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ABSTRACT. We study the singularities of secant varieties of smooth projective varieties
using methods from birational geometry when the embedding line bundle is sufficiently
positive. More precisely, we study the Du Bois complex of secant varieties and its relation-
ship with the sheaves of differential forms. Through this analysis, we give a necessary and
sufficient condition for these varieties to have p-Du Bois singularities (in a sense that was
proposed in [SVV23]). In addition, we show that the singularities of these varieties are
never higher rational, by giving a classification of the cases when they are pre-1-rational.
From these results, we deduce several consequences, including a Kodaira-Akizuki-Nakano
type vanishing result for the reflexive differential forms of the secant varieties.

A. INTRODUCTION

Secant varieties have been vastly studied in the literature. In particular, there has been a
great deal of interest in understanding their defining equations and syzygies as well as their
singularities ([ENP20,Rail2, SV09,SV11, Ver01, Ver08, Ver09] and the references therein).
The research on these varieties is also partly motivated by topics in algebraic statistics
and algebraic complexity theory ([SS06, LW09]). A few years ago, under some positivity
conditions on the embedding line bundle, [Ull16] had shown the normality of these varieties,
thereby completing some results of Vermeire. More recently, the singularities of the secant
varieties were shown to be Du Bois, which is an important class of singularities (see [KS11]
for a survey), in [CS18], and also a characterization for when these are rational was given.

Very recently, the notions of Du Bois and rational singularities have been extended sub-
stantially in a series of papers [MOPW23, FL22a,JKSY22,KL.20,SVV23], and in particular,
the notions of higher Du Bois and higher rational singularities have emerged. For this rea-
son, it is natural to ask: to which of these newly defined singularity classes do the secant
varieties belong? Although these generalized notions of p-Du Bois singularities are defined
via some conditions imposed on the first p associated graded pieces of the Du Bois complex
and require p to be in an admissible range (based on the codimension of the singular locus
of the variety under consideration), our study of secant varieties in this article will often go
beyond that, and we will show a similar behavior on the rest of the graded pieces.

To set up the context, we start with a smooth projective variety X of dimension n and
a very ample line bundle L on X. We denote by ¥ = (X, L) the secant variety of X
with respect to L. Under a mild assumption on the positivity of L, which requires L to be
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3-very ample (see Definition 2.1), dim ¥ = 2n 4+ 1 and the singular locus of ¥ is X C X (see
Proposition 2.2).

In [Ull16] and [CS18], the singularities of the secant varieties were studied when X is
embedded by a sufficiently positive linear series. In this article, the positivity of L is
measured through the integer p for which it satisfies the (Q)-property, see Definition 3.1.
This property, for a 3-very ample line bundle L, is defined through properties (Q1), (Q2)
(which have no bearing on p) and (Q3,). It is straightforward to see from the definition
that if L satisfies (Qp)-property (more precisely (Q3,)) for some p > 0, then it satisfies
(Qk)-property (more precisely (Q3)) for all 0 < k < p. Also, if L satisfies (Q,,)-property
(resp. (@3y)), then it satisfies (Q)p)-property (resp. (Q3,)) for all p > 0.

It turns out that L satisfies (Q)-property if one of the following holds:

e n =1 and deg(L) > 29+ 3 where g is the genus of X (in fact, in this case L satisfies
(Qp)-property for all p > 0); or

en>2and L = Kx +dA+ B with d > 2n 4+ 2 where A and B are very ample and
nef line bundles respectively.

The main results of Ullery and Chou—Song can be stated as follows:

Theorem 0.1 ([Ull16,CS18]). Assume L satisfies (Qo)-property. Then:

(1) ¥ is normal, and its singularities are Du Bois.
(2) ¥ has rational singularities if and only if H(Ox) =0 for all i > 0.!

The present work is devoted to understanding the singularities of >, where we assume
that L satisfies (Qp)-property for some p > 0. Roughly speaking, the larger p for which L
satisfies (Q)p)-property implies the better singularities of X.

As for concrete examples of line bundles L that satisfy this property, it turns out that
there are explicit functions f(p,n) and g(l,p,n) such that the pluri-adjoint linear series
[Kx +dA+ B where A is a very ample line bundle and B is a nef line bundle satisfies (Q,)-
property if I > f(p,n) and d > g(l,p,n), see Theorem 3.6. In particular, IKx + dA + B
satisfies (Qp)-property for all p > 0 if d > [ > 0. For the convenience of the reader, here
we point out special cases of Theorem 3.6: for n > 2, the line bundle

L=2Kx+dA+B

satisfies (Q1)-property, when d > 3n + 4 (if n > 3, then d = 3n + 3 also satisfies the
condition). Moreover, for n > 2 and 1 < p < n, the line bundle

. {[(Z‘i) 1 Ex+ [(CD+ ) e+ 42 ((g)+1)]a+B itp-1< (3]
[(LZ%}J) + 1} R+ {((LEJ) T 1) (n+2)+2p <(L§J) + 1)} A+ B otherwise

satisfies (Qp)-property.

More precisely, assuming L is 3-very ample, [Ull16] showed the normality of ¥ when L satisfies (Q1),
and [CS18] showed that ¥ has Du Bois singularities and the assertion (2) when L satisfies (Q1) and (Q3o).
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Higher Du Bois singularities. We now recall that associated to any complex variety Z
there is the Du Bois complex QY% introduced in [DB81], which is an object in the derived
category of filtered complexes on Z. The associated graded objects

Qf = Grip Qy[K]

are objects in the derived category of coherent sheaves. A variety Z is said to have Du Bois
singularities if the canonical morphism Oz — Q% is a quasi-isomorphism. This notion has
been generalized by requiring the canonical morphisms Q’% — Q’} to be quasi-isomorphisms
for 0 < k < p as well, and varieties that satisfy this property are said to have p-Du
Bois singularities. The condition is well-behaved for varieties whose singularities are local
complete intersections (see [MP22a, MP22b]) but usually fails otherwise, as is the case of
secant varieties as they are in general not even Cohen-Macaulay ([CS18, Theorem 1.3]).

For this reason, a new definition of varieties having p-Du Bois singularities was pro-
posed in [SVV23], which generalizes the previously described notion for varieties with local
complete intersection singularities. Our first result is about a vanishing condition on the
cohomology of the Du Bois complexes. Following [SVV23], we say that a variety has pre-
p-Du Bois singularities if these complexes are concentrated in degree zero for 0 < k < p
(see Definition 1.1). When L satisfies (@, )-property, 3 satisfies this for every non-negative
integer p. In fact, we have:

Theorem A. Let p € N and assume L satisfies (Qp)-property. Then the natural maps
HO(Q8) — OF
are quasi-isomorphisms for all 0 < k < p; in particular, the singularities of ¥ are pre-p-Du

Bois.

We remark that the conclusion of the above holds more generally when L is 3-very ample
and satisfies (Q3,) as our proof shows.

In addition to requiring Z to have pre-p-Du Bois singularities, following [SVV23], a variety
is said to have p-Du Bois singularities if two extra conditions are satisfied. The first is a
codimension condition on the singular locus, and the second is a condition in degree zero
for Q% when 0 < k < p (see Definition 1.2). Secant varieties satisfy the first condition up
to a certain range; and in relation to the last condition, we show the following where we

write Q) for the reflexive hull of QF:

Theorem B. Let p be a positive integer and assume L satisfies (Qp)-property. Then the
natural maps

5 : HO(Qk) — ol
are isomorphisms for 1 < k < p if and only if H*(Ox) =0 for 1 <k < p.
As before, we remark here that if 3 is normal, then its singularities are Du Bois and the
conclusion of Theorem B holds if L is 3-very ample and satisfies (Q3,).

We now introduce a useful invariant

v(X):=max {i|1<i<n-—1 suchthat H/(Ox) =0 forall 1<j<i},
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where we set the convention v(X) = 0 if the set above is empty. The importance of this
invariant was observed in [CS18]; it follows from loc. cit. that if L satisfies (Qq)-property,
then ¥ is Cohen-Macaulay if and only if v(X) =n — 1 (notice that this always holds when
n = 1), and it has rational singularities if and only if ¥(X) =n —1 and H"(Ox) = 0. The
following is an immediate consequence of Theorem A and Theorem B.

Corollary C. Let p € N with p < |5, and assume L satisfies (Qp)-property. Then X has
p-Du Bois singularities if and only if p < v(X).

When L is 3-very ample, the codimension of the singular locus of > is n 4+ 1 unless X is
smooth, whence it follows from the definition of p-Du Bois singularity and Proposition 2.2,
that in this case ¥ has p-Du Bois singularity for some p > [ %] if and only if ¥ = P(H°(L)).

We further study the morphisms 6, : H(Q%) — Q[EM and in Theorem 6.1, we also discuss

the case for higher degrees not considered in the definition of p-Du Bois singularities. Recall
that a variety Z is said to have weakly rational singularities if the Grauert-Riemenschneider
sheaf ng, which is by definition the push-forward of the canonical bundle from a resolution
of singularities of Z, is reflexive. When L satisfies (Qq)-property, [CS18, Theorem 1.4] shows
that the natural map
WSR s oy = 1T (wWY)

is an isomorphism if and only if H"(Ox) = 0 (throughout this article, we denote the
dualizing complex of a variety Z by w?¥; in particular if Z is smooth or even Cohen-Macaulay,
we have w) = wyz[dim Z] where wy is the canonical sheaf). Notice that under our set-up,
the map above is an isomorphism if and only if the singularities of ¥ are weakly rational as
Y is normal and wy, is reflexive. When L satisfies (Q,)-property, loc. cit. combined with
Theorem 6.1 (1) establishes the equivalences:

¥ has weakly rational singularities <= H"(Ox) =0 <= d2541 is an isomorphism
<= 0J9, is an isomorphism.

