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Abstract. Ergodic optimization is the process of finding invariant probability measures that
maximize the integral of a given function. It has been conjectured that ‘most’ functions
are optimized by measures supported on a periodic orbit, and it has been proved in several
separable spaces that an open and dense subset of functions is optimized by measures
supported on a periodic orbit. All known positive results have been for separable spaces.
We give in this paper the first positive result for a non-separable space, the space of super-
continuous functions on the full shift, where the set of functions optimized by periodic
orbit measures contains an open dense subset.

1. Introduction
Given an expansive map T : � → � and a continuous function f , we say that a T -invariant
probability measure µ optimizes f if�

f dµ ≥
�

f dν

for all T -invariant probability measures ν. If y is a periodic point (i.e., T i y = y for some i),
let µy be the unique T -invariant probability measure supported on Oy, the orbit of y. We
call µy a periodic orbit measure. If µy optimizes f , we will also say that f is optimized
by the periodic point y.

General belief. ‘Most’ functions are optimized by measures supported on a periodic orbit.

‘Most’ can take various meanings, but for our purposes, we consider ‘most’ to be an
open dense set or a residual set.

CONJECTURE 1. In an expansive dynamical system, the set of Lipschitz functions
optimized by periodic orbit measures contains an open set that is dense in the class of
Lipschitz functions.

Analogs to Conjecture 1 have been shown to be false in the general case of continuous
functions [6], however they have been shown to be true in a handful of separable spaces.
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Further, various numerical experiments on many important dynamical systems support this
conjecture (and hint towards some very interesting relationships between parameterized
families of functions and the period of optimizing orbits) [4, 5, 8].

We present a non-separable space where the analog of Conjecture 1 holds true. Let
� = AN be the one-sided shift space on a finite alphabet. For a sequence An � 0, define a
metric dA(x, y) = An if x and y first differ in the nth place (i.e., (x)i = (y)i for 0 ≤ i < n;
(x)n �= (y)n). Let CA(�) denote the set of Lipschitz functions with respect to the dA

metric, equipped with the dA-Lipschitz norm. If {An} satisfies the additional property that
An+1/An → 0, we call f ∈ CA(�) super-continuous.

THEOREM 2. Suppose A = {An} and An+1/An → 0. For a periodic orbit measure µy

supported on Oy, let Py = { f ∈ CA(�) : µy is the unique maximizing measure}. Then,�
y periodic(Py)

◦ is dense in all of CA(�) under the A-norm topology (where (Py)
◦ is the

interior of Py).

We will briefly survey the most well-known positive results. A function f is a Walters
function (introduced by Walters in [7]) if for every ε > 0, there exists a δ > 0 so that for all
n ∈ N and x and y,

max
0≤i<n

{d(T i x, T i y)} ≤ δ �⇒ |Sn f (x) − Sn f (y)| < ε,

where Sn f (w) = �n−1
i=0 f (T iw). Bousch shows that for Walters functions the analog of

Conjecture 1 holds [2].
Contreras et al showed in [3] that when using a Hölder norm external to a particular

union of Hölder spaces, the analog of Conjecture 1 for Hölder spaces holds. Yuan and
Hunt made significant progress towards proving Conjecture 1, though the full result has
not yet been proved.

The already-established theorems are presented for comparison. Note that although the
theorems are stated in a variety of contexts (expanding maps of the circle, one-sided shifts
etc), the essence of the problem is present in the simple setting of the one-sided shift.

THEOREM. (Bousch [2]) Let T : X → X be the one-sided shift map and let W denote
the set of Walters functions on X. If P ⊂ W is the set of Walters functions optimized by
measures supported on periodic points, then P contains an open set dense in W with
respect to the Walters norm.

THEOREM. (Contreras, Lopes and Thieullen [3]) Let T be a C1+α expanding map of the
circle. Let Hβ be the set of β-Hölder functions on S1 and let Fα+ = �

β>α Hβ . Let
Pα+ ⊂ Fα+ be the subset of functions uniquely optimized by measures supported on a
periodic point. Then Pα+ contains a set that is open and dense in Fα+ under the Hα

topology (i.e., the α-Hölder norm).

