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Laura Pacheco Bastos, 800 - CEP 85053-525 - Guarapuava -

PR - Brasil (e-mail: julianod@utfpr.edu.br)
2Department of Mathematics and Statistics, University of

Victoria, Victoria BC, Canada V8W 3R4 (e-mail:
aquas@uvic.ca)

3Department of Mathematics, University of Toronto, Toronto
Ontario, Canada M5S 2E4 (e-mail: siefkenj@math.utoronto.ca)

August 13, 2019

Abstract

This paper establishes a fundamental difference between Z sub-
shifts of finite type and Z2 subshifts of finite type in the context of
ergodic optimization. Specifically we consider a subshift of finite type
X as a subset of a full shift F . We then introduce a natural penalty
function f , defined on F , which is 0 if the local configuration near the
origin is legal and −1 otherwise.

We show that in the case of Z subshifts, for all sufficiently small
perturbations, g, of f , the g-maximizing invariant probability mea-
sures are supported on X (that is the set X is stably maximized by f).
However, in the two-dimensional case, we show that the well-known
Robinson tiling fails to have this property: there exist arbitrarily small
perturbations, g, of f , for which the g-maximizing invariant probabil-
ity measures are supported on F \X.
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1 Introduction

Ergodic optimization is the study of the extreme points of the functional

Pf :MT (X)→ R defined by

Pf (µ) =

∫
f dµ,

where T : X → X is a continuous dynamical system, MT (X) is the set of

T -invariant probability measures, and f : X → R is a continuous function

called a potential (see Jenkinson [5], [6], [7]).

Even in a simple setting—when T is the full shift on a finite alphabet

and f is an exponentially decaying potential—the structure of MT (X) can

be quite complicated, giving rise to subtle issues (see Chazottes, Gambaudo,

Hochman and Ugalde [4]).

Closely related to ergodic optimization is the study of Gibbs measures.

In the study of Gibbs measures, there are fundamental differences between

the one-dimensional and higher-dimensional cases. A well known example

is the Ising model (a finite range model for interaction of particles). In one

dimension, it is known that there is a unique Gibbs measure at all temper-

atures, whereas in higher dimensions, there is a unique Gibbs measure for

high temperatures, but a phase transition gives multiple Gibbs measures at

low temperatures.

By analogy, in this paper, we exhibit fundamental differences between the

situation for ergodic optimization for one-dimensional dynamical systems and

that for higher-dimensional dynamical systems. We show this difference by

focusing on stability in the context of ergodic optimization.

Yuan and Hunt [12] showed that in one dimension, invariant measures

supported on periodic orbits may be stably maximizing (small perturbations

of the potential remain maximized by the same invariant measure), whereas

aperiodic invariant measures (measures such that the collection of periodic

points has measure 0) are never stably maximizing. This result was extended

by Contreras [1] to show that for a generic Lipschitz function, there is a

unique maximizing invariant measure, and that measure is supported on a
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periodic orbit. Further, this invariant measure is stably maximizing.

In this paper, we consider a shift of finite type as a subset of a full shift

and start with a short-range potential function that penalizes local config-

urations that are in the set of forbidden words for the shift of finite type.

Not surprisingly for these potentials, the maximizing measures are precisely

those measures supported on the shift of finite type. We then considered

what happens when the potential is perturbed. Here we establish a key dif-

ference between the one-dimensional and higher-dimensional cases: In one

dimension, for sufficiently small perturbations of the original potential, all

maximizing measures remain supported on the shift of finite type. However,

in two (or higher) dimensions, there exist shifts of finite type such that ar-

bitrarily small perturbations of the potential lead to maximizing measures

whose support lies outside the shift of finite type.

We conisder shifts of finite type over a finite alphabet Σ. If L is a finite

collection of finite blocks (or words), SFT(L) will denote the subshift of finite

type consisting of those points in ΣZd
containing no copy of a block in L.

Specifically, we obtain the following results.

