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Abstract

We explore the properties of Collapse, a number game closely
related to Fibonacci words. In doing so, we fully classify the set
of periods (minimal or not) of finite Fibonacci words via careful
examination of the Exceptional (sometimes called singular) finite
Fibonacci words.

Collapse is not a game in the Game Theory sense, but rather in the recreational
sense, like the 15-puzzle (the game where you slide numbered tiles in an attempt
to arrange them in order). It was created in an attempt to better understand
Sturmian words (to be explained later). Collapse is played by manipulating
finite sequences of integers, called words, using three rules. Before we introduce
the rules, we need some notation.
For an alphabet A, a word w is one of the following:

a finite list of symbols w = w1w2w3 · · ·wn (finite word),

an infinite list of symbols w = w1w2w3 · · · (infinite word),

or a bi-infinite list of symbols w = · · ·w−1w0w1w2w3 · · · (bi-infinite word).

The wi in each of these cases are called the letters of w. The number of letters
of a finite word w is called the length of w and denoted by |w|.
A subword of the word w = w1w2w3 · · · is a finite word u = wkwk+1wk+2 · · ·wk+n

composed of a contiguous segment of w and denoted by u ⊆ w.
For words u = u1u2 · · ·um and w = w1w2 · · ·wn, the concatenation of u and w
is the word

uw = u1u2 · · ·umw1w2 · · ·wn.

Similarly, wk is the concatenation of w with itself k times.

∗I would like to acknowledge the University of Victoria for their support and Professor
Robert Burton for introducing me to the structures in the Fibonacci word.
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Definition 1. If w is a finite word, we denote by w∗ the bi-infinite periodic
word formed by repeating w, e.g.

(123)∗ = · · · 123123 · · · .

When writing w∗ we will always assume w to be as short as possible, e.g. instead
of (1212)∗ we would write (12)∗.

The goal of Collapse is to take a finite word on the alphabet A = N, called
a starting word (we explain which words will be allowed in a moment), and
reduce it, using only the rules listed below, to a word of the form (r)∗ where r
is a single letter.

Rules.

(i) You may replace any letter n with the letter n + 1 followed by the letter
n+ 2. For example, 434 → 4454 is a valid application.

(ii) You may replace any pair of consecutive letters of the form n+1 followed
by n + 2 with the single letter n. For example, 4454 → 434 is a valid
application.

(iii) You may replace a word S (or S∗) by a periodic word T ∗ with S ⊂ T ∗

(respectively S∗ ⊆ T ∗) as long as |T | ≤ |S|. For example, 3453 → (345)∗

or (345)∗ → (534)∗ are valid applications.

To apply rule (i) or (ii) to a bi-infinite periodic word X∗, one should apply the
rule to every occurrence of X. For example (343)∗ → (4543)∗.
A few samples of how to apply the above rules:

5667
(ii)−→ 45

(ii)−→ 3
(iii)−→ (3)∗

656
(iii)−→ (65)∗

(iii)−→ (56)∗
(ii)−→ (4)∗

233
(i)−→ 3433

(iii)−→ (343)∗
(ii)−→ (23)∗

(ii)−→ (1)∗

Exercise. Reduce 64556.

You may have noticed that rule (iii) has some interesting consequences. For
example, we can eliminate any prefix that also appears as a suffix, because if
x and y are finite words then the word xyx is contained in the periodic word
(xy)∗. Further, we may cyclically permute the letters since xy is contained in
(yx)∗. It is worth noting that using rule (iii) in different ways can change the
eventual solution, for example:

343 → (343)∗ → (23)∗ → (1)∗

343 → (34)∗ → (2)∗
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Let us now go about considering the starting words. The most naive way to
obtain a word that can be reduced using the rules of Collapse is to start with
any integer and expand it to a word using rule (i) repeatedly. For example, the
rows of Figure 1 show the words obtained from 0 by repeatedly applying rule
(i) to each letter.

0

1 2

2 3

3

3

4

4

4 4

4

5 5 5

5

5

5 5

6 6 6 6 6 6

6

7 7 7 7 8

Figure 1: Applications of rule (i) to obtain starting words.

Of course, if these were the only staring words, it would make Collapse a fairly
boring game since you could always win by using only rule (ii). However, a
small modification will give this game a rich flavour.

