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ABSTRACT

The Kari-Culik tilings are formed from a set of 13 Wang tiles that tile the plane

only aperiodically. They are the smallest known set of Wang tiles to do so and are

not as well understood as other examples of aperiodic Wang tiles. We show that a

certain subset of the Kari-Culik tilings, namely those whose rows can be interpreted

as Sturmian sequences (rotation sequences), is minimal with respect to the Z2 action

of translation. We give a characterization of this space as a skew product as well as

explicit bounds on the waiting time between occurrences of m× n configurations.
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Chapter 1

Introduction

Before presenting precise, foundational definitions for the work in this dissertation,

we will give a brief overview and motivation for some of the ideas. Section 1.1 will be

fairly informal, since the definitions and concepts from Section 1.1 will be reintroduced

formally later in the dissertation.

1.1 Background and Results

Of principal concern to us are tilings of the plane by square tiles with colored edges.

That is, given the plane R2, we cover each point in R2 by non-overlapping translated

copies of the unit square [0, 1]2. To make things more interesting (and non-trivial),

we decorate each copy of the unit square by coloring each of its four edges and then

insisting that two squares may lie adjacent only if the colors on their shared edge

match. With this restriction, a tiling of the plane by square tiles is called a Wang

tiling.

Definition 1.1 (Wang Tiling System). A Wang tiling system is a tiling by a set of

square tiles (of identical size) with colored edges satisfying the following properties:

1. two tiles may lie adjacent only if the colors on their shared edge match, and

2. tiles may be translated but not rotated, reflected, or otherwise transformed.

Since each tile in a Wang tiling system is square and of the same size, instead of

tiling the plane, we may think of Wang tilings as tiling the two-dimensional lattice

of integers, Z2. To see this, notice that a tiling of the plane using Wang tiles can

be represented by a tiling of Z2 by first ensuring that each tile is of unit width and
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has as its center a point (x, y) where x, y ∈ Z. We then associate each point in Z2

with the tile whose center is at that point. Similarly, Wang tilings may sometimes be

thought of as tilings of Z. Some examples will make this clear.

Example 1.2 (Tiling of Z). Consider the set of Wang tiles T =
 

consisting of

a single tile whose left edge is green, right edge is blue, and top and bottom edges

are red. The set T can tile Z, as illustrated, but cannot tile Z2 since only translated

copies of tiles in T are allowed and not rotations or reflections.

Example 1.3 (Tiling of Z2). Consider the set of Wang tiles T =


,

. This set

of two tiles can tile the whole plane in the pattern illustrated.

It should be noted that given a set of Wang tiles T, it is entirely possible that T

cannot tile Z2 or even Z. For example, if T consists of a single tile where every edge

is a different color, since this tile cannot be rotated, T cannot tile any region larger

than 1× 1. In general, the problem of deciding whether a set of Wang tiles admits a

tiling of the plane, introduced by Hao Wang in [4], is undecidable [3].

In working with Wang tilings, we are already translating individual tiles around,

so it seems natural to introduce the action of translation onto an entire tiling of the

plane and to turn a Wang tiling system into a dynamical system.

Definition 1.4. Given a tiling of the plane x, Tx is the translation of x left by one

unit and Sx is the translation of x down by one unit.
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We may iterate the maps T and S as many times as we please (including applying

the maps T−1, translation right by one unit, and S−1, translation up by one unit).

Further, T and S commute, meaning TSx = STx.

We may now define what it means for a tiling of the plane to be periodic.

Definition 1.5. A Wang tiling, x, of Z2 is periodic if some non-trivial translate of

x equals x. That is, x is periodic if

T aSbx = x

for some (a, b) ̸= (0, 0). If a tiling is not periodic, it is called aperiodic.

Example 1.6 (Periodic Tiling). Consider the set of Wang tiles T =


,

. This

set of two tiles tile Z2 periodically as illustrated. The tiling on the left is a translation

of the tiling on the right leftwards by two units. A black dot has been added for

reference (since this tiling is periodic, you would not be able to tell if it were translated

by one period unless some additional reference point were introduced).

Example 1.7 (Aperiodic Tiling). Consider the set of Wang tiles T =


, , ·


consisting of three tiles. The last tile is a copy of the first tile with a distinguishing

dot placed in the center. The tiling illustrated was obtained by randomly choosing

between the first and last tile where allowed. Since this choice was random, (with

probability one) there is no translate of this tiling that equals itself, making it aperi-

odic.

·
·

·

·

·
·

·

·

·
·
·
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Related to aperiodicity is a concept called recurrence.

Definition 1.8 (Recurrent). A tiling x is called recurrent if every n×n configuration

that appears in x reoccurs infinitely many times.

Periodicity implies recurrence (since every n× n configuration reoccurs every pe-

riod), but recurrence does not imply periodicity. This distinction is subtle because if

x is recurrent, it indeed means that every pattern seen in x will repeat, but there is

no restriction on the spacing between repetitions of an n × n pattern, whereas if x

were periodic, every n× n pattern must repeat with regular spacing.

Considering now the tiling in Example 1.7, in some sense the aperiodicity is not

intrinsic. We introduced a third tile and placed it randomly, but if we used only the

first two tiles in T, we could have produced a periodic tiling. That is, T can tile the

plane in both periodic and aperiodic ways.

Definition 1.9. A set of Wang tiles T is called aperiodic if it admits a tiling of the

plane and only admits aperiodic tilings of the plane.

It was unknown whether aperiodic sets of Wang tiles existed until Berger, a stu-

dent of Wang, produced an example in 1966 of 20,426 tiles that tiled the plane only

aperiodically [2]. Berger later reduced his tile set to one containing only 104 tiles,

and since then, many more tile sets that tile the plane only aperiodically have been

produced. Of note, in 1971, Raphael Robinson produced a set of 56 tiles that tile

the plane only aperiodically [17], and in 1995, Kari and Culik produced a set of 13

tiles that tile the plane only aperiodically. Currently, the Kari-Culik tile set is the

smallest set of tiles known to only tile the plane aperiodically.

All known examples before the Kari-Culik tilings forced aperiodicity by exploiting

a hierarchical structure. For example, the Robinson tilings force the formation of

square patterns of sizes 3×3, 5×5, 9×9, . . . (every size of the form (2n+1)×(2n+1)).

If the Robinson tilings ever tiled in a periodic way, there would be a largest one of

these square patterns. Since there is no bound on the size of these square patterns,

the tiles cannot tile periodically.

However, the Kari-Culik tiles, shown below, have no known hierarchical descrip-

tion.
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Instead, the Kari-Culik tilings rely on number-theoretic properties to force ape-

riodicity (essentially relying on the fact that 2a ̸= 3b unless a = b = 0). Though

the proof of the existence and aperiodicity of tilings by the Kari-Culik tile set is

straightforward, not much else about the structure of the Kari-Culik tilings is known.

Durand, Gamard, and Grandjean showed in 2013 that the set of all Kari-Culik tilings

has positive topological entropy [5], and this, along with some results by Arthur

Robinson in [16], gives the state of knowledge about the Kari-Culik tilings circa 2014.

This dissertation recasts a subset of the Kari-Culik tilings, KC, as a generalization

of rotation sequences, and exploits this rotation-sequence-like framework to produce

several dynamical system-related results about the subset KC and its associated

dynamical system. The main theorems pertaining to the Kari-Culik tilings presented

in this dissertation are as follows.

Theorem (3.23). The function Φ : KC → {0, 1, 2}Z2
given by projection onto the

top label of each tile is one-to-one almost everywhere and is at most sixteen-to-one.

Theorem (3.34). The set KC can be parameterized by the set [1/3, 2]× lim←−R/(6nZ).

Theorem (3.35). When parameterized by [1/3, 2] × lim←−R/(6nZ), left translation on

KC can be written as a skew product and vertical translation is conjugate to an

irrational rotation by log 2/ log 6.

Theorem (3.37). KC can be thought of as the closure of a line in the infinite-

dimensional torus (R/Z)Z.

Theorem (4.11). KC is minimal with respect to the group action of Z2 by translation.

Theorem (5.28). Let η = η(log 2/ log 6). Every legal n × m configuration in KC

occurs in every B × A configuration in KC where

A =


324

log 6
64mn4

η

< 634.464m+25n34.464 and B = 65m+3n4
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for sufficiently large m+ n.

Further, for all m,n we have that a copy of every legal n×m configuration in KC

occurs in every B × A configuration in KC where

A =


324

log 6
64mn4

14.3

log 6 and B = 65m+3n4

These theorems link number-theoretic results to the dynamical system associated

with KC and give a full characterization of KC in terms of more familiar dynamical

systems.

1.2 Dynamical Systems

In its most basic sense, a dynamical system is a space of points coupled with a

transformation that moves the points around according to some directed parameter

(most often time). We will not deal with dynamical systems in this generality, but

instead we will work with discrete time dynamical systems.

Definition 1.10 (Dynamical System). A discrete time dynamical system is a pair

(T,X) where X is some set and T : X → X is a function.

The essential property of a dynamical system is that the domain and range of T

are the same, allowing us to iterate T and observe how points move about.

Definition 1.11 (Orbit). If (T,X) is a dynamical system, the forward orbit of

x ∈ X is the set O(x) = {x, Tx, T 2x, . . .}. The n-orbit of x is the set On(x) =

{x, Tx, T 2x, . . . , T n−1x}. If T is invertible, we define the two-sided orbit (sometimes

just called the orbit) as O(x) = {. . . , T−1x, x, Tx, T 2x, . . .}.

If there are multiple transformations on the same space X, we may specify which

one we are taking the orbit under. For example, the T -orbit of a point x would be

OT (x) = {. . . , T−1x, x, Tx, T 2x, . . .} (assuming T is invertible).

Definition 1.12 (Periodic Point). In a dynamical system (T,X), we call a point

x ∈ X periodic if T ix = x for some i > 0.

For ease of discussion, from now on, we will assume all dynamical systems are

invertible (that is, we will only consider dynamical systems (T,X) where T is invert-

ible).
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Orbits give a notion of how a point moves over “time.” Another part of the story

are the invariant sets.

Definition 1.13 (Invariant Set). If (T,X) is an invertible, discrete time dynamical

system, then a subset A ⊂ X is said to be invariant if TA = A.

The orbit of any point is always an invariant set, and invariant sets can be thought

of as sets that contain the orbits of all their points. However, these notions are not

much use unless we can also couple them with a notion of distance. This leads us to

the first property we will insist upon in X, namely that it is a metric space.

1.2.1 Metric Spaces

Definition 1.14 (Metric). Given a set X, a metric on X is a function d : X×X → R
so that for all x, y, z ∈ X we have

1. d(x, y) ≥ 0 with d(x, x) = 0;

2. d(x, y) = 0 implies x = y;

3. and d(x, y) ≤ d(x, z) + d(z, y) (the triangle inequality).

A pair (X, d) where d is a metric on X is called a metric space.

In a metric space (X, d), we have a notion of convergence. Namely, a sequence

(xn) converges to a point x if d(xn, x) → 0. But, just having a metric space often is

not good enough. What we really want is a complete metric space.

Definition 1.15 (Cauchy Sequence). A sequence (xn) in a metric space (X, d) is

called a Cauchy sequence if for all ϵ > 0, there exists an Nϵ so that n,m > Nϵ implies

d(xn, xm) < ϵ.

Definition 1.16 (Complete Metric Space). A metric space (X, d) is called complete

if every Cauchy sequence in X converges in X.

Given a metric space (X, d), a convergent sequence (xn) in X is Cauchy. However,

the converse may not be true for one reason: the point that (xn) is “heading to” may

not be in X at all. For example, consider the open interval (0, 1) and the sequence

xn = 1/n. Clearly, 1/n is heading to 0 (under the usual notion of distance on the

number line given by | · |), but 0 is not in the set (0, 1). Thus ((0, 1), | · |) is not a

complete metric space.
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Definition 1.17 (Open & Closed). In a metric space (X, d), let Bϵ(x) = {y ∈ X :

d(x, y) < ϵ} be the open ball of radius epsilon about x. We then define a set A ⊂ X to

be open if A is the union of (possibly infinitely many) open balls. The complement of

the set A is Ac = {x ∈ X : x /∈ A}, and a closed set is defined to be the complement

of an open set.

For subsets of a complete metric space, there are alternate definitions of closed

and open sets.

Definition 1.18 (Closed). Let (X, d) be a complete metric space. A set A ⊂ X is

closed if (A, d) is a complete metric space.

Proposition 1.19. An arbitrary intersection of closed sets is closed.

Proof. Suppose that Aλ ⊂ X are closed subsets of the metric space X indexed by

λ ∈ Λ. Let A =


λ∈ΛAλ. Fix a Cauchy sequence x = (x0, x1, . . .) where xi ∈ A.

Since x is Cauchy in every Aλ, xi → x ∈ Aλ.

Since x ∈ Aλ for every λ ∈ Λ, x ∈ A and so A is complete. Thus A is also a closed

subset of X.

Definition 1.20 (Open). Let (X, d) be a complete metric space. A set A ⊂ X is

open if (X\A, d) is a compete metric space. That is, an open set is the complement

of a closed set.

This is not the typical definition of a closed set and it only allows us to consider

subsets of complete metric spaces, but it captures the moral essence of what it means

to be closed in a metric space. More generally, closed sets are defined in terms of

open sets.

Definition 1.21 (Topology). A topology τ on a metric space (X, d) is the collection

of all open subsets of X.

If A ⊂ X, the relative topology on A is the collection τ ′ = {A ∩B : B ∈ τ}.

Topologies can be defined much more generally than presented here, but we will

not need such generality. Topologies are intimately connected to the metric they

came from and one can define convergence strictly in terms of the topology on a

metric space without ever using the metric (for a detailed introduction to the theory

of topology and metric spaces, see [14]). However, there are some counterintuitive

differences between metrics and topologies. For instance, given two different metrics
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d, d̂ on X, they both may generate the same topology. This is not too hard to believe,

but what is strange is that while they both generate the same topology, they may

have different Cauchy sequences! In general,

metric spaces ⊊ uniform spaces ⊊ topological spaces.

An example that we will use later is Qc, where both the standard metric and the

Baire metric give the same topology, but Qc with the Baire metric is complete.

1.2.2 Minimality

Now that we have the notion of a metric space and closed sets, we can start defining

some interesting properties. For simplicity, we will now always assume any dynamical

system we talk about is also a metric space and if not specified otherwise, the metric

will be called d. The first property we will define is recurrence.

Definition 1.22 (Recurrent). A dynamical system (T,X) is recurrent if every open

set A ⊂ X has the property that x ∈ A implies there exists some i > 0 so T ix ∈ A.

Recurrence is nice because if a dynamical system is recurrent, it ensures that all

the pieces of the dynamical system are actually interesting. If a system were not

recurrent, in some sense there would be a strict subspace of the system that absorbed

all points and then continues mixing them around.

Of course, in a recurrent dynamical system, there can still be parts of the system

that have nothing to do with each other (for example, we could take two disjoint

recurrent dynamical systems and glue them together). This is a motivation for the

definition of a minimal system.

Definition 1.23 (Minimal). A non-empty dynamical system (T,X) is minimal if for

any non-empty closed subset A ⊂ X, TA = A implies that A = X.

Given a dynamical system (T,X), a minimal subsystem can be thought of as a

“smallest” closed dynamical system contained in (T,X)—there are no pieces that

can be broken off. However, the definition given above is not always the easiest to

work with or to use to prove that a certain dynamical system is minimal. Further,

minimal systems provide a link between the transformation on a space and the un-

derlying topology. For this relationship to be meaningful, we need T : X → X to be

continuous.
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Definition 1.24. A function f : X → X on a metric space is continuous if f−1(A) =

{x ∈ X : f(x) ∈ A} is an open set whenever A ⊂ X is an open set.

From now on, we will assume that T is continuous. This allows us to produce

several equivalent definitions of a minimal dynamical system.

Definition 1.25 (Closure). Given a set A ⊂ X, its closure, denoted Ā, is the inter-

section of all closed sets containing A.

Note that by Proposition 1.19, the closure of a set is indeed closed.

Definition 1.26 (Dense). A subset A ⊂ X is dense in X if Ā = X.

Definition 1.27 (Minimality characterization II). A non-empty dynamical system

(T,X) where T is a continuous function is minimal if Ox = X for every x ∈ X.

That is, the orbit of every point is dense.

The equivalence of these two definitions of minimality is straightforward. If there

were an orbit in X that were not dense, its closure A ⊊ X would not be equal to the

entire set and consequently (by continuity of T ), A would be a closed, proper invariant

subset. Alternatively, if there exists a closed subset A ⊊ X so that TA = A, then by

invariance, Ox ⊂ A ⊊ X and so the orbit of some points would not be dense.

We will soon see yet another characterization of minimality applicable in the

symbolic case.

1.3 Symbolic Dynamics

Although general dynamical systems on a metric space provide enough structure to

prove many interesting theorems, there are advantages to moving to a space where

orbits consist of sequences of symbols. Most dynamical systems can be translated

to a space of symbols that still preserves the important dynamical properties. This

brings us into the realm of symbolic dynamics.

Definition 1.28. Given a set X, a finite partition of X is a set P = {P0, P1, . . . , Pn}
so that X =


Pi and Pi ∩ Pj = ∅ whenever i ̸= j.

We motivate symbolic dynamics as follows. Suppose that (T,X) is a dynamical

system and that T is invertible. Let P = {P0, P1, . . . , Pn} be a finite partition of X.
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Then, given a point x ∈ X, we can write down a sequence x′ = (x′
i)
∞
i=−∞ corresponding

to x where

x′
i = j if T ix ∈ Pj.

In this way, we have recoded x ∈ X to x′ ∈ {0, . . . , n}Z and Tx corresponds to Sx′

where

S(. . . , x0, x1, . . .) = (. . . , x1, x2, . . .)

shifts all symbols to the left. We now have two dynamical systems, (T,X) and

(S, {0, . . . , n}Z), and if the partition P was chosen in the right way, the dynamics of

both systems will closely mirror each other.

Definition 1.29 (Symbolic Dynamical System). A one-dimensional symbolic dynam-

ical system is a pair (S,X) where X ⊂ LZ is an S-invariant set, L is some finite set,

and S : X → X is defined by (xi)
∞
i=−∞ → (xi+1)

∞
i=−∞.

We call L the symbols, letters, or digits of (S,X) and we call S the shift map.

Being able to refer to points in a dynamical system as sequences of symbols allows

one to explicitly construct examples with strange properties as well as give simpler

definitions than in the case of general dynamical systems.

Notation 1.30. If x = (. . . , x0, x1, . . .) ∈ LZ, then (x)ji = (xi, xi+1, . . . , xj) is the

subword of x from position i to j. (x)i is short for (x)ii. We write w ⊂ x if w = (x)ji
for some i, j (possibly infinite). In this case, |w| = j − i+ 1 is the length of the word

w. Further, if A ⊂ Z, then x|A is the restriction of x to the indices in A.