Theorem 1. Let X = SFT(L) ⊂ ΣZ be a one-dimensional aperiodic irre-

ducible subshift of finite type, where L is a set of forbidden words of length

2. Define the Lipschitz function

f(x) =

{
−1 if x0x1 ∈ L

0 otherwise
.

Then there exists an ε > 0 such that for all g with ‖f − g‖Lip < ε, every

g-maximizing measure is supported on X.

Theorem 2. There exists a shift of finite type X = SFT(L) ⊂ ΣZ2
, where

L is a set of 2× 2 forbidden blocks, such that X has the following property.

The Lipschitz function

f(x) =

{
−1 if x01 x11

x00 x10 ∈ L
0 otherwise
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is uniquely, but unstably, optimized by a measure supported on X. That is,

for all ε > 0, there exists g ∈ Lip(X), such that ‖f − g‖Lip < ε, and µg, the

g-maximizing measure, is supported on Xc.

In both of these theorems, f can be thought of as a penalty function.

That is, f penalizes measures which contain the forbidden blocks in their

support.

2 One-dimensional shifts of finite type

To prove Theorem 1, we make use of the technique of coupling and splicing

(described in more detail in [9]).

Lemma 2.1. Let B ⊂ X a subset of a compact metric space X, ε > 0, and

f a Lipschitz function such that f |B = 0. If a Lipschitz function g satisfies

‖f − g‖Lip < ε, then |g(x)− g(y)| < εd(x, y) for all x, y ∈ B.

Proof. Let ch denote the Lipschitz constant for the function h. Since c
f|

B

= 0,

we have

c
f−g|

B

= c−g|
B

= c
g|

B

< ε.

Proof of Theorem 1. The argument is based on the coupling and splicing

technique where, starting from an invariant measure, µ, supported on Xc, one

obtains a related invariant measure, ν, supported on X such that
∫
g dν >∫

g dµ whenever g is a small perturbation of f . The measure ν is obtained

from µ via a ‘path-wise surgery’, where realizations of µ are edited to obtain

realizations of ν.

Since X is an aperiodic irreducible subshift of finite type, there exists

N > 0 such that AN > 0 where A is the adjacency matrix of the subshift

of finite type. In particular for each ` ≥ N and each pair of symbols (i, j),

there is a path of length exactly ` connecting them containing no forbidden

words.
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Denote by I the set where f is zero (Ic is where f is −1), and note that

X = SFT (L) is a subset of I. Also note that X and Xc are shift-invariant,

so that any ergodic invariant measure is supported either on X or Xc. Let

ε = 1/(6N) and g satisfy ‖f − g‖Lip < ε.

Let µ be an ergodic invariant measure supported on Xc. If µ(Ic) ≥ 1
2N

,

using the fact that |f(x) − g(x)| ≤ ε for all x and
∫
f dµ = −µ(Ic) ≤ − 1

2N

we get ∫
g dµ =

∫
f dµ+

∫
(g − f) dµ < − 1

2N
+ ε = − 1

3N
.

On the other hand, if ν is an invariant measure supported on X, we have∫
g dν ≥ −ε > − 1

3N
.

Hence µ cannot be g-maximizing.

Now if µ(Ic) < 1/(2N), using the Birkhoff ergodic theorem, we have for

µ-almost every x,

lim
n→∞

1

n
Sn1Ic(x) =

∫
1Ic dµ = µ(Ic),

where Snf(x) denotes the Birkhoff sum
∑n−1

j=0 f(T jx).

Hence for all sufficiently large n, the number of j in the range 0 to n− 1

such that xjxj+1 ∈ L is smaller than n/(2N). Hence x must almost surely

contain infinitely many subwords of length N + 1 with no forbidden blocks.

Now we split into bad and good blocks. For any x in I \X, we define a

relation r on S := {n ∈ Z : T n(x) ∈ Ic} where for n, n′ ∈ S, n r n′ if |n−n′| <
N . Taking the transitive closure, we obtain an equivalence relation ∼ on S,

where k ∼ m if there exist n1, n2, . . . , np ∈ S such that krn1;n1rn2; . . . ;nprm.