Definition 2. A starting word of Collapse is any subword of the word X where
X is obtained by repeatedly applying rule (i) to the word 0.

For example, if Rn is the nth row of the tree in Figure 1, any subword of Rn is
a valid starting word.

Exercise. Reduce the following words: 33, 455, 6756, 667677.

Now that you are familiar with Collapse, we present the following questions.

Question A. Can all starting words be reduced?

Question B. Which starting words can be reduced in more than one way?

1 A Sturmian Excursion

It turns out that we can answer questions about Collapse by understanding
certain properties of Sturmian words (or Sturmian sequences). The precise
relationship between Sturmian words and Collapse is given in Section 3.

Definition 3. For any real number α ∈ [0, 1], the characteristic Sturmian word
Sα = a1a2 . . . is defined by

ai = ⌊(i+ 1)α⌋ − ⌊iα⌋.

An alternative definition for Sα is the following.
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Definition 4. For α ∈ [0, 1], let [0; 1 + a1, a2, . . . ] be the continued fraction
expansion of α with the convention that if α ∈ Q, then an = ∞ is the last letter
of the expansion. The (finite) standard Sturmian words of Sα are the finite
words Si defined by

S0 = 1,

S1 = 0,

...

Sn = (Sn−1)
an−1Sn−2,

and Sα = lim
i→∞

Si.

It should be noted that for α ∈ [0, 1], there is a larger set, the set of all Sturmian
words associated with α. These words arise as limits of Sα, but are not needed
for our investigation. We refer the curious reader to Lothaire [3] and Fogg [2].
Now, considering the number of subwords of Sα of a particular length, we get
the following interesting property.

Proposition 5 (Fogg [2]). Let α ∈ [0, 1]. Then the number of distinct subwords
of Sα of length n is at most n+ 1, with equality if α /∈ Q.

We can say even more if n is the length of a standard Sturmian word of Sα.

Proposition 6 (de Luca [4]). All rotates (cyclic permutations) of a standard
Sturmian word are distinct.

Proof. Let pi denote the number of 1’s in Si and qi the length of Si. The
recursion for Si implies the following recursions for pi and qi:

p0 = 1, q0 = 0,

p1 = 0, q1 = 1,

pn = an−1pn−1 + pn−2, qn = an−1qn−1 + qn−2.

It is easy to verify by induction that |piqi−1 − pi−1qi| = 1 and so gcd(pi, qi) = 1
for all i. Now suppose that Si can be written as a nontrivial rotate of itself.
Then Si = wk for some word w and k > 1. But then k divides both pi and qi,
a contradiction.

Proposition 7. Let α ∈ [0, 1] \Q. Then every rotate of the standard Sturmian
word Si appears in Sα infinitely often.

Proof. If i ≤ 1, then the statement holds trivially. For i > 1, we will show
that every rotate of Si appears in Si+3 and thus in Sα. Using the recursion for
Sturmian words, we have

Si+3 = (Si+2)
ai+2Si+1 = (Si+2)

ai+2−1(Si+1)
ai+1Si(Si)

aiSi−1.

Since ai ≥ 1 for i > 1, the word SiSi, which contains every rotate of Si, is
a subword of Si+3. Lastly it is clear from the Sturmian recursion that Si+3

appears infinitely often in Sα.
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This proof can be modified, using slightly more arithmetic, to show that all
rotates of Si do in fact appear in Si+2. We remark that the previous proposi-
tion also holds for rational α ∈ [0, 1] with the obvious exception that S1 = 0
(respectively S1 = 1) does not appear in Sα if α = 1 (respectively α = 0).
As a corollary of the previous propositions, we observe that if n = |Si| is the
length of a standard Sturmian word for α ∈ [0, 1]\Q, then of the n+1 subwords
of length n appearing in Sα, exactly one is not a rotate of Si. These words will
be crucial in the investigation of Collapse.

2 A Fibonaccian Analogy

Let us examine the characteristic Sturmian word that will be our main concern in

this paper. The infinite Fibonacci word is the word F = Sφ, where φ =
(

1−
√
5

2

)2

is the square of the inverse of the Golden Ratio. In this case, the standard
Sturmian words generating F are the Fibonacci words Fn given by

F0 = 1,

F1 = 0,

...