Given a symbolic dynamical system (S,X), we call Ln(X) = {w : |w| = n and w ⊂
x for some x ∈ X} the n-language of X and call L(X) =


Ln(X) the language of

X.

Definition 1.31 (Standard Metric on Sequences). Given a set of sequences X = LZ,

we define the standard metric on sequences to be d where

d(x, y) = inf{2−n : (x)n−n = (y)n−n}.

The standard metric on sequences says that two points are close together if they

agree for a great many symbols about the origin. It turns out that the shift is

continuous with respect to this metric. Further, LZ endowed with this metric is

complete and compact.
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Definition 1.32 (Minimality characterization III). If (S,X) is a non-empty symbolic

dynamical system, (S,X) is minimal if there exists an Mn such that for every x and

every subword w ⊂ x with |w| = Mn, we have that every word in Ln(X) is contained

in w.

Proof. We will show that the third characterization of minimality is equivalent to the

others.

Suppose for every n that Ox contains every word in Ln(X). Then by the def-

inition of the standard metric, Ox is dense in X. Thus, it is clear that our third

characterization of minimality implies the orbit of every point is dense.

Of course, if the orbit of every point is dense, then every point must contain every

word in Ln(X). The subtlety is that there must be an upper bound on how long it

takes to see every word in Ln(X). Suppose x is a point such that there is no upper

bound on the waiting time for w ∈ Ln(X). Since X is a closed subset of a compact

metric space and therefore compact, there must be an accumulation point of Ox in

which w does not occur. Thus, not only does every point in a minimal symbolic

dynamical system contain every word of Ln(X), but there is an upper bound on how

long a segment must be to contain every word of Ln(X).

Definition 1.33 (Subshift). If (S,X) is a symbolic dynamical system, a subshift is

a dynamical system (S,A) where A ⊂ X is a closed, invariant set.

Definition 1.34 (Full Shift). If (S,X) is a symbolic dynamical system, we call (S,X)

a full shift if X = LZ for some finite set L.

Definition 1.35 (Subshift of Finite Type). If (S,X) is a full shift, we call (S,A) a

subshift of finite type (SFT) if (S,A) is a subshift and there exists some finite set of

forbidden words F so that

L(A) = {w ∈ L(X) : f ̸⊂ w for all f ∈ F}.

For a full introduction to symbolic dynamics and subshifts of finite type, see [10].

We will only discuss a few of the relevant highlights here.

Definition 1.36 (Nearest Neighbour SFT). A nearest-neighbour subshift of finite

type is a subshift of finite type whose forbidden words are all of length two.
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Definition 1.37. A block presentation of a subshift of finite type (S,X) is a subshift

of finite type (S ′, Y ) such that there exists a continuous bijection Φ : X → Y satisfying

Φ ◦ S = S ′ ◦ Φ.

Proposition 1.38. Given an subshift of finite type (S,X), there exists a block pre-

sentation of (S,X) as a nearest-neighbour subshift of finite type (S ′, Y ).

Proof. Let ℓ be the length of the longest forbidden word in (S,X). Since (S,X) is a

subshift of finite type, ℓ <∞. Let W = Lℓ(X) be the set of all words in X of length

ℓ. We may then consider the dynamical system (S ′,W Z), where S ′ is the usual shift

on W Z. For clarity, define Y = W Z. (S ′, Y ) is a block presentation of (S,X) via the

function Φ : X → Y sending

. . . , x0, x1, . . . → . . . , (x0, x1, . . . , xℓ), (x1, x2, . . . , xℓ+1), . . . .

Φ is continuous and so Y is closed, making (S ′, Y ) a subshift. Further, if w,w′ ∈
W , then ww′ is a valid word in (S ′, Y ) if and only if w = (x0, . . . , xℓ) and w′ =

(x1, . . . , xℓ+1) for some x0 · · ·xℓ+1 a valid subword of (S,X). Thus, a subshift of finite

type can always be block-presented as a nearest-neighbour subshift of finite type.

Nearest neighbour subshifts of finite type are easier to work with and without loss

of generality, we may always assume to be working with one. The only consequence

of doing so is potentially increasing the size of our alphabet.

Proposition 1.39. If (S,X) is a subshift of finite type and X is non-empty, then X

contains a periodic point.

Proof. By Proposition 1.38, we may assume that (S,X) is a nearest-neighbour sub-

shift of finite type. Suppose (S,X) is non-empty, and pick a point x ∈ X. Since

x = · · ·x0x1 · · · is an infinite sequence of symbols, there must be some pair of con-

secutive symbols xixi+1 that occurs twice in x. Let i, j be positions of the start of

such an occurrence. We then have that the word x′ formed by repeating the symbols

(x)ji+1 must be in X and by construction x′ is periodic.

Proposition 1.40. If (S,X) is a subshift of finite type and (S,X) is minimal, then

X = Ox for some periodic point x.

Proof. Since (S,X) is a subshift of finite type, Proposition 1.39 gives us that (S,X)

must contain a periodic point. Since for any periodic point x, Ox is a closed, invariant

set (since Ox is finite and invariant), by the definition of minimality, Ox = X.
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Proposition 1.40 will stand in stark contrast to the analogous statement about

two-dimensional subshifts of finite type explored in the next section.

1.3.1 Z2 Symbolic Dynamics

One-dimensional symbolic dynamical systems are well studied and we have a fairly

complete theory of many subsystems (for example, subshifts of finite type). However,

when we introduce another commuting transformation on our symbolic space, all bets

are off.

Definition 1.41. A Z2-symbolic dynamical system is a triplet (T, S,X) such that

X ⊂ LZ2
is a closed, invariant set and T, S : X → X are commuting maps given by

(Tx)|i,j = x|i+1,j and (Sx)|i,j = x|i,j+1.

Here x|i,j is the symbol of x at position (i, j) ∈ Z2.

The language of a Z2-symbolic dynamical system is defined analogously to a one-

dimensional symbolic dynamical system except that instead of subwords consisting

of contiguous lists of symbols from points in X, now subwords consists of rectangular

configurations of symbols occurring in points in X.

Notation 1.42. Given x ∈ LZ2
and A ⊂ Z2 by x|A we mean the configuration of

symbols of x at the indices in A.

By convention, when we write x|A, we only care about the relative position of

symbols at coordinates in A. That is x|A = x|B is a valid comparison if B is some

Z2-translate of A. For example, if A = {0, 1} × {0, 1} and B = {3, 4} × {7, 8}, a
statement like x|A = x|B would make sense. However, if A = {0, 1} × {0, 1} and

B = {3, 4} × {7, 10}, the statement x|A = x|B would always be false since A and B

cannot be translated to coincide.

Definition 1.43 (Language). Given a subset X ⊂ LZ2
and A = {0, 1, . . . ,m− 1} ×

{0, 1, . . . , n− 1}, the m× n language of X is

Lm×n(X) = {w : w = T iSjx|A for some x ∈ X and (i, j) ∈ Z2}.

The language of X is L(X) =

Lm×n.
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Definition 1.44 (Z2-Subshift of Finite Type). Given a Z2-symbolic dynamical system

(T, S,X), X is a Z2-subshift of finite type (Z2 SFT) if there exists a finite subset

F ⊂ L(LZ2
) such that

L(X) = {w ∈ L(LZ2

) : f ̸⊂ w for all f ∈ F}.

Similar to one-dimensional subshifts of finite type, a nearest-neighbour Z2 subshift

of finite type is one where the forbidden words are 1× 2 or 2× 1 rectangles, and any

Z2 SFT can be recoded to a nearest-neighbour Z2 SFT.

Notation 1.45. Given a point x ∈ LZ2
, we denote by (x)i the ith row of x. That is,

(x)i = x|Z×{i}.

Definition 1.46 (Standard Metric). Let d be the standard metric on sequences. We

define dZ2 : LZ2 × LZ2 → R to be the standard metric on Z2 configurations where

dZ2(x, y) = sup
i∈Z
{2−id((x)i, (y)i)}.

Using the metric dZ2 endows LZ2
with the product topology. Where it is unam-

biguous, we will write d instead of dZ2 .

Definition 1.47 (Periodic in Z2). Given a Z2-symbolic dynamical system (T, S,X),

we say x ∈ X is weakly periodic if T iSjx = x for some (i, j) ̸= (0, 0). We say x is

strongly periodic if T ix = x and Sjx = x for some i, j > 0.

We call X aperiodic if X contains no weakly periodic points.

Having multiple directions in which periodicity may exist can be a hassle. Fortu-

nately, if we restrict ourselves to Z2 SFTs, weakly periodic implies strongly periodic.

Proposition 1.48. If (T, S,X) is a Z2 SFT, then the existence of a weakly periodic

point implies the existence of a strongly periodic point.

Proof. Suppose (T, S,X) is a Z2 SFT that contains a weakly periodic point x. With-

out loss of generality, we may assume X is a nearest-neighbour Z2 SFT and that

T ix = x for some i > 0. Now consider x′ = x|{0,...,i−1}×Z. Since only a finite number

of words may appear in the rows of x′, we know that there must be a consecutive pair

of rows in x′ that occurs twice. Let k, l be the indices of two such rows. We may now

form a strongly periodic point in X by repeating x|{0,...,i−1}×{k,...,l−1}.
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The characterizations of minimality directly carry over from the one-dimensional

case, however we have contrasting propositions to Proposition 1.39 and Proposition

1.40.

Proposition 1.49 (Berger [3]). There exists a non-empty Z2 subshift of finite type

that contains no (weakly or strongly) periodic points.

Proposition 1.50 (Raphael Robinson). There exists a non-empty, minimal Z2 sub-

shift of finite type that contains no (weakly or strongly) periodic points.

As cited by Makowsky in [13], Proposition 1.50 is attributed to Raphael Robinson

who explained in private communications a way of making a robust version of the

Robinson tilings. This result has been accepted as a folk theorem, but this dissertation

does not depend on this result.

For a readable exposition of how a Z2 SFT with no periodic points can exist, see

[9] where an example of Robinson is explained in detail.

1.3.2 Wang Tilings

In general, a tiling is a covering of R2 by infinitely many translates of a finite number

of bounded polygonal regions that overlap only on their boundaries. A Wang tiling is

a restriction of this idea where R2 is covered edge-to-edge by translations of identically

sized squares whose edges are colored. Two squares are allowed to lie adjacent to each

other if the colors (or labels) of their shared edge match.

We can avoid the technicalities of general tiling systems by noticing that Wang

tilings can all be viewed as subshifts of finite type.

Proposition 1.51 (Wang Tiling). Every Wang tiling is a nearest-neighbour Z2-

subshift of finite type.

To see Proposition 1.51, let L be a set of Wang tiles. The set of all valid Wang

tilings may now be interpreted as subset of LZ2
and the rules of the Wang tiling

system translate directly to nearest-neighbour adjacency restrictions. Combined now

with the action of translation by one unit, a Wang tiling is a nearest-neighbour SFT.

When viewed as a subshift of finite type, the symbols of a Wang tiling are called

tiles.
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Chapter 2

Sturmian Sequences

Sturmian sequences are a particular type of minimal dynamical system with very

interesting combinatoric and geometric properties. They arise naturally in several

contexts including the Kari-Culik tilings and have many equivalent characterizations.

In this chapter, we develop tools for working with Sturmian sequences.

2.1 Equivalent Classifications

Definition 2.1 (Recurrent). A bi-infinite sequence s is said to be recurrent if for all

subwords w, w appears infinitely often.

Definition 2.2 (Complexity). For a sequence s, the complexity of s is the function

σs : N→ N where σs(n) is the number of distinct subwords of s of length n.

The Morse-Hedlund theorem states that if s is a sequence that satisfies σs(n) ≤ n

for some n, then s is periodic.

Definition 2.3 (Balanced). Let s be a sequence of integers. For any subword w, let

Σw be the sum of the digits of w.

We call s a balanced sequence if there exists a sequence (an) such that

an ≤ Σw ≤ an + 1

whenever |w| = n.

Definition 2.4 (Rotation Sequence). For parameters α, t ∈ R, a rotation sequence
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with angle α and phase t is either the bi-infinite sequence R⌊·⌋(α, t) given by r where

(r)i = ⌊(i+ 1)α + t⌋ − ⌊iα + t⌋ ,

or the bi-infinite sequence R⌈·⌉(α, t) given by r′ where

(r′)i = ⌈(i+ 1)α + t⌉ − ⌈iα + t⌉ .

We will now list several equivalent definitions of Sturmian sequence.

Definition 2.5 (Sturmian Sequence I). A Sturmian sequence is a bi-infinite recurrent

sequence s such that σs(n) ≤ n+ 1.

Definition 2.6 (Sturmian Sequence II). A Sturmian sequence is a bi-infinite recur-

rent sequence s such that s is balanced.

Definition 2.7 (Sturmian Sequence III). A Sturmian sequence is a bi-infinite rota-

tion sequence.

Theorem 2.8. All given definitions of Sturmian sequences are equivalent.

Notation 2.9. The set of all Sturmian sequences is denoted S.

For a proof of Theorem 2.8, see [7, 12]. Differing from some authors, we allow

Sturmian sequences to be periodic, and we will rely most heavily on Definition 2.7.

Definition 2.10. For a bi-infinite sequence s, define

α(s) = lim sup
N→∞

1

N

N
i=1

(s)i α(s) = lim inf
N→∞

1

N

N
i=1

(s)i

and

α(s) = lim
N→∞

1

N

N
i=1

(s)i

is the average of the digits in s, if the limit exists.

Notice the α in Definition 2.10 can be applied to any sequence whose digits have

an average and not just Sturmian sequences.

Proposition 2.11. If s is a Sturmian sequence, then s = R⌊·⌋(α, t) or s = R⌈·⌉(α, t)

where α is the average of the digits of s.
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Proof. Since all three definitions of Sturmian sequence are equivalent, we know that

s = R⌊·⌋(α
′, t′) or s = R⌈·⌉(α

′′, t′′) for some α′ or α′′. For simplicity, assume s =

R⌊·⌋(α
′, t′). Since the average of the digits of R⌊·⌋(α

′, t′) necessarily equal α′, the

proposition is proved.

The down side to rotation sequences is that their parameterization in terms of

angles and phases and a choice of R⌊·⌋ or R⌈·⌉ is not in one-to-one correspondence

with Sturmian sequences. In particular, while the angle of a rotation sequence is

uniquely determined as the average of its digits, the fact that ⌊a⌋ + 1 = ⌈a⌉ if and
only if a /∈ Z, gives

R⌊·⌋(α, t) = R⌈·⌉(α, t)

if iα + t /∈ Z for all i and so the choice of R⌊·⌋ or R⌈·⌉ is not uniquely determined.

Further, if α ∈ Q, there is an interval of phases that produce the same rotation

sequence.

We will address the non-uniqueness of R⌊·⌋ vs R⌈·⌉ by introducing infinitesimals

into the phases.

Definition 2.12. Let ϵ be defined as an infinitesimal such that 0 < nϵ < r for any

positive real number r and any n ∈ N ∪ {∞}. Define the set R = R + ϵZ̄, where

Z̄ = Z ∪ {±∞}. Further, define R± = R± ϵ.

Notation 2.13. If a ∈ R, we use Re(a) to denote the real component of a and Inf(a)

to denote the coefficient of the infinitesimal component of a.

We will extend ⌊·⌋ and ⌈·⌉ in the natural way to functions on R.

Proposition 2.14. The sequence s is a Sturmian sequence if and only if s = R⌊·⌋(α, t)

for some α ∈ R and t ∈ R.

Proof. Let s be a Sturmian sequence. If s = R⌊·⌋(α, t) for some α, t ∈ R, we are done.
If not, we must have s = R⌈·⌉(α, t) for some parameters α, t ∈ R. However,

R⌈·⌉(α, t) = R⌊·⌋(α, t− ϵ)

for all real parameters α, t.

Similarly, if s = R⌊·⌋(α, t + nϵ) for n ∈ Z̄ and t ∈ R, then either s = R⌊·⌋(α, t) or

s = R⌈·⌉(α, t).
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It may seem strange that we take the phase to be in R when R± would suffice,

however taking the phase to be in R will be essential when we start talking about

generalized Sturmian sequences.

Definition 2.15. For a Sturmian sequence s, define t(s) = Re(t′) where t′ = inf{t ∈
R : s = R⌊·⌋(α, t) for some α ∈ R±}.

We extend the t in Definition 2.15 to apply to any rotation sequence with poten-

tially infinitesimal parameters. Later we will see that rotation sequences requiring

infinitesimal parameters can arise as limits of Sturmian sequences.

Again, in order to have α and t take real values, we must resort to a choice be-

tween R⌊·⌋ and R⌈·⌉ when representing our Sturmian sequence as a rotation sequence.

Further, while α is well behaved (i.e., continuous), t is not.

Proposition 2.16. The map s → α(s), when restricted to S, is continuous in S
endowed with the product topology.

Proof. Since s ∈ S implies that s is a balanced sequence, we see that the average

of the first n digits of s determines α(s) to an error bounded by 1/n. Thus α is

continuous.

Proposition 2.17. The map s → t(s), when restricted to S, is not continuous in S
endowed with the product topology.

Proof. Consider the sequence

yi = R⌊·⌋(
√
2/i, 1/2).

We have that t(yi) = 1/2 for all i, but yi → y = R⌊·⌋(0, 0) and so t(yi) ↛ t(y).

2.2 Irrational Rotations and Continued Fractions

From Definition 2.7, we see that Sturmian sequences and rotations are closely related

via rotation sequences. Rotations, in turn, can be analyzed using continued fractions,

and so we will explore some of the theory of continued fractions.

Definition 2.18 (Rotation). A rotation by the rotation angle α is a function Rα :

[0, 1)→ [0, 1) defined by

Rα(x) = x+ α mod 1.

A rotation is called an irrational rotation if α /∈ Q.
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For any α, (Rα, [0, 1)) is an example of a uniquely-ergodic, minimal dynamical

system, and we can now see that Sturmian sequences with angle α are just the

symbolic recoding of the system (Rα, [0, 1)) with the partition P = {[0, α), [α, 1)}.

Definition 2.19 (Continued Fraction). Given a number α ∈ R\Q, the continued

fraction representation of α is the sequence [a0; a1, a2, a3, . . .] such that

α = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

.

We define the nth convergent of α to be

pn
qn

= a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . . +
1

an

.

We always assume pn
qn

is in lowest terms.

We can extend the definition of continued fraction to include α ∈ Q, but we lose

uniqueness of the continued fraction representation. For example,

1

3
= 0 +

1

3
and

1

3
= 0 +

1

2 +
1

1

,

giving both [0; 3] and [0; 2, 1] as valid representations of 1
3
. We can fix this issue by

defining the continued fraction representation of a rational to be the shortest possible

representation. For simplicity, we may write α = [a0; a1, a2, . . .] to mean that α is the

real number with continued fraction representation [a0; a1, a2, . . .].

Proposition 2.20. If α has a continued fraction representation of [a0; a1, a2, a3, . . .],
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then pn
qn
, the nth convergent of α, is given by the recursive formula

pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2

with p−2 = 0, p−1 = 1, q−2 = 1, and q−1 = 0. Further, pn, qn are relatively prime.