Higher rational singularities. We discuss next the extension of the notion of rational
singularities. Recall that a variety Z is said to have rational singularities if for a resolution
of singularities f : Z—Z , the canonical morphism Oz — R f.O7 is a quasi-isomorphism.
Intrinsically, this is equivalent to requiring that the morphism Oz — D Z(Q%im z ) is a quasi-
isomorphism, where Dz (—) is the Grothendieck dual. Analogous to the definition of pre-p-
Du Bois singularities, a variety Z is said to have pre-p-rational singularities if the complexes
Dy (Qfm% ~*) are concentrated in degree zero for any 0 < k < p (see Definition 1.4). When
p < codimg(Zging) and f : Z — Z is a strong log resolution with E := f_l(Zsing)red a
simple normal crossing divisor (see Definition 1.5), this condition is equivalent to requiring
that the complexes R f*Q%(log E) are concentrated in degree zero for 0 < k < p. It was
shown in [SVV23, Theorem B] that for a normal variety, pre-p-rational singularities are
pre-p-Du Bois. However, it turns out that the singularities of secant varieties are almost
never pre-1-rational:

Theorem D. Assume L satisfies (Q1)-property. Then Y. has pre-1-rational singularities if
and only if X C P(H°(L)) is a rational normal curve of degree > 3.
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The above result is a consequence of a more general fact that when L satisfies (Q1)-
property, we have #!(Dx(QEm>71)) £ 0.

Following [SVV23], a variety is said to have p-rational singularities if Z is normal, has
pre-p-rational singularities, and additionally satisfies a codimension condition of the singular
locus (see Definition 1.6). By Proposition 2.2, this last condition is never satisfied when
X C P(HO(L)) is a rational normal curve of degree > 4.

It is worth mentioning that, unlike the local complete intersection case, where p-Du
Bois singularities are (p — 1)-rational ([CDM22, MP22b, FL22b]), our study produces secant
varieties whose singularities are p-Du Bois for some p > 2 but not even pre-1-rational.
This feature is also shared by the singularities of non-simplicial affine toric varieties, see
[SVV23, Proposition E]. We also obtain secant varieties whose singularities are p-Du Bois
for large p but not rational, a feature that is shared by the singularities of certain affine
cones over smooth projective varieties, see [SVV23, Proposition F].

Some examples. We provide concrete examples to highlight the scope of our results:

Example 0.2 (Curves). Let C C PV be a smooth curve of genus g, embedded by the
complete linear series of a line bundle L with deg(L) > 2g + 3. Then:

e Y is normal, Cohen-Macaulay, and has Du Bois singularities. It has weakly rational
singularities <= it has rational singularities <= ¢ = 0.

e The singularities of ¥ are pre-p-Du Bois for all p > 0. They are pre-1-rational if
and only if g = 0.

e The singularities are not p-Du Bois for any p > 1 unless ¥ = PV (one can show that
this happens if and only if C C PV is a twisted cubic, i.e., (C, L) = (P*, Op1(3))).

Example 0.3 (Higher dimensions). Let X C PV be a smooth projective variety of dimen-
sion n > 2, embedded by the complete linear series of

o) e () ) m () )

where A and B are very ample and nef line bundles respectively. Then ¥ is normal and has
Du Bois singularities. Moreover, the singularities of ¥ has the following properties:

e They are pre-p-Du Bois for all p > 0. However, they are never pre-1-rational.

e If X is rationally connected, then the singularities are rational and | % |-Du Bois.

e If X is Calabi-Yau in the strong sense (i.e., H/(Ox) =0 for all 1 <4 <n — 1) then
they are |5 |-Du Bois, but not rational. In this case, ¥ is Cohen-Macaulay, but not
weakly rational.

e If X is hyper-Kéhler (recall that they live in even dimensions), then they are 1-Du
Bois, but not 2-Du Bois. In this case, 3 is Cohen-Macaulay if and only if X is a K3
surface. However, the singularities of ¥ are not weakly rational.

One could also obtain many other examples with various features.
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Consequences. As the associated graded objects Ql% of the Du Bois complex of a variety
Z are generalizations of the sheaf of k-forms in the smooth case, we can use Theorem A
and Theorem B to prove a Kodaira-Akizuki-Nakano type vanishing theorem:

Corollary E (Analogue of Kodaira-Akizuki-Nakano vanishing theorem). Let p be a positive
integer and assume L satisfies (Qp)-property. Let L be an ample line bundle on ¥. If
H*(Ox) =0 for1 <k <p, then

Hq(Q[g] ®L)=0 whenp+gq>dim> =2n+ 1.

We also apply our results to obtain consequences for h-differentials, an introduction to

which can be found in [HJ14]. It has been proven in [KS21] that if Z is a variety with rational

singularities, then QF|; = Q[g for all p. Here we obtain the isomorphisms QF |5, = [g] up

to a certain range of p, even when the singularities of ¥ are not rational:

Corollary F (Description of the h-differentials). Let p be a positive integer and assume
L satisfies (Qp)-property. If H*(Ox) = 0 for 1 < k < p, then then there is a natural
isomorphism Q|5 = Q[g.

The previous two results are special cases of Corollary 6.16 and Corollary 6.17. Finally,
pre-1-rational singularities of rational normal curves of degree > 3 give consequences for
the Hodge-Du Bois numbers of their secant varieties:

Corollary G (Symmetry of Hodge-Du Bois numbers). Let X C P“t! be a rational normal
curve of degree > 3. Then

(0.4) hPA(X) = hPP(B) = p37P374
for all 0 < p,q < 3, where "4 (X) := diqu(E,Qg).

As a concluding note, we remark that there is a third measure of singularities that
is natural to consider, which is the local cohomological dimension led(PY,¥) of ¥ inside
PV .= P(HY(L)), and to study the filtrations on the local cohomology sheaves along the
direction of [MP22a]. This will be the topic of a future study.

The structure of this article can be summarized as follows: Sect. B is divided in three
parts, 81, §2 and §3. In §1, we provide a brief review on higher Du Bois and higher rational
singularities, and in §2, we recall the basics on secant varieties. The objective of §3 is to
study (Qp)-property of pluri-adjoint linear series. The proofs of Theorem A and Theorem B
are given in Sect. C. The proof of Theorem D appears in Sect. D.

Acknowledgements. We are very grateful to Mircea Mustata and Mihnea Popa for
valuable comments on an earlier version of this manuscript and conversations at differ-
ent stages of this article. We thank Sridhar Venkatesh for several helpful discussions. D.R.
expresses his gratitude to Angelo Felice Lopez for valuable comments on an earlier draft.
We also thank the anonymous referee for comments and suggestions that improved the ex-
position. L.S. was partially supported by Guangzhou Science and Technology Programme
(No. 2024A04J6409) and NSFC grant (No. 12371063).



SINGULARITIES OF SECANT VARIETIES FROM A HODGE THEORETIC PERSPECTIVE 7

B. PRELIMINARIES
We work over the field C of complex numbers. By a variety, we mean an integral separated

scheme of finite type over C. For a variety Z, we denote by Zgn, its singular locus.

1. Hodge theory. In this section, we recall the basics of higher Du Bois and rational
singularities. In pursuit of a general theory of these singularities beyond the local complete
intersection case, [SVV23] extracted their key features that we will describe.

1.1. Higher Du Bois singularities. The first property of this type of singularities is a van-

ishing condition:

Definition 1.1. A variety Z is said to have pre-p-Du Bois singularities for p € N if
HI(QE) =0 forall i >1,0<k <p.

Equivalently, the complexes Q% are concentrated in degree zero for k in the given range.

Recall that by definition, a variety Z has Du Bois singularities if the morphism Oz — QOZ
is a quasi-isomorphism. Also recall that Z is called seminormal if HO(Q%) ~ Oz In
particular, Z has Du Bois singularities if and only if it is seminormal and its singularities
are pre-0-Du Bois. The picture generalizes through the following

Definition 1.2. A variety Z is said to have p-Du Bois singularities for p € N if it is
seminormal, and the following conditions are satisfied:

(1) COdimz(Zsing) Z 2p+ 1,
(2) Z has pre-p-Du Bois singularities,
(3) HO(Q%) is reflexive for all 0 < k < p.

A related condition on a variety Z is the requirement that the morphisms
(1.3) 0f — QF are quasi-isomorphisms for 0 < k < p.

The above condition is equivalent to the conditions stated in Definition 1.2 when Z is a
local complete intersection, but the requirement (1.3) is generally more restrictive. If Z
satisfies (1.3), then its singularities are called strict-p-Du Bois in [SVV23].