Fn = Fn−1Fn−2.

Notice that fn = |Fn| satisfies the recursion for the Fibonacci numbers with
f0 = f1 = 1. The first few Fibonacci words are:

F0 = 1,

F1 = 0,

F2 = 01,

F3 = 010,

F4 = 01001,

F5 = 01001010.

There is a strong connection between Collapse and Fibonacci words. Consider
the word given by the nth row of the tree in Figure 1 (the row starting with
the letter n) and use rule (i) repeatedly on all letters less than 2n− 1 until all
letters of the word are either 2n − 1 or 2n. Now replace each 2n − 1 by 0 and
each 2n by 1. The result is the Fibonacci word F2n!

Example. The word 2334 becomes 34334 and upon replacement, 01001 = F2.

Let us now consider this relationship with a little more rigour. For an alphabet
A, let

WA =
∪
n∈N

An
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be the set of all finite words on A.
Define

Φk : W{k−1,k} → W{0,1} by

(k − 1) 7→ 0

k 7→ 1

and

Tk : W{k−1,k} → W{k,k+1} by

k − 1 7→ k, (k + 1)

k 7→ k.

Notice that both Φk and Tk have as a domain words consisting of k − 1 and k
and that Tk is in bijection with its image. Further, applying Tk is analogous to
applying rule (i) to every letter k− 1 in a word (consisting of (k− 1)’s and k’s).
Since Φk is invertible, we have an induced map

T = Φk+1 ◦ Tk ◦ Φ−1
k

given by 0 7→ 01 and 1 7→ 0, and the following diagram commutes.

· · ·
Tk−1

// W{k−1,k}
Tk //

Φk

��

W{k,k+1}
Tk+1

//

Φk+1

��

· · ·

· · · T // W{0,1}
T // W{0,1}

T // · · ·

Figure 2: Commutation of Tk and Φk

Proposition 8. If Fn is the nth Fibonacci word, T (Fn) = Fn+1.

Proof. The proof by induction is straightforward. Observe that T (F0) = T (1) =
0 = F1. Now, suppose the claim holds for i < n. Notice if w = ab is a word,
then T (w) = T (a)T (b), and so

T (Fn) = T (Fn−1Fn−2) = T (Fn−1)T (Fn−2) = FnFn−1 = Fn+1.

We now have another way of writing Fn, namely Fn = Tn(1). On the other
hand, consider the word Ln, arising by applying rule (i) to 0 until it consists
only of the letters n− 1 and n. Observe that

Ln = Tn−1 ◦ · · · ◦ T1 ◦ T0(0) = Φ−1
n ◦ Tn(1).
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L0

0 //

��

L1

0 //

��

L2

12 //

��

L3

232 //

��

L4

34334 //

��

· · ·

1 // 0 // 01 // 010 // 01001 // · · ·

Figure 3: Link between Ln and Fn

It is clear that any starting word of Collapse corresponds to a subword of some
Lk via repeated application of rule (i), so by answering questions about subwords
of Fk, we can, by the correspondence afforded by Φk, answer questions about
Collapse.

3 A Unifying Connection

In Collapse, the same starting word may have many different ways in which it
might be reduced. In order to exploit the link to the Fibonacci words that we
established in the previous section, we will provide a standard procedure, given
in Proposition 13, of how to reduce starting words. To lead up to it, we need
to establish a few properties of the rules of Collapse.
First, we define what it means for applications of rule (i) or (ii) to happen
in descending order (conversely ascending order). Intuitively, descending order
means applications of the rule first apply to the largest pairs of letters, then the
second largest, etc. To be more precise, let · · · ◦ ρ3 ◦ ρ2 ◦ ρ1 be a sequence of
applications of rule (i) (or (ii)). This sequence is in descending order, if for all i
the largest letter ρi operates on is greater than or equal to the largest letter ρi+1

operates on; the sequence is in ascending order if the largest letter ρi operates
on is less than or equal to the largest letter ρi+1 operates on.
Observe that the rules of Collapse have the following exchange properties.

Two consecutive applications of rule (i) in descending order can be re-
placed by two consecutive applications of rule (i) in ascending order.