A proof of Proposition 2.20 can be found in [19]. I think it is remarkable that

there is such a simple recursion for the convergents.

Proposition 2.21. If α has convergents pn
qn

then for any n, either

pn
qn
≤ α ≤ pn+1

qn+1

or
pn+1

qn+1

≤ α ≤ pn
qn

.

Proposition 2.21 is well known and has a proof in [19]. Since successive convergents

for α always approximate α better, Proposition 2.21, along with the fact that |α− pi
qi
| ≤

|α− pj
qj
| for j < i implies that the even and the odd sequence of convergents are both

monotone sequences with one increasing and the other decreasing.

Definition 2.22 (Best Approximation). Given a number α ∈ R, the best rational

approximation to α with denominator bounded by q is the fraction p/q′ with q′ ≤ q

such that

|α− p
q′
| ≤ |α− a

b
|

for all a
b
∈ Q with b ≤ q. If there are multiple approximations satisfying this property,

then the best approximation is taken to be p/q′ where |p|+ |q′| is minimal.

Proposition 2.23. If pn
qn

is the nth convergent of α ∈ R, then pn
qn

is the best rational

approximation to α with denominator bounded by qn.

A proof of this proposition can be found in any standard number theory textbook,

for example [19]. It is worth noting that the converse to Proposition 2.23 is not neces-

sarily true. That is, for a number α ∈ R, the continued fraction convergents of α may

not completely enumerate the best rational approximations of α (the denominators

of the convergents may grow very fast, but the next-best rational approximation may

have a denominator that does not grow as quickly).

We will call the best rational approximation to a number α a type 1 rational

approximation and we will call the convergents of α type 2 rational approximation

(noting that an approximation can be both type 1 and type 2).
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Proposition 2.24. If pn
qn

is the nth convergent of α, then

1

qn(qn+1 + qn)
< |α− pn

qn
| < 1

qnqn+1

.

For a proof, consult [8].

Definition 2.25. For a number α ∈ R, let

∥α∥n = min
k∈Z
{|α− nk|}.

∥ · ∥ denotes the special case ∥ · ∥1.

Proposition 2.26. For α ∈ R,

{q ∈ N : ∥qα∥ < ∥aα∥ for all a < q} = {qn : pn
qn

is a convergent of α}.

A formal proof of Proposition 2.26 can be seen in [8]. We will not give a proof,

but we will explore the geometry of rotations in relation to continued fractions.

Fix θ, and notice that we can view {∥aθ∥ : a ∈ Z} as the set of distances of

aθ mod 1 from 0 on the unit circle. For illustration, we will fix θ = [0; 5, 4, 3, 5, . . .] ≈
0.1911357. The convergents of θ are

p0
q0

=
0

1

p3
q3

=
13

68

p1
q1

=
1

5

p4
q4

=
69

261

p2
q2

=
4

21
.

Notice that after 5 iterates, the rotation Rθ defined by Rθ(x) = x + θ mod 1

obtains a new closest return to 0. That is, if On = {θ, 2θ, . . . , nθ} is the n-orbit under
Rθ of 0 (excluding 0 itself), then On achieves a new closest return to 0 when n = 5.

O5 is illustrated in the figure below, with 5θ mod 1 marked with a dot and rotations

are performed clockwise.
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θ

At this point, O5 partitions [0, 1) into 5 intervals of width θ and one interval of

width ∥5θ∥. It turns out, for a number α = [a0; a1, a2, . . .], ⌊∥qnα∥/∥qn+1α∥⌋ = an+2

exactly recovers the continued fraction coefficients. We see this in the figure illustrated

by the fact that 4 intervals of width ∥5θ∥ fit in a single interval of width ∥θ∥.
Using the fact that ⌊∥qnα∥/∥qn+1α∥⌋ = an+2 for a number α, we see that each of

the 5 intervals of width ∥θ∥ can fit 4 intervals of width ∥5θ∥. Observing O6, O7, and

O8, we can see that the intervals of width ∥θ∥ each have smaller intervals of width

∥5θ∥ “munched away” from the left side.

θ θ θ

After this process is repeated an+1qn + qn−1 = qn+1 times, we see a new closest

return time to 0. That is, O21 contains a new closest return time to 0.

θ
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O21 partitions [0, 1) into intervals of width ∥21θ∥, ∥5θ∥, and a few intervals of

width ∥5θ∥+ ∥21θ∥. Now the process repeats again, with each larger interval getting

chunks of size ∥21θ∥ “munched away” until a new closest return to 0 is obtained in

O68.

θ

The process again repeats until the next closest return time in O261. For illustra-

tion, below is O102.

θ

Given the link between rotations and Sturmian sequences, we see that for some

angle α, the backwards n orbit, O−n partitions the set of phases in a way identical

to partitioning the set of phases by the first n symbols of a Sturmian sequence with

angle α.

For a fixed α, it is clear the partition by the first n symbols of a Sturmian sequence

gives us a partition of [0, 1) by intervals exactly corresponding to “cutting” [0, 1) by

O−n. In [18], a precise description of these intervals is given, which in general is

known as the Stienhaus 3-length conjecture.

Proposition 2.27 (Stienhaus 3-length Conjecture, Slater [18]). Fix α ∈ [0, 1) and let

[0; a1, a2, . . .] be its continued fraction representation and let pn
qn

be the nth convergent
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of α. Fix n = cqk + qk−1 + ℓ with 1 ≤ c ≤ ak+1 and 0 ≤ ℓ < qk for some k. Then,

the partition P of [0, 1) generated by {α, 2α, . . . , nα} mod 1 has intervals of exactly

three lengths

lshort = ∥qkα∥ lmed = ∥qk−1α∥ − c∥qkα∥ llong = ∥qk−1α∥ − (c− 1)∥qkα∥.

Further, the number of intervals of length lshort, lmed, and llong is n− qk + 1, ℓ+ 1,

and qk − ℓ− 1.

Proposition 2.27 gives some precision to the previous pictures of [0, 1) being di-

vided up by the orbit of θ = [0; 5, 4, 3, 5, . . .].

Lemma 2.28. Let pn
qn

be the convergents of α. If cqk + qk−1 < qk+1 for c ∈ N, then

∥(cqk + qk−1)α∥ = ∥qk−1α∥ − c∥qkα∥.

Proof. Consider the quantities a = qkα mod 1 and b = qk−1α mod 1 interpreted as

lying in the interval [−1/2, 1/2). By Proposition 2.21, we have that exactly one of

a or b is negative. Further, the restriction on c ensures c|a| ≤ |b| and so |ca + b| =
||b| − c|a|| = |b| − c|a|, which proves the claim.

Proposition 2.29. Fix α ∈ Qc and let On = {α, 2α, . . . , nα} mod 1, a = minOn,

and b = maxOn. Then one of ∥a∥ or ∥b∥ is lshort and the other lmed as specified in

Proposition 2.27.

Proof. Assume α ∈ Qc and let n = cqk+qk−1+ℓ = m+ℓ with c and ℓ as in Proposition

2.27. By Lemma 2.28, ∥mα∥ = ∥qk−1α∥ − c∥qkα∥ = lmed. Further, ∥qkα∥ = lshort.

Now, by Proposition 2.21, when we interpret x = (cqkα + qk−1)α mod 1 and

y = qkα mod 1 as points in [−1/2, 1/2), one is negative and one is positive. Thus if

∥a∥ = ∥qkα∥ = lshort then ∥b∥ ≤ ∥mα∥ = lmed and visa versa. Finally, noting that

∥a∥ = ∥b∥ = lshort implies α ∈ Q and that an interval of the partition generated by

On shorter than lmed must be length lshort completes the proof.

Proposition 2.29 can be extended to work on rationals with the obvious exception

that we might have ∥a∥ = ∥b∥ = lshort.
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2.3 Properties of Sturmian Sequences

Recurrence was a required hypothesis for many of the equivalent definitions for Stur-

mian sequences. However, Sturmian sequences satisfy the much stronger property of

minimality.

Proposition 2.30. Let s be a Sturmian sequence with angle α, and let O = Os be

its orbit closure. Then O = {R⌊·⌋(α, t) : t ∈ R} and O is minimal.

Proof. Fix a Sturmian sequence s with α(s) = α and let O′ = {R⌊·⌋(α, t) : t ∈ R}.
Since s is balanced and recurrent, any accumulation point ofOsmust also be balanced

and recurrent. Thus, any y ∈ O is a Sturmian sequence. Since α is continuous and

α(s) = α(T is), we have that α(y) = α(s) for any y ∈ O, and so by Proposition 2.14,

y ∈ O′.

This shows that O ⊂ O′. Let W (n) be the maximum waiting time for a length-n

subword of s. As we will see in Theorem 2.33, W (n) < ∞. From the definition of

convergence, we have that every point in O has a waiting time bounded by W (n), so

since the set of subwords of y ∈ O is identical to the set of subwords of points in Os,
O is minimal. However, the set of subwords of R⌊·⌋(α, t) is identical for all t ∈ R, and

R⌊·⌋(α, t) is a Sturmian sequence for all t ∈ R, and so O = O′.

Corollary 2.31. Every Sturmian sequence s is the limit of rotation sequences of the

form R⌊·⌋(α, t) where α, t ∈ R.

Corollary 2.31 follows from a proof very similar to that of Proposition 2.14.

Notation 2.32 (T). The torus R/Z is denoted by T and is assumed to have the

quotient topology unless otherwise specified.

Where convenient, we may think of the phases of a Sturmian sequence as lying in

T instead of R.
We can also very precisely bound the waiting times for any word as well as the

best periodic approximation to a Sturmian word.

Theorem 2.33. Fix α. Let s = R⌊·⌋(α, 0), and fix a subword w ⊂ s. Let λw be

the frequency of w in s and let Ww be the maximum waiting time between successive

(possibly overlapping) occurrences of w. Then,

1

λw

≤ Ww ≤
1

λw

+ |w|.
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Proof. The lower bound follows immediately: if Ww < 1
λw

, then the frequency of w

must exceed λw, a contradiction.

Fix α and w with |w| = n, and let Pn be the partition of the phase space [0, 1)

such that t, t′ lie in the same partition element if the first n symbols of R⌊·⌋(α, t) and

R⌊·⌋(α, t
′) agree. That is (R⌊·⌋(α, t))

n−1
0 = (R⌊·⌋(α, t

′))n−1
0 .

Let [a0; a1, . . .] be the continued fraction expansion of α and let pk
qk

be the conver-

gent of α such that n = cqk+ qk−1+ ℓ with c, ℓ as in Proposition 2.27. By Proposition

2.27, Pn consists of intervals of exactly three lengths: lshort, lmed, and llong. These

lengths are given by

lshort = ∥qkα∥ lmed = ∥qk−1α∥ − c|Ishort| llong = ∥qk−1α∥ − (c− 1)|Ishort|.

Let Oi = {0, α, 2α, . . . , (i − 1)α} mod 1 be the i-orbit of 0 under rotation by α.

Let Iw ∈ Pn be the partition element such that (R⌊·⌋(α, t))
n−1
0 = w for any t ∈ Iw.

Since |Iw| = λw, the upper bound will be proved if we can show that O1/|Iw|+|w| + t

for any t ∈ Iw intersects Iw in at least two places. Equivalently, we may show that

O1/|Iw|+|w| intersects any interval containing 0 of width |Iw| in at least two places (one

of those places being 0).

We will consider cases based on |Iw|. Suppose |Iw| = lmed or llong. In either of

these cases, 1/|Iw| ≥ qk, which follows quickly from the bound |Iw| ≤ ∥qk−1α∥ < 1
qk
.

Let m = qk + |w| ≤ 1/|Iw|+ |w|. Let a = min(O|w|\{0}) and b = max(O|w|\{0}).
By Proposition 2.29, ∥a∥ and ∥b∥ are lshort and lmed. For simplicity, assume ∥b∥ = lshort

and ∥a∥ = lmed. Under this assumption, qkα mod 1 = 1− ∥qkα∥. Thus, a− ∥qkα∥ ∈
O|w|+qk = Om. Since the distance between a−∥qkα∥ and b is lmed ≤ |Iw|, any interval

of width |Iw| containing 0 must intersect a non-zero point of Om ⊂ O1/|Iw|+|w|.

Finally, consider the case where |Iw| = lshort. In this case, 1/|Iw| ≥ qk+1. Let

m = qk+1+ |w|. Let a = min(O|w|\{0}) and b = max(O|w|\{0}). By Proposition 2.29,

∥a∥ and ∥b∥ are lshort and lmed. For simplicity, assume ∥b∥ = lshort and ∥a∥ = lmed.

Under this assumption and by Proposition 2.21 we have that qk+1α mod 1 = ∥qk+1α∥.
Thus, we have the following relation,

Om = Oqk+1+|w| = Oqk+1
∪ (O|w| + ∥qk+1α∥),

showing that both ∥qk+1α∥ and b + ∥qk+1α∥ are in Om. Since the distance between

∥qk+1α∥ and b+ ∥qk+1α∥ is b = lshort = |Iw|, the claim is proved.
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Theorem 2.33 may be interpreted as a type of higher block balanced property.

Definition 2.34. If w is a subword of some Sturmian sequence, define

q(w) = inf
p,q∈N
{q : w ⊂ R⌊·⌋(p/q, 0)}.

Notice that q(w) is the shortest period of a periodic Sturmian sequence that

contains the word w.

Proposition 2.35. If w is a subword of a Sturmian sequence,

q(w) ≤ |w|.

In other words, w is contained in a periodic Sturmian sequence with period ≤ |w|.

Proof. Fix n. Let P = {P0, P1, . . .} be the partition of [0, 1]2 generated by the relation

(α, t) ∼ (α′, t′) if (R⌊·⌋(α, t))
n−1
0 = (R⌊·⌋(α

′, t′))n−1
0 .

That is, (α, t) ∼ (α′, t′) if the sequences R⌊·⌋(α, t) and R⌊·⌋(α
′, t′) start with the same

n-word.

If we can show that every Pi contains a point (p/q, t) where q ≤ n, then we will

have shown that for any Sturmian word w with |w| = n, we have q(w) ≤ |w|.
Fix α and consider now the partition Xα = {X0, X1, . . .} where t ∼ t′ if (R⌊·⌋(α, t))

n−1
0 =

(R⌊·⌋(α, t
′))n−1

0 . Notice that this is a partition into half-open intervals whose endpoints

are the point {0,−α, . . . ,−nα mod 1}.
Notice now that Xα is precisely the fiber of P along the line {α} × [0, 1], and so

the boundaries of the partition P are the set

{−iα mod 1 : 0 ≤ i ≤ n and α ∈ [0, 1]}.

This set is identical to the set of graphs of lines of the form La(α) = −aα mod 1 for

0 ≤ a ≤ n or equivalently, La,b(α) = −aα + b for 0 ≤ a, b ≤ n restricted to [0, 1]2.

Computing, we see the intersection between the lines La,b and La′,b′ occurs at

α =
b′ − b

a′ − a
and La,b(α) =

a′b− ab′

a′ − a
.

Since |a′ − a| ≤ n, we see that the corners of every Pi have rational coordinates with
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Figure 2.1: The partition P when n = 5.

denominator ≤ n. To complete the proof, notice that except for the two extreme

cases (the two triangles with vertical edges), every edge of every polygon in P has

negative slope. Therefore, every polygon must contain a point (e, t) where e is the

α-component of some corner and t ∈ [0, 1]. For the remaining two partition elements,

it is easy to check that one contains (0, 0) and the other contains (n−1
n
, 1).

2.4 Generalized Sturmians

Although the set of all Sturmian sequences that share a common angle is closed, the

same cannot be said if we take a union over all angles.

Definition 2.36. The set of generalized Sturmian sequences, S̄, is the closure of S
under d, the usual metric on sequences.

Proposition 2.37. S̄ is strictly bigger than S.

Proof. Consider the sequence of Sturmian sequences

sn = R⌊·⌋(1/n,−1/(2n)),

and observe that sn → s = (. . . , 0, 0, 1, 0, 0, . . .), the sequence of all zeros with a single

1 at position 0. Since s is not recurrent, s is not Sturmian, however s ∈ S̄.
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From Proposition 2.37, it is clear that we cannot write every element in S̄ as a

rotation sequence with real parameters, however, allowing infinitesimals in the angle

as well as the phase will allow us to represent S̄ as rotation sequences.

Proposition 2.38 (Infinitesimal Representation).

S̄ = {R⌊·⌋(α, t) : α ∈ R± and t ∈ R}.

Proof. Let I = {R⌊·⌋(α, t) : α ∈ R±, t ∈ R}. We will first show that I ⊂ S̄.
Fix y ∈ I with parameters αy = α+ϵ and ty = t+nϵ or αy = α−ϵ and ty = t+nϵ.

To be concise, we will write αy = α± ϵ and consistently use + or − in the following

equations.

Consider the sequence zi ∈ S where

(zi)k =


(k + 1)(α± 1

i
) + t+

n

i


−

k(α± 1

i
) + t+

n

i



=


(k + 1)α + t+

n± (k + 1)

i


−

kα+ t+

n± k

i


.

Comparatively,

(y)k = ⌊(k + 1)α + t+ (n± (k + 1))ϵ⌋ − ⌊kα + t+ (n± k)ϵ⌋ .

Since ⌊·⌋ is continuous off the integers, it is clear that if (kα+ t), ((k+1)α+ t) /∈ Z
then (zi)k → (y)k. Further, 1/i becomes arbitrarily small as i → ∞, and so (zi)k →
(y)k for all k.

We will now show S̄ ⊂ I. Fix y ∈ S̄. By Corollary 2.31, we may find yi → y with

yi = R⌊·⌋(αyi , tyi) ∈ S (note αyi and tyi are real). We then have that αyi → αy where

αy is the average of the digits of y, and by passing to a subsequence if necessary, we

may assume tyi → ty ∈ [0, 1].

Define

dk(i) = kαyi + ti

and note that by passing to a subsequence, we may assume for every k that ⌊dk(i)⌋
is eventually constant in i (This is clear since αyi → αy and tyi → ty imply that

{⌊dk(i)⌋ : i ∈ Z} has at least one accumulation point). Let dk = limi→∞ dk(i) =

kαy + ty.

We now see that if dk+1, dk /∈ Z, ⌊dk+1(i)⌋ → ⌊dk+1⌋ and ⌊dk(i)⌋ → ⌊dk⌋, and so
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the kth coordinate of y agrees with the kth coordinate of R⌊·⌋(αy, ty).

If dk ∈ Z, we see that because ⌊dk(i)⌋ is eventually constant, dk(i) → dk must

converge one-sidedly (We will notate one-sided convergence from above as dk(i)↘ dk

and from below as dk(i)↗ dk).

Let K = {k : dk ∈ Z}. If dk(i) ↘ dk for all k ∈ K or dk(i) ↗ dk for all k ∈ K,

then y = R⌊·⌋(αy, ty + ϵ) or y = R⌊·⌋(αy, ty − ϵ) respectively.

