

h∗Ω
1
T̃

(logFi|T̃ ) = Ω1
T (logFi−1|T ) and Rqh∗Ω

1
T̃

(logFi|T̃ ) = 0 for all q ≥ 1.

The long exact sequence in cohomology for the above short exact sequence
gives

Rqfi∗Ω
2
Xi

(logFi) = 0 for all q ≥ 2

and an exact sequence

0→ fi∗Ω
2
Xi

(logFi)→ Ω2
Xi−1

(
log(Fi−1 + T )

)
→ Ω1

T (logFi−1|T )

→ R1fi∗Ω
2
Xi

(logFi)→ 0.

These facts imply the assertions in (10.2). �

With the same notation and assumptions as in Proposition 10.1, consider

the morphism g : D̃ → D induced by f . Note that since D is normal, its
connected components are irreducible. By hypothesis, the f -exceptional
divisor F lies over Dsing, hence g is a birational morphism, with exceptional
divisor G := F |

D̃
(which has simple normal crossings).

Corollary 10.3. With the above notation, the Hodge filtration on OX(∗D)
is generated at level n− 3 if and only if Rn−2g∗Ω

1
D̃

(logG) = 0.

Proof. It follows from the discussion in §9 that the Hodge filtration on
OX(∗D) is generated at level n− 3 if and only if

Rn−2f∗Ω
2
Y (logE) = 0.

Consider the exact sequence

0 −→ Ω2
Y (logF ) −→ Ω2

Y (logE) −→ Ω1
D̃

(logG) −→ 0.

As a consequence of Proposition 10.1 we have

Rqf∗Ω
2
Y (logE) ' Rqg∗Ω1

D̃
(logG) for every q ≥ 1,

which implies the assertion. �

Proof of Theorem E. Since D has rational singularities, it is normal. We
construct a log resolution f : Y → X of (X,D) as in Proposition 10.1.

Let F be the exceptional divisor of f , and D̃ the strict transform of D.

We have seen that the restriction g : D̃ → D is a resolution of D, with
exceptional divisor G = F |

D̃
. By Corollary 10.3, the Hodge filtration on

OX(∗D) is generated at level n − 3 if and only if Rn−2g∗Ω
1
D̃

(logG) = 0,

which is equivalent to saying that Conjecture A holds for all connected
components of D (recall that by Lemma 1.1, the assertion in Conjecture A
is independent of the chosen resolution). This shows that Conjecture A holds
in the hypersurface case if and only if Conjecture D does. In particular, it
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follows from Theorem B that Conjecture D holds when the divisor D has
isolated singularities. �

E. Conjectural reduction to the case of isolated singularities

11. A conjecture on Hodge ideals and m-adic approximation. If D
is a reduced effective divisor on the smooth complex variety X, then Saito’s
Hodge filtration on OX(∗D) has the form

FkOX(∗D) = Ik(D)⊗OX
OX

(
(k + 1)D

)
for all k ≥ 0,

where Ik(D) is a coherent ideal in OX , the kth Hodge ideal of D. It is known,
for example, that

I0(D) = I
(
X, (1− ε)D

)
for 0 < ε� 1,

where I(X,αD) is the multiplier ideal of the R-divisor αD. For these and
other basic facts about Hodge ideals, we refer to [MP16a]; for the definition
of multiplier ideals, see [Laz04, Chapter 9].

We propose the following conjecture regarding the behavior of Hodge
ideals with respect to m-adic approximation.

Conjecture 11.1. Let D be a reduced effective divisor on the smooth com-
plex variety X, and let k be a non-negative integer. If x ∈ X is a point
defined by the ideal mx, then for every r ≥ 1 there exists a positive integer
q(r) such that for every reduced effective divisor E on X, with

OX(−E) ⊆ OX(−D) + mq(r)
x ,

we have
Ik(E) ⊆ Ik(D) + mr

x.

Example 11.2. The assertion in the conjecture holds for k = 0. Indeed,
let ε > 0 be such that I0(D) = I

(
X, (1− ε)D

)
. We claim that if dimX = n,

then we may take q(r) to be any integer such that q(r) > n+r−1
ε . In order to

see this, choose η small enough, with 0 < η < ε, such that ε− η > n+r−1
q(r) . It

is enough to show that for every such η and every reduced effective divisor

E with OX(−E) ⊆ OX(−D) + m
q(r)
x , we have

I
(
X, (1− η)E

)
⊆ I0(D) + mr

x.

By using the Summation theorem (see [Tak06] or [JM08]), for every such E
we have

I
(
X, (1− η)E

)
⊆ I

(
X, (OX(−D) + mq(r)

x )1−η) =

=
∑

γ+δ=1−η
I
(
X,OX(−D)γ ·mδq(r)

x

)
⊆

⊆ I
(
X, (1− ε)D

)
+ I(m(ε−η)q(r)

x ) = I0(D) + mb(ε−η)q(r)c−n+1
x ⊆ I0(D) + mr

x,

where we used the fact that

I(X,mα
x) = mbαc−n+1

x for every α ≥ 0,
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with the convention that m`
x = OX for ` ≤ 0 (see [Laz04, Example 9.2.14]).