Two consecutive applications of rule (ii) in ascending order can be replaced
by two consecutive applications of rule (ii) in descending order.

Two consecutive applications of rule (iii) can be replaced by a single ap-
plication of rule (iii).

An application of rule (ii) followed by an application of rule (i) can be
replaced by an application of rule (i) followed by an application of rule
(ii).

An application of rule (iii) followed by an application of rule (i) can be
replaced by some number of applications of rule (i) followed by an appli-
cation of rule (iii).
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An application of rule (ii) followed by an application of rule (iii) can
be replaced by some number of applications of rule (i) followed by an
application of rule (iii) and then followed by some number of applications
of rule (ii).

We will show the last exchange property in a moment. The proofs of the first
five exchange properties as well as of the following Lemmas we will leave to
the reader as an easy exercise, but we will give an example for why we might
need multiple applications of rule (i) in the fifth property. For that, consider

454
(iii)→ (45)∗

(i)→ (565)∗. To reverse the order of the rules applied, we can

proceed as follows: 454
(i)→ 5654

(i)→ 56556
(iii)→ (565)∗. Note that we needed to

replace two occurrences of the letter 4 using rule (i) before being able to apply
rule (iii).

Lemma 9. For words S and T , suppose S
(iii)→ T ∗ and S′ and T ′ arise from

S and T by applying rule (i) to every occurrence of the letter k in each word.

Then, S′ (iii)→ (T ′)∗.

We can use Lemma 9 to show the last exchange property. Suppose we have

W
(ii)→ S

(iii)→ T , where the application of rule (ii) replaces two consecutive letters
k + 1, k + 2 by the letter k. Let S′ and T ′ be defined as in Lemma 9. Then we

can find W
(i)→ · · · (i)→ S′ (iii)→ (T ′)∗

(ii)→ · · · (ii)→ T ∗.

Proposition 10. If the starting word X can be fully reduced by the rules of
Collapse, then it can be reduced by first applying rule (i) a number of times in
ascending order, then rule (iii) once, and then rule (ii) a number of times in
descending order.

Proof. Observing the properties stated at the beginning of this section, we note
that all applications of rule (i) can be moved ahead of applications of rules
(ii) and (iii) and all applications of rule (iii) ahead of applications of rule (ii)
by inserting some additional applications of rule (i) if necessary. Finally all
applications of rule (i) can be rearranged in ascending order, all applications
of rule (ii) in descending order, and all applications of rule (iii) combined to a
single application.

Lemma 11. If X ∈ W{k−1,k} and X reduces to the letter r using only rule (ii),
then X = Tk−1 ◦ · · · ◦ Tr(r).

Lemma 12. Let S be a starting word of Collapse with largest letter k. By
repeatedly using rule (i) on the smallest letters, S can be expanded to a subword
of Lk+1.

Note that Lk is not sufficient in Lemma 12, as for example 233 is not a subword
of L3, whereas its expansion 3433 is a subword of L4.
We will now limit our quest to understand Collapse to understanding the re-
duction of subwords of Lk. This is justified by the following algorithm sketch.
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Proposition 13. If a starting word S can be reduced to (r)∗, then for suitable
k and m = k − r it can be reduced by the following steps.

(1) Use rule (i) in ascending order to expand S to L ⊆ Lk.

(2) Use rule (iii) to rewrite L as (X)∗, where X = Φ−1
k (Fm).

(3) Use rule (ii) in descending order to reduce (X)∗ to (r)∗.

Proof. By Proposition 10, the starting word S can be reduced to (r)∗ in the
form

S
(i)−→ · · · (i)−→ S′ (iii)−→ (S′′)∗

(ii)−→ · · · (ii)−→ (r)∗.

By Lemmas 9 and 12, we can expand S′ to a word L ⊆ Lk and S′′ to a word X

with L
(iii)→ X∗. This gives us the reduction

S
(i)−→ · · · (i)−→ L

(iii)−→ X∗ (ii)−→ · · · (ii)−→ (r)∗,

where it may be assumed that all rule (i)’s are in ascending order and all rule
(ii)’s are in descending order. Finally, since X ∈ W{k−1,k}, we obtain from
Lemma 11 that

X = Tk−1 ◦ Tk−2 · · · ◦ Tk−m(r),

which is equivalent (as shown by Figure 2) to

Φk(X) = Tm(Φk−m(r)) = Tm(F0) = Fm.