For n ∈ S, define [n] = {m ∈ S : m ∼ n}. For such a set we define the

interval in Z, B = [α, β], called a bad block, where α(n) = min{i : i ∈ [n]}
and β(n) = max{max{i : i ∈ [n]}, α(n) +N}. Note that each bad block has

size |B| ≥ N + 1 and if n < n′ are such that [n] 6= [n′], then by the above

definition, β(n) < α(n′), so the [α(n), β(n)] are disjoint and contain all the

forbidden words in x.
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Now for each x ∈ I \X that has infinitely many blocks of length N with

no forbidden words, define a new sequence x̃ ∈ X to be equal to x off
⋃
B,

and on each bad block B to be equal to the lexicographically minimal word

joining xα(B) to xβ(B)+1 with no forbidden subwords (such a word exists by

the aperiodicity and irreducibility of X).

The idea now is to estimate the Birkhoff sums Sng(x) and Sng(x̃) in

order to show that we can construct another measure ν such that
∫
g dν >∫

g dµ, showing that µ is not maximizing. We also make use of the notation

Sbaf(x) =
∑b

j=a g(T jx).

For any bad block B = [α, β], the number of i ∈ B such that T i(x) ∈ Ic

is at least |B|/N and on this set g(x) < −1 + ε. For the other values of i (at

most |B| − |B|/N of them), T i(x) ∈ I \X and on this set −ε < g(x) < ε. In

this way we have:

Sβαg(x)− Sβαg(x̃) <
|B|
N

(−1 + ε) +

(
|B| − |B|

N

)
ε+ |B|ε

= −|B|
N

+ 2|B|ε = −2|B|
3N

≤ − 2

3N
#{i ∈ B : T i(x) ∈ Ic}.

We enumerate the bad blocks from left to right as (Bn)n∈Z with B0 the

leftmost bad block such that α(B0) ≥ 0. Let mk = α(Bk) and nk = β(Bk)

so that · · · < m−1 < n−1 < m0 < n0 < · · · and m−1 < 0 ≤ m0. Now we will

estimate the Birkhoff sum between two bad blocks Bk and Bk+1, that is the

sum from nk + 1 to mk+1 − 1.

When i varies from nk + 1 to nk + l where l = bmk+1−nk

2
c, we have

d(T ix, T ix̃) =
1

2i−nk
;

and when i varies from nk + l + 1 to mk+1 − 1,

d(T ix, T ix̃) =
1

2mk+1−i
.
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By Lemma 2.1:

l∑
i=1

g(T nk+i(x))− g(T nk+i(x̃)) <
l∑

i=1

1

2i
ε < ε

and

mk+1−nk−1∑
i=l+1

g(T nk+i(x))− g(T nk+i(x̃)) <

mk+1−nk−1∑
i=l+1

1

2mk+1−nk−i
ε < ε.

In this way we get

S
mk+1−1
nk+1 g(x)− Smk+1−1

nk+1 g(x̃) < 2ε =
1

3N
(2.1)

The same bound applies if the interval [nk + 1,mk+1 − 1] is replaced by

any sub-interval.

Now let k be any positive integer. Combining (2.1) and (2.2), we have

Snk
0 g(x)− Snk

0 g(x̃) ≤ − 2

3N
#{i ∈ [0, nk) : T i(x) ∈ Ic}+

(k + 1)

3N

≤ − 1

3N
(#{i ∈ [0, nk) : T i(x) ∈ Ic} − 1).

Hence we see

lim inf
m→∞

1

m
Smg(x) +

µg(I
c)

3N
< lim inf

m→∞

1

m
Smg(x̃).

So by passing to a subsequence of the sequence of empirical measures for x̃,

we see that there exists an invariant probability measure ν with support in

X such that ∫
g dµ <

∫
g dν,

establishing that µ is not g-maximizing.