1.2. Higher rational singularities. We now proceed towards the definition of higher rational
singularities. Let us first introduce the notation for the (shifted) Grothendieck duality
functor: given a variety Z, we set

Dz(—) := RHomo,(—,wy)[— dim Z].
While defining higher rational singularities, one is concerned with the complex D Z(Q%im Z-ky.
Definition 1.4. A variety Z is said to have pre-p-rational singularities for p € N if
HI(Dz(QmZ=F)) =0 for all i > 1,0 <k < p,

Equivalently, D Z(Q%im Z-k) is concentrated in degree zero for k in the given range.
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Recall that Z is said to have rational singularities if the map Oz — Dz(QUmZ) (this is
the case k = 0 of the morphisms Q% — DZ(Q%im Z=k) constructed in [MP22h, Proposition
6.1]) is a quasi-isomorphism; this is equivalent to the requirement that Z is normal and
R f+Oz = 0 when i > 0 for a log resolution f : Z — Z with reduced exceptional divisor F
simple normal crossings. In particular, Z has rational singularities if and only if it is normal
and its singularities are pre-O-rational. In the upcoming sections, we will use the following
kind of resolution of singularities.

Definition 1.5. Let Z be a variety. By a strong log resolution of Z, we mean a proper
morphism y : 7 — Z that is an isomorphism over Zg, = Z\ZSmg with Z smooth, and
1 (Zging) ,oq is a simple normal crossing divisor.

The picture for rational singularities generalizes through the following:

Definition 1.6. A variety Z is said to have p-rational singularities for p € N if it is normal,
and

(1) codimy(Zging) > 2p+ 1,
(2) Rif*Q%(log E) =0 for all i > 0 and 0 < k£ < p and for any strong log resolution
f:Z—Z.

The second condition above is equivalent to the requirement that the singularities of Z
are pre-p-rational. When Z is a local complete intersection, the conditions of Definition 1.6
are equivalent to requiring the morphisms

(1.7) Qf — DZ(Q%im 2=k are quasi-isomorphisms for 0 < k < p.

However, the above condition is more restrictive in general, and if Z satisfies this, then its
singularities are called strict-p-rational in [SVV23]. We refer the interested reader to loc.
cit. where various relationships among these singularities are discussed.

2. Preliminaries on secant varieties. In this section, we describe the geometry of secant
varieties and provide several computational tools that will be used throughout the rest of
the article.

2.1. Strong log resolution of secant varieties. Let X be a smooth projective variety of dimen-
sion n. Let L be a very ample line bundle on X inducing the embedding X < P(H°(L)).
Further, let X be the Hilbert scheme of two points on X, which is a smooth projec-
tive variety. Consider the universal family ® ¢ X[ x X that comes with two natural
projections ¢ : ® — X and 6 : ® — X[ It is known that ® = Bla(X x X) and let
ba : @ 2 BIA(X x X) — X x X be the blow-up morphism where A C X x X is the
diagonal. We have the following commutative diagram:

o " xxXx

LN T
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We set &, := 0.¢*L and notice that this bundle is globally generated as L is very ample,
i.e., the evaluation map
HO((‘;L) ® Oxr — &1L

is surjective. Observe that H%(£;) = HY(L) whence the above surjection induces a map
f : P(E) — P(H°(L)) which surjects onto the secant variety ¥ := X(X, L) which, by
definition, is the Zariski closure of the union of 2-secant lines of X < P(H%(L)). This way,
we obtain the surjective map t : P(1) — . In what follows, we set 7 : P(£1) — X[ to be
the structure morphism. Recall the following

Definition 2.1. A bundle L on a smooth projective variety X is called k—very ample if
for any O—dimensional subscheme £ of length k + 1, the evaluation map of global sections
HY(L) — H%(L ® O¢) surjects.

The singular locus of secant varieties is very simple under the mild condition that L is 3-
very ample. Moreover, in this case the map t described above is a resolution of singularities.

Although these facts are well-known to experts, we include the proofs for the convenience
of the reader.

Proposition 2.2. Assume L is 3-very ample. Then the following statements hold:
(1) tlpEe \e—1(x) P(EL)\tH(X) — X\X is an isomorphism. In particular Ygpng C X.
(2) If in addition ¥ # P(H(L)), then Sgng = X.
We proceed to the proof of the above result. In what follows, we use that given a zero-
dimensional subspace £ C X with ideal sheaf Z¢, the linear subspace (§) spanned by ¢ is

isomorphic to P(H(L)/H%(L ® I¢)). Observe that if & C X and & C X are distinct
zero-dimensional subschemes of length 2, then (£;) # (£2) when L is 3-very ample.

Lemma 2.3. Assume L is 3-very ample. Let & C X and & C X be zero-dimensional
subschemes of length 2 with Supp(&1) N Supp(&2) = 0. Then (&1) N (&) = 0.

Proof. Since ¢ := & U & has length 4 and L is 3-very ample, the natural map HY(L) —
HY(L ® O) is surjective. It follows that (£) = P(H°(L ® Of)) = P3. Therefore the lines
(¢1) and (&2) do not intersect. O

Lemma 2.4. Assume L is 3-very ample, and let x € Y. If there is a unique zero-
dimensional subscheme & C X of length 2 such that x € (), then there exists an open
set ¥ € V. C X such that t|-1(y) : t=Y(V) = V is an isomorphism; in particular x € ¥ is
smooth.

Proof. Put | = (£) and consider the Cartesian square:

t7H(z) —— 77H(E)

Ik

{z} —— 1

Since [ -1(¢) 771([¢]) — [ is an isomorphism by the construction of the resolution ¢, the
scheme-theoretic preimage t~1(x) is a reduced point. Thus, there exists an open set = €
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U C 3 such that for all y € U, we have dim(t~!(y)) = 0. Consequently, t|y : t~1(U) — U,
is a finite morphism. Using base change of affine morphisms, and upper semi-continuity
of ranks of coherent sheaves, we conclude that there exists an open subset x € V C U
such that t|y : t~1(V) — V is an isomorphism. The last assertion follows since t=1(V) is
smooth. g

Proof of Proposition 2.2 (1). Thanks to Lemma 2.4, it is enough to show that for any z €
Y\ X, there exists a unique zero-dimensional subscheme £ C X of length 2 such that = C (£).
Suppose to the contrary, z € ¥\X with z € (I; = (1)) N (la = (&2)), where & C X are
distinct zero-dimensional subschemes of length 2. Since (£;) # (&) and since two lines
intersect at most at one point, we conclude that Supp(&1) N Supp(&) = 0 (see the left
schematic diagram in Figure 2.1).

T
la
T.U

b= h = (&)

\%\4»\
Ty *
/ \
FIGURE 2.1. Left: z € (I1 = (&1)) N (la = (§2)). Right: z € T, NT, where z ¢ {z,y}

But this contradicts Lemma 2.3. O
We now proceed to prove Proposition 2.2 (2).

Lemma 2.5. Assume L is 3-very ample. Let x,y € X be two distinct points with the
embedded tangent spaces T, N'Ty # 0. Then either T, N T, = {z} or T, NT, = {y}.

Proof. For the sake of contradiction, assume z € T, N'T, where z ¢ {z,y}. Consider the
lines [ = 7z, ly = Yz (see the right schematic diagram in Figure 2.1). Notice that I; (resp.
l2) intersects X at x (resp. y) with multiplicity > 2. Consequently, we get zero-dimensional
subschemes 1 C X and & C X of length 2, with Supp(§1) = {z} and Supp(§2) = {y} with
z € (£1) N (&2). This contradicts Lemma 2.3. O

Lemma 2.6. Assume L is 3-very ample. Let x € X. Then for generaly € X, T,NT, = (.

Proof. Since X C P(H°(L)) is non-degenerate (in particular, X ¢ T,), for general y € X,
we have T, N'T, # {y}. For yi,y2 € X distinct points, both distinct from x, assume
T,NTy, =T,NTy, = {x}. Then, as in the proof of Lemma 2.5, working with Zg; and vz,
we obtain length 2 subschemes &1, &, C X with Supp(&1) NSupp(&2) = 0 and x € (§1) N (&),
which contradicts Lemma 2.3. The conclusion follows from Lemma 2.5. (|
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Proof of Proposition 2.2 (2). In view of (1), we suppose to the contrary that Yg,, € X,
and fix z € X\Xgpng. Then dim T, = 2n + 1. For general y € X, applying Terracini’s
lemma (cf. [Laz04a, Lemma 3.4.28]), we have that span(T,,T,) C T,X. By Lemma 2.6,
dim(span(T;, Ty)) = 2n + 1 = dim T, 3. Thus span(T,, T,) = T,X. On the other hand, by
the generality of y, 3 is smooth at y, so another application of Terracini’s lemma yields that
span(T;, Ty) = T,X. Therefore X C T,%. Recall that X C P(H°(L)) is non-degenerate, so
T,Y = P(H°(L)). Since z is a smooth point of 3, we obtain ¥ = P(H%(L)), a contradiction.

O

From here until the end of §2.2, we tacitly assume that L is 3-very ample. In this case,
Yang € X and P(£r) ¢ XP x P(HO(L)) together with the second projection provides
a natural resolution of singularities ¢ : P(£r) — (X, L) by Proposition 2.2. It follows
from [VerO1l, Lemma 3.8] that scheme-theoretically we can identify the exceptional divisor
t~1(X) = ® and the restriction of ¢ on it coincides with the surjection ¢ : ® — X.

As an immediate consequence of the above discussion and Proposition 2.2, we obtain

Corollary 2.7. Assume L is 3-very ample and ¥ # P(HY(L)). Then the morphism t is a
strong log resolution of 3.