We observe that Proposition 13 tells us nothing about how to find k and m nor
whether m even exists without the assumption that a starting word reduces to
(r)∗. This leads to the following question.

Question C. Suppose w is a finite subword of F . Does there exist an m so
that |w| ≥ |Fm| and w ⊂ (Fm)∗?

If the answer for Question C is positive for all words w, then any admissible k in
Proposition 13 would give us a possible reduction of a starting word, answering
Question A in the affirmative.

4 An Exceptional Investigation

We recall from Section 2 that the infinite Fibonacci word F , being a character-
istic Sturmian word, contains r + 1 distinct words of length r. If r = fn is a
Fibonacci number, then r of those words must be cyclic rotations of Fn. The
remaining word will be called the Exceptional word En (in the general context
of Sturmian words, these are called singular words). The first few Exceptional
words are:
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E0 = 0,

E1 = 1,

E2 = 00,

E3 = 101,

E4 = 00100,

E5 = 10100101.

To analyze the Exceptional words, we introduce some arithmetic on finite words.

Definition 14. For a finite word w ∈ W{0,1}, the word arising from w by

(i) rotating the first letter to the end is denoted by w↷,

(ii) rotating the last letter to the front is denoted by w↶,

(iii) changing the first letter (0 to 1 or vice versa) is denoted by w×.

As an example, if w = 10100 then w↷ = 01001, w↶ = 01010, and w× = 00100.
The following lemmas show a few properties of the Exceptional words that we
will be using later.

Lemma 15 (Wen & Wen [5]). For any n ≥ 0:

(i) En = (F↶
n )×,

(ii) Fn = (E×
n )↷,

(iii) Fn+2 = (En+1En)↷,

(iv) En+3 = En+1EnEn+1.

Proof. (i) We know that Fn+2 = Fn+1Fn. Consider the subword of length fn
starting with the last letter of Fn+1 and continuing with the first fn − 1
letters of Fn. Since Fn and Fn+1 end on different letters, this word is
(F↶

n )× and thus not a rotate of Fn. Therefore it must be the Exceptional
word En.

(ii) This follows directly from part (i) and the definitions of the arithmetic
notations.

(iii) We have

Fn+2 = Fn+1Fn = (E×
n+1)

↷(E×
n )↷ = (En+1En)↷,

where the last equality follows from the fact that the first letters of En+1

and En are different (since the last letters of Fn and Fn+1 are different).
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(iv) Using the previous parts of this lemma, we have

En+3 = (F↶
n+3)

× = ((Fn+2Fn+1)
↶)× = ((Fn+1FnFn+1)

↶)×

= (((E×
n+1)

↷(E×
n )↷(E×

n+1)
↷)↶)× = ((((En+1EnEn+1)

×)↷)↶)×

= En+1EnEn+1.

Lemma 16. For any n ≥ 0, any occurring copies of En and En+1 in a word w
are disjoint.

Proof. We use induction on n. The statement is clearly true for n ≤ 1, so
assume n ≥ 2. Suppose there exist copies of En and En+1 = En−1En−2En−1 that
are not disjoint. Then En (being longer than En−2) is also not disjoint from at
least one of the two copies of En−1, a contradiction.

Lemma 17. If T is the replacement function on words in W{0,1} defined by
0 7→ 01 and 1 7→ 0 (as in Section 2), then

(i) T (E2n1) = 0E2n+10,

(ii) T (E2n−10) = E2n1,

(iii) T 2(E2n1) = 01E2n+21,

(iv) T 2(E2n−10) = 0E2n+10.

Proof. Using Lemma 15 and the fact that T (Fn) = Fn+1 for all n, we see that

T (E2n1) = T (0F2n) = 01F2n+1 = 0E2n+10,

and
T (E2n−10) = T (1F2n−1) = 0F2n = E2n1.

The remaining equalities follow.

Returning to Question C, we want to know, when a word w ⊂ F is contained in
a repeated Fibonacci word. While not required for Question C, we will include
the following lemma for a later purpose.