3 Two-dimensional shifts of finite type

The higher-dimensional analogue of Theorem 1 is not true; in this section

we prove Theorem 2.
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3.1 The Robinson Tiles

The Robinson tiles are a finite set of tiles which tile the plane but only do

so aperiodically. Though not the first tile set with this property, the Robin-

son tiles are well known and the tilings they produce exhibit a hierarchical

structure. The Robinson tile set, among other things, has been extended

to allow the embedding of Turing machines [10, 3] and provides a counter-

example to Wang’s conjecture on the decidability of whether a given subshift

of finite type is non-empty [11].

In Figure 1, we show the 28 Robinson tiles annotated with arrows. We

denote by Σ the set of tiles, and X ⊂ ΣZ2
the Robinson system consisting of

tilings obeying the rules:

1. at each intersection of two tiles, all arrow heads must meet arrow tails

and vice versa; and

2. there is a translate of the sub-lattice 2Z × 2Z at which every tile is a

cross (one of tiles 1–4).

Note that in rule 2, although every tile on the sub-lattice contains a cross,

these are not the only crosses that appear. Though this rule does not appear

to be a shift of finite type rule, as described in [8] this rule can be imposed

by expanding the tile set to a set of 56 tiles by adding additional markings

to record parity with respect to the 2Z × 2Z lattice. Using these 56 tiles in

place of the 28 tiles with rule 2 does not affect the proof that follows.

In Figure 2, two configurations that belong to the language of X are

shown.

The configurations in X are known to have a hierarchical structure. We

now describe this structure, referring to [8] for more details. We let y
(1)
NW,

y
(1)
NE, y

(1)
SW and y

(1)
SE denote the 1 × 1 blocks consisting of a cross tile of types

1 to 4 respectively (the ‘directions’ of the crosses refer to the sides with the

double arrows).

We then inductively build a sequence of larger blocks y
(N)
NW, y

(N)
NE , y

(N)
SW

and y
(N)
SE , where each of the y(N) blocks is of size (2N − 1) × (2N − 1) and
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Figure 1: The Robinson tiles.

is obtained by placing copies of each of y
(N−1)
SE , y

(N−1)
SW , y

(N−1)
NE and y

(N−1)
NW

in the four corners of a (2N − 1) × (2N − 1) grid respectively with gaps of

size 1 in between. The central tile is then one of the four crosses (y
(N)
XX with

XX∈ {SE,SW,NE,NW} has a cross of type XX in the middle) and the gaps

are filled in as shown in Figure 3 (b). More precisely, in the particular case

of y
(N)
SE illustrated, the tiles filling the gap above the central cross are of type

5 except for that the middle tile is of type 6; the tiles filling the gap to the

left of the central cross are of type 11 except the middle tile is of type 12;

the tiles filling the gap below the central cross are of type 25, except for the

middle one which is of type 26; and the tiles filling the gap to the right of

the central cross are of type 27, except for the middle one which is of type

28.

Note that by construction, these blocks satisfy the second rule defining

the Robinson tiling: inductively, we see that the tiles of each y(N−1) occupying

the “odd sub-lattice” (where both coordinates are odd) are all crosses. By

the way that these tiles are assembled to form y(N), one sees that the same

is true at the next level.

We now turn to rule 1. The key observation, proved inductively, is that
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Figure 2: Configurations in X

in y
(N)
XX , there is a single outward-pointing arrow coming from each external

edge of each tile forming an edge of the block except for the central tile of

each edge where the outward-pointing arrows match those of y
(1)
XX. One can

then check that this hypothesis is preserved by the inductive construction of

y(N) from y(N−1) described above,

Now assume that the y(N−1)’s satisfy rule 1. By the above observation,

one can check that rule 1 is satisfied by the tiles which are used to fill in the

gaps between the y(N−1)’s, so that the y(N)’s also satisfy rule 1. Hence we

can show inductively that the y(N)’s satisfy the rules for the Robinson tiling.

The remarkable feature of the tiles is that this is essentially the only way

that they fit together. For any element x ∈ X, either every finite block is

contained in a single copy of y
(N)
XX for some N and XX∈ {SE,SW,NE,NW}

or there are exceptional tilings with a single horizontal ‘fault line’ of height

1, a single vertical fault line of width 1, or there is a fault line of one type,

and one or both of the two half planes created by removing this fault line

has a fault half-line in the orthogonal direction; in the exceptional tilings,

any block not intersecting a fault line is contained in a single copy of y
(N)
XX

for some N .