THEOREM. (Yuan and Hunt [9]) Let T : M → M be an Axiom Amap or an expanding map
from a manifold to itself and let CLip denote the class of Lipschitz continuous functions.
For any f ∈ CLip optimized by a measure generated by an aperiodic point, there exists
an arbitrarily small perturbation of f such that that measure is no longer an optimizing



Super-continuous ergodic optimization 2073

measure. Further, any f ∈ CLip optimized by a periodic orbit measure can be perturbed to
be stably optimized by this periodic orbit measure.

With the inclusion of this paper, the current state of the standing conjecture is somewhat
curious. Notice that super-continuous functions are Lipschitz functions and Lipschitz
functions are Walters functions. So, for both a larger and a smaller class than Lipschitz
functions, analogs of Conjecture 1 have been shown to be true, and yet proof of the
Lipschitz case remains elusive.

1.1. Notation and definitions. For some finite alphabet A, let � = AN be the space of
one-sided infinite sequences on A. For us, N includes 0.

T : � → � is the usual shift operator, with T -invariant Borel probability measures on
� denoted by M. We write Ox for the orbit of x under T , and we say S is a segment of
Ox if it is an ordered list of the form (T i x, T i+1x, . . . , T i+p−1x) for some i, p. Abusing
the notation, we may say S ⊂ Ox .

We use d to denote the standard metric on sequences, that is, d(x, y) = 2−k , where
k = inf{i : (x)i �= (y)i } and (z)i is the i th symbol of z. We follow the convention that
2−∞ = 0.

Definition 3. (Shadowing) For two points x, y, we say that x ε-shadows a segment
S = (Tm y, . . . , Tm+n−1y) ⊂ Oy if

d(T i x, T i+m y) ≤ ε,

for all 0 ≤ i < n.

Definition 4. (ε-close) A point x is said to stay ε-close to a set Y for p steps if for all
0 ≤ i < p,

d(T i x, Y ) ≤ ε.

Notation 5. (Ergodic average) For a function f and a point x ,

� f �(x) = lim
N→∞

1
N

N−1�

i=0

f (T i x),

when the limit exists.

Notation 6. If x = a0a1a2 · · · is a point,

(x)
j
i = aiai+1 · · · a j−1a j

is the subword of x from position i to j .

2. Summable variation
Definition 7. (Variation) The variation of a function over level k cylinder sets is the
maximum a function changes in a distance of 2−k , that is, if f is a function

vark( f ) = sup{| f (x) − f (y)| : d(x, y) ≤ 2−k}.
Note that in a shift space, we have an additional structure because distances can only

take values of the form 2−k .
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Definition 8. (Summable variation) The function f is of summable variation if
∞�

k=0

vark( f ) < ∞.

Notation 9. Vk( f ) represents the tail sum of the variation of f over distances smaller than
2−k+1, that is,

Vk( f ) =
∞�

j=k

var j ( f ).

Functions of summable variation form a much larger class than Lipschitz functions.
However, the general method used in this paper to show Theorem 2 is to perturb functions
by a small multiple of some canonical ‘sharpest’ function. Yuan and Hunt used this strategy
when dealing with Lipschitz functions by perturbing by −d(x, Oy) [9]. However, for
functions of summable variation (with the natural norm of � f � = V0( f ) + � f �∞), there
is no such ‘sharpest’ function. Using the A-norms gives us these sharpest functions again.

We will frequently refer to A-metrics and A-norms, as briefly introduced earlier.

Definition 10. (A-sequence) An A-sequence, (An)
∞
n=0, is a decreasing sequence of positive

numbers with An → 0.
If there exists 0 < δ < 1 such that An+1/An < 1 − δ for each n, then we say that (An)

is lacunary.

Recall that the metric dA is defined by dA(x, y) = An if (x)i = (y)i for 0 ≤ i < n but
(x)n �= (y)n .