Lemma 18. Every finite word w ⊂ F with |w| < fn is a subword of (Fn)
∗.

Proof. By Proposition 7, w appears infinitely often in F . Therefore we can find
a word w′ ⊂ F of length fn that ends with w. This word has to be either En or
a rotate of Fn. In the latter case we are done. If the former holds, then (w′)×

is a rotate of Fn by Lemma 15, part (ii). However, since |w′| > |w|, we know
that (w′)× still ends with w, and so w ⊂ (Fn)

∗.

Theorem 19. Let w be a finite subword of F . Then w ⊂ (Fn)
∗ if and only if

En ̸⊆ w.
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Proof. Since (Fn)
∗ does not contain En, any word w containing En cannot be

contained in (Fn)
∗. Suppose that w does not contain En. If |w| < fn, then we

are done by Lemma 18. Otherwise |w| ≥ fn. Since En ̸⊆ w, any fn consecutive
letters of w must be a rotate of Fn, and therefore it must have the same number
of 1’s. Comparing any consecutive subwords of length fn, we see that the letters
of w in positions k and k+fn must be the same for all k. Therefore, w is formed
by repeating the first fn letters and is thus contained in (Fn)

∗.

All that remains to be shown is that for every word w ⊂ F , there exists an n
with |w| ≥ fn such that En ̸⊆ w.

Proposition 20. If w ⊂ F with fn ≤ |w| < fn+1, then either En ̸⊆ w or
En−1 ̸⊆ w.

Proof. Suppose w contains both En and En−1. By Lemma 16, part (v), En and
En−1 are disjoint and so |w| ≥ |En|+ |En−1| = fn+1, a contradiction.

Combining Theorem 19 and Proposition 20 gives us Theorem 21, which answers
Question C and in turn Question A in the affirmative.

Theorem 21 (Currie & Saari [1]). If w ⊂ F , then there exists an Fn with
|Fn| ≤ |w| such that w ⊂ (Fn)

∗.

It should be noted that the proof presented here is quite different from that
in [1]. In particular, our use of Exceptional words in Theorem 19 will allow a
complete description of reductions.

5 A Unique Solution

For any w ⊂ F , we know we can find an n with |w| ≥ fn and w ⊂ (Fn)
∗,

but that still leaves Question B, concerning uniqueness of reductions, open. We
start by answering the following.

Question D. Suppose w is a finite subword of F . For which n is w ⊂ (Fn)
∗?

In light of Theorem 19, we need to know which Exceptional words En are con-
tained in w.

Proposition 22. Let w be a finite subword of F with fn ≤ |w| < fn+1. Then
the Exceptional words contained in w are precisely Ei for i ≤ n− 3 and either

(a) En and En−2,

(b) En−1,

(c) En−1 and En−2,

(d) En−2.
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Proof. Clearly w cannot contain Ei for i ≥ n+1. Notice that if w contains both
Ei and Ei−1 for some i, then w contains Ej for all j ≤ i, which follows from the
recursion for the Exceptional words (Lemma 15, part (iv)).
By Lemma 16, w cannot contain both En and En−1. Suppose En ⊂ w. Then
by the recursion for Exceptional words, w contains En−2 and En−3, so case (a)
applies.
If En−1 ⊆ w, then both En−3 and En−4 are also contained in w. Thus, either
case (b) or (c) applies.
Finally, assume En, En−1 ̸⊆ w. By Lemma 18, w ⊂ (Fn+1)

∗. Further, (Fn+1)
∗ =

(EnEn−1)
∗ and so w ⊂ EnEn−1 or w ⊂ En−1En. We will only consider the case

w ⊂ EnEn−1 since the argument for both cases is similar. Expanding, we have

EnEn−1 =

length fn︷ ︸︸ ︷
En−2En−3 En−2En−3En−4En−3︸ ︷︷ ︸

length fn

.

Since |w| ≥ fn, we conclude that En−2 ⊂ w. Upon closer inspection, we can
also conclude that En−3 ⊂ w, and thus case (d) applies.