Strictly speaking, we don’t use that ¢ is a strong log resolution when ¥ # P(H?(L)) in the
proof of Theorem D. This is because, to check whether ¥ has pre-1-rational singularities
through its birational description, we only need a resolution which is an isomorphism outside
a locus of codimension at least two. The morphism ¢ satisfies this when L is 3-very ample
as in this case codimy(X) =n + 1 > 2. See Remark 7.1 for more details.

In summary, for any x € X we have the following diagram with Cartesian squares where
the vertical arrows are surjections

F, - > O < P(&r)
R
{z} — X « R » P(HO(L))
and F, = Bl X, the blow-up of X at x. We set b, : F,, = Bl, X — X to be the blow-up

morphism. In the sequel, we will often use the fact that the map ¢ : ® — X is smooth by
[CS18, Lemma 2.1] without any further reference.

2.2. Useful isomorphisms and exact sequences. We start by recalling some basic facts about
the log resolution of ¥ described in §2.1 that are used crucially in the proofs of our main
results.

First of all, by [Ull16, Proof of Lemma 2.3], we have the isomorphisms
(2.9) oo = Op', and N3 pee, | p, =2 0 L(—2E;),

where FE, is the exceptional divisor of b,. Moreover, by [Ull16, Proof of Lemma 2.3], the
normal bundle sequence of F, C ® C P(&r) is split. Consequently, by using (2.9) one
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obtains the following isomorphism:
(2.10) N e,y = Op" © b3 L(—=2E,).

Denoting the ideal sheaf of F, C P(€1) by Zr,, and using (2.10), we also obtain the isomor-
phisms
J
. . . n+j—m-—1
(2.11) Ty /T3 = SymING, e,y = @D (b (mL)(—2mE,)| (")
m=0

Next, observe that we have the following commutative diagram with exact rows and

columns for p > 1:

0 0

Since Qg;l is locally free, for any = € X, restricting the resulting exact sequence appearing
in the right vertical column on Fj, we obtain the following short exact sequence for any
p=>1L

(2.13) 0— Q| = O (log @)k, — [k, = 0.

The above exact sequence will be essential for us in the sequel.

We now prove a proposition crucially needed in the proof of Theorem B:

Proposition 2.14. There is an isomorphism

k
(2.15) H*(®,04) = @ H*7(X, H (X,0x) ® Ox).
j=0
In particular,
(2.16) ROk (@) = ROF(X)ROO(X) + hOF L X)ROL(X) + - - + AOO(X)ROF(X).

Proof. We note first that since the map ¢ is smooth, we have an isomorphism

(2.17) Rq.0p = (P R, 0]
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in D?(Coh(X)), the bounded derived category of coherent sheaves on X [Del68, Theorem
6.1] (note that this is an instance of the Decomposition Theorem and taking the Hodge
degree 0 [Sai88, Theorem 1] in the simpler case when the map is smooth and projective).
Moreover,

(2.18) RIq.0p = H(X,0x) ® Ox
by [CS18, Lemma 2.2]. Taking hypercohomology H¥ of (2.17), this says that
H*(®,04) = @ H*(X,H/(X,0x) ® Ox)
which is (2.15). Lastly, (2.16) follows immediately from this. O

We remark that there is a more elementary proof of (2.16) using the fact that ® is the
blow-up of X x X along the diagonal. Lastly, we compute the direct and higher direct
images of Q} that will be required in the proof of Theorem D:

Lemma 2.19. The following statements hold:
(1) If n =1, then we have the following isomorphisms for all j:
Riq.Qy = [H (Ox) ® Q%] @ [H (k) ® Ox] .
(2) Assume n > 2. Then:

(i) R7q.Qy = [H(Ox) @ Q%] & [H(QX) ® Ox]| for all j #1;
(ii) We have an exact sequence

0— [H'(Ox)® k] @ [H'(Q)) ® Ox] = R'q.Q5 — Ox — 0.
Proof. Let us denote by p; and py the two projections from X x X to its factors. Using the
diagram
XxX 2o Xx
lpl lq2
X —T 4.

and flat base change, we deduce that ijl*ngﬁ( = quij*Q}( = HUQ&)@(’)X. Combining
this with projection formula and R/p;,Oxxx = H/(Ox) ® Ox, we obtain for all j

(2200 Rpy,Qk,x = Ripn (00 @ p30k) = [H9(0x) ® k] © [H(Qk) @ O]

We recall that ¢ = p; o ba and note that we have the following commutative diagram:

Pl B« Fn <25 & 2BIy(X x X)

! o e

{(z,2)} < A" L XxX

~ q
— p1
|
X
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When n = 1, ba is an isomorphism, whence R’q, QL = ijl*Qkx y and the conclusion
follows from (2.20). This proves (1).

Now assume n > 2. Recall that R7ba,Op = 0 for all j > 1, and ba,Os = Oxx x. Using
Leray spectral sequence and projection formula, we obtain the following isomorphisms for
all j:

(2.21) R g DAy x = Rp1. Qv x and R ja, g, a = 0o R aa. 05, -

Notice that ga : Ea = P(NX) — A is the structure morphism of the projective bundle,
where A is the normal bundle of A < X x X. Consequently, passing to the long exact
sequence corresponding to ga, of the exact sequence

0= Qp,a = GANA(=1) = Op, =0,

we obtain

; Oa if =1,
2.22 RIqa, = ’
( ) U8 iEa/A { 0 otherwise.

Also, passing to the long exact sequence corresponding to ¢, of the following short exact
sequence

0= bAQywx = Q= Ja. 25, /0 = 0,
and using (2.21), (2.22) we obtain the isomorphisms
(2 23) Q*Q}D gpl*QkxXa
' Riq.QL = Rip Q% forall j > 3.
Moreover, we also obtain the following exact sequence

(2.24) 0 — R'p1, Q% v = R'¢.QL = Ox — R%p1 Q. v — R%¢.QL — 0.

Now, the map
OX — Rzpl*Q%(XX

is injective if it is non-zero. We claim that it is the zero map. Indeed, for otherwise
Rlpl*QkxX = qu*Q}b. The Leray spectral sequence

Ey = H'(Rlq.0p) — H™ (),
being a first quadrant spectral sequence, induces the exact sequence
0— By — HY(Q) —» EY' — E>°.
We conclude that
(2.25) hO(RpL,Qxx) = O (R'q.Qg) > 1 () — 1 (¢:95).
By (2.20), we compute
(2.26) hO(R'p1,Qx x) = (hM(X))? + hMH(X).
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On the other hand, h'(Q}) — A (¢:Q)) = A1 QL ) + 1 — h1(¢.Q)) as @ = Bla(X x X),
whence using (2.20) once again, this time to calculate h'(g.Q}) using (2.23), we obtain

(2.27) BLQ)) — h1(@.0%) = (BO(X)? + BM(X) + 1.
But (2.26) and (2.27) contradicts (2.25). Thus, (2.24) breaks off into the desired short exact
sequence and the isomorphism. This, combined with (2.23) and (2.20) proves (2). O

3. (Qp)-property and pluri-adjoint series. Let X be a smooth projective variety of
dimension n. Let Z, be the ideal sheaf of z € X. We now formally introduce the following:

Definition 3.1. Let p > 0 be an integer, and let L be a 3-very ample line bundle on X.

Then L is said to satisfy (Qp)-property if the following conditions are satisfied for all z € X:

(Q1): the natural map Sym‘H°(L ® Z2) — HO(L®! @ T%) is surjective for all i > 1 (this is
equivalent to requiring b%L(—2FE,) is projectively normal),

(Q2): biL(—2FE,) is ample?,

(Q3p): H'(QF, @b (JL)(—2jE,)) =0 forall i,j > 1,0 < g <p.

Examples where (Q3,) is satisfied include the case when (Q2) is satisfied and F satisfies
Bott vanishing for all x € X. We proceed to show that the line bundles as in the set-up
below satisfy (Q)-property for suitable p.

Set-up 3.2. Let X be a smooth projective variety of dimension n. Let L be a line bundle
on X that satisfies:

e Ifn=1, we assume deg(L) > 29 + 3.

o Ifn>2 then L = L g :=1Kx +dA+ B where A and B are very ample and nef
line bundles respectively. We additionally assume for a given s € N (which will be
specified in the statement of our results) that (I,d) € N x N satisfies the following
conditions’:

. (> max {("7)+1},

. d> max{ ln+2)+2,ln+1)+2+s,(n+1)(+1), _max {dn,i} }

where

dn,i—max{(nw) <z- (”2_1) —1)+2(i+1)<<i’+11)+1),2(¢+1)<(Z_Zl>+1>+1}.

Two remarks are in order:

Remark 3.4. We note that in the situation of Set-up 3.2 (by which we mean, in particular,
that (I,d) satisfies (3.3) for some s > 0 when n > 2), L is 3-very ample. This is evident

2If we assume L is 3-jet ample (c.f. page 16), then (Q2) is automatic by [BDRS99, Proposition 2.7]. Also,
an interested reader may verify that if an arbitrary line bundle L (not necessarily assumed to be 3-very
ample) satisfies (Q1) and (Q2), then it is almost immediate from an observation of Mumford ([Mum?70, page
38]) that by L(—2F) is very ample for all z € X, whence L is also very ample.

3Here we introduce the convention that (‘;) =0ifb<OQorifb>aorifa=0.
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for n = 1. To see this for n > 2, use the well-known fact that Kx + (n +2)A + B’ is very
ample for any nef line bundle B’ as A is very ample. Write

Lig=[Kx+(n+2)A+B]+[(l— 1)Ex + (d—n—2)A].