Definition 11. (A-norm) If (An) is an A-sequence, the Lipschitz constant of f is
LipA( f ) = supk vark( f )/Ak . The A-norm is defined by � f �A = LipA( f ) + � f �∞.

Of course, if A is the sequence (2−n)∞n=0, we recover the standard distance and Lipschitz
norm. We write the set of Lipschitz functions with respect to dA as CA(�), or simply CA.

Notice that since A satisfies An → 0, CA(�) ⊂ C(�) is a subset of the continuous
functions on �. Further, CA is a non-separable Banach space as the functions fx (·) =
d(x, ·) for x ∈ � are an uncountable uniformly discrete set.

3. Preliminary lemmas
We will first establish several results that do not depend on super-continuity.

Definition 12. (In order for one step) For points x, y, let S = (T j y, T j+1y, . . . ,

T j+k y) ⊂ Oy, and suppose that there is a unique closest point y� ∈ S to x , that is,

d(x, y�) < d(x, S\{y�}).
We say that x follows S in order for one step if T y� ∈ S and T y� is the unique closest point
to T x , that is, T y� ∈ S and

d(T x, T y�) < d(T x, S\{T y�}).
Definition 13. (In order) For some point y, let S = (T j y, T j+1y, . . . , T j+k y) ⊂ Oy. For
some point x , we say that x follows S in order for p steps if x, T x, . . . , T p−1x each
follow S in order for one step.
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Following in order is very similar to the concept of shadowing, except that the distance
requirement in shadowing is replaced by a uniqueness requirement. The following In order
lemma is due to Yuan and Hunt [9].

LEMMA 14. (In order lemma) Let y be a periodic point of period p, and let

ρ ≤ min
0≤i< j<p

d(T i y, T j y)/4.

For any point x, if x stays ρ-close to Oy for k + 1 steps, then x follows Oy in order for k
steps. In particular, there exists some i � such that for 0 ≤ j ≤ k,

d(T j x, T i �+ j y) ≤ ρ.

Proof. Let γ = min0≤i< j<p d(T i y, T j y). We first derive a fact about the shift space
resulting from its ultrametric properties. Suppose y�, y�� ∈ Oy and for some point x ,
d(x, y�), d(x, y��) ≤ γ /2. By the ultrametric triangle inequality, we have

d(y�, y��) ≤ max(d(x, y�), d(x, y��)) ≤ γ /2. (1)

Since γ was the smallest distance between points in Oy, equation (1) gives y� = y��. This
shows that for any point x , if d(x, Oy) ≤ γ /2, then there is a unique closest point in Oy
to x .

Let x be a point that stays ρ-close to Oy for k + 1 steps. By definition, we have

d(x, Oy) ≤ ρ ≤ γ /4.

Since γ is the minimum distance between points in Oy, there is a unique i � such that

d(x, T i � y) ≤ ρ.

We then have that
d(T x, T i �+1y) ≤ 2ρ ≤ γ /2,

and so T i �+1y is the unique closest point to T x . Thus, x follows Oy in order for one
step, but, by assumption, we have d(T x, Oy) ≤ ρ, so d(T x, Oy) = d(T x, T i �+1y) gives
us that T x follows Oy in order for one step and so x follows Oy in order for two steps.
Continuing by induction, we see that x follows Oy in order for k steps, that is,

d(T j x, T i �+ j y) ≤ ρ for 0 ≤ j ≤ k. ✷

LEMMA 15. (Shadowing lemma) For a point y, let S = (T i y, T i+1y, . . . , T i+k−1y) be
a segment of Oy. For any ρ < 1, if a point x ρ-shadows S for k steps, the distance from
T j x to S for 0 ≤ j < k is bounded by

d(T j x, T i+ j y) ≤ ρ2−((k−1)− j).

