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Abstract. Given a sufficiently positive embedding X ⊂ PN of a smooth projective variety X, we
consider its secant variety Σ that comes equipped with the embedding Σ ⊂ PN by its construction.
In this article, we determine the local cohomological dimension lcd(PN ,Σ) of this embedding, as
well as the generation level of the Hodge filtration on the topmost non-vanishing local cohomology
module Hq

Σ(OPN ), i.e., when q = lcd(PN ,Σ). Additionally, we show that Σ has quotient singularities

(in which case the equality lcd(PN ,Σ) = codimPN (Σ) is known to hold) if and only if X ∼= P1. We
also provide a complete classification of (X,L) for which Σ has (Q-)Gorentein singularities. As a
consequence, we deduce that if Σ is a local complete intersection, then either X is isomorphic to P1,
or an elliptic curve.

A. Introduction

Let X ⊂ PN := P(H0(L)) be a smooth projective variety of dimension n, embedded by the
complete linear series of a very ample line bundle L. The secant variety Σ := Σ(X,L) of X ⊂ PN is
defined as the Zariski closure of the union of 2-secant lines to X in PN , i.e.,

Σ := ∪x1,x2∈X,x1 ̸=x2⟨x1, x2⟩ ⊆ PN .

Secant (and higher secant) varieties have a ubiquitous presence in classical algebraic geometry. The
dimension of these varieties (or in other words, theirs defectiveness), their defining equations, and
syzygies are topics of great interest that have attracted the attention of algebraic geometers for a long
time, see [CC10,CR06, ENP20,Rai12, SV11,Ver01,Ver08,Ver09, Zak81] and the references therein.
The research on these topics dates back more than a hundred years (see for e.g. [Sev01]) and found
important recent applications in several other areas such as tensor geometry, algebraic statistics, and
complexity theory ([Lan12,LW09,SS06]).

It is well-known that if the embedding line bundle L is sufficiently positive, then Σ has the
expected dimension 2n+ 1. It is a natural question to ask: how bad are the singularities of Σ when
L is sufficiently positive? In order to carry out a detailed study of this question, perhaps the first
agenda that one might be interested in pursuing is to understand when these varieties are normal.
The normality of secant varieties has been established by Ullery in [Ull16]. Immediately after her
work, Chou-Song in [CS18] showed that under the positivity assumption of Ullery, Σ has Du Bois
singularities and completely characterized the cases when the singularities of Σ are rational. More
recently, the question of when these varieties have higher Du Bois or higher rational singularities has
been addressed in [ORS23].

Observe that a secant variety Σ is endowed with an embedding Σ ⊆ PN by its construction. It is
then natural to study the local cohomology of this embedding, which gives us further information
about the singularities of Σ. In order to state our results, we first introduce some notation.

Given an embedding Z ⊂ W of a variety Z inside a smooth variety W , the local cohomological
dimension lcd(W,Z) is an invariant naturally associated with this embedding. It is defined through
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the local cohomology sheaves Hq
Z(OW ) as

lcd(W,Z) := max
{
q | Hq

Z(OW ) ̸= 0
}
.

It is well-known that if Z is smooth, or more generally a local complete intersection (henceforth
we will abbreviate this as lci), we have lcd(W,Z) = codimW (Z). This fact allows us to regard this
invariant as a measure of the singularities of Z.

Moreover, it turns out that the sheaves Hq
Z(OW ) have the structure of a filtered regular, holonomic

DW -module underlying a mixed Hodge module on W with support in Z. In particular, they come
equipped with the Hodge filtration F•Hq

Z(OW ). For each index q, associated to this Hodge filtration
F•Hq

Z(OW ), there is an invariant known as the generation level gl(F•Hq
Z(OW )) which essentially

determines the least number of terms FkHq
Z(OW ) required to completely determine the filtration up

to the action of the differential operators. If Z is smooth with c := codimW (Z) = lcd(W,Z), then
we have gl(F•Hc

Z(OW )) = 0.

The purpose of this work is to completely determine the quantities

lcd(PN ,Σ) and gl(F•Hlcd(PN ,Σ)
Σ (OPN ))

when L is sufficiently positive. We describe the positivity of the line bundle L in terms of an integer
p, via a condition called the (Qp)-property described in Definition 1.4. It was shown in [ORS23] that
there are functions f(p, n) and g(l, p, n) such that the pluri-adjoint linear series lKX +dA+B, where
A is a very ample and B is a nef line bundle, satisfies (Qp)-property if l ≥ f(p, n) and d ≥ g(l, p, n).
In particular, lKX + dA + B satisfies (Qp)-property for all p if d ≫ l ≫ 0. We require another
important invariant in order to state the main result. Define

ν(X) := max
{
i | 0 ≤ i ≤ n− 1 and Hj(OX) = 0 for all 1 ≤ j ≤ i

}
,

with the convention that ν(X) = 0 if H1(OX) ̸= 0 or if n = 1, i.e. when the above set is empty. Set
qX = N − n = codimPN (X). Our main result is as follows:

Theorem A. Assume L satisfies (Qn)-property (equivalently, assume L satisfies (Qp)-property for
all p) and Σ ̸= PN . Then

lcd(PN ,Σ) =

{
qX − 2 if ν(X) = 0;

qX − 3 otherwise.

Moreover, the following statements hold:

(1) If ν(X) = 0, then

gl(F•HqX−2
Σ (OPN )) =

{
0 if (X,L) ∼= (P1,OP1(d)) with d ≥ 4;

1 otherwise.

(2) If ν(X) ≥ 1, then

gl(F•HqX−3
Σ (OPN )) =

{
1 if H2(OX) = 0;

2 otherwise.

It is useful to compare the result above to the case when Z ⊂ W is a reduced hypersurface,
where the generation level has been related to an important invariant. More precisely, in this case,
the minimal exponent α̃Z , which by definition is the negative of the largest root of its reduced
Bernstein-Sato polynomial, provides an upper bound on gl(F•H1

Z(OW )). This exponent also detects
the maximum p for which the singularities of Z are p-Du Bois or p-rational. To highlight our
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contribution, let us list what we can conclude for the secant variety of a quartic rational normal
curve, which is a hypersurface, solely through its minimal exponent:

Example 0.1. Let P1 ↪→ P4 be a quartic rational normal curve, and let Z0, Z1, Z2, Z3, Z4 be the
coordinates of P4. It is well-known that its secant variety is a cubic, which is the determinantal
variety associated to the Catalecticant (or Hankel) matrixZ0 Z1 Z2

Z1 Z2 Z3

Z2 Z3 Z4

 .

The Bernstein-Sato polynomial is given by

(0.2) bΣ(s) = (s+ 1)

(
s+

3

2

)
.

In particular, α̃Σ = 1.5 (this was also observed in [SY23, Example 7.23]). Thus gl(F•H1
Σ(OPN )) ≤ 1

by [MP20, Theorem A]. Combining [MOPW23] and [JKSY22], it also follows that the singularities
of Σ are rational but not 1-Du Bois. Of course, this is in accordance with the results of [ORS23], see
Theorem 2.17.

In view of Theorem A, we see that the upper bound on gl(F•H1
Σ(OPN )) derived from the minimal

exponent in the above example is not optimal. It is also important to note that calculating the local
cohomological dimension and the generation levels is generally more challenging when the variety is
not a locally complete intersection, as is the case for secant varieties, which are typically not even
Cohen-Macaulay (see Theorem 2.17 and Corollary G).

We remark an additional consequence of Theorem A. For an embedded variety Z ⊂ W inside
smooth W , it is known that the ideal depth-lcd pattern depth(OZ) ≥ k =⇒ lcd(W,Z) ≤ dimW −k
does not hold in general if k ≥ 4, see [DT16, Example 2.11]. It was shown by Chou-Song that
depth(OΣ) = n + 2 + ν(X) under the assumptions of Theorem A (c.f. Theorem 2.16 for a more
precise statement). In view of this, it is interesting to note that Theorem A shows that when L is
sufficiently positive, we have

lcd(PN ,Σ) > N − depth(OΣ) = qX − ν(X)− 2

as soon as ν(X) ≥ 2.

Recall that any complex variety Z comes equipped with the Du Bois complex Ω•
Z which is an object

in the bounded derived category of filtered complexes ([DB81]). The associated graded objects

Ωp
Z := GrpF (Ω

•
Z)[p]

are objects in the derived category of coherent sheaves. Writing DZ(Ω
p
Z) to be the Grothendieck dual

of Ωp
Z (see Sect. B for the definition), we obtain a vanishing result as a consequence of Theorem A

as explained in [PS24, Theorem 5.1]:

Corollary B. Assume L satisfies (Qn)-property and Σ ̸= PN . Let L be an ample line bundle on Σ.

(1) We have

Hq(DΣ(Ω
p
Σ)⊗ L) = 0 when q − p >

{
n− 1 if ν(X) = 0;

n− 2 otherwise,
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or equivalently

Hq(Ωp
Σ ⊗ L−1) = 0 when p+ q <

{
n+ 2 if ν(X) = 0;

n+ 3 otherwise.

(2) In particular, Hq(Ω
[p]
Σ ⊗ L−1) = 0 if one of the following holds:

• ν(X) = 0, p = 0 and q < n+ 2; or
• ν(X) ≥ 1, Hk(OX) = 0 for all 1 ≤ k ≤ p, and p+ q < n+ 3.

Analogous Kodaira-Akizuki-Nakano type vanishings were established in [ORS23, Corollary E]. We
further obtain the following

Corollary C. Assume L satisfies (Qn)-property and Σ ̸= PN . Then the following are equivalent:

(1) QΣ[2n+ 1] is perverse.
(2) Either n = 1; or n = 2 and H1(OX) = 0.

The above Corollary C is an immediate consequence of Theorem A, and the fact that if Z ⊂ W
is an embedding inside smooth W , QZ [dimZ] is perverse if and only if lcd(W,Z) = codimW (Z)
(c.f. Proposition 1.2 which also extends [MP22, Corollary 11.22] in view of (0.3)). Now, given an
embedding Z ⊂ W inside smooth W , there are two special instances where this equality holds:

(a) when Z has quotient singularities (see (0.3), also [MP22, Corollary 11.22] for a direct proof),
(b) when Z is lci (in this case QZ [dimZ] is perverse by [BBD82]).