We record this as follows:

Theorem 3.1 (Johnson-Madden [8]). Each point x of X at most two hori-
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Figure 3: Induction used in [8]

zontal and vertical fault half-lines. In each remaining region x has the hierar-

chical structure depicted in Figure 4, where the squares represent y
(N)
i blocks

with the orientations depicted. The gaps (of size 1) between the y
(N)
i blocks

are then partially filled in to obtain a similar periodic configuration of y
(N+1)
i

blocks etc.

We shall also require the statement above describing the outer boundaries

of the y(N) tiles.

Proposition 3.2. For all N , the boundaries of each of y
(N)
SE , y

(N)
SW , y

(N)
NE and

y
(N)
NW each consist of single out-pointing arrows except for the middles of the

two sides corresponding to the direction named in the block. For example,

y
(N)
SE has a boundary consisting of single out-pointing arrows except for the

middles of the bottom (‘south’) and right (‘east’) sides, which have double

out-pointing arrows.

From now on we work with only one of y
(N)
XX ’s, namely y

(N)
SE , and we will

denote it just by y(N). We denote by x(N) the 2N × 2N square which is y(N)

but padded on the top and left sides as in Figure 5(b).

In order to prove Theorem 2, we will create a periodic configuration x /∈ X
obtained by periodically repeating the square x(N). This periodic point will

have some tiles that don’t obey the matching rules. We will show that the
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Figure 4: General configuration in X.

number of these errors per period remains bounded as N varies (where we

say that x has an error at position ~v if x~v+{0,1}2 contains violates the tile

matching rules described above).

Proposition 3.3. The periodic extension of x(N) in which x(N) is repeated

with vertical and horizontal periods 2N has 7 errors per period for every

N ≥ 3.

Proof. By Proposition 3.2, the boundary of y(N) consists of single outward-

pointing arrows, except for the middle tile of the bottom and the middle tile

of the right side. By the construction of x(N), it has only tails in the top and

left sides as in Figure 6.

In this way, when we repeat x(N) with horizontal and vertical periods 2N

to form a periodic configuration, it will have errors in the middle of the four

sides and errors caused by the mismatch between the top left cross and its

neighbours to the top and the left.

As the point x(N) is shifted, the translates on which f ‘detects an error’

(that is for which f takes the value −1) are illustrated in Figure 7(b)
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Figure 5: (a) y(N) and (b) x(N)

Figure 6: The block x(N)

Proposition 3.4. (T,X) is uniquely ergodic.

This proposition can be obtained as a corollary of Proposition 8 in the

paper [2] of Cortez once we establish that the Robinson tiling is a regular

Toeplitz system. Rather than justifying the hypotheses and referring to [2],

we sketch a version of Cortez’s proof in our situation.

Proof. Let µ be an invariant probability measure on X. By the Poincaré

recurrence theorem, µ-almost every configuration has no fault lines (as these

are non-recurrent sets: horizontal fault lines do not recur under the vertical

action; vertical fault lines do not recur under the horizontal action). Hence

by Theorem 3.1, and for each N > 0, µ-a.e. configuration looks like Figure
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Figure 7: a) Errors in the periodic configuration and b) The dots indicate
those translations of the configuration such that the function f “sees an
error” that is such that f takes the value −1.

4, where the gaps are of width 1, and may be filled in in various ways, but

the y(N−1)’s repeat periodically (with period 2N).