Proof. Let l = inf{w : 2−w ≤ ρ} and note ρ < 1 implies l ≥ 1. Since x ρ-shadows S for k
steps, we have (T j x)l−1

0 = (T i+ j y)l−1
0 for 0 ≤ j ≤ k − 1, and so (x)k+l−2

0 = (T i y)k+l−2
0 ,

which gives the result. ✷

LEMMA 16. (Parallel orbit lemma) For a function of summable variation f , if T mx 2−r -
shadows Oy for k steps (i.e., there exists i so d(Tm+ j x, T i+ j y) ≤ 2−r for 0 ≤ j < k),
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then for r > 0,
k−1�

j=0

| f (Tm+ j x) − f (T i+ j y)| ≤ Vr ( f ).

Proof. Suppose x, y are points such that d(Tm+ j x, T i+ j y) ≤ 2−r , where r ≥ 1 for 0 ≤
j < k. The shadowing lemma (Lemma 15) gives us that

d(Tm+ j x, T i+ j y) ≤ 2−(r+(k−1)− j).

We then have
k−1�

j=0

| f (Tm+ j x) − f (T i+ j y)| ≤
r+k−1�

j=r

var j ( f ) ≤ Vr ( f ). ✷

4. Mañé–Conze–Guivarc’h normal form and main result
Heuristically, let us consider the following: suppose f is optimized by µmax and�

f dµmax = 0. We will define a function f ∗ to represent the ‘payoff of going backwards
to infinity’. Before we describe what f ∗ means, let us consider the payoff of going
backwards a finite number of steps. For a point x , there is some point a11x ∈ T−1x
such that f (a11x) ≥ f (b1x) for any symbol b1. In other words, a11x is a maximal one-
step backwards extension of x . Continuing, there is some point a22a

2
1x ∈ T−2x so that

f (a22a
2
1x) + f (a21x) ≥ f (b2b1x) + f (b1x) for any word b2b1, making a22a

2
1x a maximal

two-step backwards extension of x . It is important to note that the symbol a21 need not be
the same as the symbol a11 , and so it is in no way immediate that there should be some
convergent way to pick an infinite maximal backwards extension of x .

However, ignoring these issues for the moment, one can imagine that n-step backwards
extensions of x look more and more like generic points of µmax (if µmax is a periodic orbit
measure, this should be especially plausible). We now informally define f ∗ as

f ∗(x) = f (a∞
1 x) + f (a∞

2 a∞
1 x) + f (a∞

3 a∞
2 a∞

1 x) + · · · ,

where · · · a∞
3 a∞

2 a∞
1 x is an infinite maximal backwards extension of x . Since�

f dµmax = 0, it is reasonable to expect that if f ∗ converges, it is bounded above.
Ignoring any issues of convergence, consider

f ∗ ◦ T − f ∗.
Suppose x = x0x1 · · · is a point with maximal backwards extension · · · a2a1x0x1 · · · . We
immediately see ( f ∗ ◦ T − f ∗)(x) ≥ f (x), since either the maximal backwards extension
of T x = x1x2 · · · is · · · a2a1x0x1 · · · , which would give us ( f ∗ ◦ T − f ∗)(x) = f (x),
or there is an alternative backwards extension of T x that yields a bigger payoff than
· · · a2a1x0x1 · · · , and so ( f ∗ ◦ T − f ∗)(x) > f (x).

Since f ∗ ◦ T − f ∗ is a co-boundary (a function of the form h − h ◦ T ) and so integrates
to zero with respect to any invariant measure, the function f̂ = f − ( f ∗ ◦ T − f ∗) is co-
homologous to f (and so

�
f dµ = �

f̂ dµ for all invariant measures µ), with the added
property that f̂ ≤ 0.

The Mañé–Conze–Guivarc’h procedure is a way of producing a well-defined f ∗. We
use a method due to Bousch [1], which produces f ∗ as a fixed point of an operator that
reflects the idea of a maximal backwards extension.
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For f ∈ CA, define the operator � f : CA → CA by

(� f g)(x) = max
y∈T−1x

{( f + g)(y)}.