Thus, it is useful to understand when Σ has quotient singularities, and when Σ is lci1.

We answer the first question below:

Theorem D. Assume L satisfies (Q1)-property. Then Σ has quotient singularities if and only if
(X,L) ∼= (P1,OP1(d)) with d ≥ 3.

A natural object associated to a variety Z is QH
Z [dimZ] which lives in the bounded derived

category of mixed Hodge modules Db(MHM(Z)). Denoting the intersection complex Hodge module
as ICZQH , there is a natural map

QH
Z [dimZ] → ICZQH .

Now, Z is called rational homology manifold or rationally smooth if the map above is an isomorphism.
It is well-known that if Z has quotient singularities then Z is rationally smooth. In general, we have
the following chain of implications:

(0.3) Z has quotient singularities =⇒ Z is rationally smooth =⇒ QZ [dimZ] is perverse.

Observe that by Theorem D, secant varieties of rational normal curves of degree ≥ 3 are rationally
smooth thanks to (0.3) (for quartic rational normal curves, the fact that their secant varieties are
rationally smooth can also be seen from their reduced Bernstein-Sato polynomial since it has no
integer root by (0.2)). In fact, it is not hard to show that when L satisfies (Q1)-property, Σ is
rationally smooth if and only if X ∼= P1. However, a formal proof of this fact will appear elsewhere.

Using Theorem 2.17, Theorem A and Theorem D (we also use [SVV23, Proposition 4.2(2)]), we
immediately deduce the following

Corollary E. Assume L satisfies (Qn)-property and Σ ̸= PN . The following are equivalent:

(1) Σ has quotient singularities,

1We are very grateful to Mihnea Popa for suggesting these questions to us.
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(2) the singularities of Σ are pre-1-rational,
(3) the singularities of Σ are pre-p-rational for all p,

(4) gl(F•Hlcd(PN ,Σ)
Σ (OPN )) = 0,

(5) (X,L) ∼= (P1,OP1(d)) with d ≥ 4.

When X is a smooth curve of genus g, L is a line bundle of degree ≥ 2g + 3, and Σ ̸= PN ,
any of the of the conditions (1)-(5) in the above result is equivalent to another set of equivalent
conditions involving the Betti numbers and the regularity of Σ, given by [CK22, Theorem 1.1] (with
q = 2). Furthermore, these conditions are also equivalent to Σ being a Fano variety with log terminal
singularities by [ENP20, Theorem 1.1], see Corollary 7.27 for the precise statement.

Next we consider the question which asks whether Σ is lci or not. Recall that lci varieties are
Gorenstein, and we provide below a classification of (X,L) for which Σ is (Q-)Gorenstein:

Theorem F. Assume L satisfies the following:

• When n = 1, deg(L) ≥ 2g + 3 where g is the genus.
• When n ≥ 2, L = KX + (2n+ 2)A+B with A very ample and B nef line bundles.

Then:

(1) Σ is Q-Gorenstein if and only if (X,L) is one of the following:
• (P1,OP1(d)) with d ≥ 3,
• (E,L) where E is an elliptic curve, deg(L) ≥ 5,
• (P2,OP2(6)),
• (P1 × P1,OP1×P1(4, 4)),
• (P3,OP3(4)).

(2) Σ is Gorenstein if and only if (X,L) is one of the following:
• (P1,OP1(d)) with d = 3 or 4,
• (E,L) where E is an elliptic curve, deg(L) ≥ 5,
• (P3,OP3(4)).

We deduce the following:

Corollary G. Assume L satisfies the assumptions of Theorem F and Σ ̸= PN . If L satisfies (Qn)-
property, then Σ is lci =⇒ (X,L) is one of the following:

(i) (P1,OP1(4)),
(ii) (E,L) where E is an elliptic curve, deg(L) ≥ 5.

Moreover, if (i) holds, or if (ii) holds and 5 ≤ deg(L) ≤ 6, then Σ is lci (in fact a complete
intersection).

We do not know if there is an elliptic normal curve of degree ≥ 7 whose secant variety Σ is lci.

The organization of this article can be summarized as follows: Sect. B is devoted to providing
the necessary preliminaries. We describe the geometry of secant varieties in Sect. C and prove
Theorem D and Theorem F. We prove the main technical results in Sect. D which we use in Sect.
E to prove Theorem A.

We work over the field of complex numbers C. A variety is an integral separated scheme of finite
type over C. We use the additive and multiplicative notation for line bundles interchangeably, and
the notation “=Q” is used for Q-linear equivalence of divisors (or line bundles).
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B. Preliminaries and an overview of local cohomology

This section is devoted to supplying the necessary preliminaries. Let us first introduce the notation
for the Grothendieck duality functor: given a variety Z with dualizing complex ω•

Z , we set

DZ(−) := RHomOZ
(−, ω•

Z)[−dimZ].

We mention an useful fact here: if Z ⊂ W is a subvariety of codimension c, we have an isomorphism
DW (−) ∼= DZ(−)[−c] for complexes of OZ-modules. The complexes Ωp

Z and DZ(Ω
p
Z) encode various

information regarding the singularities of Z. To compute them, it is often useful to work with a
specific kind of log resolution of Z that we define below:

Definition 0.4. A proper morphism µ : Z̃ → Z is called a strong log resolution if µ is an isomorphism
over Zsm := Z\Zsing, and µ−1(Zsing)red is a divisor with simple normal crossings.

In our study of the local cohomology of secant varieties Σ, we will use an explicit strong log
resolution of Σ that we describe in Sect. C.

1. Local cohomological dimension and Hodge filtrations. Let Z be a proper closed subscheme
of a smooth variety W . For a quasi-coherent OW module M and q ∈ N, the q-th local cohomology
sheaf Hq

Z(M) is by definition the q-th derived functor of ΓZ(−) given by the subsheaf of local sections
with support in Z. We refer to [Har67] for more details on local cohomology.

It is well-known that codimW (Z) = min
{
q | Hq

Z(OW ) ̸= 0
}
. However, the highest q for which the

q-th local cohomology sheaf Hq
Z(OW ) ̸= 0 is a more mysterious object:

Definition 1.1. The local cohomological dimension of Z in W is defined as

lcd(W,Z) := max
{
q | Hq

Z(OW ) ̸= 0
}
.

This invariant can be characterized alternatively in terms of the de Rham depth DRD(Z), or in
terms of the rectified Q-homological depth RHDQ(Z

an) (see [Ogu73], [RSW21] for details). One has
the equality lcd(W,Z) = codimW (Z) if Z ⊂ W is smooth. In fact, we have the following

Proposition 1.2. The shifted constant sheaf QZ [dimZ] is perverse if and only if lcd(W,Z) =
codimW (Z).

Proof. The local cohomological dimension can be described in terms of the perverse cohomology of
the constant sheaf, namely,

lcd(W,Z) = dimW −min{j ∈ Z | pHj(QZ) ̸= 0},

see [RSW21, Theorem 1] or [BBL+23, §3]. This implies that ifQZ [dimZ] is perverse, then lcd(W,Z) =
codimW (Z). Moreover, the perverse cohomology of QZ [dimZ] is concentrated in non-positive de-
grees (see e.g. [Sai90, (4.5.6)]). Then, if lcd(W,Z) = codimW (Z), pHj(QZ [dimZ]) ̸= 0 only when
j = 0. Also, the previous fact means that we have a map pH0(QZ [dimZ]) → QZ [dimZ], whose cone
C satisfies pHj(C) = 0 for all j ∈ Z, and therefore, C = 0 [BBD82, Proposition 1.3.7]. □



ON THE LOCAL COHOMOLOGY OF SECANT VARIETIES 7

If M has the structure of a left DW -module, then it turns out that Hq
Z(M) also inherits such a

structure. Now, OW is the underlying DW -module of the trivial Hodge module QH
W [dimW ], whence

Hq
Z(OW ) has the structure of a left DW -module. Moreover, denoting the embedding Z ↪→ W by

i, the left DW -module Hq
Z(OW ) is nothing but the underlying left DW -module of the mixed Hodge

module Hq(i∗i
!QW [dimW ]), whence it carries a canonical Hodge filtration F•Hq

Z(OW ). Moreover,
FpHq

Z(OW ) = 0 for all p < 0 (see [MP22, Remark 3.4]).

Definition 1.3. A good filtration F•M on a left DW -module is generated at level k ∈ Z if

Fk+k′M = Fk′DW · FkM for all k′ ≥ 0, equivalently Fm+1M = F1DW · FmM for all m ≥ k.

Set gl(F•M) := min {k | F•M is generated at level k}.

If Z ⊂ W is smooth with codimW (Z) = c, then the Hodge filtration on Hc
Z(OW ) is generated at

level 0. We refer to [MP22] for more details on the Hodge filtrations on local cohomology modules,
their generation levels and local cohomological dimension.

C. Geometry of secant varieties

Let L be a very ample line bundle on a smooth projective variety X of dimension n that induces
the embedding X ↪→ PN := P(H0(L)). The secant variety Σ(X,L) by definition is the Zariski closure
of the union of 2-secant lines of X, i.e., we have the commutative diagram:

X PN = P(H0(L))

Σ(X,L)

We will simply write Σ for Σ(X,L) to ease the notation.

We introduce the positivity properties of L that we will require in the sequel. By definition, L is
called k-very ample for an integer k ≥ 0 if the evaluation map of global sections H0(L) → H0(L⊗Oξ)
is surjective for any 0–dimensional subscheme ξ of length k + 1. For any x ∈ X, we denote by Ix
the ideal sheaf of x ∈ X. We further set bx : Fx → X to be the blow-up of X at x, and Ex the
exceptional divisor.

Definition 1.4 ([ORS23]). Let p ≥ 0 be an integer, and let L be a 3-very ample line bundle on X.
Then L is said to satisfy (Qp)-property if the following conditions are satisfied for all x ∈ X:

(1) the natural map SymiH0(L⊗ I2
x) → H0(L⊗i ⊗ I2i

x ) is surjective for all i ≥ 1,
(2) b∗xL(−2Ex) is ample, and
(3) H i(Ωq

Fx
⊗ b∗x(jL)(−2jEx)) = 0 for all i, j ≥ 1, 0 ≤ q ≤ p.