Recall that a line bundle is 1-very ample is equivalent to it being very ample, and by
[HTTO05, Theorem 1.1], a tensor product of a and b-very ample line bundles is (a + b)-very
ample when a,b > 0. To this end, note that d—n—2> (I—-1)(n+2)+2asd > (n+2)+2
by assumption, whence

Lig=[Kx+(n+2)A+B]+(l—1)[Kx + (n+ 2)A] +jA with j > 2

very ample very ample

which proves the assertion. In fact, let us also note that L; 4 is 3-very ample if [ = 2 (resp.
[ >3)and d>1Il(n+2)+1 (resp. d > 1(n+2)).

Remark 3.5. We note that in the situation of Set-up 3.2, L satisfies (Q1) and (Q3p). For
n = 1, this follows from [Ull16, Proof of Corollary A] and [CS18, Proof of Theorem 1.2]. To
see this for n > 2, use the well-known fact that Kx + (n + 1)A + B is nef as A and B are
very ample and nef line bundles respectively. write

led:Kx+(2n+2)A+ [(l—l)Kx—i-(d—Qn—Q)A—l—B]

Using [Ull16, Proof of Corollary C] and [CS18, Proof of Theorem 1.2], it is enough to show
that d —2n —2 > (I — 1)(n + 1) which holds as d > (I + 1)(n + 1) by assumption. In other
words, the above discussion verifies that Set-up 3.2 satisfies [CS18, Assumption 1.1].

We aim to prove the following

Theorem 3.6. Let 0 < p <n be an integer. Suppose we are in the situation of Set-up 3.2
and assume (1, d) satisfies (3.3) with s =p when n > 2. Then L satisfies (Qp)-property.

To prove this, first recall that a vector bundle £ on X is called k—jet ample if for every
choice of ¢ distinct points z1,--- ,z; € X and for every tuple (k1,-- - , ki) of positive integers
with > k; = k + 1, the evaluation map

H(E) - B (£ (0x/(Th & 0 Th))) = étBHO (£@ (0x/z))
i=1

surjects where Z, is the ideal sheaf of z; € X.

Recall also that when n > 2, A is a very ample and B is a nef line bundle on X, for a
given [,d € N, we have

Ll,d = lKX +dA + B.

We first prove a few results on L; 4 when n > 2:

Lemma 3.7. Letn >2,0<p<mn and j Zmax{g,l}. Ifl>0andd>1ln+1)+2+p
then Q5 (§ Ly q) is (25 — p)-jet ample.
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Proof. We write QX (jL; q) = Q% (2pA) (jIKx + (jd — 2p)A + jB). It is well-known that
Qx(2A) is globally generated (i.e. 0-jet ample), whence so is Q% (2pA). Elementary con-
sideration of Castelnuovo-Mumford regularity and Kodaira vanishing theorem guarantees
that Kx + (n+1)A and Kx + (n+ 1)A + jB are also globally generated. Moreover, since
A is a very ample line bundle, it is 1-jet ample (see [BDRS99, page 3]). Observe that we
have

jd—2p—jlln+1)>2j—p

by our assumption on d. Consequently we can write
JIKx +(jd—2p)A+jB = [(jl-1)(Kx + (n+1)A)|+[Kx + (n+1)A+jB]+[(2j —p)A] +rA
with » > 0. The conclusion follows from [BDRS99, Proposition 2.3]. O
Lemma 3.8. Letn > 2, 0 < p < n. Further assume

1> (7)) +1,

a=max{ln+2),(n+2) (1= () = 1) + 2 () +1) .20 () +1) +1}.

Then HY(Q5 (jL1q)) =0 for alli,j > 1.
Proof. Tt is easy to see using a splitting principle that det(Q%) = (Zj)K x. Consequently,

we obtain

Oy (1Lia) = Kx ® ¥ (2pA) ® det(2 (2pA)) ® Q

R B L A

~~

Term 1 Term 2

jd —2p — (;)2]7 —(j—1)d+ (d— % — (Z)Qp)

> = Din+2)+ (n+2) (l_ <Z:i> _1>

(i (5) )

by assumption. Since Kx +(n+2)A is very ample, we see that @ is ample when Term 1 > 0.
Now, Term 1 = 0 is possible only if j = 1 by our assumption, in which case Term 2 > 0.
Thus, under our assumption, @ is ample. Since Q% (2pA) is nef, the assertion follows from
Griffiths’ vanishing theorem ([Laz04b, Variant 7.3.2]). O

where

Notice that

Proposition 3.9. Let n > 2, 0 < p <n and assume (l,d) satisfies (3.3) with s =p. Then
H' (¥, ® U3 (jL1.a) (=2 Er)) =0
foralli,7>1,0<p <pand for allz € X.
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Proof. Recall from Remark 3.5 that we can write L; 4 = Kx + (2n + 2)A + B’ where
B'=(1—-1)Kx + (d—2n—2)A+ B is nef. Also recall from [CS18, Proof of Proposition
3.2] that

bp(jLia)(—2jEy) = Kp, + (n+1)P 4+ Q
where P = b%(2A)(—E;) and Q = (j — 1)(Kp, + (n+ 1)P + b5B’) + b5 B’. 1t is well-known
that Kp, + (n + 1)P is very ample (see for e.g. [CSI18, Proof of Proposition 3.2] where
[EL93, page 57| is used). Since b’ A is nef and big, we conclude that
(3.10) b3.(jL1q)(—2jE,) and by.(jL1,q)(—2jEz) — Kp, are both ample Vj > 1, Vo € X.

Thus, the conclusion follows for p’ = 0 by Kodaira vanishing theorem. Henceforth we
assume p’ > 1 (whence p > 1). Since b, is the blow-up of X at x, we observe that
Q. (log E;)(—E,) = b:QY and we deduce the following exact sequence for any = € X and
forany 1<p'<p<mn,j>1

(3.11)

0 = b3(Q% (1 L1,a)) (—(25 —p'+1) Ez) = Qlp, ®b3(jL1,a) (=25 Ex) — Q, @63 (1 L1,a)(—25 Ez) — 0.
Notice that (3.10) also yields

(3.12) HY (O, (0:(jL1a)(~25E,))) =0 for all i,j > 1 and for all = € X

by Bott vanishing theorem, which is known to hold on E, since it is a projective space.
Now assume 2j — p’ > 0, and we use the exact sequence

(813) 0= QK (L) © ¥ = QX (jLia) = D (iLia) @ (Ox/TF ) 0.

Using Lemma 3.7, we observe that the map HO(Qgé (jLiq4)) — HY (Q’;; (le,d)®((’)X/I§j_p/+1))
surjects. Passing to the cohomology of (3.13), and using Lemma 3.8, we get that

(3.14) H(Q (jL1g) @ ZH 7P+ = 0 for i > 1 and for all z € X if 2 —p/ > 0.
It is well-known (see for example [BEL91, Proof of Lemma 1.4]) that for 0 < s <mn —1

Op, ifi=0,

RO, (sEz) = {o ifi>0

whence H(b%(Q% (jL1.4))(—(2j — p' + 1)E,)) = 0 by Lemma 3.8 for i > 1 if 2j — p/ < 0,
Thus, using (3.14) and Leray spectral sequence we get

(3.15)  H'(b:(%(jL1a))(—(2j — P + 1)E,)) = 0 for all i, > 1 and for all z € X

The assertion follows from (3.12), (3.15) and the cohomology sequence of (3.11). O

We are now ready to provide the

Proof of Theorem 3.6. Notice that by assumption, L is 3-very ample by Remark 3.4, and
satisfies (Q1) by Remark 3.5.

When n =1, deg(L) > 2g + 3 by assumption whence deg(b;(L)(—2E;)) > 2g + 1. Thus
L satisfies (Q2) and (@3p) for all p > 0. Now assume n > 2 and L; 4 satisfies (3.3) with
s =p. Then L satisfies (Q2) by (3.10), and satisfies (Q3,) by Proposition 3.9. O
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C. Du Bois COMPLEX OF SECANT VARIETIES

Let X be a smooth projective variety of dimension n and L a 3-very ample line bundle.
We introduce the following notation that will be used throughout the sequel: Ux := ¥\ X
and we set jy, : Ux — X to be the inclusion.

In this section, we discuss the Du Bois complex of the secant variety ¥ = ¥(X,L). In
particular, we prove Theorem A and Theorem B.

4. Secant varieties with pre-p-Du Bois singularities. We first give sufficient condi-
tions for the secant variety ¥ = ¥(X, L) to have pre-p-Du Bois singularities. Recall that
this is a condition on the complex QF.. The first result that we are after is a local vanishing
statement:

Theorem 4.1. Let p € N. If L is 3-very ample and satisfies (Q3,), then
Rit*Q]lf,,(gL)(log D) (—D)=0 foralli >1 and 0 < k <p.
Remark 4.2. This condition is sufficient for H?(Q%) = 0 for j # 0, as is explained in the
proof of Theorem A (see (4.12)).
We need some preparations to prove the above result.

Proposition 4.3. Let i,p > 1 be integers and let L be a 3-very ample line bundle. Suppose
that forallz € X, 5> 1, and 0 < ¢ < p,

(4.4) H'(Qf, ©b3(jL)(~2jE,)) = 0.