PROPOSITION 17. (Bousch) Let (An) be a lacunary A-sequence. For a fixed function
f ∈ CA with supµ∈M

�
f dµ = 0, the operator � f as defined above has a fixed point.

The proof follows standard lines with minor adaptations for the case of A-norms rather
than Lipschitz norms. We briefly summarize the steps, referring the reader to Bousch [1]
for more details.

Proof sketch. Let An+1/An < 1 − δ for all n (where 0 < δ < 1). We claim that � f maps
C = {g : LipA(g) ≤ LipA( f )/δ} into itself. We do part of this step in detail because we
need a fact from it later. Let g ∈ C and let x and x � differ first in their (n − 1)st coordinates.
Using the notation i x to denote the sequence with its first symbol defined by (i x)0 = i and
all remaining symbols defined by (i x)k+1 = xk , we have

� f (g)(x) − � f (g)(x �) = max
i

( f (i x) + g(i x)) − max
j

( f ( j x �) + g( j x �))

≤ max
i

( f (i x) + g(i x) − f (i x �) − g(i x �))

≤ varn( f ) + varn(g).

By symmetry, we deduce

varn−1(� f (g)) ≤ varn( f ) + varn(g). (2)

Straightforward manipulation then shows that � f (g) ∈ C .
Taking a quotient of C by the relation∼, where two functions g and g� are related if they

differ by a constant, one obtains a compact (with respect to the quotient of the supremum
norm topology) convex set C/ ∼ on which � f acts continuously. Hence, there is a fixed
point. This fixed point corresponds to a function h ∈ C such that � f (h) = h + β for some
constant β. One then shows that supµ∈M

�
f dµ = 0 implies β = 0. ✷

THEOREM 18. Let (An) be a lacunary A-sequence. There exists a constant γA >

1, dependent only on the choice of A-sequence, such that for all f ∈ CA with
supµ∈M

�
f dµ = 0, there exists a co-homologous function f̂ with f̂ ≤ 0 and

� f̂ �A ≤ γA� f �A, Vn f̂ ≤ γA� f �A An .

Proof. Suppose An+1/An < 1 − δ for all n (for some 0 < δ < 1). By Proposition 17, we
may find h, a fixed point of � f with

�h�A ≤ LipA( f )

δ
+ �h�∞ ≤ (A0 + 1)

� f �A

δ
.

However, from (2), we have

varn−1(h) = varn−1(� f h) ≤ varn( f ) + varn(h).

This gives
varn(h ◦ T )

An
≤ varn−1(h)

An
≤ varn( f ) + varn(h)

An
,



2078 A. Quas and J. Siefken

and so �h ◦ T �A ≤ � f �A + �h�A. Let f̂ = f + h − h ◦ T . f̂ has the desired properties
and

� f̂ �A ≤ � f �A + �h�A + �h ◦ T �A ≤ 2� f �A + 2�h�A ≤ 2(A0 + 1 + δ)

δ
� f �A.

Let us now focus on finding a constant such that Vn f̂ ≤ K� f �A An . From our bound
on � f̂ �A, we know

vark f̂ ≤ 2(A0 + 1 + δ)

δ
� f �A Ak .

Ak+1/Ak < 1 − δ for all k gives that
�

k≥n Ak ≤ An/δ, and so

Vn f̂ ≤ 2(A0 + 1 + δ)

δ2
� f �A An .

Letting γA = 2(A0 + 1 + δ)/δ2 completes the proof. ✷

It should be noted that Theorem 18 can trivially be applied to functions f where
supµ∈M

�
f dµ = β �= 0 by letting f̂ = �f − β + β.

COROLLARY 19. Theorem 18 holds with the weakened assumption that lim sup An+1/An

< 1.

Proof. Since lim sup An+1/An < 1, we can construct a sequence Bn such that Bn+1/Bn <

1 − δ for some 0 < δ < 1 and Bi = Ai for i > N for some finite N . Since we only changed
a finite number of terms of A to produce B, � · �A and � · �B are equivalent. Let M be
such that � f �A ≤ M� f �B for all f ∈ CA and M � = max An/Bn . Letting γA = MM �γB

completes the proof. ✷

Though not dependent on Theorem 18, it is convenient to note that γA from Theorem 18
also bounds Vn f in the expected way.