It is immediate from the above definition that if L satisfies (Qp)-property, then it satisfies (Qk)-
property for all 0 ≤ k ≤ p. Furthermore, if L satisfies (Qn)-property, then it satisfies (Qp)-property
for all p ≥ 0.

Throughout this article, we tacitly assume that L is 3-very ample.

2. Log resolutions of Σ. Under our assumption of 3-very ampleness of L, we have an explicit log
resolution of Σ coming from [Ver01] (see also [Ull16]) that we now describe.



8 S. OLANO AND D. RAYCHAUDHURY

Let us denote the Hilbert scheme of two points on X by X [2]. Recall that X [2] is a smooth
projective variety. The universal subscheme Φ is the incidence variety:

Φ :=
{
(ξ, x) ∈ X [2] ×X | x ∈ ξ

}
⊂ X [2] ×X.

Clearly Φ is equipped with two natural projections q : Φ → X and σ : Φ → X [2]. Moreover, it turns
out that Φ ∼= Bl∆(X × X), i.e., it is isomorphic to the blow-up X × X along the diagonal ∆. Let
b∆ : Φ ∼= Bl∆(X×X) → X×X be the blow-up morphism. Then we have the following commutative
diagram:

(2.1)

Φ X ×X

X [2] X

σ

b∆

q p1

Now, the vector bundle EL := σ∗q
∗L is globally generated since L is very ample. The evaluation

map of its global sections induces f : P(EL) → P(H0(L)) which surjects onto the secant variety Σ.
Consequently, we have the surjective map t : P(EL) → Σ. The main result is the following: the map t
is a log resolution of Σ; moreover, if Σ ̸= P(H0(L)), the map t : P(EL) → Σ is a strong log resolution
of Σ (for the last part, see [ORS23, Corollary 2.7]).

Recall that Fx
∼= BlxX is the blow-up of X at x with exceptional divisor Ex, and we denote the

blow-up morphism by bx : Fx
∼= BlxX → X. The diagram (2.1) induces the following commutative

diagram with Cartesian squares:

(2.2)

Pn−1 ∼= Ex Fx Φ ∼= Bl∆(X ×X)

{(x, x)} {x} ×X X ×X

{x} X

bx b∆

q
p1

We made a slight abuse of notation in the above: we denote the map Fx → {x} × X by the same
symbol bx (this is because it sends y ∈ Fx to (x, bx(y))).

It turns out that Φ ∼= t−1(X). To summarize, for any x ∈ X, we have the following diagram with
Cartesian squares and surjective vertical arrows:

(2.3)

Fx Φ P(EL)

{x} X Σ P(H0(L))

q t
f

We will frequently use the fact that dimΣ = 2n + 1. Also, the map q : Φ → X is smooth by
[CS18, Lemma 2.1]. The exact sequence

(2.4) 0 → q∗Ω1
X → Ω1

Φ → Ω1
Φ/X → 0

when restricted to Fx, yields the following exact sequence

(2.5) 0 → O⊕n
Fx

→ Ω1
Φ|Fx → Ω1

Fx
→ 0
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Notice that the above shows N ∗
Fx/Φ

∼= O⊕n
Fx

. Moreover, [Ull16, Proof of Lemma 2.3] gives

(2.6) N ∗
Φ/P(EL)|Fx

∼= b∗x(L)(−2Ex).

Observe also that by taking determinants of (2.5), we obtain

(2.7) ωΦ|Fx
∼= ωFx

Let us introduce a few more notation. We set j∆ : ∆ ↪→ X ×X, and j′∆ : E∆ ↪→ Φ to be the to
be the natural embeddings where E∆ denotes the exceptional divisor of b∆. Observe that (2.1) also
induces the commutative diagram with Cartesian squares:

(2.8)

Pn−1 ∼= Ex = Fx ∩ E∆ E∆ Φ ∼= Bl∆(X ×X)

{(x, x)} ∆ X ×X

X

j′∆

q∆ b∆

q

j∆

∼=
p0

p1

where q∆ is the natural map, and p0 = p1 ◦ j∆. As before, since the map q∆ is smooth, we have the
exact sequence

(2.9) 0 → q∗∆Ω
1
∆ → Ω1

E∆
→ Ω1

E∆/∆ → 0.

Restricting the above sequence on Ex, we obtain the exact sequence

(2.10) 0 → O⊕n
Ex

→ Ω1
E∆

|Ex → Ω1
Ex

→ 0.

Notice that it is split (since Ext1(Ω1
Ex

,O⊕n
Ex

) = 0) whence we get the splitting

(2.11) Ω1
E∆|Ex

∼= O⊕n
Ex

⊕ Ω1
Ex

.

We recall a result here that will be useful in the sequel:

Proposition 2.12 ([ORS23, Proposition 3.3], see [CS18, Proof of Proposition 3.2] when p = 0). Let
p ≥ 0, and assume L satisfies (Qp)-property. Then

Rit∗Ω
k
P(EL)(log Φ)(−Φ) = 0 for all i ≥ 1, 0 ≤ k ≤ p.

To prove the above, the following exact sequence was used which holds for any j ≥ 0:

(2.13) 0 → Ωj
P(EL)(log Φ)(−Φ) → Ωj

P(EL) → Ωj
Φ → 0.

Moreover, we also have the exact sequence which holds for any j ≥ 1:

(2.14) 0 → Ωj
P(EL) → Ωj

P(EL)(log Φ) → Ωj−1
Φ → 0.
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Further, when j ≥ 1, the above two sequences fit together in the commutative diagram below with
exact rows and columns which will also be useful for us:

(2.15)

0 0

0 Ωj
P(EL)(log Φ)(−Φ) Ωj

P(EL) Ωj
Φ 0

0 Ωj
P(EL)(log Φ)(−Φ) Ωj

P(EL)(log Φ) Ωj
P(EL)(log Φ)|Φ 0

Ωj−1
Φ Ωj−1

Φ

0 0

Recall from the Introduction that we have set

ν(X) := max
{
i | 0 ≤ i ≤ n− 1 and Hj(OX) = 0 for all 1 ≤ j ≤ i

}
.

Our convention is that ν(X) = 0 if the above set is empty. This invariant is related to the depth of
the structure sheaf of Σ as follows:

Theorem 2.16 ([CS18, Theorem 1.3]). If L satisfies (Q0)-property, then depth(OΣ) = n+2+ν(X).

We finish this brief introduction to secant varieties by recalling the following basic result regarding
their singularities:

Theorem 2.17 ([Ull16], [CS18], [ORS23]). The following statements hold:

(1) If L satisfies (Q0)-property, then:
(a) Σ is normal, and its singularities are Du Bois.
(b) Σ is Cohen-Macaulay if and only if ν(X) = 0.
(c) Σ has weakly rational singularities if and only if Hn(OX) = 0.
(d) Σ has rational singularities if and only if H i(OX) = 0 for all i > 0.

(2) Let p ≥ 1 and assume L satisfies (Qp)-property. Then:
(a) The singularities of Σ are pre-p-Du Bois.
(b) If p ≤ ⌊n2 ⌋, then the singularities of Σ are p-Du Bois if and only if p ≤ ν(X).

(3) Assume L satisfies (Q1)-property. Then the singularities of Σ are pre-1-rational if and only
if X ∼= P1.

For the definitions of higher Du Bois and higher rational singularities appearing in the statement
above, we refer to [SVV23] or [ORS23].

3. Secant varieties with special singularities. In this section, we prove Theorem D and Theo-
rem F. We start with the first result.

Proof of Theorem D. First, assume Σ has quotient singularities. By [SVV23, Proposition 4.2(2)] the
singularities of Σ are pre-1-rational, whence by Theorem 2.17 (3), we conclude X ∼= P1. To see the
converse, we recall a special case of a result from [KMZ20, Proposition 3.5] which says that when

(X,L) ∼= (P1,OP1(d)) with d ≥ 3, Σ can be covered by varieties of the form C × T̂∆ where T̂∆ is a
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normal toric variety of dimension 2. Since 2-dimensional toric varieties are simplicial, it follows that
Σ in this case has quotient singularities. □

We now aim to prove Theorem F. We will use some basic facts from adjunction theory (for a
comprehensive literature on this topic, see [BS95]). In particular, for the very ample line bundle A
on X, we use the nef value of A which is defined as

τ(A) := min {s ∈ R | KX + sA is nef} .
We first need an auxiliary

Proposition 3.1. Assume n ≥ 2 and L is 3-very ample. Further assume Σ is normal and Q-
Gorenstein. Then

KX +

(
n− 1

2

)
L =Q 0.

Proof. Since KΣ is Q-Cartier by assumption, from (2.3) we conclude that

(3.2) t∗KΣ|Fx =Q 0.

Now, (KP(EL) +Φ)|Φ = KΦ by adjunction, whence by (2.7) we obtain

(3.3) (KP(EL) +Φ)|Fx = KFx .

To this end, set a := a(Φ;Σ, 0) to be the discrepancy of the t-exceptional divisor Φ. Then by
definition, we have

(3.4) KP(EL) =Q t∗KΣ + aΦ.

Combining (3.2), (3.3) and (3.4) with the fact KFx = b∗xKX + (n− 1)Ex, we obtain

(a+ 1)Φ|Fx =Q b∗xKX + (n− 1)Ex,

which through (2.6) simplifies to

b∗x(KX + (a+ 1)L) =Q (2a+ 3− n)Ex.

Since n ≥ 2, the above is possible only when both sides are zero, which proves the assertion. □

Proof of Theorem F. Assume Σ is Q-Gorenstein. If n = 1, then g ≤ 1 by [ENP20, Remark 5.7]
whence we assume n ≥ 2. Recall that L = KX + (2n + 2)A + B by assumption, whence by
Proposition 3.1, we deduce that

(3.5) KX + (2n− 2)A+
n− 1

n+ 1
B =Q 0.

Consequently τ(A) ≥ 2n − 2, and equality holds only if B =Q 0. But it is well-known (and easy to
see using Castelnuovo-Mumford regularity) that τ(A) ≤ n+ 1, which gives us

2n− 2 ≤ τ(A) ≤ n+ 1 =⇒ n ≤ 3.