If not, |K| ≥ 2. Let q be the minimum gap between numbers in K and note that

dk, dk+q ∈ Z implies αy =
p
q
∈ Q. From this we may deduce thatK = {k0+nq : n ∈ Z}

for some k0.

Fix k0 ∈ K so that dk0(i) ↘ dk0 and either dk0+q(i) ↗ dk0+q or dk0−q(i) ↗ dk0−q.

Assume dk0+q(i)↗ dk0+q (since the other case follows similarly).

This means k0αyi + tyi converges from above, but (k0+ q)αyi + tyi = (k0αyi + tyi)+

qαyi converges from below. From this we conclude that αyi ↗ αy and that if n ≥ 0,

dk(i)↗ dk

for all k = k0 + nq > k0 and

dk(i)↘ dk

for all k = k0 − nq ≤ k0.

Thus, upon inspection, we see y = R⌊·⌋(αy − ϵ, ty + k0ϵ).

Using infinitesimal representation, we can now write the generalized Sturmian

sequence (. . . , 0, 0, 1, 0, 0, . . .) as R⌊·⌋(ϵ, 0).

Although Proposition 2.38 gives a parameterization of generalized Sturmian se-

quences, it suffers from non-uniqueness just as the parameterization of Sturmian

sequences by rotation sequences does. Further, the topology induced on the parame-

ter space R±×R by d, the standard metric on sequences, is quite unwieldy. However,

if we restrict ourselves to generalized Sturmians whose angle is irrational, we have

near-uniqueness in our representation as a rotation sequence.

Notation 2.39.

S̄Q = {s ∈ S̄ : α(s) ∈ Q} and S̄Qc = {s ∈ S̄ : α(s) /∈ Q}.

Since s ∈ S̄ is still a balanced sequence, α(s) is defined, and so Notation 2.39 is

well defined.
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Proposition 2.40. For y ∈ S̄Qc, the following properties hold:

1. y ∈ S;

2. if ty is a phase for y, Re(ty) is uniquely determined and is equal to t(y);

3. y = R⌊·⌋(α(y), t(y) + ϵ) or y = R⌊·⌋(α(y), t(y) − ϵ) and this representation

is unique if nα(y) + t(y) ∈ Z for some n, and y = R⌊·⌋(α(y), t(y) + ϵ) =

R⌊·⌋(α(y), t(y)− ϵ) if nα(y) + t(y) ̸∈ Z for any n.

Proof. First note that if r ∈ S with α(r) /∈ Q, then t(r) is uniquely determined and

so property 2 holds as well as property 3. Suppose s ∈ S̄ and Re(α(s)) /∈ Q. By the

prior observation, it will be sufficient to show that s ∈ S.
By Proposition 2.38, we may write

s = R⌊·⌋(α± ϵ, t+ nϵ).

If mα + t /∈ Z for all m, then R⌊·⌋(α ± ϵ, t + nϵ) = R⌊·⌋(α ± ϵ, t), and so s ∈ S.
Otherwise, mα + t ∈ Z for precisely one m. In this case, if ±m + n is positive,

s = R⌊·⌋(α, t) ∈ S and if ±m+ n is negative, s = R⌈·⌉(α, t) ∈ S.

Proposition 2.40 shows that S̄Qc ⊂ S, and so by restricting our attention to S̄Qc ,

we can avoid many technical issues in our analysis of generalized Sturmians (this is

one reason many authors define Sturmian sequences to be aperiodic).

Definition 2.41. Let qn : S̄ → N be defined such that

qn(s) = min{q ∈ N : (s)n−n is a subword of R⌊·⌋(p/q ± ϵ, ϵZ) for some p ∈ N}.

Note that qn is defined so that s ∈ S̄Q implies limn→∞ qn(s) < ∞ (because s is

periodic) and s ∈ S̄Qc implies limn→∞ qn(s) =∞ (because s is necessarily aperiodic).

Further, by an application of Proposition 2.35 we see

qn(s) ≤ 2n+ 1

for any s ∈ S̄.

Definition 2.42. Define a metric d̂ on S̄ in the following way.
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If y = z then d̂(y, z) = 0. Otherwise, let n = sup{i : (y)i−i = (z)i−i} and define

d̂(y, z) =
1

qn(y)
=

1

qn(z)
.

Proposition 2.43. d̂ is a metric.

Proof. Reflexivity, non-degeneracy, and symmetry are clear. The triangle inequality is

also deduced quite quickly. Fix x, y, z ∈ S̄. Suppose that d(y, z) = 2−a, d(y, x) = 2−b,

and d(x, z) = 2−c and note that either b ≤ a or c ≤ a. Suppose b ≤ a. Since for

i ≤ n, qi(y) = qi(z) and qi(y), qi(z) are monotone in i we have

d̂(y, z) =
1

qa(y)
≤ 1

qb(y)
≤ 1

qb(y)
+

1

qc(z)
= d̂(y, x) + d̂(x, z).

If c ≤ a, then

d̂(y, z) =
1

qa(y)
≤ 1

qc(z)
≤ 1

qb(y)
+

1

qc(z)
= d̂(y, x) + d̂(x, z).

In fact, d̂ is an ultra metric which means it satisfies a stronger version of the

triangle inequality: d̂(x, y) ≤ max{d̂(x, z), d̂(z, y)}.
Note that since qn(y) ≤ n, we have that d(y, z) ≤ d̂(y, z) for all y, z ∈ S̄, and

that d̂ is constructed so that sequences whose angles are heading towards a rational

number diverge. This leads to the following proposition.

Proposition 2.44. S̄Qc is a complete metric space with respect to d̂ and the topology

induced by d̂ is the relative topology induced by d.

Proof. We will first show that the topologies induced by d̂ and d are the same. Since

d̂(y, z) ≥ d(y, z), the topology induced by d̂ is at least as fine as that induced by d,

so we need only to show that a sequence that converges in d converges in d̂.

Let yi, y ∈ S̄Qc with yi
d→ y. Let 2ni be be the largest window about the origin

where yi and y agree. By convergence in d, ni → ∞. Since y ∈ S̄Qc , qn(y) → ∞ as

n→∞. Because of this, qni
(yi)→∞ as i→∞ and so d̂(yi, y)→ 0.

Next, we will show that S̄Qc is complete with respect to d̂. First, consider a Cauchy

sequence yi. Being Cauchy in d̂ implies that you are Cauchy in d. We may therefore

conclude that yi → y ∈ S̄. What remains to be shown is that y ∈ S̄Qc .
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Suppose y ∈ S̄Q. This means that qn(y) is bounded for all n. Thus d̂(yi, y) ↛
0.

Proposition 2.45. Both α and t are continuous on S̄Qc with respect to d̂.

Proof. By the balanced property of sequences in S̄Qc , α is determined up to an error

of 1/n by the first n digits of a sequence, and is therefore continuous.

We will now prove the continuity of t using the properties of qn. Fix α and observe

that for a Sturmian sequence s with α(s) = α, if qn(s) = q, then (s)n−n determines

the phase of s up to an interval of width 1/q. We now have that for an arbitrary

Sturmian sequence s, (s)n−n determines the phase of s up to an interval of width

2/qn(s) + 1/(2n + 1), where 1/(2n + 1) comes from our bound on α(s). Proposition

2.35 gives that qn(s) ≤ 2n + 1 and so in fact (s)n−n determines the phase of s up to

an interval of width 3/qn(s).

Fix s ∈ S̄Qc and δ > 0 and choose n so that qn(s)/3 > 1/δ. Now, (s)n−n determines

the phase of s up to an interval of width δ. Call this interval Iδ. We now have that

for any y with d(s, y) ≤ 2−(n+1) (i.e., any y with (y)n−n = (s)n−n), t(y) ∈ Iδ, and so t is

continuous.

2.5 2-d Sturmian Configurations

We will now explore configurations on Z2 where every row is Sturmian.

Notation 2.46.

Ω = {y : every row of y is in S̄}

and

ΩQc = {y : every row of y is in S̄Qc}.

We may abuse notation by saying x ∈ Ω if the rows of x are generalized Sturmian

sequences for some two letter alphabet. That is, the rows of x do not have to be

Sturmian sequences on the alphabet {0, 1}. This will allow us to more cleanly talk

about the Kari-Culik tilings where Sturmian sequences on the alphabet {1, 2} arise.
Extend d̂ to a metric on Ω by

d̂Ω(y, z) = sup
i∈Z

2−|i|d̂((y)i, (z)i),
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which gives the product topology on Ω with respect to the topology induced by d̂ on

the fibers. When unambiguous, we will write d̂ instead of d̂Ω. Further, extend α and

t to Ω by

α(y) = (. . . , α((y)0), α((y)1), . . .)

and

t(y) = (. . . , t((y)0), t((y)1), . . .)

as well as α and α in the analogous way (in the future, we will be applying α and α

to non-Sturmian sequences). We will call α(y) the vector of angles of y and t(y) the

vector of phases of y.

Note the following relations

α ◦ T = α and α ◦ S = S ′ ◦ α

t ◦ T = t+ α mod 1⃗ and t ◦ S = S ′ ◦ t

where T, S are the horizontal and vertical shifts on ΩQc and S ′ is the shift on vectors

indexed by Z.

Proposition 2.47. ΩQc is complete with respect to d̂.

Proof. This follows directly from the definition of d̂.

Proposition 2.48. Both α and t are continuous on ΩQc with respect to d̂.

Proof. The Cartesian product of a finite number of continuous functions is always

continuous in the product topology. Further, a function in the product topology

is continuous if and only if all projections onto a finite number of coordinates are

continuous. It follows that countable Cartesian products of continuous functions are

continuous in the product topology.

The proof is complete by observing that α, t : ΩQc → RZ are countable Cartesian

products of continuous functions (with respect to d̂).

Definition 2.49. For y ∈ Ω, define P (y) ⊂ TZ by

P (y) = {nα(y) + t(y) mod 1⃗ for n ∈ Z},

where the closure is with respect to the product topology.
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Definition 2.50. Let Ωrat
Qc ⊂ ΩQc be the set of points whose rows have rationally

related angles. That is

Ωrat
Qc =


y ∈ ΩQc :

α((y)i)

α((y)j)
∈ Q for all i, j ∈ Z


.

A priori, the set P (y) may tell us very little about y, however, when we restrict

to y ∈ Ωrat
Qc (those points in ΩQc whose rows have rationally related angles), P (y) will

allow for an easy comparison between points. We see that

P ◦ T = P and P ◦ S = S ′ ◦ P

where S ′ is the shift operator on TZ.

The set Ωrat
Qc will play an important role as a naturally occurring object in the

analysis of Kari-Culik tilings.

Definition 2.51. For vectors α, t ∈ RZ, define the line with direction α through the

point t as

L(α, t) = {ℓα + t mod 1⃗ : ℓ ∈ R}.

Proposition 2.52. If y ∈ Ωrat
Qc , then P (y) is the closure of the graph of a line mod 1⃗.

Specifically,

P (y) = L(α(y), t(y)).

Further, P (y) is one dimensional in the sense that projn−nP (y) = projn−nL(α(y), t(y))

is a one-dimensional line, where projn−n is projection onto the −n to n coordinates.

Proof. Notice that Ln = projn−nL(α(y), 0⃗) is a one-dimensional subgroup of T2n+1

under addition. Since the coordinates of α(y) are rationally related, Ln is closed.

Further, notice that Gn = projn−n{iα(y) mod 1⃗ : i ∈ Z} ⊂ Ln is a subgroup of

Ln under addition. Since every coordinate of α(y) is irrational, Gn is dense in Ln,

showing Ln = Gn.

Let L = L(α(y), 0⃗) and G = {iα(y) mod 1⃗ : i ∈ Z}. From the definition of the

product topology, we now conclude

L̄ = Ḡ.

Lastly, since L(α(y), t(y)) = L+ t(y), we see

L(α(y), t(y)) = P (y).
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Proposition 2.52 gives a relationship between orbits of points in Ωrat
Qc and lines,

and we will exploit this later on.
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Chapter 3

The Kari-Culik Tilings

Recall that a Wang tiling is a nearest-neighbour Z2 subshift of finite type whose

rules are typically given by labeling the edges of square tiles and insisting that two

tiles may lie adjacent only if their shared edge labels match. Currently, the smallest

known set of Wang tiles that tile the plane only aperiodically is the Kari-Culik tile

set. Discovered in 1995, it has only 13 tiles. We call the set of Kari-Culik tiles K and

note that rotations and reflections of tiles in K are allowed. The Kari-Culik tiles are

listed in Figure 3.1.

0

1

0
3

1
3

0

1

1
3

2
3

1

1

2
3

0
3

0

2

0
3

2
3

1

2

1
3

0
3

1

2

2
3

1
3

0'

0

-1 -1
0'

0

0 0
1

0

0 -1
1

1

-1 0
2

1

-1 -1
2

1

0 0
1

0'

0 -1

Figure 3.1: List of the 13 Kari-Culik tiles.

A detailed exposition and proof of the Kari-Culik tiling’s aperiodic properties can

be found in [6]. For completeness, we will give a brief recap of the proof given by

Eigen et. al. in [6], which somewhat differs from the original proof given by Kari and

Culik.
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3.1 Aperiodicity of the Kari-Culik tilings

The explanation of aperiodicity we will give relies on some number-theoretic prop-

erties of the Kari-Culik tiles. Namely, every tile satisfies the soon-to-be-introduced

multiplier property and the tiles are constructed so that if one averages the bottom

labels of the rows of a Kari-Culik tiling (treating 0′ as 0), the sequence of averages

behave like an orbit under an easy-to-understand homeomorphism.

Definition 3.1. Φ : KZ2 → {0, 1, 2}Z2
is projection onto the bottom labels of tiles in

K followed by mapping the symbol 0′ to 0.

Notice that for any Kari-Culik tiling, the rows fall into two distinct categories:

those where every tile has left-right edge labels in {0
3
, 1
3
, 2
3
} and those where every tile

has left-right edge labels in {0,−1}. We will call these rows, as well as the tiles in

each row, type 1
3
and type 2 respectively. The convention in this paper will be to refer

to the labels of a tile in K in clockwise order starting with the bottom label. That is,

the labels a, b, c, d of a tile will correspond to the figure:

Part of the cleverness of the Kari-Culik tilings is that every tile satisfies the fol-

lowing.

Definition 3.2 (Multiplier Property). A Kari-Culik tile with bottom, left, top, and

right labels of a, b, c, d satisfies the relationship

λa+ b = c+ d (3.1)

where λ ∈ {1
3
, 2} corresponds to the type of the tile. We also refer to λ as the

multiplier of the tile.

Proposition 3.3. Fix a Kari-Culik configuration x and let r0 = Φ((x)0) and r1 =

Φ((x)1). Then, if the average of r0 exists, it satisfies the relation

λα(r0) = α(r1)

where λ ∈ {1
3
, 2} is the type of (x)0.
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Proof. This is a direct result of the telescoping nature of the multiplier property when

rewritten as λa− c = d− b. Notice that in any row, every tile is the same type and

therefore has the same multiplier. Let ai be the bottom labels and ci be the top labels

of (x)0. Summing along a central segment of length 2n+ 1, we have

λ
n

i=−n

ai −
n

i=−n

ci = d− b (3.2)

where b, d are the left and right labels of the central segment. Since

α(r0) = lim
n→∞

1

2n+ 1

n
i=−n

ai and α(r1) = lim
n→∞

1

2n+ 1

n
i=−n

ci

and b, d are bounded, dividing both sides of Equation (3.2) by 2n + 1 and taking a

limit produces the desired relationship.

Proposition 3.4. For a Kari-Culik tiling x, α((Φ(x))i) ∈ [1/3, 2] and α((Φ(x))i) ∈
[1/3, 2] for all i.

Proof. Fix i and let α = α((Φ(x))i). Inspecting the tile set, we see that the largest

symbol on the bottom of any tile is 2 and so α ≤ 2. Now, let α = α((Φ(x))i). To

see that α ≥ 1/3, we will consider rows by type. For a row of type 1
3
, the smallest

symbol appearing on the bottom is 1, and so α ≥ 1 ≥ 1/3.

For a row of type 2, notice that the bottom labels may contain 0 or 0′, but not

both (if a row of type 2 had both 0 and 0′ on the bottom, the row below it would

need to have tiles of both type 1
3
and type 2). If the bottom labels only contain 0,

then the row below (x)i must be of type 1
3
. Inspecting the type 1

3
tiles, we see that

no more than two consecutive 0 symbols may occur as top labels and so (x)i cannot

have more than two 0 symbols in a row as bottom labels giving α ≥ 1/3. Finally, by

inspecting the tile set, we notice that as bottom labels all occurrences of 0′ must be

isolated. Thus, if the row below (x)i is of type 2, α ≥ 1/2 ≥ 1/3.

We will now introduce a map that is intimately related to the Kari-Culik tilings.

Definition 3.5. For x ∈ [1/3, 2], define

λx =


2 if x ∈ [1/3, 1)

1/3 if x ∈ [1, 2]
and f(x) = λxx =


2x if x ∈ [1/3, 1)

x/3 if x ∈ [1, 2]
.
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Definition 3.6 (Conjugate). We say two maps g : X → X and h : Y → Y are

conjugate if there exists a continuous bijection ϕ : X → Y so that g = ϕ−1 ◦ h ◦ ϕ. In
this case, ϕ is called a conjugacy.

When two maps are conjugate, we can study the easier-to-understand map and

then use the conjugacy to carry desired properties over to the more difficult map.

Proposition 3.7 (Liousse [11]). The map f is conjugate to an irrational rotation by

log 2/ log 6.

Proof. An explicit conjugacy ϕ : [1/3, 2]→ [0, 1] is given by ϕ(x) = log x+log 3
log 6

.

Proposition 3.8 (Durand, Gamard, and Grandjean [5]). For a Kari-Culik tiling x,

α((Φ(x))i) = α((Φ(x))i) = α((Φ(x))i) for all i.

Proof. Fix a Kari-Culik tiling x and notice that a single row of x must be made

entirely of type 1
3
tiles or entirely of type 2 tiles. Further notice that if α((Φ(x))i)

exists for some i, then by the multiplier property, it exists for all i.

Suppose α = α((Φ(x))0) ̸= α((Φ(x))0) = α. By compactness, we may find accu-

mulation points x, x of OT (x) such that α((Φ(x))0) = α and α((Φ(x))0) = α. That

is, the averages exists, which implies the vectors α(Φ(x)) and α(Φ(x)) exist.

Observe that for a number γ ∈ [1/3, 2] with γ ̸= 1, if γ satisfies λγ ∈ [1/3, 2] for

some λ ∈ {1
3
, 2}, then λ is uniquely determined. Since α(Φ(x)), α(Φ(x)) ∈ [1/3, 2]Z,

if neither vector contains 1 as a component, then they satisfy the equations

(α(Φ(x)))i+1 = f((α(Φ(x)))i) (α(Φ(x)))i+1 = f((α(Φ(x)))i),

where f is given by Definition 3.5.