Fact 20. If (An) is a lacunary A-sequence, then for f ∈ CA,

Vn f ≤ γA� f �A An,

where γA is as in Theorem 18.

We now have machinery in place to give a quick proof of Proposition 21, which
establishes a relationship between the number of points in the support of a periodic orbit
measure and how close such measures come to optimizing a fixed function. This result
was first established by Yuan and Hunt (without using the Mañé–Conze–Guivarc’h lemma)
in [9], for Lipschitz functions.

PROPOSITION 21. (Yuan and Hunt) Let (An) be a lacunary A-sequence. Let f ∈ CA and
x be an optimal orbit for f (i.e., a typical point of a maximizing measure). Let y be a point
of period p, and r > 0. If a segment of Ox 2−r -shadows Oy for one period (i.e., there
exist m, m� such that d(T i+mx, T i+m�

y) ≤ 2−r for 0 ≤ i < p), then

� f �(x) − γA� f �A Ar/p ≤ � f �(y) ≤ � f �(x),

where γA is as in Theorem 18.

Proof. Let y be a period p point with the property that a segment of Ox 2−r -shadows Oy
for p steps. By renaming some T j y as y, without loss of generality we may assume that a
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segment of Ox 2−r -shadows y. That is, there exists some m so that d(Tm+i x, T i y) ≤ 2−r

for 0 ≤ i < p. Let x � = Tmx .
By Theorem 18, we may find f̂ co-homologous to f with f̂ (Ox) = f̂ (Ox �) = � f �(x).

Since for 0 < i ≤ p we have

d(T i x �, T i y) ≤ 2−(r+(p−1−i)),

we may apply the parallel orbit lemma (16) to get

����
p−1�

i=0

( f̂ (T i x �) − f̂ (T i y))

���� =
����
�p−1�

i=0

f̂ (T i x �)
�

− p� f̂ �(y)
���� ≤ Vr f̂ .

The proposition follows from the fact that f̂ (T i x �) = � f �(x) and that by Theorem 18,
Vr f̂ ≤ γA� f �A Ar . ✷

Using methods similar to those in Yuan and Hunt [9], one can show that Proposition 21
holds for any function f of summable variation, and one can produce a slightly stronger
bound of � f �(x) − 4Vr f/p ≤ � f �(y) ≤ � f �(x).

We are now ready to prove Theorem 2 by using dA(·, Oy) as a ‘sharpest’ function that
will penalize any measure that gives mass to (Oy)c.

THEOREM. (Theorem 2) Let (An) be an A-sequence satisfying An+1/An → 0.
For a periodic orbit measure µy supported on Oy, let Py = { f ∈ CA(�) :
µy is the unique maximizing measure}. Then,

�
y periodic(Py)

◦ is dense in CA(�) (where
(Py)

◦ is the interior of Py).

Proof. We will show that for any function f , there exists an arbitrarily small perturbation,
f̃ , of f , and a periodic orbit measure µy , such that all functions in an open neighbourhood
of f̃ are uniquely optimized by µy .

Since lim sup An+1/An = 0, by Corollary 19, passing to an equivalent norm if
necessary, we may assume An+1/An ≤ 1/2 for all n. Fix f ∈ CA and let µmax be an
optimizing measure for f . Fix x ∈ supp(µmax). Without loss of generality, assume
� f �(x) = 0 and let f̂ be co-homologous to f with f̂ ≤ 0.

Suppose we showed that an arbitrarily small perturbation f̂ + g of f̂ was such that the
open ball of radius ε about f̂ + g is uniquely optimized by a periodic orbit measure µy .
Since f̂ and f are co-homologous, this means that f + g is uniquely optimized by µy

and in fact the open ball of radius ε about f + g is uniquely optimized by µy . Thus, it is
sufficient to consider only small perturbations of f̂ .