12. Reduction to isolated singularities. The interest in Conjecture 11.1
comes from the fact that a positive answer would allow one to reduce the
proof of general properties of Hodge ideals to the case when D has only
isolated singularities. We illustrate this by showing that it allows a reduction
of Conjecture D to this case, which is treated in Theorem E.

Theorem 12.1. If Conjecture 11.1 holds, then Conjecture D holds as well.

Proof. In order to check Conjecture D, we may assume that X is an affine
variety of dimension n ≥ 3 and D is defined by f ∈ OX(X). Since we
already know that the filtration on OX(∗D) is generated at level n − 2 by
[MP16a, Theorem B], it is generated at level n− 3 if and only if

(12.2) Fn−2OX(∗D) ⊆ F1DX · Fn−3OX(∗D).

(The opposite inclusion always holds, since the filtration on OX(∗D) is com-
patible with the order filtration on DX .) It is enough to show that the inclu-
sion (12.2) holds at every point p ∈ D, as the assertion is trivial away from
D. We fix p ∈ D and, after possibly replacing X by a smaller neighborhood
of p, we assume that there is an algebraic system of coordinates x1, . . . , xn
on X that generate the ideal mp defining p. A straightforward computation
shows that the right-hand side of (12.2) is equal to Jn−2(D)⊗OX

(
(n−1)D

)
,

where Jn−2(D) is the ideal generated by{
f
∂h

∂xi
− (n− 2)h

∂f

∂xi
| h ∈ Γ

(
X, In−3(D)

)
, 1 ≤ i ≤ n

}
.

We thus have Jn−2(D) ⊆ In−2(D), and we need to show that the opposite
inclusion holds at p. By Krull’s Intersection Theorem, it suffices to show
that

(12.3) In−2(D) ⊆ Jn−2(D) + mr
p for all r ≥ 1.

Given r ≥ 1, we apply the assertion in Conjecture 11.1 to choose q ≥ r
such that for every g ∈ (f) + mq

p, if E is the divisor generated by g, then

(12.4) In−3(E) ⊆ In−3(D) + mr+1
p .

We choose

gλ = λ0f +

n∑
i=1

λix
q
i ,

where λ = (λ0, . . . , λn) ∈ Cn+1 is general. Let Eλ be the divisor defined by
gλ. Note that Eλ has an isolated singularity at p (in particular, it is reduced).
Indeed, the base locus of the linear system generated by f, xq1, . . . , x

q
n is equal

to {p}; we deduce from the Kleiman-Bertini theorem that for λ general, Eλ
is smooth away from p. Moreover, Eλ has a rational singularity at p; indeed,
this is the case for λ = (1, 0, . . . , 0) by assumption, hence the assertion for
general λ follows from Elkik’s result on deformations of rational singularities
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(see [Elk78, Théorème 4]). We can therefore apply Theorem E to Eλ, in
order to conclude that

In−2(Eλ) = Jn−2(Eλ).

On the other hand, since gλ ∈ (f) + mq
p, we deduce from (12.4) and the

definition of the ideals Jn−2 that

Jn−2(Eλ) ⊆ Jn−2(D) + mr
p.

We thus conclude that in order to complete the proof of (12.3), it is enough
to show that if U ⊆ Cn+1 is any open subset such that Eλ is reduced for
every λ ∈ U , then

(12.5) In−2(D) ⊆
∑
λ∈U

In−2(Eλ).

To see this, consider Y = X × Cn+1, and h = y0f +
∑n

i=1 yix
q
i , defining

a divisor H, where y0, . . . , yn are the coordinates on Cn+1. It follows from
[MP16a, Theorem 16.1, Remark 16.8] that after possibly replacing U by a
smaller open subset, we may assume that

(12.6) In−2(Eλ) = In−2(H)|y=λ,

where the right-hand side denotes the image of In−2(H) via the morphism
OX(X)[y0, . . . , yn] → OX(X) of OX(X)-algebras that maps yi to λi for
all i. On the other hand, the Restriction Theorem for Hodge ideals (see
[MP16b, Theorem A]) says that the inclusion

In−2(Eλ) ⊆ In−2(H)|y=λ

holds for all λ. In particular, taking λ = (1, 0, . . . , 0) we see that

(12.7) In−2(D) ⊆ In−2(H)|y=(1,0,...,0).

It is an elementary exercise to see that for every P ∈ OX(X)[y0, . . . , yn] and
for every (a0, . . . , an) ∈ Cn+1, P (a0, . . . , an) ∈ OX(X) lies in the linear span
of {P (λ) | λ ∈ U}. This observation, in combination with (12.6) and (12.7),
gives the inclusion (12.5), completing the proof of the theorem. �
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