When n = 3, τ(A) = 4 whence (X,L) ∼= (P3,OP3(4)) by [BS95, Theorem 7.2.1] and Proposition 3.1.
When n = 2, 2 ≤ τ(A) ≤ 3, and note that KX + 2A is not nef and big by (3.5). Thus, again by
Proposition 3.1, we see that X is Del Pezzo and L =Q −2KX . Since numerical equivalence coincides
linear equivalence for Fano varieties, we deduce that in fact L = −2KX and by [BS95, Proposition
7.2.2] one of the following holds:

• (X,L) ∼= (P2,OP2(6)),
• (X,L) ∼= (P1 × P1,OP1×P1(4, 4)),
• X ≇ P1 × P1, and X ∼= P(F) for a rank 2 bundle F over a smooth curve C.
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In the third case, we get 0 = h1(OX) = h1(OC) (the first equality follows from the fact X is Del
Pezzo), whence C ∼= P1 and X is a Hirzebruch surface Fe, e ̸= 0. It follows that e = 1 (since X is
both Del Pezzo and Hirzebruch, and since X ≇ F0). Recall that Pic(F1) = Z[C0] + Z[F ] with [C0]
being the class of a section of the structure morphism F1 → P1 with C2

0 = −1, and [F ] being that
of a fiber with F 2 = 0. Also KX = −2C0 − 3F . But in this case, L −KX = 6C0 + 9F = 6A + B
which is a contradiction since rC0 + sF is ample (resp. nef) if and only if r ≥ 1, s ≥ r + 1 (resp.
r ≥ 0, b ≥ r). The converse of (1), and entire (2) now follow from [KMZ20, Theorem 4.4 (G9), (G10)
and Theorem 4.6 (Q2), (Q4), (Q5)] (thanks also to the fact that the secant variety Σ of an elliptic
normal curve of degree ≥ 5 is Gorenstein by [ENP20, Remark 5.6]). □

Remark 3.6. There are other pairs (X,L), not included in the list given in Theorem F, with L
3-very ample but less positive than the requirement of Theorem F, whose secant varieties are (Q−)
Gorenstein. For example, according to [KMZ20, Theorem 4.4 (G9)], the third Veronese embedding
of P5 i.e., P5 ↪→ P55 embedded by |OP5(3)|, has Gorenstein secant variety Σ (but the pair (P5,OP5(3))
of course satisfies the constraint imposed by Proposition 3.1).

D. Local freeness and ranks of Riq∗Ω
j
Φ

We continue working with the notation and hypothesis of the previous section. In particular, X
is a smooth projective variety of dimension n and L is a 3-very ample line bundle on X.

4. Statement of the key result. In [CS18, Lemma 2.2], it was proven that

(4.1) Rjq∗OΦ
∼= Hj(X,OX)⊗OX .

We also recall:

Lemma 4.2 ([ORS23, Lemma 2.19]). The following statements hold:

(1) If n = 1, then we have the following isomorphisms for all j:

Rjq∗Ω
1
Φ
∼=

[
Hj(OX)⊗ Ω1

X

]
⊕
[
Hj(Ω1

X)⊗OX

]
.

(2) Assume n ≥ 2. Then:
(i) Rjq∗Ω

1
Φ
∼=

[
Hj(OX)⊗ Ω1

X

]
⊕

[
Hj(Ω1

X)⊗OX

]
for all j ̸= 1;

(ii) We have an exact sequence

0 →
[
H1(OX)⊗ Ω1

X

]
⊕
[
H1(Ω1

X)⊗OX

]
→ R1q∗Ω

1
Φ → OX → 0.

Notice that (4.1) and Lemma 4.2 show the local freeness of Riq∗Ω
j
Φ for j = 0, 1 and compute their

ranks.

We aim to extend this to all j. To do so, for j ≥ 1, we set Kj to be the kernel of the natural

surjective map Ωj
Φ|Fx → Ωj

E∆
|Ex , i.e., it fits into the following exact sequence

0 → Kj → Ωj
Φ|Fx → Ωj

E∆
|Ex → 0.

Next, we construct a filtration (Kj , jK
•) on Kj . The main result of this section shows the local

freeness of Riq∗Ω
j
Φ for all j, and inductively computes its rank which we summarize as follows:

Theorem 4.3. For any i, j, k and x ∈ X, the following formulae hold:

(4.4)
hi(Ωj

Φ|Fx) =

(
n

j − i

)
hi,i(Ex) + hi(jK

0)

hi(jK
k) = hi(jK

k+1) +

(
n

k

)(
hi,j−k(Fx)− hi,j−k(Ex)

)
.
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In particular, for any 0 ≤ i ≤ n, 0 ≤ j ≤ 2n and x ∈ X the following statements hold:

(1) The sheaves Rn−iq∗Ω
j
Φ are locally free with ranks given by the following formula

rank(Rn−iq∗Ω
j
Φ) = hn−i(Ωj

Φ|Fx) =



(
n

j + i− n

)
hn−i,n−i(Ex) +

j∑
k=0

(
n

k

)
hn−i,j−k(X) if i ̸= n;

j∑
k=0

(
n

k

)
h0,j−k(X) if i = n.

(2) The natural maps Rn−iq∗Ω
j
Φ ⊗ C(x) → Hn−i(Ωj

Φ|Fx) are isomorphisms.

We remark that it is not hard to verify hn−i(Ωj
Φ|Fx) = hi(Ω2n−j

Φ |Fx) using the formula above.
However, this equality also follows directly as

hn−i(Ωj
Φ|Fx) = hi(ωFx ⊗ (Ωj

Φ)
∗|Fx) = hi(Ω2n−j

Φ |Fx)

where the first equality comes from duality, and the second one follows from (2.7) and the isomor-

phism (Ωj
Φ)

∗ ∼= Ω2n−j
Φ ⊗ ω∗

Φ.

5. Filtrations (Ωj
Φ|Fx , jG

•), (Ωj
E∆

|Ex , jJ
•) and (Kj , jK

•). In this section, we construct decreasing

filtrations jG
•, jJ

• and jK
• on the sheaves Ωj

Φ|Fx , Ω
j
E∆

|Ex and Kj respectively, where the last one is
a certain sheaf whose construction will also be explained. We study the properties of these filtrations
which will be used in the proofs of various results. We first record the following useful lemma.

Lemma 5.1. Suppose we have the following exact sequence of locally free sheaves:

(5.2) 0 → A → B → C → 0.

Then, for any q, there is a filtration

qF
0 = ∧qB ⊇ qF

1 ⊇ · · · ⊇ qF
q ⊇ qF

q+1 = 0

satisfying the following properties for all p:

(1) Grp
qF

(∧qB) ∼= ∧pA⊗ ∧q−pC,
(2) the natural maps induce a commutative diagram:

(5.3)

0 ∧pA⊗ q−pF
1 ∧pA⊗ ∧q−pB ∧pA⊗ ∧q−pC 0

0 qF
p+1

qF
p Grp

qF
(∧qB) ∼= ∧pA⊗ ∧q−pC 0

and the vertical maps are surjective.

In particular, for a given p, if the map H i(∧pA⊗∧q−pB) → H i(∧pA⊗∧q−pC) is surjective, then so
is the map H i(qF

p) → H i(∧pA⊗ ∧q−pC).

Proof. The filtration (∧qB, qF •) comes from [Har77, Chapter II, Exercise 5.16] which satisfies (1). To
see that it satisfies (2), recall the construction of this filtration: qF

p is the image of the composition

∧pA⊗ ∧q−pB → ∧pB ⊗ ∧q−pB → ∧qB
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which gives us the surjective middle vertical map of the diagram (5.3). It makes the right square of
(5.3) commutative whence we get (5.3) with the surjective leftmost vertical map by snake lemma.
This proves (2). To see the final assertion, consider the commutative diagram arising from (5.3):

H i(∧pA⊗ ∧q−pB) H i(∧pA⊗ ∧q−pC)

H i(qF
p) H i(∧pA⊗ ∧q−pC)

The top horizontal map is a surjection by assumption, whence so is the bottom horizontal map. □

Fix an integer j ≥ 1 and x ∈ X. Let (Ωj
Φ|Fx , jG

•) and (Ωj
E∆

|Ex , jJ
•) be the filtrations coming

from Lemma 5.1 via (2.5) and (2.10) respectively. We now proceed to construct (Kj , jK
•).

The compositions of the following surjections

Ω1
Φ|Fx Ω1

Φ|Ex Ω1
E∆

|Ex

and

Ω1
Fx

Ω1
Fx
|Ex Ω1

Ex

make the two short exact sequences (2.5) and (2.10) fit into the following commutative diagram

(5.4)

0 O⊕n
Fx

Ω1
Φ|Fx Ω1

Fx
0

0 O⊕n
Ex

Ω1
E∆

|Ex Ω1
Ex

0

where the middle and the right vertical surjective maps are described above.

Claim 5.5. The leftmost vertical arrow of (5.4) is just the coordinate-wise restriction, whence all
three vertical maps of (5.4) are surjective.

Proof. Recall that the leftmost vertical map is identified with

(5.6) q∗Ω1
X |Fx → q∗∆Ω

1
∆|Ex .

Let

qFx : Fx
bx−→ {x} ×X → {x}

be the composition (see middle vertical column of (2.2)). By (2.2), we obtain q∗Ω1
X |Fx

∼= q∗Fx
O⊕n

{x}.

To this end, consider the commutative diagram:

(5.7)

{(x, x)} ∆

{x} ×X {x} X

∼=
p0

It follows from (2.2), (2.8) and (5.7) that q∗∆Ω
1
∆|Ex

∼= q∗Fx
O⊕n

{x}|Ex , whence (5.6) can identified with

the natural map

q∗Fx
O⊕n

{x} → q∗Fx
O⊕n

{x}|Ex .

Thus the conclusions follow. □



ON THE LOCAL COHOMOLOGY OF SECANT VARIETIES 15

Similarly, for any s we have the composition of surjections

(5.8) Ωs
Φ|Fx Ωs

Φ|Ex Ωs
E∆

|Ex ,

(5.9) Ωs
Fx

Ωs
Fx
|Ex Ωs

Ex

which are evidently induced by (5.4). Now, (5.9) induces the following surjections via coordinate-wise
maps for any k:

(5.10) Grk
jG

(Ωj
Φ|Fx)

∼= ∧k(O⊕n
Fx

)⊗ Ωj−k
Fx

Grk
jJ
(Ωj

E∆
|Ex)

∼= ∧k(O⊕n
Ex

)⊗ Ωj−k
Ex

.