Since f is conjugate to an irrational rotation (and this conjugacy is continuous),

given any two points a, b, there exists some i so that f i(a) > 1 > f i(b) or f i(a) < 1 <

f i(b). Now, using the observation that if α(Φ(x))i < 1, the type of (x)i is 2 and if

α(Φ(x))i > 1, the type of is 1
3
, we deduce that for some i, (x)i and (x)i are of different

types. However, the type of (x)i = type of (x)i = type of (x)i for all i (by virtue

of taking accumulation points of the horizontal orbit only), which is a contradiction.

We conclude α = α.

Finally, to handle the case where 1 is a component of α(Φ(x)) or α(Φ(x)), notice

that the branch of f taken exactly corresponds to the multiplier of a row. Thus,

(α(Φ(x)))i and (α(Φ(x)))i must always take the same branches of f , which allows us
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to complete f to a well-defined function fx : [1/3, 2] → [1/3, 2]. Using fx now leads

to the same contradiction.

Corollary 3.9. For a Kari-Culik tiling x, α((Φ(x))i) ∈ [1/3, 2] for all i.

Proof. This is a direct result of Proposition 3.4 and Proposition 3.8.

Corollary 3.10. Fix a Kari-Culik configuration x and let ri = Φ((x)i). Then,

α(ri+1) = f(α(ri))

provided α(ri) ̸= 1.

Proof. Since α(ri+1) = λα(ri) for some λ ∈ {1
3
, 2}, the constraint that both α(ri+1), α(ri) ∈

[1/3, 2] uniquely determines λ when α(ri) ̸= 1.

Even if α(ri) = 1, there are still only two options for α(ri+1) and as shown in

Proposition 3.7, orbits under f are aperiodic, ensuring that a choice can only be

made at most once.

Theorem 3.11 (Kari, Culik, Eigen, et al). The Kari-Culik tile set admits no periodic

points.

Proof. Recall that if a Z2 SFT admits a periodic point, it admits a doubly periodic

point. That is, there exists some rectangular configuration that can be repeated to

fill the plane.

Suppose such a rectangle exists and fix it, labeling the top labels ai, the left bi,

the bottom ci, and the right di and let A,B,C,D be the respective sums of the side

labels. Further, let λi be the multiplier of the ith row.

C =


ci

ci−1 ci ci+1

bi di

A =


ai

ai−1 ai ai+1
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When rewritten as λc− a = d− b, notice that the multiplier property telescopes

when summing across a row. Let b⃗ be the vector with components bi and let d⃗ be the

vector with components di. Summing across columns, the multiplier property again

telescopes, which leaves us with the equation

ΛC − A = γ⃗ · (d⃗− b⃗)

where Λ =


λi, γ⃗ is a vector whose entries are sums and products of λi and · is
the dot product. Since we assumed that this rectangular configuration could be used

to tile the plane, we have ai = ci and bi = di, which implies A = C and d⃗ = b⃗.

Expanding the equation with these substitutions yields

ΛC = C.

Since C ̸= 0 for blocks larger than 2 × 2, we conclude that Λ = 2n

3m
= 1, which is

impossible if n,m > 0. Finally, by inspection we verify that there are no periodic

points with period 2, and so there cannot exist a periodic point.

Theorem 3.12 (Kari, Culik, Eigen, et al). The Kari-Culik tile set admits uncountably

many tilings of the plane.

Proof. For a detailed version of the proof to Theorem 3.12, see [6]. We will give an

outline of the proof and later present a slight generalization.

Fix x ∈ [1/3, 2]. We will show how to produce a valid tiling from x. Define the

Kari-Culik tile τx,n to be the tile with edge labels given by the following.

Replace a bottom label of 0 with 0′ if f−1(x) ∈ [1/3, 1/2] and a top label 0 with 0′ if

x ∈ [1/3, 1/2]. It can be checked that τx,n is always in K. Further, the following is a

valid configuration.
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Since this is defined for all n ∈ Z and every x ∈ [1/3, 2] has a bi-infinite orbit under

f , a tiling corresponding to every x is ensured. Further, given x and x′ with x ̸= x′,

the zeroth row of the constructions coming from x and x′ will differ in some place,

ensuring distinct x, x′ ∈ [1/3, 2] construct distinct tilings.

3.2 Sturmian Kari-Culik Configurations

Until recently, it was unknown whether fundamentally different Kari-Culik tilings

than those arising from the construction used in the proof of Theorem 3.12 ex-

isted. However, Durand, Gamard, and Grandjean recently showed that the Kari-Culik

tilings have positive topological entropy.

Definition 3.13 (Entropy). Given a subshift X ⊂ AZ2
, the topological entropy of X

is

Htop(X) = lim
n→∞

log |Ln×n(X)|
n2

.

Topological entropy measures the exponential growth rate in the number of con-

figurations verses a configuration’s diameter, and subshifts with positive entropy are

considered to be “big.”

Theorem 3.14 (Durand et al [5]). The set of all Kari-Culik tilings has positive

topological entropy.

They do this by showing there exists substitutive pairs, that is pairs of 2 × 2

configurations with identical edge labels, occurring with positive density in any Kari-

Culik tiling. This shows that the number of globally admissible m × n Kari-Culik

configurations grows exponentially, yielding positive entropy.
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Proposition 3.15. The set Ω (the set of all Z2 configurations whose rows are Stur-

mian) has zero topological entropy.

Proof. The number of Sturmian sequences on two symbols of length n is of order

n3 [1]. Thus, the number of n × n configurations occurring in Ω (restricted to two

symbols) is (n3)n. Since n3n

2n2 → 0 as n→∞, Ω has zero topological entropy.

Corollary 3.16. There exists a Kari-Culik tiling that does not arise from the con-

struction given in the proof of Theorem 3.12.

Proof. Notice that a Kari-Culik tiling y, arising from the construction given in the

proof of 3.12, satisfies Φ(y) ∈ Ω. By Proposition 3.23, Φ is finite-to-one, and so

Φ−1(Ω) has zero entropy. Since the set of all Kari-Culik tilings has positive entropy,

there must be a Kari-Culik tiling x so that Φ(x) /∈ Ω.

Durand et. al. likely knew Corollary 3.16, but did not explicitly state so in [5].

Despite the existence of tilings not in Φ−1(Ω), we will restrict our study to this set.

That is, we will study the set of Kari-Culik tilings whose rows have bottom labels

that form generalized Sturmian sequences.

Definition 3.17. Let

KC = {KC tilings y : Φ(y) has rows in S̄}

and

KCQc = {KC tilings y : Φ(y) has rows in S̄Qc}.

Using observations about the multiplier of tiles and the averages of sequences of

bottom labels, we can refine our classification of rows of the Kari-Culik tilings.

Definition 3.18. Let x ∈ KC and ri = (x)i be the ith row of x. We define the

general type of ri based on the tiles in ri−1, ri, ri+1 in the following way.

Type 1
3
: ri is of general type

1
3
if ri consists of type

1
3
tiles.

Type 2.1: ri is of general type 2.1 if ri consists of type 2 tiles and ri+1, ri−1 both

consist of type 1
3
tiles.

Type 2.2t: ri is of general type 2.2t if ri consists of type 2 tiles and ri+1 consists

of type 1
3
tiles while ri−1 consists of type 2 tiles.

Type 2.2b: ri is of general type 2.2b if ri consists of type 2 tiles and ri−1 consists

of type 1
3
tiles while ri+1 consists of type 2 tiles.
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We consider a pair of rows whose top row is of general type 2.2t and whose bottom

row is of general type 2.2b as type 2.2.

Since general type 1
3
exactly corresponds to type 1

3
and we have no previous

definition for type 2.1, 2.2t, 2.2b, or 2.2, without ambiguity we may from now on refer

to the general type of a row as simply the type of that row. Further, every row is

exactly one of these types. That is, we never have three consecutive instances of a

type 2 row.

Proposition 3.19. Let x ∈ KC and ri = (x)i be the ith row of x. The general type

of ri is unique and the tiles that may appear in ri are contained in exactly one of the

following (non-disjoint) sets based on general type.

Type 1
3
: 0

1

0
3

1
3

0

1

1
3

2
3

1

1

2
3

0
3

0

2

0
3

2
3

1

2

1
3

0
3

1

2

2
3

1
3

Type 2.1: 1

0

0 -1
1

1

-1 0
2

1

-1 -1
2

1

0 0

Type 2.2t:
1

1

-1 0
2

1

-1 -1
2

1

0 0
1

0'

0 -1

Type 2.2b:
0'

0

0 0
1

1

-1 0
1

0

0 -1
0'

0

-1 -1

A pair of rows whose top tiles are type 2.2t and bottom tiles are type 2.2b taken

together and considered as type 2.2 consists of the stacked tiles:
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1

0

0 -1

2

1

-1 -1

0'

0

0 0

1

0'

0 -1

1

1

-1 0

2

1

0 0

1

0

0 -1

1

1

-1 0

1

1

-1 0

1

1

-1 0

1

1

-1 0

2

1

-1 -1

1

0

0 -1

2

1

0 0

0'

0

-1 -1

1

0'

0 -1

Proof. Fix a Kari-Culik tiling x. Let ri = (x)i be the ith row of x and let λi

be its multiplier. Let α be the average of the bottom labels of ri. We will show

something slightly stronger than is stated in the proposition, namely that except for

α ∈ {1/2, 2/3, 1}, α uniquely determines the type ri.

If α ∈ (1, 2], then λ = 1
3
, and so ri must consist of tiles of type 1

3
, making ri of

general type 1
3
.

If α ∈ (1/2, 2/3), ri+1, ri−1 must be of type 1
3
, and so 0′ cannot occur as a label,

making ri of general type 2.1 and leaving the only available tiles those listed as type

2.1.

If α ∈ [1/3, 1/2), the rows ri and ri+1 are both of type 2 and ri−1 and ri+2 are of

type 1
3
. Thus, ri must be of general type 2.2b and must consist of the tiles listed as

type 2.2b.

Finally, if α ∈ (2/3, 1), ri−1 is of type 2 and ri+1 and ri−2 are both of type 1
3
.

Thus, ri must be of general type 2.2t and consists of the tiles listed as type 2.2t.

The tiles listed as type 2.2 consist of the ways to stack type 2 tiles to be compatible

on tops and bottoms with type 1
3
tiles and so correspond exactly to the cases where

2.2t and 2.2b tiles arise in consecutive rows.

In the remaining cases of α ∈ {1/2, 2/3, 1}, the type of ri is not strictly determined

by α, but nonetheless the tiles in ri fall into one of the four categories and the

classification is unique.

The tiles listed as type 2.1 have non-trivial intersection with the tiles listed as

type 2.2t and type 2.2b tiles, however the condition that no two rows of type 2.1
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occur consecutively ensures that the categorization is unique. We call the pairs of

tiles listed as type 2.2 stacked tiles. When we think of a row of a Kari-Culik tiling as

being type 2.2, we may think of its multiplier as being 4 (since it is composed of two

consecutive rows with multiplier 2).

We will now formalize the construction of an infinite Kari-Culik tiling given in the

proof of Theorem 3.12.

Definition 3.20 (BC Property). A pair of vectors (α⃗, t⃗) ∈ [1/3, 2]Z× [0, 1]Z satisfies

the BC property (Basic Construction property) if

λi =
αi+1

αi

∈ {1
3
, 2}

and
2ti = ti+1 mod 1 if λi = 2

ti = 3ti+1 mod 1 if λi =
1
3

for all i.

Given a pair of vectors (α⃗, t⃗) satisfying the BC property, we can construct a point

y ∈ KC via the following procedure. The tile at position m,n in y has bottom, left,

top, and right edges given by

bottom = ⌊(n+ 1)αm + tm⌋ − ⌊nαm + tm⌋
left = λ ⌊nαm + tm⌋ − ⌊λnαm + tm⌋
top = ⌊(n+ 1)αm+1 + tm+1⌋ − ⌊nαm+1 + tm+1⌋

right = λ ⌊(n+ 1)αm + tm⌋ − ⌊λ(n+ 1)αm + tm⌋

where λ = αm/αm+1. Further, if either the bottom or the top label is computed to be

0, then 0 is replaced with 0′ if αm−1 ∈ [1/3, 1/2] (respectively αm ∈ [1/3, 1/2]). We

can also do the same construction using ⌈·⌉ instead of ⌊·⌋. We call a tiling constructed

in this way a Basic Construction with parameters (α⃗, t⃗).

Proposition 3.21 (Robinson [16]). If (α⃗, t⃗) satisfies the BC property, then the re-

sulting Basic Construction using either ⌊·⌋ or ⌈·⌉ is an element of KC.

Proof. First observe that if y is the result of a Basic Construction, then Φ(y) consists

of rows that are rotation sequences and therefore Sturmian. Further, by definition,

the top labels of each row of y are guaranteed to be compatible with the bottom
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labels of the next row, and the right labels of each column of y are guaranteed to be

compatible with the left labels of the next column.

The remainder of the proof involves checking for all ranges of αm, tm that the

resulting bottom, left, top, and right labels correspond to an actual tile in K. The

details of this are straightforward, and after substituting tm+1 = 2tm mod 1 or tm =

3tm+1 mod 1 depending on the ratio αm/αm+1, it requires only examining what cases

result from the choice of αm,tm or αm, tm+1.

Proposition 3.22. If y ∈ KCQc and (α⃗, t⃗) = (α(Φ(y)), t(Φ(y))) are the angle and

phase vectors of y, then y is the result of a Basic Construction arising from (α⃗, t⃗)

using either ⌊·⌋ or ⌈·⌉.

Proof. First note that since y ∈ KCQc , the rows of Φ(y) are Sturmian sequences and

therefore rotation sequences (since rows in S̄\S are excluded).

We will first show that (α⃗, t⃗) satisfies the BC property. Fix k ∈ Z. Since Corollary
3.10 already shows that α⃗ is determined by f and αk (that is αk+i = f i(αk)), we only

need to show that either tk+1 = 2tk mod 1 or tk = 3tk+1 mod 1 in accordance with

αk. For simplicity, call α = αk, t = tk, and t′ = tk+1. Let λ = αk/αk+1 be the type of

the kth row of y and let ai, bi, ci, di be the bottom, left, top, and right labels of the

ith tile in (y)k. We divide the proof into two similar cases depending on λ.

Case λ = 1/3: We will assume the Sturmian sequences (Φ(y))k and (Φ(y))k+1

may both be represented using R⌊·⌋, but note that for every combination (R⌊·⌋,R⌊·⌋),

(R⌊·⌋,R⌈·⌉), (R⌈·⌉,R⌊·⌋), and (R⌈·⌉,R⌈·⌉) of ways to represent (Φ(y))k and (Φ(y))k+1,

upon replacing ⌊·⌋ with ⌈·⌉ where appropriate, the same argument still works. By

Corollary 3.10, αk+1 = λαk = λα, and so we have the following relationship for the

bottom and top labels:

ai = ⌊(i+ 1)α + t⌋ − ⌊iα + t⌋ and ci =


(i+ 1)α + 3t′

3


−

iα + 3t′

3


.

Exploiting the telescoping nature of the Multiplier Property (shown in Equation (3.2))

and summing from i = n to m− 1, we get

(bn − dm) +
1

3
(⌊αm+ t⌋ − ⌊αn+ t⌋) =


αm+ 3t′

3


−

αn+ 3t′

3


. (3.3)
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Since α /∈ Q, we can pick n,m so that

αm+ 3t′

3
= km + εm and

αn+ 3t′

3
= kn − εn

where km, kn ∈ Z and εm, εn are arbitrarily small positive numbers. Upon this choice,

the right side of Equation (3.3) simplifies to km− kn + 1. By rearranging and substi-

tuting into Equation (3.3), we get

⌊3(km + εm) + (t− 3t′)⌋ − ⌊3(kn − εn) + (t− 3t′)⌋ = 3(km − kn) + 3− 3(bn − dm),

but since bn − dm is bounded above by 2/3, we conclude

⌊3(km + εm) + (t− 3t′)⌋ − ⌊3(kn − εn) + (t− 3t′)⌋ ≥ 3(km − kn) + 1. (3.4)

If (t − 3t′ mod 1) = γ ̸= 0, choosing εn, εm << γ gives a contradiction (with the left

hand side of Equation (3.4) yielding 3(km − kn)). Thus, t = 3t′ mod 1.

Case λ = 2: Since this case is nearly identical to the λ = 1/3 case, we will omit

the details, noting only that in this case the relationship between bottom labels and

top labels is reversed. That is, in this case fix α = αk+1 and rewrite αk = α/2.

We have now shown that (α⃗, t⃗) satisfies the BC property. To complete the proof

and show that y arises as a Basic Construction, we need to show that every Sturmian

sequence in Φ(y) can be written with exclusively R⌊·⌋ or exclusively R⌈·⌉.

Notice that since every component of α⃗ is rationally related to α0, we have either

α⃗ ∈ QZ or α⃗ ∈ (Qc)Z. By assumption however, α⃗ ∈ (Qc)Z and so nα⃗ + t⃗ ∈ QZ for at

most one n. Further, since the components of t⃗ are rationally related, for each n we

have either nα⃗ + t⃗ ∈ QZ or nα⃗ + t⃗ ∈ (Qc)Z. Define

ri,n = nαi + ti.

Suppose that the ith row of Φ(y) requires R⌊·⌋ or R⌈·⌉ to be written as a rotation

sequence. This implies that for some n we have ri,n ∈ Z. Fix this n. By our

observation that mα⃗+ t⃗ ∈ QZ for at most one m, we may conclude that rj,n′ /∈ Z for

any n′ ̸= n and j ∈ Z.
Let

B = {i : (Φ(y))i requires R⌊·⌋ or R⌈·⌉},

and notice again that by the uniqueness of n (with n still being fixed as above),
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B = {j : rj,n ∈ Z}. We will now show that B consists of a contiguous sequence of

integers.

Exploiting the fact that (α⃗, t⃗) satisfies the BC property, we may conclude rj+1,n =

2rj,n or rj+1,n = 1
3
(rj,n + i) where i ∈ {0, 1, 2}. This implies that if |rj,n|3 > 0 then

|rj+1,n|3 > 0 where | · |3 is the 3-valuation. That is, for q ∈ Q, if

q =


p prime

pnp

is the prime decomposition of q with np ∈ Z, then |q|3 = −n3.

If b ∈ B and b + 1 /∈ B, this means rb,n ∈ Z but rb+1,n /∈ Z and so |rb+1,n|3 > 0

(since multiplying by 2 keeps us in Z, the only way to leave Z is to divide by 3).

However, |rb+1,n|3 > 0 implies that rb+i,n /∈ Z for all i > 0. We conclude that B

cannot contain any gaps.

Since B consists of a contiguous set of integers, it will complete the proof if we

show that there do not exist two adjacent rows in Φ(y) where one requires R⌊·⌋ and

the other requires R⌈·⌉. We will conclude the proof by showing that the rules of the

Kari-Culik tiling forbid such an occurrence.