Then Rit*Qﬁ(&)(log P)(—P) =0.

Proof. We prove the assertion using the following claims.

Claim 4.5. If Hi(Qﬁ(&)(log D)|p, @bE(mL)(—2mE;)) =0 for allz € X and m > 1, then
Rit*Qg;(gL)(log ®)(—®) = 0.

Proof. Using the formal function theorem for x € 3, we obtain the isomorphism

(Rt g, (log @)(=®)) == lim H(Q;, (108 ©)(~2) & (Op(e,) /Th,))-

Since (R't,05 . (log®)(—®)), = 0 for y € Ux, it is enough to check that for z € X,

(€L)
(4.6) H' (¢, (log ®)(—®) @ (Op(e,)/T},,)) = 0 for j > 1.
Passing to the cohomology of the following exact sequence

0= Q. (log®)(—®) @ (T}, /i) = g, (log @)(—P) © (Opie,) /T )
we conclude that it is enough to verify that

Hi(Qf;(gL)(log Q)(—-P)® (I%J/I}jl)) =0 for all 7 > 0.
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Using (2.11) and (2.9), we conclude that
HI(O, ., (log ®)(—) @ (T}, /T4 )

+j—q—1)

o QJB) Hi(Qz[;(gL)(log ®)|r, @b5((q+1)L)(—(2¢ + 2)E$))} o("tize

and the conclusion follows. O
Claim 4.7. Let m > 0. If H/(QL|p, @ bi(mL)(—2mE,)) = 0 for ¢ = p—1,p and for all

x € X, then

H' (¢, (log @)\, © b (mL)(—2mE;)) = 0.

Proof. Follows by twisting (2.13) by b%(mL)(—2mkE,), and passing to cohomology. O
Claim 4.8. Assume m,q > 0. If

(4.9) Hz(Qqle @ bi(mL)(—2mE,)) =0 for all 0 < ¢ <q and for all x € X,

then HY(Q%|p, ® b (mL)(—2mE;)) =0 for allz € X.

Proof. To show this, we use the following short exact sequence

(4.10) 0= NE g = Qolr, = Qp, =0,

Since all these sheaves are locally free, there exists a filtration

!
(411)  Qf|p, =F°2F' 2.2 F1 D F"™ =0 with F//F'"™ = AN}, 4 Q%"
We prove by induction that
HY(F'® b%(mL)(—2mE,)) =0 for | =0,...,q.

For the base case, we use the short exact sequence

q
0— FI* =0 F"— AN} 6 — 0.

We twist the sequence by b%(mL)(—2mE,;) and take cohomology, and then the vanishing
follows from the hypothesis (4.9) (corresponding to ¢’ = 0) by (2.9) which we recall says
;ix /@ = (’);‘2:. Assume next that we know the result for . We use the short exact sequence
-1
l -1 * —l+1
0= F' = F"' 5 A NG e 005" = 0.

Twisting by b%(mL)(—2mE,) and taking cohomology, the result follows from the induction
hypothesis, and (4.9) by (2.9). O

The assertion of the proposition follows by combining the above three claims. O

Proof of Theorem /.1. Note that the statement follows for p = 0 by [CS18, Proof of Propo-
sition 3.2]. Thus we assume p > 1, in which case the conclusion is a consequence of
Proposition 4.3. U

Now we are ready to provide the
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Proof of Theorem A. By [Ste85, Proposition 3.3] (see also [MOPW23, §2.1]), we have an
exact triangle:

(4.12) Rt,Of ¢, (log @)(—®) — Qf — 0% 5

Since HZ(Q]}() = 0 for ¢ #£ 0 as X is smooth, passing to the cohomology of the above, we
obtain H*(Q%) = 0 for i # 0 as Rit*QI’;(gL)(log ®)(—P)=0foralli>1and 0 <k <phby
Theorem 4.1. ]

5. Reflexivity condition on H°(Q}). We now aim to describe the sheaf H?(02%,). Recall
that for a seminormal variety with pre-p-Du Bois singularities, satisfying the codimension
condition on the singular locus, the condition missing for it to have p-Du Bois singularities is
that on degree zero, the associated graded complex of the Du Bois complex is reflexive. For

this, we discuss a reflexivity condition of the push-forward of the sheaf of p-forms discussed
in [KS21].

We work with the standing assumption that L is 3-very ample. We will use, often without
stating, that if L satisfies (Q1) the ¥ is normal (see [Ull16, Theorem D]), and if ¥ is normal
and L satisfies (Q3p) then ¥ has Du Bois singularities (see [CS18, Proof of Theorem 1.2 or
more precisely Theorem 3.4]).

Remark 5.1. We have the isomorphism jy, j[*]XQ[g] = jUX*Q%X for all p > 0 (recall that
by definition Q[g := (©%,)**). Thus, when ¥ is normal, we have the isomorphism
(5.2) Jus S =l
On the other hand, we have the natural inclusion
¢p : t*Qﬁ;(gL) — jUX*QI(}X-
Thus, when ¥ is normal, composing ¢, with the isomorphism (5.2), we obtain the maps

. p [p]
Yp: t*Q]P’(EL) — 5.
Proposition 5.3. The natural inclusion ¢, : t*Qﬁ’D(gL) — jUX*Qz{]X is an tsomorphism for

0 <p < n—1. In particular, if ¥ is normal, then ¢, : t*Q]};(gL) — Q[é’] is an isomorphism
for0<p<n-—1.

Proof. We recall from [KS21, (2.3.5)] that for all [ > 0, Saito’s formalism leads to a decom-
position

where K, R; € D*(Coh(X)). Among other properties, K; and R; enjoy the following (see
loc. cit. (2.3.6), (2.3.7)):

(54) Supp(Rl) - 2sing c X,

(5.5) HF(K;) =0 for k>2n—1+2
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where (5.4) follows from Proposition 2.2. Since t*Qﬁ(EL) is torsion-free, (5.4) implies that
608 .\ = HO(Kp). By [KS21, (2.3.8)] we also have the isomorphism
]R:HO??IOE (Kp, w%) = K2n+1_p[2n + 1]
Thus, by [KS21, (2.3.9)], it is enough to show that

(€rL)

(5.6) dim (X N Supp (H’“(Kgnﬂ_p))) <2n—1—Fk forall k € Z.

Observe that dim (X N Supp (H*(K2n41-p))) < n whence (5.6) holds for k < n —1. On

the other hand, since the dimension of the fibers of ¢ is < n, we have Rkt*Qﬁ?‘;’L l)_p =0 for
k > n+1, whence (5.6) holds if ¥ > n+ 1. Finally, since n > p+ 1 by assumption, we have

H" (Kon+1—p) = 0 by (5.5), and the assertion follows. O
We need one more result in order to prove Theorem B. From the short exact sequence
(5.7) 0= ¢" Q= Qg = Qg — 0,
we have an induced morphism
Yp o Q5 — ¢ Of
by taking the wedge product of the first map and then pushing forward.

Proposition 5.8. The maps v fork = 1,...,p are isomorphisms if and only if h°(X, Qlj() =
0 fork=1,...,p.

Proof. We prove first that given the cohomological conditions, v, is an isomorphism. For
this we use (5.7) again, and the fact that all these sheaves are locally free, to obtain a
filtration

Qk:FOQFIQQFkQFk+1:O

with quotients F!/F!+1 = q*QlX ® Q’;);é( We prove by induction that g, F! = Q')"( The base
case is

0— FFl =0 FF 5 g0k — 0,
and the claim is clear for F* by Projection Formula and [CS18, Lemma 2.2]. Suppose next
that ¢, F"! = Q’)“( Consider the short exact sequence

0= F' = F™l = g ot o 9y = 0.

We pushforward the short exact sequence and by the Projection Formula, we have

0— Q% - ¢F -0 e q*Qg?l-

Since hO(Q]ElH) = hO(Q5 1) = 0 because F}, is birational to X for all z € X, by Grauert’s
Theorem ([Har77, 111, Corollary 12.9]), q*Q’(;;é;rl =0 and then, ¢, F'~1 = Ok

Suppose next that the maps 7, are isomorphisms for £ = 1,...,p. We argue by induction.
The base case is p = 1, in which case the assumption says that Q% = q*Q}I), and therefore,
by taking H® we obtain h'9(X) = h10(®). By Proposition 2.14 we have

RYO(®) = KON (@) = hOH(X) + RO (X).
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Therefore, h%1(X) = h%1(®) = 0. This means that h%(X,Q%) = 0. Suppose now that
the result is known for p = r, and that ~; are isomorphisms for £k = 1,...,7 + 1. By the
induction hypothesis, h%(X, Q’}}) =0 for kK = 1,...,r. Moreover, since QTXH = q*Qgrl,
taking H? we obtain that h"*10(X) = A7T10(®). By Proposition 2.14 and the induction
hypothesis, we have
hO,r+1 ((I)) — hO,rJrl(X) + hO,rJrl(X)'

Therefore, h%™+1(X) = h%"+1(®) = 0. This means that h%(X, Q%) = 0. O

Let us describe the maps J, in detail. The functoriality of Du Bois complexes induces
a canonical map Qf, — Rt*Qg,(gL) = Rt*Qﬁ(SL), which yields 3, : HO(Q%) — t*Qﬁ(‘gL). In
particular, when ¥ is normal we obtain for all p > 0, the natural map

(5.9) 8p = pp o By HO(QF) — Qg]'
We record a fact that we will use without any further reference.