Observe that the surjections Ωs
Φ|Fx → Ωs

Fx
and Ωs

E∆
|Ex → Ωs

Ex
arising from (2.5) and (2.10) respec-

tively are compatible with (5.8) and (5.9) (see (5.4)), whence using (5.10), we inductively define the
maps

(5.11) jG
s → jJ

s

which make the following diagram commutative (thanks to Claim 5.5):

(5.12)

0 jG
k+1

jG
k Grk

jG
(Ωj

Φ|Fx) 0

0 jJ
k+1

jJ
k Grk

jJ
(Ωj

E∆
|Ex) 0

Recall that the right vertical map (5.10) is surjective.

Claim 5.13. The maps jG
s → jJ

s in (5.11) are surjective for all s. In particular all three vertical
maps in (5.12) are surjective.

Proof. We use the commutative diagram

∧sO⊕n
Fx

⊗ Ωj−s
Φ |Fx ∧sO⊕n

Ex
⊗ Ωj−s

E∆
|Ex

jG
s

jJ
s

where the top horizontal map is evidently surjective, and the vertical maps are surjective by con-
struction (see Lemma 5.1 (2)). Consequently the bottom horizontal map is also surjective. □

To this end, we define

Kj := Ker
(
Ωj
Φ|Fx → Ωj

E∆
|Ex

)
arising from (5.8), and

jK
k := Ker

(
jG

k → jJ
k
)
.

This way we obtain a filtration (Kj , jK
•). Moreover by Claim 5.13 and snake lemma, we obtain

(5.14) Grk
jK(Kj) ∼= Ker

(
Grk

jG(Ω
j
Φ|Fx) → Grk

jJ(Ω
j
E∆

|Ex)
)
∼= ∧kO⊕n

Fx
⊗ Ωj−k

Fx
(logEx)(−Ex)

where the last isomorphism is a consequence of the exact sequence

(5.15) 0 → Ωj−k
Fx

(logEx)(−Ex) → Ωj−k
Fx

→ Ωj−k
Ex

→ 0.
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We summarize the discussion above by the following commutative diagram with exact rows and
columns:

(5.16)

0 0 0

0 jK
k+1

jK
k Grk

jK
(Kj) 0

0 jG
k+1

jG
k Grk

jG
(Ωj

Φ|Fx) 0

0 jJ
k+1

jJ
k Grk

jJ
(Ωj

E∆
|Ex) 0

0 0 0

In what follows, we will frequently use the fact

Hs,t(Ex) =

{
C if s = t ≤ n− 1;

0 otherwise

without any further reference, which holds since Ex
∼= Pn−1.

6. Key properties of Riq∗Ω
j
Φ. We now proceed to the proof of Theorem 4.3. First we need some

preparations:

Lemma 6.1. Assume j ≥ 1. The following statements hold:

(1) H i(jJ
k+1) ∼= H i(jJ

k) for all k ≤ j − i− 1 via the map arising from the third row of (5.16),

(2) H i(jJ
k) = 0 for all k ≥ j − i+ 1,

(3) H i(jJ
j−i) ∼= H i(Grj−i

jJ
(Ωj

E∆
|Ex)) via the map arising from the third row of (5.16).

(4) H i(jJ
k) → H i(Grk

jJ
(Ωj

E∆
|Ex)) is a surjection.

(5) hi(jJ
k) =

(
n

j−i

)
hi,i(Ex) for all k ≤ j − i. In particular, hi(jJ

0) =
(

n
j−i

)
hi,i(Ex).

Proof. We first observe that

(6.2) H i(Grk
jJ(Ω

j
E∆

|Ex)) = 0 for all k ̸= j − i.

Consequently (1) follows by passing to the cohomology of the third row of (5.16).
To see (2), first note that for trivial reason, we have

H i(jJ
j+1) = 0.

Let k = j − i + r with r ≥ 1. The assertion follows easily by decreasing induction on r from (6.2),
with r = i+ 1 being the base case, for which the assertion has been established above.

Now (3) is an immediate consequence of (2). Assertion (4) follows from (6.2) and (3). Finally (5)
is a consequence of (1) and (3) (we also need (2) for the last assertion). □

We make use of the first two rows of (2.2) in the proof of the following
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Lemma 6.3. Assume j ≥ 1. Then the map

H i(jG
k) → H i(Grk

jG(Ω
j
Φ|Fx))

arsing from the second row of (5.16) is surjective.

Proof. Thanks to Lemma 5.1, we are required to show the surjection of

H i(∧k(O⊕n
Fx

)⊗ Ωj−k
Φ |Fx) → H i(∧k(O⊕n

Fx
)⊗ Ωj−k

Fx
).

This map is induced coordinate-wise by the map H i(Ωj−k
Φ |Fx) → H i(Ωj−k

Fx
) whence we only need to

prove the following

Claim 6.4. The natural map H i(Ωj−k
Φ |Fx) → H i(Ωj−k

Fx
) is a surjection.

Proof. It is enough to show that the composed map

(6.5) H i(Ωj−k
Φ ) → H i(Ωj−k

Φ |Fx) → H i(Ωj−k
Fx

)

is a surjection. Now there are two cases possible that we analyze below. In what follows, we use the
fact that

(6.6) H i(Ωs
Fx
) =

{
H i(Ωs

X) if i ̸= s, or (i, s) ∈ {(0, 0), (n, n)} ;
H i(Ωs

X)⊕ C[c1(Ex)
s] if 1 ≤ i = s ≤ n− 1.

Case 1: k ̸= j − i or i = j − k ∈ {0, n}. The blow-up exact sequences of b∆ and bx gives the
commutative diagram:

H i(Ωj−k
Φ ) H i(Ωj−k

Fx
)

H i(Ωj−k
X×X) H i(Ωj−k

X )

∼=

(see (2.2)) where we identify Ω1
{x}×X with Ω1

X . The bottom horizontal map is clearly surjective as it

is the projection onto a direct summand, and the right vertical map is also surjective. Consequently
the composed map (6.5) is also surjective.

Case 2: 1 ≤ i = j − k ≤ n− 1. In this case, we again work with the commutative diagram

H i(Ωi
Φ) H i(Ωi

Fx
) ∼= H i(Ωi

X)⊕ C[c1(Ex)
i]

H i(Ωi
X×X) H i(Ωi

X)

and we immediately see that it is enough to show that c1(Ex)
i ∈ H i,i(Ex) has a preimage in H i,i(Φ).

Recall that Ex = E∆ ∩ Fx whence c1(E∆)
i ∈ H i,i(Φ) is the required preimage. □

The proof of the lemma follows immediately from the above claim. □

We record the following obvious

Remark 6.7. The map

H i(Grk
jG(Ω

j
Φ|Fx)) → H i(Grk

jJ(Ω
j
E∆

|Ex))

arising from the right column of (5.16) is surjective for all i, j, k. Indeed, this is immediate from the
surjections H i,i(Fx) → H i,i(Ex) for all i.
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Lemma 6.8. Assume j ≥ 1. Then the map

jak : H i(jG
k) → H i(jJ

k)

arising from the middle column of (5.16) is surjective.

Proof. Thanks to Lemma 6.1 (2), we assume k ≤ j − i and we work with the commutative diagram:

Hi(Grj−i

jG
(Ωj

Φ|Fx)) Hi(jG
j−i) · · · Hi(jG

k) · · · Hi(jG
1) Hi(Ωj

Φ|Fx)

Hi(Grj−i

jJ
(Ωj

E∆
|Ex)) Hi(jJ

j−i) · · · Hi(jJ
k) · · · Hi(jJ

1) Hi(Ωj
E∆

|Ex)

jaj−i jak ja1 ja0

∼= ∼= ∼= ∼= ∼= ∼=

where the bottom horizontal maps are isomorphisms by Lemma 6.1 (1) and (3), the leftmost top hor-
izontal map is a surjection by Lemma 6.3 and the leftmost vertical map is a surjection by Remark 6.7.
Consequently jaj−i is surjective, whence jak is surjective as well. □

Proof of Theorem 4.3. We first prove (4.4). The assertion is obvious when j = 0, so we assume j ≥ 1.
Using Lemma 6.1 (4), Lemma 6.3, Remark 6.7, Lemma 6.8 and snake lemma, we obtain from

(5.16) the following commutative diagram with exact rows and columns for any j ≥ 1:

(6.9)

0 0 0

0 H i(jK
k+1) H i(jK

k) H i(Grk
jK

(Kj)) 0

0 H i(jG
k+1) H i(jG

k) H i(Grk
jG

(Ωj
Φ|Fx)) 0

0 H i(jJ
k+1) H i(jJ

k) H i(Grk
jJ
(Ωj

E∆
|Ex)) 0

0 0 0

Also recall from (5.14) that

(6.10) hi(Grk
jK(Kj)) =

(
n

k

)
hi(Ωj−k

Fx
(logEx)(−Ex)).

We claim that

(6.11) hi(Ωj−k
Fx

(logEx)(−Ex)) = hi,j−k(Fx)− hi,j−k(Ex).

In view of the exact sequence (5.15), it is enough to show that

(6.12) H i(Ωj−k
Fx

) → H i(Ωj−k
Ex

) arising from (5.15) is surjective.

This is immediate if j − k ̸= i; when j − k = i, the assertion follows since in this case the image of
c1(Ex)

i ∈ H i,i(Fx) is non-vanishing.

Now (4.4) follows immediately from Lemma 6.1 (5), (6.9), (6.10) and(6.11). Also, the formula for

hn−i(Ωj
Φ|Fx) follows from (4.4) and (6.6) upon simplification. Finally, the remaining assertions in (1)

and (2) follows from Grauert’s theorem (see [Har77, Chapter III, Corollary 12.9]). The proof is now
complete. □
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E. Local cohomology of the secant varieties

We resume our notation and hypothesis. To emphasize, throughout we assume L is 3-very ample
and Σ ̸= PN := P(H0(L)).