Fix 0 < ε < 1. For a fixed k (to be determined later), find a minimal recurrence in x of a
block of k symbols, that is, find i < j such that d(T i x, T j x) ≤ 2−k , but for i ≤ i � < j � < j ,
we have d(T i �x, T j �x) > 2−k . Notice that such a minimal recurrence exists for all k by
the pigeonhole principle.

Let p = j − i and let y be the point of period p satisfying (y) j−1
i = (x)

j−1
i . Since

d(T i x, T j x) ≤ 2−k , we see that (y) j+k−1
i = (x)

j+k−1
i . It follows that the orbit segment

(T i x, . . . , T j−1x) 2−(k+1)-shadows T i y.
Let 2−l = mini≤i �< j �< j {d(T i � y, T j � y)} be the minimum distance between points in Oy

and notice that by construction of y and the ultrametric property, 2−l ≥ 2−(k−1).
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Define the perturbation function g by g(t) = dA(t, Oy), and let f̃ = f̂ − εg.

We will now show that provided k is sufficiently large, the measure supported on Oy is
the unique optimizing measure for functions lying in a � · �A-open ball about f̃ .

Let Q = { f̃ + h : �h�A < εσ } with σ < 1, to be determined later. Fix f̂ − εg + h ∈ Q
and let q be its normalization, q = f̂ − εg + h + β, where β = −supµ∈M

�
( f̂ − εg +

h) dµ.
Let γA be as in Theorem 18. Recall that γA > 1. We then have Vn f̂ ≤ γA� f �A An .

Further, since ε, σ < 1, Fact 20 gives us Vn(εg), Vnh ≤ γA An . Let L = γ 2
A(� f �A + 2).

Since Vn( f̂ − εg + h) = Vnq, we have

Vn f̂ , Vn f̃ , Vnq ≤ L An and γAVn f ≤ L An,

with the second inequality following from Fact 20. Further, L only depends on A and
� f �A.

Since x 2−(k+1)-shadows Oy for p steps, we can get a good bound for β. By
construction

�q�(y) = � f �(y) − ε�g�(y) + �h�(y) + β ≤ 0,

and so
β ≤ −� f �(y) + ε�g�(y) − �h�(y) = −� f �(y) − �h�(y).

Proposition 21 gives us

� f �(x) − γAVk+1( f )/p = −γAVk+1( f )/p ≤ � f �(y),
so that −� f �(y) ≤ L Ak+1/p. Combining this with the fact that �h�∞ ≤ �h�A < εσ gives
β < L Ak+1/p + εσ . Since q = f̂ − εg + h + β, and the first two terms are non-positive,
we see that

h(ω) + β <
L Ak+1

p
+ 2εσ for all ω ∈ �; and

q(ω) <
L Ak+1

p
+ 2εσ for all ω ∈ �.

(3)

Let q(n) be the co-cycle q(n)(z) = q(T n−1z) + q(T n−2z) + · · · + q(z), and note that if
n > m, q(n)(z) − q(m)(z) = q(n−m)(Tmz).

We know by Proposition 17 that there exists q∗, a fixed point of �q . Let z ∈ � be
arbitrary. We know there exists some symbol a1 such that q∗(z) = q(a1z) + q∗(a1z).
Iterating this process, we may find an infinite sequence of preimages (ai ) such that for
any n > 0,

q∗(z) = q(a1z) + q(a2a1z) + · · · + q(an · · · a1z) + q∗(an · · · a1z)
= q(n)(an · · · a1z) + q∗(an · · · a1z). (4)

Fix any such preimage infinite sequence (ai ). We will now identify a (possibly
finite) sequence of times, (tn), by the following recursive procedure: for a time t , define
ωt = atat−1 · · · a1z. Let t0 be the smallest number (if it exists) such that d(ωt0 , Oy) >

2−(k+1). Given tn , let tn+1 > tn be the next smallest number (again, if it exists) so that
d(ωtn+1 , Oy) > 2−(k+1). Our goal is to show that the length of the sequence is finite. From
this it follows that the preimages ωt accumulate to Oy. It will then follow that the periodic
orbit measure supported on Oy is the unique maximizing measure.
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Since 2−l ≥ 2−(k−1) (and so 2−l/4 ≥ 2−(k+1)), for times strictly between tn and tn−1,
the In order lemma (Lemma 14) gives that we 2−(k+1)-shadow Oy.