All of the cases in Proposition 22 can in fact appear. As an example, we consider
the fn +1 subwords of F of length fn. Out of these, one word (the Exceptional
word En) satisfies case (a), fn−2−1 words satisfy case (b), two words (the words
En−1En−2 and En−2En−1) satisfy case (c), and fn−1 − 1 words satisfy case (d).
Reformulating Proposition 22 using Theorem 19, we obtain the following answer
to Question D.

Theorem 23. Let w be a finite subword of F with fn ≤ |w| < fn+1 and let
R = {i ≤ n |w ⊂ (Fi)

∗ }. Then exactly one of the following cases holds:

(a) R = {n− 1},

(b) R = {n− 2, n},

(c) R = {n},

(d) R = {n− 1, n}.

To finally answer Question B, we need to investigate, what happens to the set
of reductions if we apply the replacement function T from Section 2 to a word
w ⊂ F (multiple times, possibly). Clearly if w ⊂ (Fi)

∗, then Tw ⊂ (Fi+1)
∗.

Therefore, if for example a word w satisfies case (a) in Theorem 23, then Tw
has to satisfy either case (a) or (d). On the other hand, if a word w satisfies
case (b), then Tw also has to satisfy case (b). The following proposition shows
that all possible reductions can be obtained by applying T just twice.

Proposition 24. Let w be a finite subword of F . Then the words T kw for
k ≥ 2 all satisfy the same case in Theorem 23.
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Proof. By the preceding discussion, T kw never has fewer reductions than w.
Since no word reduces in more than two ways (Theorem 23), we only need
to consider words w ⊂ F that fall into either case (a) or (c) in Theorem 23.
Consider case (a), where w contains the Exceptional word En. Suppose En
does not appear at the end of w. Then by Lemma 17, T kw contains En+k and
therefore falls into case (a) for all k. On the other hand, suppose w ends with
En (which must be the only occurrence of En). Then, again by Lemma 17, T 2w
does not contain En+2 and thus falls into case (d).
The same arguments can be made if w falls into case (c). If both En−1 and
En−2 appear before the end of w, then T kw will fall into case (c) for all k. If w
ends on En−1 then T k falls into case (d) for all k ≥ 2, and if w ends on En−2

and this is the only occurrence of En−2 in w, then T kw falls into case (b) for all
k ≥ 2.

We can now state an algorithm that obtains all possible reductions of a starting
word in Collapse.

Theorem 25. Given a starting word in Collapse, all possible reductions can be
found using the following algorithm.

(1) Use rule (i) to expand the starting word to a subword s of Lk, where k − 3
is the largest letter in the starting word. Set n such that fn ≤ |s| < fn+1.

(2) Check whether s ⊂ (Xi)
∗ (i = 0, 1, 2), where Xi = Φ−1

k (Fn−i).

(3) In each case where the question is answered positively, apply rule (iii) to s
to obtain (Xi)

∗ and successively apply rule (ii) to reduce this to (r)∗, where
r = (k − n+ i).

Proof. Comparing the statement with Proposition 13, we only need to show
that the choices of k (three larger than the largest letter in the starting word)
and m = n− i give all possible reductions.
If k − 3 is the largest letter in the starting word, then by Lemma 12 we can
expand the starting word to a subword of Lk−2. Let w be the corresponding
word in W{0,1}. By Proposition 24, we can get all possible reductions from
T 2w, which corresponds to a subword s of Lk. By Theorem 23, the choices of
m = n− i (i = 0, 1, 2), are sufficient.

6 An Ultimate Conclusion

We have fully described an algorithm for winning Collapse, but that doesn’t
take away from its fun. Knowing you can always win can even taunt you as
you attempt to do so in a minimal number of moves, without resorting to the
expand-everything approach presented. But, Collapse is just a single instance of
an uncountable collection of games based on Sturmian words and the Sturmian
recursion given in Definition 4.
In all these games, which can be created by looking at the subscripts of standard
Sturmian words, reducibility of starting words is always implied by the following.
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Proposition 26. Let α ∈ [0, 1]\Q and let w ⊂ Sα. There exists a rational p/q
with q ≤ |w| so that w ⊂ Sp/q.

Though we will not do so here, Proposition 26 can be proven with beautiful
geometric arguments that look completely different from the combinatoric ar-
guments presented here.
We hope that Collapse and its analysis will inspire others to play games with
the recursive and beautiful structures we all stumble upon every day.
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