By [Ste85, Proposition 3.3] (see also [MOPW23, Sect. §2.1]), we have a distinguished triangle:

(6.13) Rt∗Ω
s
P(EL)(log Φ)(−Φ) → Ωs

Σ → Ωs
X

+1−−→

Dualizing the above, we obtain the distinguished triangle that will be used later on:

(6.14) DΣ(Ω
s
X) → DΣ(Ω

s
Σ) → Rt∗Ω

2n+1−s
P(EL) (log Φ)

+1−−→ .

We will use, often without stating, the the complexes Ωs
Σ and DΣ(Ω

s
Σ) are supported in non-negative

degrees. We also recall the following

Lemma 6.15 ([ORS23, Remark 6.1, Lemma 6.3]). The following assertions hold:

(1) We have

(6.16) DΣ(Ω
2n+1−k
X ) ∼= DX(Ω2n+1−k

X )[−n− 1] ∼=

{
Ωk−n−1
X [−n− 1] if k ≥ n+ 1;

0 otherwise.

In particular,

(6.17) Hi(DΣ(Ω
2n+1−k
X )) ∼=

{
Ωk−n−1
X if i = n+ 1 and k ≥ n+ 1;

0 otherwise.

(2) If one of the following conditions hold:
(a) 0 ≤ i ≤ n− 1, 0 ≤ k ≤ 2n+ 1; or
(b) i ≥ 0, 0 ≤ k ≤ n,
then

Hi(DΣ(Ω
2n+1−k
Σ )) ∼= Rit∗Ω

k
P(EL)(log Φ).

(3) Hi(DΣ(Ω
2n+1−k
Σ )) = 0 for all i ≥ n+ 2, 0 ≤ k ≤ 2n+ 1.

We aim to compute lcd(PN ,Σ) and the generation level of the Hodge filtration on Hlcd(PN ,Σ)
Σ (OPN ).

Let us first state some standard facts that will often be used without any further reference:
(1) A sheaf F on a smooth variety Z is locally free if and only if Ext i(F , ωZ) = 0 for all i > 0.
(2) If φ : F → F ′′ is a surjective morphism between locally free sheaves on a smooth variety Z,

then Ker(φ) is locally free. Indeed, setting F ′ := Ker(φ), we obtain the exact sequence

0 → F ′ → F φ−→ F ′′ → 0.

Using (1), we conclude Ext i(F ′, ωZ) = 0 for i ≥ 1, whence F ′ is locally free. In particular, a surjective
morphism between locally free sheaves of equal ranks on a smooth variety is an isomorphism.

7. Proof of Theorem A. From now on, we work with the following notation: σ : P → PN is an
embedded log resolution of (PN ,Σ) which we assume to be isomorphism over PN\Σ. Further, we set
E := σ−1(Σ)red which is a simple normal crossing divisor on P.

Proposition 7.1. Assume L satisfies (Q0)-property. Then

Riσ∗ωP(E) = Riσ∗ωE = 0 for all i ≥ qX − ν(X)− 2.
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Proof. Observe that using the exact sequence

0 → ωP → ωP(E) → ωE → 0

and Grauert-Riemenschneider vanishing ([Laz04, Theorem 4.3.9]) which says that Rkσ∗ωP = 0 for
all k ≥ 1, we obtain

Riσ∗ωP(E) ∼= Riσ∗ωE for all i ≥ 1.

We aim to prove Riσ∗ωE = 0 for i ≥ qX − ν(X) − 2. It follows from [MP22, Corollary B] that the
natural map

Hi(Rσ∗ω
•
E) → Hi(ω•

Σ)

is an injection for all i. Using the isomorphisms

ω•
E
∼= ωE [N − 1] and ω•

Σ
∼= RHomOPN

(OΣ, ωPN [N ])

we find that Riσ∗ωE → Ext i+1
OPN

(OΣ, ωPN ) is an injection for all i. It is well known that

Ext i+1
OPN

(OΣ, ωPN ) = 0 for all i ≥ pd(OΣ).

On the other hand, recall that we have depth(OΣ) = n+2+ν(X), whence by Auslander-Buchsbaum
formula, we deduce that

pd(OΣ) = q(X)− ν(X)− 2.

Thus Riσ∗ωE = 0 for all i ≥ qX − ν(X)− 2. □

We need some more preparations for the proof of Theorem A:

Lemma 7.2. For all i ≤ qX − 1 and 0 ≤ j ≤ N , we have the isomorphism

RqX−iσ∗Ω
N−j
P (logE) ∼= Hn+2−i(DΣ(Ω

j
Σ)).

Proof. Applying DPN (−) on the following distinguished triangle (recall [Ste85, Proposition 3.3])

Rσ∗Ω
j
P(logE)(−E) → Ωj

PN → Ωj
Σ

+1−−→,

we obtain the distinguished triangle

DΣ(Ω
j
Σ)[−qΣ] → ΩN−j

PN → Rσ∗Ω
N−j
P (logE)

+1−−→ .

The assertion follows by taking the cohomology of the above. □

Lemma 7.3. The following statements hold for all 0 ≤ j ≤ N :

(1) For all 3 ≤ i ≤ qX − 1, we have the isomorphism

RqX−iσ∗Ω
N−j
P (logE) ∼= Rn+2−it∗Ω

2n+1−j
P(EL) (log Φ).

(2) We have an exact sequence2

0 → RqX−2σ∗Ω
N−j
P (logE) → Rnt∗Ω

2n+1−j
P(EL) (log Φ)

fj−→ Ωn−j
X → RqX−1σ∗Ω

N−j
P (logE) → 0.

(3) RqX−iσ∗Ω
N−j
P (logE) = 0 for all i ≤ 0.

2Here we use the convention that for a variety Z, Ω−k
Z = 0 if k ≥ 1
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Proof. We only give the proof when 0 ≤ j ≤ 2n + 1; the case when j ≥ 2n + 2 is similar and
straightforward. We apply Lemma 7.2. The assertion (1) is an immediate consequence of Lemma 6.15
(2) (when n+ 2− i < 0, the assertion is trivial since both sides are zero). To prove (2), we take the
cohomology of the distinguished triangle (6.14) corresponding to s = j. Recall that

Rn+1t∗Ω
2n+1−j
P(EL) (log Φ) = 0

whence the conclusion follows from (6.17). Lastly, (3) is a consequence of Lemma 6.15 (3). □

Lemma 7.4. The following statements hold for all 0 ≤ j ≤ N :

(1) DΣ(Rq∗Ω
j
Φ)

∼= Rq∗Ω
2n−j
Φ [−1].

(2) The map fj in Lemma 7.3 (2) is the composition hj ◦ gj where gj and hj are as follows:

• gj : R
nt∗Ω

2n+1−j
P(EL) (log Φ) → Rnq∗Ω

2n−j
Φ arising as

Hn(DΣ(Rt∗Ω
j
P(EL)(log Φ)(−Φ))) → Hn+1(DΣ(Rq∗Ω

j
Φ))

using (1), from the distinguished triangle

Rt∗Ω
j
P(EL)(log Φ)(−Φ) → Rt∗Ω

j
P(EL) → Rq∗Ω

j
Φ

+1−−→ .

• hj : R
nq∗Ω

2n−j
Φ → Ωn−j

X arising as Hn+1(DΣ(Rq∗Ω
j
Φ)) → Hn+1(DΣ(Ω

j
X)) using (1) and

(6.17), from the natural map Ωj
X → Rq∗Ω

j
Φ.

(3) The map gj : R
nt∗Ω

2n+1−j
P(EL) (log Φ) → Rnq∗Ω

2n−j
Φ is surjective.

Proof. We observe that

DΣ(Rq∗Ω
j
Φ)

∼= DX(Rq∗Ω
j
Φ)[−n− 1] ∼= Rq∗DΦ(Ω

j
Φ)[n][−n− 1] ∼= Rq∗Ω

2n−j
Φ [−1]

whence (1) follows. To see (2), we dualize the commutative diagram (the top row is (6.13) with
s = j, the bottom row is obtained from (2.13))

Rt∗Ω
j
P(EL)(log Φ)(−Φ) Ωj

Σ Ωj
X

Rt∗Ω
j
P(EL)(log Φ)(−Φ) Rt∗Ω

j
P(EL) Rq∗Ω

j
Φ

∼=

+1

+1

and use (6.16) to obtain:

DΣ(Rq∗Ω
j
Φ) Rt∗Ω

2n+1−j
P(EL) Rt∗Ω

2n+1−j
P(EL) (log Φ)

Ωn−j
X [−n− 1] DΣ(Ω

j
Σ) Rt∗Ω

2n+1−j
P(EL) (log Φ)

+1

∼=

+1

whence the assertion follows. Finally, (3) is a consequence of the description of gj ; it is surjective
since

Hn+1(DΣ(Rt∗Ω
j
P(EL)))

∼= Hn+1(Rt∗Ω
2n+1−j
P(EL) ) ∼= Rn+1t∗Ω

2n+1−j
P(EL) = 0.

The proof is now complete. □

In what follows, we set C•
j to be the cone of Ωj

X → Rq∗Ω
j
Φ, i.e., we have the distinguished triangle:

(7.5) C•
j → Ωj

X → Rq∗Ω
j
Φ

+1−−→ .
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Lemma 7.6. If ExtpOX
(Hp(C•

j ), ωX) = 0 for all p ≥ 0, then the following conclusions hold:

(1) hj : R
nq∗Ω

2n−j
Φ → Ωn−j

X described in Lemma 7.4 (2) is surjective.

(2) RqX−1σ∗Ω
N−j
P (logE) = 0.

Proof. By Lemma 7.3 (2), the assertion (2) holds if and only if fj is surjective. From Lemma 7.4 (2)
and (3) respectively, we see that fj = hj ◦ gj and gj is surjective. Thus, (2) is a consequence of (1),
i.e. it is enough to show that hj is surjective under our hypothesis.

Dualizing (7.5) and passing to its cohomology, we see that hj is surjective if Hn+1(DΣ(C•
j )) = 0.

Note that

Hn+1(DΣ(C•
j ))

∼= Hn+1(DX(C•
j )[−n− 1]) ∼= H0(DX(C•

j )),

whence it is enough to show that

(7.7) H0(DX(C•
j )) = 0.