Let C be any block of size k × l, say, and let N be a large number such

that k, l < 2N−1. Let n
(N−1)
XX be the number of times that C occurs in y

(N−1)
XX

for XX∈ {SE, SW,NE,NW}. We then notice that for µ-almost every x ∈ X,

the frequency of C’s is at least (n
(N−1)
SE + n

(N−1)
SW + n

(N−1)
NE + n

(N−1)
NW )/22N and

at most (n
(N−1)
SE + n

(N−1)
SW + n

(N−1)
NE + n

(N−1)
NW )/22N + (k + l)/2N (the second

term in the upper estimate comes from counting the proportion of translates

of a k × l window that intersect the non-periodic part of Figure 4). Since

the upper and lower bounds differ by a quantity that approaches 0 as N

increases, we see that µ-almost every x ∈ X has the frequency of C’s given

by

lim
N→∞

n
(N−1)
SE + n

(N−1)
SW + n

(N−1)
NE + n

(N−1)
NW

22N
,

and hence this gives the value of µ(C). In particular, if µ′ is another invariant

probability measure, then µ′(C) = µ(C). Since this is true for all blocks, we
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deduce µ′ = µ as required.

Let µ be the unique invariant measure (Proposition 3.4) supported on X.

We will show next that µ is invariant under rotation by 180 degrees.

For any configuration x ∈ ΣZ2
, we define the function rπ : ΣZ2 → ΣZ2

by:

rπ(x)~u = R(x−~u) for all ~u ∈ Z2, where R is the map from the tiles to the

tiles that rotates them by 180 degrees (e.g R(tile 1)=tile 4; R(tile 13)=tile

26 etc). An example of a configuration and its rotation under rπ is shown in

figure 2 (a) and (b). Note that since rπ preserves the matching rules we have

rπ(X) = X.

Now let ν = µ ◦ r−1π be the push-forward of µ under rπ. Notice that

rπ(X) = X, so that supp ν = suppµ. The measure ν is invariant because

rπ ◦ T ~u = T−~u ◦ rπ for all ~u ∈ Z2, so that ν(T−~uB) = µ ◦ r−1π ◦ T−~u(B) =

µ(T ~ur−1π B) = µ(r−1π B) = ν(B). By the uniqueness of µ we have that ν = µ,

that is, µ is invariant under rotation (by 180◦).

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Given ε > 0 and N > log2

(
7
ε

)
, consider x̄(N) be the

periodic point in ΣZ2
formed by repeating the block x(N). Now we define the

function g : ΣZ2 → R by g = f + εh, where h is the following function:

h = 1τ25∪τ27 − 1τ13∪τ15 .

Here, τ∗∗ means Tile ∗∗ in the set Σ (Figure 1). In Figure 8(a), we show

the left, right, top and bottom sides of the central cross in x(N) with their

respective tiles.

Let µper be the invariant probability measure supported on the orbit of

x̄(N) and µ the invariant probability measure supported on X. Then∫
f dµper =

−7

(2N)2
and

∫
f dµ = 0,

where the first equality follows from Proposition 3.4. On the other hand,

as µ(τ) = ν(R(τ)) for all τ ∈ Σ, we have µ(τ15) = ν(τ15) = µ(τ27) and

µ(τ13) = ν(τ13) = µ(τ25). Hence
∫
h dµ = 0. It follows that

∫
g dµ = 0.
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Figure 8: Tiles in x(N)

Now in order to calculate
∫
h dµper, we observe that inside the squares

S1, . . . , S4 in Figure 8, the number of tiles of type τ25 and τ27 in S1 is equal

to the number of tiles of type τ13 and τ15 in S4. Similarly, the number of tiles

of type τ13 and τ15 in S1 is equal to the number of tiles of type τ25 and τ27

in S4. The same holds for S2 and S3. Hence the contribution to
∫
h dµper

coming from the regions S1, S2, S3, and S4 is 0 since the terms cancel.

From this, we see∫
h dµper =

#(x \ S)τ25 + #(x \ S)τ27
(2N)2

=
2[(2N − 1) + (2N−1 − 1)]

22N
>

1

2N
> 0,

where #(x\S)τ25 represents the number of tiles of type 25 in the square x(N)

lying outside S =
⋃4
i=1 Si. Finally, for g we have∫

g dµper >
−7

(2N)2
+ ε

1

2N
> 0 =

∫
g dµ whenever N > log2

(
7

ε

)
.

As the measure µper is not supported on X, the result is proved.
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