Suppose s = R⌊·⌋(α, t) ̸= R⌈·⌉(α, t) = s′ and α /∈ Q, and notice s and s′ differ only

by a transposition of two adjacent coordinates. For simplicity, assume s and s′ differ

at coordinates 1 and 2 and that α(s) ∈ [0, 1] so that s and s′ consist of the symbols

0 and 1. We then have

s = · · · s0s1s2s3 · · · and s′ = · · · s0s2s1s3 · · · ,

and in particular s1 ̸= s2. Since s and s′ are both valid Sturmian sequences, we may

conclude that s0 = s3, since if s0 ̸= s3 either s or s′ would contain both a 1, 1 and a

0, 0. Further, since s requires ⌊·⌋, we know s1 > s2.

In general, we will call a length four word wα,t = w0w1w2w3 or wα,t = w0w2w1w3

a straddle word of a Sturmian sequence if

w0w1w2w3 = (R⌊·⌋(α, t))
i+3
i and w0w2w1w3 = (R⌈·⌉(α, t))

i+3
i

for some i (or vice versa). The previous argument shows that if wα,t is a straddle

word, then w0 = w3 and w1 ̸= w2. It also shows that if a Sturmian sequence requires

R⌊·⌋ or R⌈·⌉, it necessarily contains a straddle word.
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Now, consider a row r of y where the sequence of bottom labels requires R⌊·⌋ and

the top labels require R⌈·⌉ (or vice versa) and let wt and wb be the straddle words for

the labels on the top of r and the bottom of r respectively. Since the top sequence

requires R⌊·⌋ and the bottom sequence requires R⌈·⌉, we conclude that wt
1 > wt

2 and

wb
1 < wb

2 (or vice versa if the roles of ⌊·⌋ and ⌈·⌉ are reversed). We will call a pair

of straddle words like these, whose middle two symbols satisfy opposite inequalities,

misaligned.

We will complete the proof by observing that misaligned straddle words cannot

occur in y.

By enumerating all pairs of length-four words (wt, wb) that arise as tops and

corresponding bottoms of rows of type 2.1, we see that out of the 64 possibilities,

only four have the property that wt
1 ̸= wt

2 and wb
1 ̸= wb

2 (which is necessary to be a

straddle word). Out of those four, none are misaligned. Similarly, in a row of type
1
3
, of the 96 possibilities, 24 differ in their middle symbols and out of those, none are

misaligned straddle words.

Now consider pair of rows of type 2.2. Out of the 128 possible sequences of length

4, there are exactly two ways to obtain misaligned straddle words, namely:

0'

0

0 0

1

0'

0 -1

1

0

0 -1

2

1

-1 -1

1

1

-1 0

1

1

-1 0

0'

0

0 0

1

0'

0 -1

0'

0

-1 -1

1

0'

0 -1

1

1

-1 0

1

1

-1 0

1

0

0 -1

2

1

0 0

0'

0

-1 -1

1

0'

0 -1

This gives misaligned straddle pairs of (wt, wb) = (1211, 0010) and (wt, wb) = (1121, 0100).

Since we are considering a type 2.2 row, the Sturmian angle for the sequence of bot-

toms must be in [1/3, 1/2]. Thus, there cannot be three 0s in a row. We therefore

conclude the symbol before the word wb = 0010 must be a 1 and the symbol after

the word wb = 0100 must be a 1. Since we are considering 0010 and 0100 as straddle

subwords of some pair of Sturmian sequences and these Sturmian sequences must

agree everywhere except for a single transposition of symbols, we conclude wb = 0010

and wb = 0100 must be subwords of 100101 and 101001. By a similar argument, the

top straddle words must be subwords of 211212 and 212112. Thus, the stacked tile

to the left or right of the designated blocks must have a bottom label of 1 and a top

label of 2. Inspecting the two stacked tiles with this property reveals that neither of
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them are compatible with the potential misaligned straddle words shown, and thus

misaligned straddle words cannot appear in y.

Theorem 3.23. Φ|KCQc is one-to-one and Φ is at most sixteen-to-one.

Proof. Fix x ∈ KC and consider a row r of x. Let rt be the Sturmian sequence

formed by the top labels of r and let rb be the Sturmian sequence formed by the

bottom labels of r. Further, let αt = α(rt) and αb = α(rb), and if wt = (rt)ji is a

subword of rt, then wb = (rb)ji is the corresponding subword of rb.

Notice that by the multiplier property (Equation (3.1)), r is completely determined

by (rt, rb) and a single left label of one of the tiles in r.

Define Φ2 by Φ2(r) = (rt, rb) and extend Φ2 to work on subwords of r. By our

previous observation, if there is a subword r′ ⊂ r such that Φ−1
2 (Φ2(r

′)) contains

a single element, then r is completely determined by (rt, rb). We will show that if

x ∈ KCQc , this is always the case. Moving forward, we analyze r separately depending

on its type.

Case r is of type 1
3
: In this case, we know αt ∈ [1/3, 2/3] and αb ∈ [1, 2].

0

1

0
3

1
3

0

1

1
3

2
3

1

1

2
3

0
3

0

2

0
3

2
3

1

2

1
3

0
3

1

2

2
3

1
3

Figure 3.2: Transition graph for type 1
3 tiles.

Figure 3.2 shows the transition graph moving left to right in a type 1
3
row. Notice

that there is only one way for 11 or 00 to appear as top labels in a type 1
3
row. In

particular, if wt = 11 then wb = 22 and if wt = 00 then wb = 11 and |Φ−1
2 (11, 22)| =

|Φ−1
2 (00, 11)| = 1. Thus, if rt contains the word 11 or 00, r is uniquely determined.

If rt contains neither 11 nor 00, then αt = 1/2 and rt = · · · 101010 · · · . Analysing
further, if wt = 01 then wb ∈ {12, 21, 11, 22}. We note that |Φ−1

2 (01, 11)| = |Φ−1
2 (01, 22)| =

|Φ−1
2 (01, 21)| = 1 and |Φ−1

2 (01, 12)| = 2. Thus, Φ on a row of type 1
3
is only non-unique

if αt = 1/2 which further implies αb = 3/2.

Case r is of type 2.1: In this case, we know αt ∈ [1, 2] and αb ∈ [1/2, 1].
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1

0

0 -1

1

1

-1 0

2

1

-1 -1

2

1

0 0

Figure 3.3: Transition graph for a type 2.1 row.

Figure 3.3 shows the transition graph moving left to right in a type 2.1 row. Notice

that there is only one way a type 2.1 row can contain 0 as a bottom label. This means

r is uniquely determined unless αb = 1 (since αb < 1 implies a zero occurs in rb) and

consequently rb = · · · 111 · · · . If wb = 1 then wt ∈ {1, 2} with |Φ−1
2 (1, 1)| = 1 and

|Φ−1
2 (2, 1)| = 2.

Case r is of type 2.2: In this case, we know αt ∈ [4/3, 2] and αb ∈ [1/3, 1/2] (since

we interpret our multiplier as 4 in this case).

Because αb ∈ [1/3, 1/2], we know that rb cannot contain 11 (since if it did,

α(rb) > 1/2). Therefore, it must contain 100 or 10101 as a subword. Further, if

αb ∈ (1/3, 1/2), rb must contain 10100 as a subword. Let wb ∈ {100, 10101, 10100}.
Below is a list of all pairs (wt, wb) such that |Φ−1

2 (wt, wb)| > 1.

(wt, wb) = (211, 100), which can be obtained in exactly two ways, namely

1

1

-1 0

2

1

0 0

0'

0

0 0

1

0'

0 -1

1

0

0 -1

1

1

-1 0

1

1

-1 0

2

1

-1 -1

1

0

0 -1

1

1

-1 0

0'

0

-1 -1

1

0'

0 -1

(wt, wb) = (22222, 10101), which can be obtained in exactly two ways, namely

1

1

-1 0

2

1

-1 -1

1

0

0 -1

2

1

-1 -1

1

1

-1 0

2

1

-1 -1

1

0

0 -1

2

1

-1 -1

1

1

-1 0

2

1

-1 -1

1

1

-1 0

2

1

0 0

1

0

0 -1

2

1

0 0

1

1

-1 0

2

1

0 0

1

0

0 -1

2

1

0 0

1

1

-1 0

2

1

0 0
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and (wt, wb) = (22211, 10100), which can be obtained in exactly two ways,

namely

1

1

-1 0

2

1

0 0

1

0

0 -1

2

1

0 0

1

1

-1 0

2

1

0 0

0'

0

0 0

1

0'

0 -1

1

0

0 -1

1

1

-1 0

1

1

-1 0

2

1

-1 -1

1

0

0 -1

2

1

-1 -1

1

1

-1 0

2

1

-1 -1

1

0

0 -1

1

1

-1 0

0'

0

-1 -1

1

0'

0 -1

Considering the pair (wt, wb) = (22211, 10100), we see that 22211 is not a gen-

eralized Sturmian sequence (since it contains both 11 and 22 as subwords), and so

this situation never occurs. This means if Φ2 is not invertible, αb = 1/3, which

corresponds to the first case, or αb = 1/2 which corresponds to the second case.

As a result of our case-by-case analysis, we see that if αb /∈ {1/3, 1/2, 1, 3/2}, then
r is uniquely determined and so when restricted to KCQc , Φ is one-to-one. Further,

since for αb ∈ {1/3, 1/2, 1, 3/2} we have Φ2 is at most two-to-one, we conclude in

general that Φ is at most sixteen-to-one (since f prevents αb from taking any particular

value in {1/3, 1/2, 1, 3/2} more than once).

Computer code for enumerating the valid configurations used in the proof of

Proposition 3.23 is included in Appendix A. In light of Theorem 3.23, we will treat

points inKC and points in Φ(KC) interchangeably, differentiating only when needed.

Proposition 3.24. For x ∈ KC, we have

α(Sx) = f(α(x)),

where f is applied component-wise and if x ∈ KCQc,

t(Tx) = t(x) + α(x).

Proof. This immediately follows from Corollary 3.10 and the definition of a rotation

sequence.

3.2.1 Parameterization of KC

We will now produce a parameterization of points in KCQc in a similar fashion to

the way a Sturmian sequence may be parameterized by an angle, phase, and choice

of floor or ceiling function.
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Definition 3.25 (Inverse Limit). Given a sequence of groups Gn for n ∈ N with

surjective homomorphisms hn : Gn → Gn−1, the inverse limit of the groups Gn is

L = {x ∈
∞
i=1

Gi : hi(xi) = xi−1 for all i}

and is denoted L = lim←−Gn. The group operation on L is defined by applying the group

operation on each Gn component-wise and L is endowed with the product topology.

We will be consider the special case of the inverse limit of the groups Z/(qnZ)
where the homomorphism hn acts by hn(x) = x mod qn−1.

Definition 3.26. Suppose I = lim←−R/(qnZ) is the inverse limit of the sequence of

groups R/(qnZ) for some q ∈ N. For any d ∈ N such that d|q, define

Md : I → I

by Md(i0, i1, i2, . . .) = (di0, di1, di2, . . .) and

M1/d : I → I

by M1/d(i0, i1, i2, . . .) = ( q
d
)(i1/q, i2/q, i3/q, . . .).

Proposition 3.27. Let I = lim←−R/(qnZ) and suppose d|q. Then Md and M1/d are

bijective group homomorphisms on I.

Proof. Notice that for a point x ∈ I, component-wise multiplication, Ma, by any

integer a is always group homomorphism. Further, M1/q as defined is a group homo-

morphism, and M1/d = Ma ◦M1/q whenever q = da.

To show Md is bijective, it is sufficient to show that Md(x) = 0 has only the

trivial solution. Suppose x = (x0, x1, . . .) ∈ I satisfies Md(x) = 0. The consistency

condition on the coordinates of x ensures

dxi = 0 mod qi

which implies

xi = 0 mod
q
d


qi−1

which further implies

xi = 0 mod qi−1,
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but xi−1 = xi = 0 mod qi−1. Thus x = 0.

To complete the proof, observe that Md ◦M1/d = id is the identity and that Md

is bijective. Therefore,M1/d must also be bijective.

Definition 3.28. Let

T = lim←−R/(6nZ)

be the inverse limit of the groups R/(6nZ) as n→∞.

Corollary 3.29 (of Proposition 3.27). M2,M3,M1/2,M1/3 : T → T are bijective

homomorphisms.

The proof of Corollary 3.29 follows from Proposition 3.27. From now on, for t ∈ T
we may write at or t/a instead of Mat and M1/at. Further, for r ∈ R, we may define

scalar addition Ar : T → T by

Ar(t0, t1, . . .) = (t0 + r mod 1, t1 + r mod 6, t2 + r mod 62, . . .)

and we may write t+ r instead of Ar(t).

Proposition 3.30. Let I ⊂ lim←−R/(3nZ)× lim←−R/(2nZ) be defined by

I = {((a0, a1, . . .), (b0, b1, . . .)) : a0 = b0}.

Then we have I is isomorphic to T as a group.

Proof. First note that Z/(2nZ) × Z/(3nZ) ∼= Z/(6nZ) via the Chinese remainder

theorem.

Next, observe that lim←−R/(bnZ) ∼= [0, 1) × lim←−Z/(bnZ). The right hand side is a

group via the map

(x, y) + (x′, y′) = (x+ x′ mod 1, (y ⊕b y
′) ⊕⃗ ⌊x+ x′⌋)

where ⊕b is addition in lim←−Z/(bnZ) and ⊕⃗ : (lim←−Z/(bnZ))×Z→ lim←−Z/(bnZ) is given
by (r0, r1, . . .) ⊕⃗ l = (r0 + l, r1 + l, . . .).

Since the coordinates of a = (a0, a1, . . .) ∈ lim←−R/(bnZ) must satisfy ai = ai+1 mod bi,

we see that ai+1 = ai+ji+1b
i for some 0 ≤ ji+1 < b. Thus the sequence (0, j1, j2b, j3b

2, . . .) ∈
lim←−Z/(bnZ) and the point a0 ∈ [0, 1) is all we need to reconstruct a.
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Endow [0, 1) × lim←−Z/(2nZ) × lim←−Z/(3nZ) with a group operation similarly to

before. It is now clear, since the first coordinates of each component of I must agree,

that

I ∼= [0, 1)× lim←−Z/(2nZ)× lim←−Z/(3nZ) ∼= [0, 1)× lim←−Z/(6nZ) ∼= T .

Definition 3.31. Define projj : T → R/(6jZ) to be projection onto the jth coordinate

of T .

Notation 3.32. Extend f from Definition 3.5 to a function f̂ : [1/3, 2]× T by

f̂(α, t) =


(2α, 2t) if α ∈ [1/3, 1)

(α/3, t/3) if α ∈ [1, 2]
.

Notice that f̂ : [1/3, 2]×T → [1/3, 2]×T is a bijection. Morally, we will show that

[1/3, 2]×T is a parameterization of KC. However, since trouble arises for generalized

Sturmian sequences with rational angles and Sturmian sequences whose phase vector

contains zero, we focus our attention to the sets ([1/3, 2]\Q) × T × {R⌊·⌋,R⌈·⌉} and
KCQc .

Lemma 3.33. Let O1 be the orbit of 1 under f , and let

X = {(α⃗, t⃗) : (α⃗, t⃗) satisfies the BC property and 1 /∈ α⃗}.

There exists a bijection W : ([1/3, 2]\O1) × T → X that respects the dynamical

relationships. That is, for (α, t) ∈ ([1/3, 2]\O1) × T such that W (α, t) = (α⃗, t⃗), we

have

W (α, t+ α) = (α⃗, t⃗+ α⃗ mod 1) and W ◦ f̂(α, t) = (σ(α⃗), σ(⃗t)).

Proof. Defining W is straightforward. Fix (α, t) ∈ ([1/3, 2]\O1) × T and define

W (α, t) = (α⃗, t⃗) where (αi, ti) = (id × proj0) ◦ f̂ i(α, t). The definition of f̂ acting

on ([1/3, 2]\O1) × T ensures that (α⃗, t⃗) satisfies the BC property and respects the

desired dynamical relationships.

The map W is clearly one-to-one in the first coordinate. Further, if t, t′ ∈ T
with t ̸= t′, we have that projjt ̸= projjt

′ for some j. From this we deduce that
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proj0 ◦ f̂ j′(t) ̸= proj0 ◦ f̂ j′(t′) for some j′ ≥ j, and so W is one-to-one. After the

construction of W−1 it will be evident that it is onto.

Constructing W−1 is slightly more difficult. Fix (α⃗, t⃗) ∈ X. Let Λi = αi/α0. Let

| · |2 and | · |3 be the 2-valuation and 3-valuation respectively.

Let j(i) = min{n ≥ 0 : |Λn|3 = i} and define the subsequences (t
(3)
i )∞i=0 and

(Λ
(3)
i )∞i=0 of (ti)

∞
i=0 and (Λi)

∞
i=0 by

t
(3)
i = tj(i) and Λ

(3)
i = Λj(i).

Similarly, let j′(i) = min{n ≥ 0 : |Λ−n|2 = i} and define the subsequences (t
(2)
i )∞i=0

and (Λ
(2)
i )∞i=0 by t

(2)
i = t−j′(i) and Λ

(2)
i = Λ−j′(i). We’ve constructed t(2) and t(3) to

be the values of t⃗ corresponding to where we “divide α by 2” or “divide α by 3”

respectively.

To constructW−1(α⃗, t⃗), first consider the point z(3) = (z
(3)
0 , z

(3)
1 , . . .) ∈ lim←−R/(3nZ)

defined inductively in the following way. Let z
(3)
0 = t

(3)
0 = t

(2)
0 . Fix j and suppose for

all i < j we have

Λ
(3)
i z

(3)
i = t

(3)
i mod 1.

Let p be such that Λ
(3)
j = 2p

3
Λ

(3)
j−1. We now have that 3t

(3)
j = 2pt

(3)
j−1 mod 1 and so

along with our induction hypothesis there exist unique r′, r′′ ∈ {0, 1, 2} so

3t
(3)
j = 2pt

(3)
j−1 + r′ mod 3

Λ
(3)
j−1z

(3)
j−1 − t

(3)
j−1 = r′′ mod 3.

Define z
(3)
j = z

(3)
j−1 + r3j−1 where r ∈ {0, 1, 2} is the unique solution to 2pr′′ − r′ +

r2pΛ
(3)
j−13

j−1 = 0 mod 3. Note that since 2pΛ
(3)
j−13

j−1 ∈ Z and contains no multiples of

3, such an r always exists. By construction, z
(3)
j satisfies z

(3)
j−1 = z

(3)
j mod 3j−1. We

will now verify that Λ
(3)
j z

(3)
j − t

(3)
j = 0 mod 1.

Substituting, we see

Λ
(3)
j z

(3)
j − t

(3)
j = 2p

3
Λ

(3)
j−1z

(3)
j − t

(3)
j = 2p

3
Λ

(3)
j−1(z

(3)
j−1 + r3j−1)− t

(3)
j .