Observe that H0(DX(C•
j ))

∼= HomOX
(C•

j , ωX). To this end, we use the spectral sequence

Ep,q
2 = ExtpOX

(H−q(C•
j ), ωX) =⇒ Extp+q

OX
(C•

j , ωX).

Now, p+q = 0 =⇒ q = −p, whence to prove (7.7) it is enough to show that ExtpOX
(Hp(C•), ωX) = 0

for all p. Clearly this holds by our assumption since it follows from (7.5) that Hp(C•
j ) = 0 for all

p < 0. □

Proposition 7.8. The following statements hold for all j ≥ 1:

(1) H0(C•
j ) = 0.

(2) ExtiOX
(Hp(C•

j ), ωX) = 0 for all i ≥ 1.

(3) The maps gj , hj described in Lemma 7.4 (2) are surjective; in particular fj = hj ◦ gj is also
surjective.

(4) RqX−1σ∗Ω
N−j
P (logE) = 0.

Proof. Fix i, j ≥ 1. Recall that Hp(C•
j ) = 0 for all p < 0. Moreover, passing to the cohomology of

the distinguished triangle (7.5), we obtain the exact sequence

(7.9) 0 → H0(C•
j ) → Ωj

X → q∗Ω
j
Φ → H1(C•

j ) → 0

and the isomorphisms

(7.10) Hp(C•
j )

∼= Rp−1q∗Ω
j
Φ for all p ≥ 2,

whence by Theorem 4.3 we obtain

Ext iOX
(Hp(C•

j ), ωX) = 0 for all p ≥ 2.

Let (Ωj
Φ, jL

•) be the filtration coming from Lemma 5.1 via the exact sequence (2.4):

jL
0 = Ωj

Φ ⊇ jL
1 ⊇ · · · ⊇ jL

j ⊇ jL
j+1 = 0 with Grk

jL(Ω
j
Φ)

∼= q∗Ωk
X ⊗ Ωj−k

Φ/X .

In particular, q∗q
∗Ωj

X
∼= Ωj

X (apply projection formula and combine it with (4.1)) injects inside q∗Ω
j
Φ

whence (1) follows from (7.9). Consequently (7.9) becomes the exact sequence

(7.11) 0 → Ωj
X → q∗Ω

j
Φ → H1(C•

j ) → 0

Notice that (3) and (4) follows from (2) through Lemma 7.4 and Lemma 7.6. Thus, we only need to
prove (2).
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Another application of Theorem 4.3 now shows via (7.11)

Ext iOX
(H1(C•

j ), ωX) = 0 for all i ≥ 2,

and gives us the exact sequence

(7.12) 0 → HomOX
(H1(C•

j ), ωX) → HomOX
(q∗Ω

j
Φ, ωX) → HomOX

(Ωj
X , ωX) → Ext1OX

(H1(C•
j ), ωX) → 0.

It remains to prove that
Ext1OX

(H1(C•
j ), ωX) = 0.

Claim 7.13. The maps q∗Ω
s
Φ → q∗Ω

s
Φ/X arising from (2.4) are surjective for all s.

Proof. Clearly the assertion holds for s = 0 whence we assume s ≥ 1. Notice that h0(Ωs
Φ|Fx) is

independent of x ∈ X by Theorem 4.3, and so is h0(Ωs
Φ/X |Fx) = h0(Ωs

Fx
), so by Grauert’s theorem

([Har77, Chapter III, Corollary 12.9]), we have isomorphisms:

q∗Ω
s
Φ ⊗ C(x) ∼= H0(Ωs

Φ|Fx) and q∗Ω
s
Φ/X ⊗ C(x) ∼= H0(Ωs

Fx
)

for all x ∈ X. Thus, it is enough to show that the maps

H0(Ωs
Φ|Fx) → H0(Ωs

Fx
)

induced by (2.5) is surjective. But this is a consequence of Claim 6.4. □

Claim 7.14. The maps q∗(jL
k) → q∗(Grk

jL
(Ωj

Φ) induced by the filtration (Ωj
Φ, jL

•) is surjective for

all k.

Proof. As in the proof of Lemma 5.1, we work with the commutative diagram:

0 q∗Ωk
X ⊗ j−kL

1 q∗Ωk
X ⊗ Ωj−k

Φ q∗Ωk
X ⊗ Ωj−k

Φ/X 0

0 jL
k+1

jL
k Grk

jL
(Ωj

Φ) 0

Thus, it is enough to show that the maps

q∗Ω
j−k
Φ → q∗Ω

j−k
Φ/X

are surjective, which follow from Claim 7.13. □

Thanks to Claim 7.14, we obtain the exact sequences

(7.15) 0 → q∗(jL
k+1) → q∗(jL

k) → q∗(Grk
jL(Ω

j
Φ)) → 0

for all k. Now, it is enough to show that

HomOX
(q∗(jL

k), ωX) → HomOX
(q∗(jL

k+1), ωX)

are surjective for all k, as Ext1OX
(H1(C•

j ), ωX) is the cokernel of the composition

HomOX
(q∗(jL

0), ωX) → HomOX
(q∗(jL

1), ωX) → · · · → HomOX
(q∗(jL

j−1), ωX) → HomOX
(q∗(jL

j), ωX)

by (7.12). But this follows immediately from (7.15) as the sheaves q∗(Grk
jL
(Ωj

Φ)) are locally free by

projection formula, (4.1) and Grauert’s theorem. □

Lemma 7.16. Let j ≥ 1. The map gj : R
nt∗Ω

2n+1−j
P(EL) (log Φ) → Rnq∗Ω

2n−j
Φ of Lemma 7.4 (2) can be

expressed as gj = g′′j ◦ g′j where g′j and g′′j are as follows:
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• g′j : Rnt∗Ω
2n+1−j
P(EL) (log Φ) → Hn+1(DΣ(Rq∗Ω

j
P(EL)(log Φ)|Φ)) arising from the distinguished

triangle

DΣ(Rq∗Ω
j
P(EL)(log Φ)|Φ) → DΣ(Rt∗Ω

j
P(EL)(log Φ)) → Rt∗Ω

2n+1−j
P(EL) (log Φ)

+1−−→ .

• g′′j : Hn+1(DΣ(Rq∗Ω
j
P(EL)(log Φ)|Φ)) → Rnq∗Ω

2n−j
Φ arising from the distinguished triangle

DΣ(Rq∗Ω
j−1
Φ ) → DΣ(Rq∗Ω

j
P(EL)(log Φ)|Φ) → DΣ(Rq∗Ω

j
Φ)

+1−−→

via Lemma 7.4 (1).

In particular, if L satisfies (Qs) property with s = min {2n+ 1− j, n}, then g′j is an isomorphism.

Proof. Follows immediately from the following commutative diagram with distinguished left two
columns and bottom two rows (triangles) obtained from (2.15):

(7.17)

DΣ(Rq∗Ω
j−1
Φ ) DΣ(Rq∗Ω

j−1
Φ )

DΣ(Rq∗Ω
j
P(EL)(log Φ)|Φ) DΣ(Rt∗Ω

j
P(EL)(log Φ)) Rt∗Ω

2n+1−j
P(EL) (log Φ)

DΣ(Rq∗Ω
j
Φ) DΣ(Rt∗Ω

j
P(EL)) Rt∗Ω

2n+1−j
P(EL) (log Φ)

+1

+1 +1

+1

The last assertion follows since Hi(DΣ(Rt∗Ω
j
P(EL)(log Φ)))

∼= Rit∗Ω
2n+1−j
P(EL) (log Φ)(−Φ) = 0 for i ≥ 1

by Proposition 2.12. □

Proposition 7.18. Assume L satisfies (Qn)-property, and let j ≥ 1 be an integer. Then

(7.19) RqX−2σ∗Ω
N−j
P (logE) = 0

if and only if H i(OX) = 0 for all 1 ≤ i ≤ j.

Proof. We first prove the

Claim 7.20. The following conditions on hj : Rnq∗Ω
2n−j
Φ → Ωn−j

X described in Lemma 7.4 (2) are
equivalent:

(1) hj is injective,
(2) hj is an isomorphism,
(3) H i(OX) = 0 for all 1 ≤ i ≤ j.

Proof. The equivalence of (1) and (2) follows from the surjectivity of hj proven in Proposition 7.8
(3). For the same reason, (2) holds if and only if

rank(Rnq∗Ω
2n−j
Φ ) = rank(Ωn−j

X ).

Thus, it is enough to prove that the above equality is equivalent to (3). To this end, apply Theorem
4.3 (1) to obtain

rank(Rnq∗Ω
2n−j
Φ ) =

(
n

n− j

)
+

j−1∑
k=0

(
n

k

)
h0,j−k(X).
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On the other hand, we have

rank(Ωn−j
X ) =

(
n

n− j

)
,

whence the assertion follows. □

Observe that by Lemma 7.3 (2), (7.19) holds if and only if the map fj is injective.
First assume (7.19) holds, i.e. fj is injective. Now, by Lemma 7.4 (2) and (3), fj = hj ◦ gj and

gj is surjective. Thus, hj : R
nq∗Ω

2n−j
Φ → Ωn−j

X is injective, whence H i(OX) = 0 for all 1 ≤ i ≤ j by
Claim 7.20.

Conversely, assume H i(OX) = 0 for all 1 ≤ i ≤ j, and we aim to show that fj is an injection.
By Claim 7.20, hj is an isomorphism. Also, by Lemma 7.16, we have gj = g′′j ◦ g′j and g′j is an

isomorphism. Thus, it is enough to show that g′′j is an injection, or equivalently the map

rj : Hn(DΣ(Rq∗Ω
j
Φ))

∼= Rn−1q∗Ω
2n−j
Φ → Hn+1(DΣ(Rq∗Ω

j−1
Φ )) ∼= Rnq∗Ω

2n+1−j
Φ

is surjective (the isomorphisms above are again consequence of Lemma 7.4 (1)). Now, evidently the
map rj is arising from the exact sequence

0 → Ω2n+1−j
Φ → Ω2n+1−j

P(EL) (log Φ)|Φ → Ω2n−j
Φ → 0.