Remark 5.10. Assume ¥ is normal. The map J; is an isomorphism if and only if 5 and
. are both isomorphisms. Indeed, this follows immediately from the injectivity of ¢y.

We are now ready to provide the

Proof of Theorem B. Recall that ¥ is normal and has Du Bois singularities. In particular,
we have the isomorphisms

(5.11) QR e G w2 wy = 1S,
Also recall that by Theorem 4.1
(5.12) R't. Q5 ¢, (log ®)(=®) = 0 for all 0 <k <p.

We work with the following commutative diagram with exact rows:

~
o

0 —— 1.0k, (log @)(~®) —— HOQK) %

519 | bl

where the top sequence is obtained by passing to the cohomology of (4.12), the bottom row
is obtained by taking the direct images of the sequence

0 — D¢,y (log @) (=) = O, ) = QU — 0.
Both rows are exact on the right because of (5.12).

First assume HO(Q%) =0 for 1 < k < p. Then, by Proposition Proposition 5.8, v is an
isomorphism for all 1 < k < p whence (§;’s are isomorphisms in the same range. If p <n—1,
then the conclusion follows since ¢y, : t*QI];(gL) — Q[Ek] are isomorphism by Proposition 5.3.
If p > n, then H"(Ox) = 0 by assumption, whence t.wpe,) = ws by [CS18, Theorem
5.8]. Thus, the conclusion in this case follows by [KS21, Theorem 1.4]. Conversely, assume
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O - HO(Q?;) — Q[Ek] are isomorphisms for 1 < k£ < p, whence ;s are isomorphisms. Now
the conclusion follows again from Proposition 5.8. This completes the proof. ([l

Proof of Corollary C. Under our assumptions, ¥ has pre-p-Du Bois singularities by Theo-
rem A and satisfies the codimension condition as p < |5 |. Also recall that ¥ is normal and
has Du Bois singularities, and in particular is seminormal. We may assume that n > 2,
p > 1. Note that HO(Q’g) is reflexive for 1 < k < p if and only if d;’s are isomorphisms for
1 < k < p. The conclusion now follows from Theorem B. ]

Example 5.14 (Curves embedded by line bundles of smaller degree). Suppose X is a curve
and L is a non-special (i.e., H!(L) = 0) 3-very ample line bundle on X. Note that L satisfies
(Q3,) for all p > 0 by assumption. In this case:

(i) Our proof shows that the singularities of ¥ are pre-p-Du Bois for all p > 0.

(if) [CS18, Proof of Theorem 3.4] shows that the singularities of ¥ are Du Bois if ¥ is
normal.

(iii) Recall that the main result of [Ull16] asserts that ¥ is normal if L(—2x) is projec-
tively normal for z € X. In particular, via [GL86, Theorem 1] (see [Ull16, Proof of
Corollary B]J), if one of the following holds:

(1) deg(L) = 2¢g+1 and Cliff(X) > 2 (equivalently, X is not hyperelliptic, trigonal,
or plane quintic); or
(2) deg(L) =2g + 1 and Cliff(X) > 1 (equivalently X is not hyperelliptic),
then ¥ is normal and has Du Bois singularities.
On a complementary direction, although the secant varieties of canonical curves with

Cliff(X) > 3 are normal by [Ull16, Corollary B], it was shown in [CS18] that in this case
the singularities of ¥ are not Du Bois.

6. Further results. We can actually say more about the associated graded pieces of the
Du Bois complex (under the standing assumption of 3-very ampleness of L) that are usually
not considered in the definition of higher Du Bois singularities. In particular, we aim to
prove the following:

Theorem 6.1. Let 6 : HO(QL) — Q[Ek] be the natural maps defined in (5.9). Then the
following statements hold:
(1) Assume L satisfies (Qn)-property. Then the following are equivalent:
(i) H"(Ox) =0,
(ii) d2n+1 1S an isomorphism,
(iii) b2n is an isomorphism.
(2) Assumen > 3 and L satisfies (Qn)-property. Letn+2 < p < 2n—1. If H*(Ox) =0
for allk > p—n—1, then §, is an isomorphism.*

In order to prove part (2) of the above theorem, we need another local vanishing result:

“When L is 3-very ample, the conclusions of Theorem 6.1 are also valid if L satisfies (Q3,) and X is
normal.
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Proposition 6.2. Leti,p > 1 be integers and let L be a 3-very ample line bundle. Suppose
that for allx € X, 7 >0, and 0 < g <p,

(6.3) H'(Q, @b (jL)(~2jE,)) =0,

Then R! t*Qp( )(log ®) =0.

Proof. As we did in the proof of Proposition 4.3, we first prove the following

Claim 6.4. If H(QF e, 108 ®)|p, @ by(mL)(=2mkEy)) for all w € X and for all m > 0
then R’ t*Qﬁ;(gL)(log ®) =0.

Proof. Clearly (Rit*Qﬁ(gL)(log ®)), =0ifye ¥ and y ¢ X. For v € X, we use the formal
function theorem
(Bt e, (05 ®)) = lim B, (1089) & (Ope,) /Th ).
Thus, in order to prove the assertion, it is enough to show that
(6.5) H'(Q ¢, (108 ®) ® (Op(e,)/T,)) = 0 for all j > 1.
Passing to the cohomology of the exact sequence
(6.6) 0— Qﬁ(&)(log P)® (I%‘I/I%jl) - Q%I;(gL)(IOg Q) ® (OIP(SL)/I%:I)
— Q%[i(gL)(log (I)) ® (OP(SL)/I%‘I) — 07

we conclude that to prove (6.5), it is enough to show that

(6.7) H'(Q e, (log ®) ® (T}, /T3 1)) = 0 for all j > 0.
Observe that by (2.11), we have
(6.8)
| )= o(*+in1)
HZ(Qﬁ(gL)(log D)® ( I ) = @ {Hl Qp log D)|p, @b (mL)(—QmEx))}
m=0
and the conclusion follows. O

We now invoke Claim 4.7 and Claim 4.8, which immediately completes the proof. O
The previous result can be used to obtain one more reflexivity statement:

Proposition 6.9. Letn >3 and n+ 2 <p < 2n — 1. Assume the following conditions:
(i) H"(Q}, @b3(GL)(—jEy)) =0 forall j>1,0<g<2n+1-p,
(i) HO(Q% ©) =0 forall 0<g<2n+1-p
Then the two natural maps
t*Qf;(gL)(log Q) (—P) — t*Qf;(SL) — jUX*Q%X

are isomorphisms. In particular, if (i) and (ii) hold and if ¥ is normal, then the map

1O, (log @) (—®) — Q¥
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s an tsomorphism.

Proof. We first note the following isomorphisms
RHomo, (Rt*Q{l;(gL)aog ®)(—®), w5> ~ Rt.RHomo,, <Q§(5L)(log B)(—®), wo(e, 20 + 1])

= Rt*Q]%?;Ll)fp(log ®)[2n + 1],

where the first one is obtained via duality. Observe that it is enough to show that the
natural map
t*Qﬁ(&)(log D)(—D) — jUx*Q%X

is an isomorphism. Thus, by [KS21, Proposition 6.4], it is enough to show that
(6.10) dim (X N Supp (kaz;?;l)*p(log @))) <on—1—Fk forall k€ Z.

As in the proof of Proposition 5.3, (6.10) holds if ¥ < n — 1 or if ¥ > n + 1. Thus it is
enough to show that

(6.11) R\ (log ) = 0.

Notice that
(6.12) H™"(Qf, ®@by(jL)(—jE:)) =0 forall j >0,0<¢<2n+1-p.

Indeed (6.12) follows from hypothesis (i) for 7 > 1. For j = 0, the vanishing follows
from hypothesis (i) as we have h™(Q}, ) = h?(Q5 7)) = K2(Q5 ). Now (6.11) follows from
Proposition 6.2. 0

Proof of Theorem 6.1. Recall that under our assumption, 3 is normal and has Du Bois
singularities. We also recall that §; is an isomorphism if and only if 5 and ¢ are isomor-
phisms.

We first prove (1) and set p = 2n + 1. It follows from the middle column of (5.13) that

HO(Q%H—H) ~ t*W]p(gL).

Thus, using (5.11), we see that the equivalence of (i) and (ii) is a consequence of [CS18,
Theorem 5.8]. We now show the equivalence of (i) and (iii). If (i) holds, then as before,
we see that the inclusion t.wp(e, ) = juy ,wuyx = wy is an isomorphism by [CS18, Theorem
5.8]. Thus, by [KS21, Theorem 1.5], we see that the two morphisms

tQ5fe, ) (10g @) (=) = Q8¢ ) = juy Qs

are both isomorphisms. Consequently, it follows from (5.13) that (2, and @9, are both
isomorphisms. Conversely, assume (iii) holds. Then (5.13) implies H"(wg) = 0 whence by
Proposition 2.14 we get H(wyx) = 0 which is (i).

Now we prove (2). Since p > n + 2 by assumption, it follows from the first row of (5.13)
that

£ e, (log @) (—®) = HO(05,).

The conclusion now follows from Proposition 6.9. (|
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Remark 6.13. If the natural map &, : HO(Q%) — Q[EM is an isomorphisms for some k > 1,

then
min {hO(Q])“(_i), hO(Qfx)} =0 forall 0 <i<k.