Finally, multiplying by 3, we have

2pΛ
(3)
j−1(z

(3)
j−1 + r3j−1)− 3t

(3)
j = 2pΛ

(3)
j−1(z

(3)
j−1 + r3j−1)− 2pt

(3)
j−1 − r′ mod 3
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= 2p

Λ

(3)
j−1z

(3)
j−1 − t

(3)
j−1 + rΛ

(3)
j−13

j−1

− r′ = 2pr′′ − r′ + r2pΛ

(3)
j−13

j−1 = 0 mod 3

as desired.

We have shown that z(3) exists and is unique. In an analogous way, construct

z(2) ∈ lim←−R/(2nZ). Finally, since z
(3)
0 = z

(2)
0 , by the Chinese remainder theorem we

may produce z = (z0, z1, . . .) ∈ T such that z
(3)
i = zi mod 3i and z

(2)
i = zi mod 2i.

It is worth noting now that by construction, zi is the unique simultaneous solution

to

Λ
(3)
i zi = t

(3)
i mod 1

Λ
(2)
i zi = t

(2)
i mod 1

where zi ∈ R/(6iZ) and zi−1 = zi mod 6i−1.

Having established existence and uniqueness of z, we may define W−1(α⃗, t⃗) =

(α0, z). The fact that W
−1 is an inverse is now immediate by construction: if |Λj|3 =

k ≥ 0, then Λjprojk(z) = t
(3)
j mod 1, and if |Λj|2 = k ≥ 0, then Λjprojk(z) =

t
(2)
−j mod 1.

We restricted the domain of W to ([1/3, 2]\O1)×T instead of [1/3, 2]×T because

the function f could be defined so that f(1) = 1/3 or f(1) = 2, and both ways would

be consistent with the rules of the Kari-Culik tilings. As such, this presents a small

obstruction to W being a bijection on [1/3, 2]× T .
To allow for a clearer statement of Proposition 3.34, we will extend notation so

that f̂(α, t, R) = (α′, t′, R) where (α′, t′) = f̂(α, t).

Proposition 3.34. There exists maps K : [1/3, 2] × T × {R⌊·⌋,R⌈·⌉} → KC and

K ′ : KCQc → [1/3, 2]× T × {R⌊·⌋,R⌈·⌉} so that K ◦K ′ = id and for any y ∈ KCQc,

K ′ satisfies the following relationships:

K ′(y) = (α, t, R)

K ′(Ty) = (α, t+ α,R)

K ′(Sy) = f̂(α, t, R)

for some (α, t, R) ∈ [1/3, 2]× T × {R⌊·⌋,R⌈·⌉}.

Proof. This proposition is a corollary of Lemma 3.33.

Let X = {(α⃗, t⃗) : (α⃗, t⃗) satisfies the BC property}. Observe that by Proposition

3.22, we have explicit maps A : X × {R⌊·⌋,R⌈·⌉} → KC and A′ : KCQc → X ×
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{R⌊·⌋,R⌈·⌉} so that A ◦ A′ = id. Ignoring the choice of R⌊·⌋ or R⌈·⌉, we also have if

A′(x) = (α⃗, t⃗), then A′(Tx) = (α⃗, t⃗ + α⃗ mod 1⃗) and A′(Sx) = (σ(α⃗), σ(⃗t)), where σ

is the shift on bi-infinite vectors. Thus, the proof is complete by noting that Lemma

3.33 gives us an invertible map W : [1/3, 2] × T → X that respects the dynamical

relationships.

Where convenient, we will think of K : [1/3, 2] × T → KC and K ′ : KCQc →
[1/3, 2]× T without worrying about the choice of R⌊·⌋ or R⌈·⌉. Considering the rela-

tionships outlined in the proof of Proposition 3.34, we may now deduce the following

theorem.

Theorem 3.35. KCQc is a skew-product. That is, if K ′ is the map defined in Propo-

sition 3.34 and y ∈ KCQc, we have the following relationships:

K ′(y) = (α, t)

K ′(Ty) = (α, t+ α)

K ′(Sy) = f̂(α, t).

We have established that KCQc can be parameterized by [1/3, 2] × T , and that

using this parameterization, KCQc can be viewed as a skew product. Using this fact,

we will be able to easily prove the minimality of the actions T, S on KC. However,

we will first explore another way to characterize elements in KCQc that satisfy the

BC property.

Definition 3.36 (Respecting f). A vector α⃗ ∈ [1/3, 2]Z respects f if

αi+1 = f(αi).

Further, we say a point y ∈ Ω (the set of all points with Sturmian rows) respects f if

α(y) respects f .

The BC property has an alternate characterization in terms of the function P

defined in the previous chapter.

Theorem 3.37. (Geometric Characterization of KCQc) Suppose y ∈ KCQc is the

result of a basic construction arising from (α⃗, t⃗). Then, (α⃗, t⃗) has the BC property if

and only if

(i) α⃗ respects f , and
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(ii) 0⃗ ∈ P (y).

Proof. For simplicity, call the two conditions of the BC property BC1 and BC2.

((i) ⇐⇒ BC1)

Notice that α⃗ respects f if and only if αi+1/αi ∈ {13 , 2}.

(BC1, BC2 =⇒ (i), (ii))

Suppose (α⃗, t⃗) satisfies the first and second conditions of the BC property. Let X

be the set of points satisfying the BC property equipped with the product topology,

and let W : [1/3, 2] × T → X be the map from Lemma 3.33. Note that W is

continuous when T is equipped with the product topology. Define (α, t) = W−1(α⃗, t⃗)

and note that (α, t) ∈ ([1/3, 2]\Q)× T .
Fix n. Since α ∈ Qc, we know that the set {iα + t} contains a point tn ∈ T

whose first n coordinates are simultaneously zero. Similarly, by continuity of W ,

{W (α, t+ iα)} = {(α⃗, t⃗+ iα⃗)} contains a point (α⃗, t⃗n) such that the first n coordi-

nates of t⃗n are simultaneously zero. Since t⃗n ∈ P (y), P (y) contains a point where the

first n coordinates are simultaneously zero for arbitrary n. It now follows from the

definition of the product topology that 0⃗ ∈ P (y).

((i), (ii) =⇒ BC1, BC2)

Conversely, assume 0⃗ ∈ P (y) and fix n. By Proposition 2.52, the projection of P (y)

onto a finite number of coordinates is the graph of a line, and since 0⃗ ∈ P (y), that line

contains 0⃗. Because t⃗ ∈ P (y), there is some γn ∈ R so that (⃗t)n−n = (γnα⃗)
n
−n mod 1.

Since α⃗ respects f , we immediately have that λα⃗ mod 1⃗ satisfies BC2 for any λ ∈ R,
and so (⃗t)n−n satisfies BC2.

Because n was arbitrary, we have that in fact t⃗ satisfies BC2, which completes the

proof.
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Chapter 4

Minimality of KC

We have defined what it means for a dynamical system with only one transformation

to be minimal, namely that any non-empty set X such that TX = X must be the

whole space. If we have two transformations, the definition of minimality is quite

similar.

Definition 4.1 (Minimality with Respect to Multiple Transformations). If (S, T,Ω, τ)

is an invertible topological dynamical system with S, T : Ω → Ω and S ◦ T = T ◦ S,
then (S, T,Ω, τ) is minimal if any non-empty closed subset X ⊂ Ω with the property

that SaT bX = X for all a, b ∈ Z must be Ω.

If the underlying topological space is clear, we simply refer to the action of (S, T )

as minimal.

In light of Theorem 3.35, we will first consider the minimality of the Z2 action of

(T̂ , Ŝ) on [1/3, 2]× T where T̂ and Ŝ are defined by

T̂ (α, t) = (α, t+ α) and Ŝ(α, t) = f̂(α, t).

However, trouble arises when considering (α, t) with α ∈ Q. To deal with this, we

will introduce a different metric.

Definition 4.2. Define the metric d̂R : R × R → R by d̂R(x, y) = 0 if x = y.

Otherwise,

d̂R(x, y) = d̂

R⌊·⌋(x, 0),R⌊·⌋(y, 0)


where d̂ is as in Definition 2.42.

Proposition 4.3. Qc with the subspace topology is completely metrizable using d̂R.
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The proof of Proposition 4.3 follows from the fact that SQc is a complete metric

space with respect to d̂ and SQc is precisely the image of R\Q under R⌊·⌋. (It may be

helpful to recall that SQc = S̄Qc).

A simple application of Proposition 4.3 shows that the space ([1/3, 2]\Q) × T is

completely metrizable (it can be endowed with a metric that makes it a complete

metric space).

Proposition 4.4. The Z2 action of (T̂ , Ŝ) on ([1/3, 2]\Q)× T is minimal.

Proof. We first claim that since α /∈ Q, the second coordinate of OT̂ (α, t) is dense in

T . For any k, it is clear that the second coordinate of OT̂ (α, t) is dense modulo 6k.

That is, the second coordinate of id × projk(OT̂ (α, t)) is dense in in projk(T ). We

therefore have the second coordinate of OT̂ (α, t) is dense modulo 6i for any i ≤ k.

Denseness now follows from the definition of the product topology on T .
Using this observation, it is clear that for any (α, t′), (α, t) ∈ ([1/3, 2]\Q)×T , we

have (α, t) ∈ OT̂ (α, t
′).

To complete the proof, fix (α′, t′), (α, t) ∈ ([1/3, 2]\Q)×T . Since the orbit of any
point under f : [1/3, 2] → [1/3, 2] is dense, we may find a point (α, t′′) ∈ OŜ(α

′, t′).

Using our previous observation, (α, t) ∈ OT̂ (α, t
′′). Since T̂ and Ŝ are continuous,

(α, t) ∈ O(α′, t′), and so the orbit of every point is dense.

Definition 4.5 (Gδ). A set is called a Gδ set if it is a countable intersection of open

sets.

Definition 4.6 (Residual Set). A set is called a residual set if it is a dense Gδ.

If the function K : ([1/3, 2]\Q)× T → KCQc were continuous, this would give us

a quick proof of the minimality of KCQc . Unfortunately this is not the case, but the

set of points where K is continuous is a dense Gδ.

Proposition 4.7. The set of points of continuity of K : [1/3, 2] × T → KC is a

dense residual set G and K(G) dense in KC.

Proof. Let Am×n = {0, . . . ,m− 1} × {0, . . . , n− 1}. Suppose E ⊂ [1/3, 2]× T is an

open set on which K is not continuous. Then, for some m,n ∈ N, E must contain

a point (α, t) so that K(α, t,R⌊·⌋)|Am×n ̸= K(α, t,R⌈·⌉)|Am×n . Any point (α, t) that

satisfies this is a point of discontinuity, and any point of discontinuity satisfies this

condition for some m,n.
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Define

Bm×n = {(α, t) : K(α, t,R⌊·⌋)|Am×n ̸= K(α, t,R⌈·⌉)|Am×n},

and notice that since the only points of discontinuity of ⌊·⌋ and ⌈·⌉ are Z, Bm×n is a

closed, nowhere dense set implying that Bc
m×n is a dense open set. Let

G =


m,n∈N

Bc
m×n.

We now have that by construction, the set of continuity points of K is the dense

residual set G. Further, since K(Bc
m×n)|Am×n contains every m×n configuration that

appears in KC, K(G) is dense in KC.

Corollary 4.8. If O ⊂ KC is a non-empty open set, then K−1(O) contains a non-

empty open set.

Proof. Let G be a dense set of points of continuity of K whose image is dense. Fix an

open set O ⊂ KC. Since K(G) is dense, K(G)∩O ̸= ∅ and so O is a neighbourhood

of the image of a point of continuity of K. Thus K−1(O) is a neighbourhood and so

contains an open set.

Lemma 4.9. Suppose (X, σ) and (Y, σ̂) are dynamical systems and that g : X → Y

is a surjective map that satisfies g ◦σ = σ̂ ◦ g. If the set of points of continuity of g is

a dense set G and g(G) is dense in Y , then (X, σ) minimal implies (Y, σ̂) minimal.

Proof. We will first show that if D ⊂ X is dense, then g(D) is dense. Fix y ∈ Y and

some neighbourhood Ny of y. Let G be a dense set of points of continuity for g such

that g(G) is dense. Then, Ny ∩ g(G) ̸= ∅ and so Ny is a neighbourhood of the image

of a point of continuity. Thus g−1(Ny) is a neighbourhood of some point. Since D

is dense, D ∩ g−1(Ny) ̸= ∅, and so g(D) intersects every neighbourhood and must be

dense.

To complete the proof, fix y ∈ Y , and by surjectivity of g find x ∈ X so g(x) = y.

Suppose X is minimal. We have that Ox is dense, and so g(Ox) = Og(x) = Oy is

dense.

Proposition 4.10. Φ(KC) = Φ(KCQc).

Proof. Fix y ∈ Φ(KC), A = {0, 1, . . . ,m− 1}×{0, 1, . . . , n− 1}, and the cylinder set

C = {x ∈ Φ(KC) : x|A = y|A}. C is open and so by Corollary 4.8, K−1(C) contains

an open set. Thus, there is some (α, t) ∈ K−1(C) where α /∈ Q.
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Theorem 4.11. KC is minimal with respect to the group action of Z2 by translation.

Proof. We will first show that every orbit of every point in KCQc is dense in KC ′,

the subset of KC where Φ is one-to-one, and then that the orbit closure of any point

in KC intersects KCQc . Finally we will show that KC ′ is dense in KC. Here we

must take special care to differentiate between KC and Φ(KC).

By Proposition 3.34, we have that

K

([1/3, 2]\Q)× T × {R⌊·⌋,R⌈·⌉}


= KCQc .

Now, by Proposition 4.7, K satisfies the conditions of Lemma 4.9. Thus, since Propo-

sition 4.4 states that ([1/3, 2]\Q)× T is minimal with respect to (T̂ , Ŝ), Lemma 4.9

gives us that the orbit of every point in KCQc is dense in KCQc .

Let

KC ′ = {x ∈ KC : α(x) does not contain 1/3, 1/2, 1, or 3/2}.

and recall that the proof of Theorem 3.23 shows that Φ is one-to-one exactly on KC ′.

Thus, since Φ(KCQc) is dense in Φ(KC), by continuity of Φ, we may conclude that

the orbit of any point in KCQc is dense in KC ′.

Next, we will show that for any y ∈ KC, we have Oy ∩KCQc ̸= ∅. Fix y ∈ KC

and let α(y) = (. . . , α0, α1, . . .). Choose f be the function

f(x) =


2x if x ∈ [1/3, 1)

x/3 if x ∈ [1, 2]

or

f(x) =


2x if x ∈ [1/3, 1]

x/3 if x ∈ (1, 2]

such that f(αi) = αi+1. Since the orbit of every point under f is dense, we may find

y′ ∈ Oy so that α(y′) contains only irrationals. However, since α(y′) contains only

irrationals, y′ ∈ KCQc and so O(y′) is dense in KCQc showing that Oy is dense in

KCQc .

To complete the proof, we will now show KC ′ is dense in KC. We will do this

by considering cases. Suppose y ∈ KC\KC ′. This means for some j, α((y)j) ∈
{1/3, 1/2, 1, 3/2}. For simplicity, assume this occurs at j = 0 and let α = α((y)0).

Case α = 3/2: If α = 3/2, the sequence of bottom labels must be · · · 121212 · · · .
Looking at the transition graph in Figure 3.2, a sequence to bottom labels of · · · 121212 · · ·
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can be realized in two ways. Call the configuration using the tiles in the bottom of

the diagram configuration A and the configuration using the tiles in the top of the

diagram configuration B, and notice that if α = 3/2+ δ for 0 < δ small, then the row

will contain arbitrarily long runs of tiles in configuration A. Similarly, if α = 3/2− δ,

the row will contain arbitrarily long rows of tiles in configuration B.

Case α = 1. Looking at the transition graph in Figure 3.3, we see that if α = 1,

a bottom sequence of · · · 111 · · · can be obtain in two different ways. Call these

configurations configuration A and configuration B. Notice that we can force the

bottom labels of the row to contain arbitrarily long sequences of 1’s separated by 0’s

by picking α = 1 − δ for some small 0 < δ. Further, the only way this can happen

is by alternating arbitrarily long occurrences of configuration A with arbitrarily long

sequences of configuration B.

Similarly for cases α = 1/2 and α = 1/3, a small perturbation of α will produce

arbitrarily long occurrences of each type of configuration. Since KC ′ contains all

perturbations of angles of points in KC, KC ′ is dense in KC.
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Chapter 5

Explicit Return Time Bounds

We will now give explicit bounds on the on the size of the smallest rectangular con-

figuration in KC that contains every m× n sub-configuration. The strategy will be

to analyze the parameter space [1/3, 2]× T to find intervals of parameters that have

short T̂ -return times and then bound the Ŝ-return times to such intervals. These

return time bounds will then carry forward to (KC, T, S).

Definition 5.1. Let Pm,n be the partition of [1/3, 2]×T given by m×n configurations

in KC. Specifically, (α, t) ∼ (α′, t′) if for A = {0, . . . ,m − 1} × {0, . . . , n − 1} we

have

K(α, t,R⌊·⌋)|A = K(α′, t′,R⌊·⌋)|A.

Definition 5.2. For a partition P of [1/3, 2] ×X, let πα(P) be the restriction of P
to the fiber {α} ×X.

We will familiarize ourselves with the structure of Pm,n. Let us consider P1,n.

Putting the inverse-limit space T aside for a moment, let Pn be the partition of

[1/3, 2]× [0, 1) such that (α, t) ∼ (α′, t′) if (R⌊·⌋(α, t))
n−1
0 = (R⌊·⌋(α

′, t′))n−1
0 .

After considering pre-images under rotation by an angle α, we see that, as in

the proof of Proposition 2.35, πα(Pn) is precisely the partition generated by intervals

whose endpoints are consecutive elements of Cα = {0,−α,−2α, . . . ,−nα mod 1}. We

view Cα as the places [0, 1) needs to be “cut” to produce πα(Pn). Now, varying α,

we see that Pn is produced by cutting [1/3, 2]× [0, 1) by the set of lines L = {(x, y) ∈
[1/3, 2]× [0, 1) : y = −ix mod 1 for some i ≤ n}.

Recall for the next definition that projj : T → R/(6jZ) is projection onto the jth

coordinate of T .
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11/3 22/3
0

1
t

α

Figure 5.1: The partition P3.

Definition 5.3. For j ∈ N, define the σ-algebra Bj = (id×projj)
−1(B) on [1/3, 2]×

T where B is the Borel σ-algebra defined on [1/3, 2]× R/(6jZ).

Informally, a partition P being Bj-measurable means that for a point (α, t), α

and t mod 6j are all you need to determine in which element of P it lies. Rephrased,

P gives no extra information after the jth coordinate of T . Consequently, Pm,n is

Bj-measurable for all j ≥ m. Further, we may interchangeably talk about a Bj-

measurable partition of [1/3, 2] × T and a Borel-measurable partition of [1/3, 2] ×
R/(6jZ). Where a distinction is needed, we will say that a partition of [1/3, 2] × T
coming from P , a partition of [1/3, 2] × R/(6jZ), is the Bj-measurable extension of

P or just the measurable extension of P .
Let A = [1/3, 2]× [0, 6i) which we will identify with [1/3, 2]×R/(6iZ). Given a fi-

nite collection, L, of lines in A, we form a partition of A up to a Lebesgue measure-zero

set by taking the connected components of Lc. We call this the geometric partition

generated by L.