Suppose tn − tn−1 > 1 and let y� ∈ Oy be the point that is 2−(k+1)-shadowed by ωtn
for tn − tn−1 − 1 steps (that is, d(T iωtn , T

i y) ≤ 2−(k+1) for 0 < i < tn − tn−1). Summing
along this segment, the parallel orbit lemma (Lemma 16) gives us�

0<i<tn−tn−1

[q(T iωtn ) − q(T i y�)] ≤ Vk+1(q) ≤ L Ak+1,

so that �

0<i<tn−tn−1

q(T iωtn ) ≤ L Ak+1 +
�

0<i<tn−tn−1

q(T i y�).

Grouping
�

0<i<tn−tn−1
q(T i y�) in blocks of length p together with at most p − 1

singleton terms, and using (3), we see�

0<i<tn−tn−1

q(T iωtn ) ≤ L Ak+1 + mp�q�(y) + (p − 1)(L Ak+1/p + 2εσ ),

where m is the integer part of (tn − tn−1 − 1)/p. Since �q�(y) ≤ 0, we simplify to get�

0<i<tn−tn−1

q(T iωtn ) ≤ 2L Ak+1 + 2(p − 1)εσ. (5)

Notice that this equation also holds (trivially) if tn = tn−1 + 1. We now evaluate q(ωtn ):

q(ωtn ) = f̂ (ωtn ) − εg(ωtn ) + h(ωtn ) + β.

By construction, we have d(ωtn , Oy) ≥ 2−k , so that g(ωtn ) ≥ Ak . Using (3) again and the
fact that f̂ ≤ 0, we have

q(ωtn ) ≤ −εAk + L Ak+1

p
+ 2εσ. (6)

Combining equations (5) and (6), we get

q(tn−tn−1)(ωtn ) ≤ −εAk + 3L Ak+1 + 2pεσ,

and so for σ ≤ Ak/(4p), we have

q(tn−tn−1)(ωtn ) ≤ −ε

2
Ak + 3L Ak+1.

Since L only depends on (An) and � f �A, our assumption that Ak+1/Ak → 0 ensures that
there exists a k such that α = (ε/2)Ak − 3L Ak+1 > 0. Fix this k and fix σ = Ak/(4p).
Let (x)

j−1
i be the minimal recurrence segment identified in the proof and y be the

corresponding periodic orbit. This fixes the open ball Q whose centre is at a distance ε

from f̂ .
We have shown that for any function in Q, its normalized version q satisfies

q(ti−ti−1)(ωti ) < −α. Expanding using (4) now gives

q∗(ωt0) − q∗(ωtn ) = q(tn−t0)(ωtn ) =
n�

i=1

q(ti−ti−1)(ωti ) ≤ −nα.

But q∗ is a bounded function and so the number of terms in the sequence (tn) is finite.
Since z was chosen arbitrarily, this is sufficient to show that the periodic orbit measure

supported on Oy uniquely optimizes q. If not, then there would be points z and preimage
sequences (ai ) satisfying (4) that do not eventually follow Oy, and so (tn) would be
infinite. ✷
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Theorem 2 proves both (a) that a function optimized by an aperiodic point can be
perturbed to be optimized by a periodic point and (b) that a function optimized by a periodic
point can be perturbed to lie in an open set of functions optimized by the same periodic
point. Following the methods of Yuan and Hunt in [9], one can prove (b) in the general
context of A-norm spaces (dropping the assumption that An+1/An → 0 entirely).
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