Indeed, since d is an isomorphism, [ is also an isomorphism. Consequently, from (5.13)
we see that v, is an isomorphism, whence h%(Q%) = h%(Q%). The conclusion now follows
from Proposition 2.14.

Corollary 6.14. Let p € N. If one of the following holds:
(i) L satisfies (Qp)-property and H*(Ox) =0 for 1 < k < p;
(i) n > 2, L satisfies (Qn)-property, p € {2n,2n+ 1}, and H"(Ox) = 0;
(iii) n > 3, L satisfies (Qn)-property, n +2 < p < 2n — 1, and H*(Ox) = 0 for all
then there is a natural quasi-isomorphism Q% = Q[Ep].
Remark 6.15. Notice that the condition on % in (i) is vacuous when p = 0.
Proof. This is an immediate consequence of Theorem A, Theorem B and Theorem 6.1. [
Corollary E and Corollary F are special cases of the following more general results:

Corollary 6.16. Let p € N and let L be an ample line bundle on X. If one of the conditions
(i), (i) or (iii) of Corollary 6.14 holds, then

Hq(Q[g] ®L)=0 whenp+q>dim> =2n+ 1.

Proof. This is an immediate consequence of Corollary 6.14 and [GNAPGPS88, Theorem
V.5.1]. O

Corollary 6.17 (Description of the h-differentials). Let p € N. If one of the conditions
(i), (ii) or (iii) of Corollary 6.14 holds, then there is a natural isomorphism QF |5, = Q[g.

Proof. This is an immediate consequence of Corollary 6.14 and [HJ14, Theorem 7.12]. O

D. HIGHER RATIONAL SINGULARITIES OF SECANT VARIETIES

As before, it is our standing assumption that X is a smooth projective variety and L is
a 3-very ample line bundle on X. Here we study the dual Dy (QF,). In particular, we prove
Theorem D.

7. Cohomology of the dual of Qg. Recall that for a variety Z, we set
Dz(—) := RHomp,(—,wy)[— dim Z].
If Z C W is of codimension ¢, we have Dy (—) = Dz (—)[—c] for complexes of Oz-modules.

Remark 7.1. Since L is 3-very ample, we have (4.12), dualizing which (with obvious
modifications of wedge powers) we obtain the exact triangle:

n+1— n+1— +1
(7.2) Dy (Q¥ %) = De(QF ) = REQf ¢,y (log ®) = .
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Thus, we have the isomorphisms Dy (QZ17F) = Rt*QI’;(SL)(log ®) for 0 < k < n; in

particular
H (D (3 7M) = RO ¢,y (log @) for all 0 <k <n,i>0.
We first have the following results for the cohomology of the dual complex:

Lemma 7.3. The following assertions hold for all 0 < k < 2n+1:
(1) H(Dg(Q2+17k)) = Rt (log®) forall 0 <i<n—1.
(2) If i > n+2, then H!(Dx(QF 7)) = 0.
Proof. We start by observing the following consequence of the smoothness of X:

(7‘4) DZ(Q%H-l—k) ~ DX(Qigl-ﬁ-l—k)[_n B 1] o {Qljgnl[_n — 1] it k>n+1;

0 otherwise.
Thus
. k—n—1 ¢ - _ > )
(7.5) Hi(Dy(Q2rH1F) = Qx if i=n+1and k>ntl;
0 otherwise.

Consequently, we obtain (1) from (7.2). Further, Rit*Qﬁi(&)(log ®) =0fori>n+1,
whence by (7.2) we conclude that for all 0 < k < 2n — 1, we have

Hi(Dx(Q3T17F)) = HI(Dg(Q21F)) for all i > n 4+ 2.
The conclusions now follow from (7.5). O

We end this section by showing that we can say more about H°(7;), a fact that will not
be used in the sequel. Recall that we have the natural map

Tk Qlé — DE(Q%”H_I“).
The induced map H"(7) via the isomorphism of Lemma 7.3 (1) can be identified with
(b;f © Bk : %O(ngl) — t*Q]];(gL)(IOg q))

where ¢y, : t*Qﬁi(gL) — jUX*QZX is the composition of the two inclusions ¢}, ¢} described
in the following diagram:

/!

®; @
k k k k . k
t*Q]P)(gL) - t*QP(gL) (log (p) —> jUX*QUX

Pk

In particular, when ¥ is normal, the maps &, : H°(Q%) — Q[Zk] in (5.9) is the composition
of H(7) and an inclusion.
Remark 7.6. We observe that

(a) H%(7x) is an isomorphism if and only if 8 and ¢}, are isomorphisms.
(b) ¢4 is an isomorphism if and only if ¢} and ¢} are isomorphisms.
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Also recall that if ¥ is normal, then §; is an isomorphism if and only if 8y and ¢ are
isomorphisms. In particular, if ¥ is normal and & is an isomorphism, then H°(7;) is also
an isomorphism.

We have the following consequence of Theorem B and Theorem 6.1:

Proposition 7.7. Let H'(r) : HO(Q%) — HO(Dx(QE 7)) be the natural maps. Then
the following hold:
(1) Let 0 < p < 2n + 1, and assume L satisfies (Qp)-property. Then H°(;)’s are
isomorphisms for all 0 < k < p if and only if H*(Ox) =0 for all 1 <k <p.®
(2) Assume n > 2 and L satisfies (Qy)-property. If H*(Ox) = 0 then H%(ron41) and
HO(79,) are isomorphisms.
(3) Assumen > 3 and L satisfies (Q,)-property. Letn+2 < p < 2n—1. If H" *(Ox) =
0 forall0 <k <2n+1—p, then HO(Tp) 18 an isomorphism.

Proof. We first recall that ¥ is normal. Notice that (2) and (3) follow by Theorem 6.1 (1),
(2) and Remark 7.6.

We now prove (1). Recall that we have the diagram (5.13) with exact rows for all
0 <k < p. Since ¢:Og = Ox by (2.18), it follows that 3y is an isomorphism. Also, ¢q is an
isomorphism as ¥ is normal whence ¢{, is an isomorphism by Remark 7.6 (b). Thus H°(7)
is an isomorphism by Remark 7.6 (a).

We now assume k > 1, hence p > 1. If H%(r;,) is an isomorphism for all 1 < k < p, then
By’s whence s are isomorphisms in the same range. Thus H%(Q%) =0 forall 1 <k <p
by Proposition 5.8. The converse follows from Theorem B and Remark 7.6. U

8. Secant varieties with pre-1-rational singularities. We now prove Theorem D.
Proof of Theorem D. Observe that by Remark 7.1
(8.1) H'(Ds(Q5'7F)) = RO ¢, ) (log ®) for all 0 <k <1,i>0.

Assume (1) holds. Then by (8.1), we have th*QI%D(gL)(log ®) = 0. Using the restriction
sequence and Theorem 4.1, we obtain that
The short exact sequence
0= Qg = e, ) (log )]s — Op — 0
along with the vanishings above implies that the resulting map ¢.Op — qu*Q}b is surjec-
tive. But
RYO(X) + AV (X) +1  ifn > 2;
k(q.Op) = 1 and rank(R'q,QL) =4 " =
rank(g,Og) and rank(R ¢.Qg) {nhlvO(X) + LX) ifn =1

where the second equality follows from Lemma 2.19. Thus, we conclude that n = 1 and
(X, L) is a rational normal curve of degree > 3.

SNotice that this condition is vacuous when p=0.
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Now we prove the converse and assume (X, L) is a rational normal curve of degree > 3.
We claim that

(8.2) R't.Q5¢,\(log ®) forall 0 <k <1,i>1.

Notice that (8.2) holds for k = 0 by [CS18, Corollary 1.5]. Since (8.2) holds for i > 2, it is
enough to show (8.2) for i = kK = 1. We first show that

(8.3) H' (e, (log ®)[r,) = 0 for all z € X.

Notice that in this case, F, & P!, & = P! x P! and one sees easily that h'(Q}|r,) =
hl(Q};z) = 1. Passing to the cohomology of the exact sequence

(8.4) 0= Qglr, = Qpe,y(log @)k, — Op, =0,
and by (4.10), we obtain the composite map
(8.5) H°(OF,) — H'(Qglr,) — H'(Qp,)

Now we observe that the composition of the maps (8.5) sends 1 € H°(OF,) to the coho-
mology class ¢1(Ope,)(®)|r,) € H Q) (see the diagram (2.12)), whence it is injective
since ¢1(Op(g,)(®)|F,) is not cohomologically trivial by (2.9) as L(—2x) is ample (since
deg(L) > 3). Consequently, the connecting map H(Or,) — H'(QL|r,) obtained from
(8.4) is injective. Thus, (8.3) follows by passing to the cohomology of (8.4) as H*(OF,) =
Recall that by Claim 6.4, in order to show (8.2) it is enough to prove that

H' (e, y(log ®)|, @ by (mL)(—2mE,)) =0 for all m >0,z € X.
This holds for m = 0 by (8.3), and for m > 1 this is a consequence of
HY Q% |k, ® bi(mL)(—2mE,)) =0 for all m > 1,z € X,q=0,1
via Claim 4.7, which is easy to see as the degree of the curve is > 3 (or use Claim 4.8). O

Proof of Corollary G. Since dim(X) = 3, it is enough to show (0.4) when 0 < p < 1. This
is an immediate consequence of Theorem D and [SVV23, Corollary 4.1]. O
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