By Theorem 4.3 (2), we have

Rn−1q∗Ω
2n−j
Φ ⊗ C(x) ∼= Hn−1(Ω2n−j

Φ |Fx) and Rnq∗Ω
2n+1−j
Φ ⊗ C(x) ∼= Hn(Ω2n+1−j

Φ |Fx)

for all x ∈ X. Thus, it is enough to show that the map

Hn−1(Ω2n−j
Φ |Fx) → Hn(Ω2n+1−j

Φ |Fx)

is surjective, or equivalently its dual

H0(Ωj−1
Φ |Fx) → H1(Ωj

Φ|Fx)

is injective. Now, this map is the cup product by the image of c1(Φ) ∈ H1(Ω1
Φ) through the restriction

map H1(Ω1
Φ) → H1(Ω1

Φ|Fx). Recall from (2.11) that

Ω1
E∆|Ex

∼= O⊕n
Ex

⊕ Ω1
Ex

.

To this end, we use the commutative diagram (the upward vertical maps are injective because of the
splitting)

H0(Ωj−1
Φ |Fx) H1(Ωj

Φ|Fx)

H0(Ωj−1
E∆

|Ex) H1(Ωj
E∆

|Ex)

H0(∧j−1O⊕n
Ex

) H1(∧j−1O⊕n
Ex

⊗ Ω1
Ex

)

The downward vertical maps are surjections by Lemma 6.8 (the surjection of the left one correspond-
ing to j = 1 is obvious). Once again, by Theorem 4.3 (1) and Lemma 6.1 (5), we have

h0(Ωj−1
Φ |Fx) = h0(Ωj−1

E∆
|Ex) =

(
n

j − 1

)
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as hi(OX) = 0 for 1 ≤ i ≤ j − 1, whence the downward left vertical map is an isomorphism. The
upward left vertical map is also an isomorphism for dimension reason. Finally the bottom horizontal
map is an injection as it is a coordinate-wise map induced by

H0(OEx) → H1(Ω1
Ex

)

sending 1 ∈ H0(OEx) to a non cohomologically trivial class c1(Φ|Ex) ∈ H1,1(Ex) (see (2.6)). Thus
the middle horizontal map is an injection, and consequently so is the top horizontal map. The proof
is now complete. □

Proposition 7.21. Assume n ≥ 2 and L satisfies (Qn)-property. Then RqX−3σ∗Ω
N−1
P (logE) ̸= 0.

Proof. First recall from Lemma 7.3 (1) that

RqX−3σ∗Ω
N−1
P (logE) ∼= Rn−1t∗Ω

2n
P(EL)(log Φ).

To this end, we work with the exact sequence (middle row of (2.15))

0 → Ω2n
P(EL)(log Φ)(−Φ) → Ω2n

P(EL)(log Φ) → Ω2n
P(EL)(log Φ)|Φ → 0

and use the fact that Rit∗Ω
2n
P(EL)(log Φ)(−Φ) = 0 for i ≥ 1 (see Proposition 2.12) to conclude that

Rn−1t∗Ω
2n
P(EL)(log Φ)

∼= Rn−1t∗Ω
2n
P(EL)(log Φ)|Φ.

For the sake of contradiction, assume RqX−3σ∗Ω
N−1
P (logE) = 0 whence Rn−1t∗Ω

2n
P(EL)(log Φ)|Φ = 0.

This, via the exact sequence (right column of (2.15))

0 → ωΦ → Ω2n
P(EL)(log Φ)|Φ → Ω2n−1

Φ → 0

yields that the map
Rn−1q∗Ω

2n−1
Φ → Rnq∗ωΦ

is an injection. But according to Theorem 4.3 (1), we have

rank(Rn−1q∗Ω
2n−1
Φ ) = nh1,0(X) + hn−1,n−1(X) + 1 ≥ 2 and rank(Rnq∗ωΦ) = 1,

(the first equality is where we use n ≥ 2) a contradiction. □

We are now ready to provide the

Proof of Theorem A. To start with, note that FiHj
Σ(OPN ) = 0 for all i < 0, j ≥ 0 by [MP22, Remark

3.4]. It follows that

(7.22) gl(F•Hlcd(PN ,Σ)
Σ (OPN )) ≥ 0.

Next, we need the following

Claim 7.23. Assume L satisfies (Q0)-property. Then qX − ν(X)− 2 ≤ lcd(PN ,Σ) ≤ qX − 2.

Proof. Recall that Σ has Du Bois singularities under our assumption (see Theorem 2.17 (1)). Conse-
quently lcd(PN ,Σ) ≥ qX − ν(X)− 2 = N − depth(OΣ) by [MP22, Remark 11.7] and Theorem 2.16.
For the upper bound of lcd(PN ,Σ), according to [MP22, Theorem E], we need to show that

(7.24) Rj′+iσ∗Ω
N−i
P (logE) = 0 for all j′ ≥ qX − 2 and i ≥ 0.

To this end, recall that Rkσ∗Ω
N−i
P (logE) = 0 for all k ≥ qX by Lemma 7.3 (3). Thanks to Proposi-

tion 7.1, it only remains to verify that

(7.25) RqX−1σ∗Ω
N−1
P (logE) = 0

in order to prove (7.24). The required vanishing follows from Proposition 7.8 (4). □
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We now split the proof into two cases.

Case 1: ν(X) = 0. It follows from Claim 7.23 that in this case

lcd(OPN ,Σ) = qX − 2.

Now, according to [MP22, Theorem 10.2], the Hodge filtration on HqX−2
Σ (OPN ) is generated at level

1 if and only if

RqX−3+jσ∗Ω
N−j
P (logE) = 0 for all j ≥ 2.

Since the required vanishings hold for j ≥ 3 (see Lemma 7.3 (3)), the only non-trivial case is the one
corresponding to case j = 2. But this vanishing follows from Proposition 7.8 (4). Also, the Hodge
filtration is generated at level 0 if and only if

RqX−2σ∗Ω
N−1
P (logE) = 0,

and this is equivalent to H1(OX) = 0 by Proposition 7.18. The assertion (1) now follows from (7.22)
and the fact that h1(OX) = ν(X) = 0 =⇒ X ∼= P1.

Case 2: ν(X) ≥ 1. In this case, note that n ≥ 2. We again apply [MP22, Theorem E]. To see that
lcd(PN ,Σ) ≤ qX − 3, we need to show that

Rc+jσ∗Ω
N−j
P (logE) = 0 for all c ≥ qX − 3, j ≥ 0.

This follows immediately from Proposition 7.1, Proposition 7.8 (4), Proposition 7.18, and Lemma 7.3
(3). Also, lcd(PN ,Σ) ≥ qX − 3 by Proposition 7.21. To calculate the generation level of the Hodge
filtration, we again use [MP22, Theorem 10.2]. Accordingly, to see that the Hodge filtration on

HqX−3
Σ (OPN ) is generated at level 2, we need to show that

RqX−4+jσ∗Ω
N−j
P (logE) = 0 for all j ≥ 3

which follows from Proposition 7.8 (4) and Lemma 7.3 (3). Now, the Hodge filtration is generated
at level 1 if and only if

RqX−2σ∗Ω
N−2
P (logE) = 0

which holds if and only if H i(OX) = 0 for i = 1, 2 by Proposition 7.18. Finally, it is not generated
at level 0 by Proposition 7.21. Consequently (2) follows. □

Remark 7.26. When n = 1, the inequality lcd(PN ,Σ) ≤ qX − 2 = N − 3 can also be deduced from
Dao-Takagi-Varbaro theorem ([MP22, Theorem 11.21]) since depth(OΣ) = 3 by Theorem 2.16.

We now provide the proofs of the corollaries:

Proof of Corollary B. (1) is an immediate consequence of Theorem A and [PS24, Theorem 5.1]. (2)
follows from (1) and [ORS23, Theorem A and Theorem B]. □

Proof of Corollary C. By Proposition 1.2, QΣ[2n+1] is perverse if and only if lcd(PN ,Σ) = qX−n−1,
whence the assertion follows from Theorem A. □

Proof of Corollary G. If Σ is lci, then QΣ[2n + 1] is perverse, whence n ≤ 2 by Corollary C. Thus
either (i) or (ii) holds by Theorem F. For the partial converse, the only non-trivial case is that of
an elliptic normal curve of degree six, Σ in this case is a complete intersection by [ENP20, Remark
5.6]. □

We end this article by providing equivalent characterizations of the secant varieties of rational
normal curves, that we obtain by combining our work with works of other authors (see [CK22] for
the relevant notation):
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Corollary 7.27. Let X be a smooth projective curve of genus g and let L be a line bundle on X
with deg(L) ≥ 2g + 3. Assume Σ ̸= PN . Then the following are equivalent:

(1) (X,L) ∼= (P1,OP1(d)) with d ≥ 4,

(2) deg(Σ) =
(
N−1
2

)
i.e. Σ is a 2-secant variety of minimal degree,

(3) Σ has 2-pure Cohen-Macaulay Betti table,

(4) βp,2 =
(
p+1
2

)(
N−1
p+2

)
for all p,

(5) dim(IΣ)3 =
(
N−1
3

)
,

(6) βp,2 =
(
p+1
2

)(
N−1
p+2

)
for some 1 ≤ p ≤ N − 3,

(7) the third strand of Σ has length N − 3,
(8) reg(Σ) = 3,
(9) Σ satisfies (N3,N−3)-property,

(10) Σ is a Fano variety with log terminal singularities,
(11) Σ has rational singularities,
(12) Σ has quotient singularities,
(13) the singularities of Σ are pre-1-rational,
(14) the singularities of Σ are pre-p-rational for all p,

(15) gl(F•Hlcd(PN ,Σ)
Σ (OPN )) = 0.

Proof. The equivalence of (1) with (12)-(15) comes from Corollary E. (1) and (11) are equivalent
by [Ver08, Proposition 9] (or by Theorem 2.17(1)(d)). The equivalence of (1) and (10) follows from
[ENP20, Theorem 1.1]. Now, since X is an irreducible curve by assumption, Σ is a 2-secant variety
of minimal degree if and only if (1) holds (see the introduction of [CK22], or the results of [CR06],
in particular [CR06, Theorem 6.1]). Thus, the equivalence of (1)-(9) follows from [CK22, Theorem
1.1]. □
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