Let’s consider how Pm,n and our description of Pn arising from lines relate.

Definition 5.4. Let Lj
a,γ = {(x, y) ∈ [1/3, 2]×R/(jZ) : y = −ix+γ mod j for some 0 ≤

i ≤ a} be the set of lines with slopes in {0,−1,−2, . . . ,−a} and offset γ.

We can now view P1,n as being the B0-measurable extension of the partition on

[1/3, 2] × [0, 1) generated by L1
n,0. Further, the boundary points of id × projj(P1,n)

are precisely the set


i<6j L
6j

n,i.

Consider f̂−1(P1,n). Since f̂−1 : [1/3, 2]× T → [1/3, 2]× T either multiplies by 3

or divides by 2 (and does so in each coordinate if we view f̂ as acting on (R2)N), we
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see

f̂ |−1
[1/3,2/3]×R/(6jZ)


L6j

n,i


=

=

(3x, 3y mod 6j) : (x, y) ∈ L6j

n,i ∩ ([1/3, 2/3)× R/(6jZ))


= L6j

n,3i ∩ ([1, 2]× R/(6jZ)) ⊂ L6j

n,3i

and

f̂ |−1
[2/3,2]×R/(6j+1Z)


L6j+1

n,i


=

=

(x
2
, y
2
mod 6j) : (x, y) ∈ L6j+1

n,i ∩ ([2/3, 2]× R/(6j+1Z))


= L6j

n, i
2
∩ ([1/3, 1]× R/(6j+1Z)) ⊂ L6j

n, i
2
.

Illustrated in Figure 5.2 is a truncation of proj3(f̂
−iP1,1).

Figure 5.2: From left to right, the projection of P1,1, f̂
−1P1,1, f̂

−2P1,1 onto the third coordinate,
truncated to lie in [1/3, 2] × [0, 4), and colored by whether the symbol at the zero position is 0, 1,
or 2.

Definition 5.5. Define rndα : R→ Z by rndα(x) = n ∈ Z whenever x ∈ (n− log 3
log 6
−
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logα
log 6

, n+ log 2
log 6
− logα

log 6
).

Note that (n − log 3
log 6
− logα

log 6
, n + log 2

log 6
− logα

log 6
) is an interval of length 1, so rndα is

defined everywhere but the countable set of endpoints.

Lemma 5.6. Suppose α /∈ Q. Then, f̂−j(α, t) = (3
a

2b
α, 3

a

2b
t) and f−j(α) = 3a

2b
α where

a = j − b ≈ log 2
log 6

j and b = rndα


log 3
log 6

j

≈ log 3

log 6
j.

Proof. The proof of Lemma 5.6 follows directly from solving the system a+b = j and
3a

2b
α ∈ [1/3, 2] with the restriction that a, b ∈ Z. We will include the derivation here.

Since α /∈ Q, 3a

2b
α /∈ {1/3, 2}, and so we may solve the simpler inclusion 3a

2b
α ∈

(1/3, 2). Using the fact that a = j − b, we may solve for an integer b so that

3j−b

2b
α ∈ (1/3, 2).

Taking logs and rearranging slightly, we see that we must have

j log 3− b log 6 = (j − b) log 3− b log 2 ∈ (− log 3− logα, log 2− logα).

Dividing by log 6 shows that we must have j log 3
log 6
− b ∈ (− log 3

log 6
− logα

log 6
, log 2
log 6
− logα

log 6
),

which is precisely satisfied by rndα(j
log 3
log 6

).

Proposition 5.7. Let B be the boundary of id × projm(Pm,n) and let and b =

rndf−m(α)(m log 3/ log 6). Then πα(B) is

πα

 
k<2b6m

L6m

n, k

2b


.

Proof. Because the boundary of Pm,n is the boundary of
m

i=0 f
−i(P1,n), we see that

πα(L
6m

n, k

2b

) arises from applying f̂−m to πf−m(α)(L
6m+b

n,k ). This holds for every k, which

completes the proof.

Iterating f̂−1 and observing how it moves the boundaries of partition elements

motivates us to define the following refinement of Pm,n.

Definition 5.8. Let Xm,n be the Bm-measurable extension of the partition generated
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by L where

L =


k<2m6m

L6m

n, k
2m

.

Proposition 5.9. Xm,n is a refinement of Pm,n.

Proof. For a fixed α, let bα be the b from Proposition 5.7, and notice that bα ≤ m.

It now immediately follows that the set L defining Xm,n is a superset of the set of

boundaries of id× projm(Pm,n), which completes the proof.

Definition 5.10. For a partition P of R into intervals, let κP be the coarseness of

P. That is,
κP = inf

I∈P
length(I).

If P is a Bj-measurable partition of T , then κP = κprojj(P).

Given (α, t) ∈ [1/3, 2] × T , we would like to bound j such that Oj

T̂
(α, t) =

{(α, t), T̂ (α, t), . . . , T̂ j−1(α, t)}, the j-orbit of (α, t) under T̂ , intersects every partition

element of πα(Pm,n). We can address this in the following way.

Definition 5.11. Let Di
ℓ(α) be the smallest n such that proji(On

T̂
(α, t)) is ℓ-dense in

R/(6iZ) for any t.

Note that the density of proji(On
T̂
(α, t)) is equal to the density of proji(On

T̂
(α, t′)),

and so when computing Di
ℓ(α) we only need to consider a single t.

For a fixed α, we consider points in KC whose 0th row has rotation number α.

Consider the n ×m configuration that arises based at (0, 0) corresponding to (α, t)

for some t. We now see that for any t′ ∈ T , the maximum T̂ -waiting time to see an

occurrence of this n×m configuration in the point corresponding to (α, t′) is bounded

by

Dm
κπα(Pm,n)(α) ≤ Dm

κπα(Xm,n)(α).

Proposition 5.12. κπα(Pm,n) ≥ κπα(Xm,n) ≥ min{|α− p
2mq
| : q ≤ n}.

Proof. Since Xm,n is a refinement of Pm,n, κπα(Pm,n) ≥ κπα(Xm,n) follows trivially.

Let X̂m,n be the geometric partition generated by the lines L =


k<2m L1
n, k

2m
.

Recalling our description of Xm,n in terms of lines, we see that L corresponds exactly

to the image under id × proj0 of the boundaries of the partition elements in Xm,n.

This shows that

κπα(X̂m,n) = κπα(Xm,n).
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Thus, we will focus our attention on X̂m,n.

Upon inspecting L, we see partition elements in πα(X̂m,n) have endpoints in the

set E = { k
2m

,−α + k
2m

, . . . ,−nα + k
2m

mod 1 : k < 2m}.
Fix α and observe κπα(X̂m,n) = d is now given by the minimum distance between

two points in E, which is

d = | − iα + k
2m
− (−jα + k′

2m
) + p| = |aα + b

2m
+ p|,

for appropriate p, a, b ∈ Z. Since d
a
= |α + b+p2m

a2m
| for some p ∈ Z, a ≤ q, and

−k < b < k, the results follow immediately.

Having obtained a lower bound ℓ for κπα(Pm,n), we will now bound above the

time it takes an orbit to become ℓ-dense.

Definition 5.13. Define

Ga,b = {α : |α− p
q
| > 1

b
for q ≤ a and p, q ∈ N}.

Note that Ga,b could be empty, but a simple estimate shows that Ga,b is non-empty

if b > a2.

Proposition 5.14. α ∈ Gka,b implies {0, α, 2α, . . . , (kb − 1)α mod k} is 1
a
-dense in

R/(kZ).

Proof. For x ∈ R, let ∥x∥k represent the distance of x from kZ. Suppose Gka,b ̸= ∅,
fix α ∈ Gka,b, and let q ∈ N be the smallest number such that

∥qα∥k ≤ 1
a
.

Let p ∈ Z be such that ∥qα∥k = |qα − kp|. By the pigeonhole principle, q ≤ ka. By

assumption, we have |α− kp
q
| > 1

b
and so

∥qα∥k = |qα− kp| > q
b
.

It would suffice to show that the points

X = {0, ∥qα∥k, 2∥qα∥k, . . . , (⌈b/q⌉ k − 1)∥qα∥k}

= {0, qα, 2qα, . . . , (⌈b/q⌉ k − 1)qα mod k}
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are 1
a
-dense since they form a subset of {0, α, 2α, . . . , (kb − 1)α mod k}. Since con-

secutive points in X are separated by a distance of less that 1
a
, we need only show

that the last point satisfies (⌈b/q⌉ k − 1)∥qα∥k ≥ k − 1/a. But this is implied by the

fact that b
q
∥qα∥k > 1, which completes the proof.

Proposition 5.15. α ∈ Gka,b implies {0, α, 2α, . . . , kaα mod k} is 1
b
-sparse in R/(kZ).

That is, no two points are within 1/b of each other.

Proof. Suppose Gka,b ̸= ∅. Fix α ∈ Gka,b and note that to prove 1
b
-sparsity of

{0, α, 2α, . . . , kaα mod k} we only need to show ∥rα∥k > 1
b
for all 0 < r ≤ ka.

Choose p, q to minimize |qα−kp| subject to 0 < q ≤ ka. We then have that ∥rα∥k
is minimized by

∥qα∥k = |qα− kp| ≥ |α− kp
q
| > 1

b
,

with the last inequality following by assumption.

The previous propositions show a symmetry in Ga,b. Namely, if α ∈ Ga,b, then
the b-orbit of rotation by α is 1/a-dense and the (a + 1)-orbit of rotation by α is

1/b-sparse.

Corollary 5.16. If α ∈ G2mn,b then κπα(Xm,n) >
1
b
.

Proof. Fix α ∈ G2mn,b. By Proposition 5.12, κπα(Xm,n) ≥ min{|α − p
2mq
| : q ≤

n and p, q ∈ N}. By the assumption that α ∈ G2mn,b, we have |α− p
2mq
| > 1

b
.

Proposition 5.17. If α ∈ G2mn,b ∩ G6mb,c then

Dm
κπα(Xm,n)(α) ≤ 6mc.

Proof. Fix α ∈ G2mn,b∩G6mb,c. Since α ∈ G2mn,b, Corollary 5.16 implies κπα(Xm,n) >
1
b

and so κπα(projm(Xm,n)) >
1
b
. By Proposition 5.14 applied to G6mb,c, we have that

E = {0, α, . . . , (6mc − 1)α mod 6m} is 1
b
-dense in [0, 6m], and so E intersects every

partition element of πα(Xm,n), which completes the proof.

We have identified α’s that give us good return times, but G2mn,b ∩ G6mb,c could

be empty. Next we will find constraints on b, c to avoid this and guarantee us some

useful properties.

Definition 5.18. Given a set X and a collection of sets C, we say (X, C) has the

intersection property if for all I ∈ C, X ∩ I ̸= ∅. If X ⊂ R, we say X is δ-fat relative

to C if for all I ∈ C, X ∩ I contains an interval of width δ.
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Definition 5.19. Let Fn be the partition of R whose elements are of the form [a, b)

where a, b are consecutive points in {p
q
: q ≤ n}. That is Fn is the partition of R into

half-open intervals whose endpoints are consecutive Farey fractions with denominator

bounded by n.

Proposition 5.20. Let p : [1/3, 2] × T → [1/3, 2] be projection onto the first coor-

dinate. Let X ⊂ R. If (X,F2mn) has the intersection property, then for any element

E ∈ Xm,n, X ∩ p(E) ̸= ∅.

Proof. Let X̂m,n = id× proj0(Xm,n) and note it is sufficient to show that if (X,F2mn)

has the intersection property, then for any element E ∈ X̂m,n, we have X ∩ p(E) ̸= ∅.
Recalling the description of X̂m,n in terms of lines, we see that X̂m,n consists of

polygonal regions whose corners have coordinates of the form p
2mq

for some q ≤ n.

Since every element of X̂m,n contains an open set, we see that for all P ∈ X̂m,n, there

exists I ∈ F2mn so that I ⊂ p(P ) (possibly ignoring some points along the boundary

of P ), which completes the proof.

Proposition 5.21. If b ≥ 4a2, c2 ≥ 4b, and d ≥ 4c2 then Ga,b ∩ Gc,d is 2
d
-fat relative

to Fa.

Proof. By definition Gx,y is constructed by removing balls of radius 1/y centered at

points p
q
with q ≤ x. If q, q′ ≤ x, then |p

q
− p′

q′
| > 1

x2 . Thus, if y > 4x2, not only will

Gx,y intersect every element of Fx, but it will do so with diameter at least

1

x2
− 2

y
=

1

2x2
.

Suppose a, b, c, d satisfy b ≥ 4a2, c2 ≥ 4b, and d ≥ 4c2. Every gap in Gc,d is of size
2
d
< 1

2c2
and every interval in Gc,d has size at least 1

2c2
. Thus, the intersection of Gc,d

with an interval of width 1
2b

must contain an interval of width at least

min


1

2c2
,
1

2b
− 2

2c2


≥ min


1

2c2
,
2

c2
− 1

c2


=

1

2c2
≥ 2

d
.

Noticing that the smallest interval in Ga,b is of size at least 2
b
> 1

2b
completes the

proof.

We can now identify a set of α’s that have good waiting times.

Definition 5.22. Let Wn×m = Ga,b ∩ Gc,d where a = 2mn, b = 22m+2n2, c =

6m22m+2n2, and d = 64m+3n4.
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Notice that the parameters a, b, c, d in Wn×m were carefully chosen to satisfy the

conditions of Proposition 5.21 and Proposition 5.17.

Theorem 5.23. Let c be an n×m configuration in KC and A = {0, . . . ,m − 1} ×
{0, . . . , n−1}. Then there exists an interval Ic ⊂ Wn×m of width 2/(64m+3n4) so that

for every α ∈ Ic and every t ∈ T , there exists a j < 65m+3n4 so that

K ◦ T̂ j(α, t)|A = c.

Proof. Given the framework we have established, the proof is straightforward.

Proposition 5.21 tells us that Wn×m is 2/(64m+3n4)-fat relative to F2mn, and

so by Proposition 5.20, we have that there exists an interval Ic ⊂ Wn×m of width

2/(64m+3n4) so that for every α ∈ Ic there exists t ∈ T so K(α, t)|A = c.

Fix Ic and α ∈ Ic. By Proposition 5.17,

Dm
κπα(Xm,n)(α) ≤ 6m64m+3n4 = 65m+3n4,

and so we will see c in less than 65m+3n4 applications of T̂ , which completes the

proof.

Theorem 5.23 gives the bulk of the proof of Theorem 5.28. If we have an n ×m

configuration c in mind, we know there is an open interval Ic of angle parameters

where we will see c in a horizontal orbit of no more than 65m+3n4 steps. Since orbits

under Ŝ are dense in the first coordinate, we know that if we bound how long it takes

for an Ŝ-orbit (equivalently an f -orbit) to become |Ic|-dense, we have a bound on the

minimum size of a rectangle that contains the configuration c.

5.1 Asymptotic Density of Orbits Under f

Definition 5.24 (Irrationality Measure). For a number α ∈ R, the irrationality

measure of α is

η(α) = inf


γ :

α− p

q

 < 1

qγ
for only finitely many p, q ∈ Z


.

Proposition 5.25 (Rhin [15]). For u0, u1, u2 ∈ Z and H = max{|u1|, |u2|}, we have
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that if H is sufficiently large,

|u0 + u1 log 2 + u2 log 3| ≥ H−7.616,

and if H ≥ 2, we have the universal bound

|u0 + u1 log 2 + u2 log 3| ≥ H−13.3.

Corollary 5.26. η(log 2/ log 6) ≤ 8.616 and
 log 2log 6

− p
q

 ≥ 1/ log 6
q14.3

if q ≥ 2.

Proof. Let x =
 log 2log 6

− p
q

. By algebraic manipulation, we deduce

xq log 6 = |(q − p) log 2− p log 3|.

And so by Proposition 5.25 and the fact that max{|q − p|, |p|} ≤ q, we have that

asymptotically, xq log 6 ≥ q−7.616, which produces a bound of x ≥ 1/ log 6
q8.616

. Alterna-

tively, we may use the bound xq log 6 ≥ q−13.3, which holds for all q ≥ 2.

Proposition 5.27. Fix δ > 0 and let kℓ ≥ ( 3
ℓ log 6

)8.616+δ. Then, for sufficiently small

ℓ, the kℓ-orbit of any x ∈ [1/3, 2] under f is ℓ-dense. That is

{x, f(x), f 2(x), . . . fkℓ−1(x)}

is ℓ-dense for any x ∈ [1/3, 2]. Further, if kℓ ≥ ( 3
ℓ log 6

)14.3 log 6 and 1/ℓ ≥ 2, then the

kℓ orbit of any point x ∈ [1/3, 2] under f is ℓ-dense.

Proof. Let ϕ be the conjugacy from Proposition 3.7 between f and rotation by log 2
log 6

.

We have that |ϕ′| attains a maximum value of 3
log 6

. Thus, to ensure an orbit segment

under f is ℓ-dense, we must have that the image of an orbit segment under ϕ ◦ f ◦
ϕ−1 = R log 2

log 6
is ℓ log 6

3
-dense. Let η = η(log 2/ log 6) be the irrationality measure of

log 2/ log 6. Fix δ > 0. We then have, by the definition of the irrationality measure,

log 2/ log 6 ∈ Gk,kη+δ
for all sufficiently large k. Applying Proposition 5.14 and using

Corollary 5.26 to bound η now completes the proof of the first claim.

For the second claim, note that Corollary 5.26 implies that log 2
log 6
∈ Gk,k14.3 log 6 for

any k ≥ 2. The proof then follows similarly.

Theorem 5.28. Let η = η(log 2/ log 6). Every legal n × m configuration in KC
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occurs in every B × A configuration in KC where

A =


324

log 6
64mn4

η

< 634.464m+25n34.464 and B = 65m+3n4

for sufficiently large m+ n.

Further, for all m,n we have that a copy of every legal n×m configuration in KC

occurs in every B × A configuration in KC where

A =


324

log 6
64mn4

14.3

log 6 and B = 65m+3n4

Proof. Let C = {0, . . . , n−1}×{0, . . . ,m−1} and let c be a legal n×m configuration.

Fix Ic ⊂ Wn×m as in Theorem 5.23. We now have that for any (α, t) ∈ Ic × T ,
K ◦ T̂ j(α, t)|C = c for some j < 65m+3n4.

Since Ic is of length at least 2/(64m+3n4), by Proposition 5.27 with ℓ = 2/(64m+3n4),

we see that for any (α, t) ∈ [1/3, 2] × T , we have Ŝj(α, t) ∈ Ic × T for some

j < (3 · 64m+3n4/(2 log 6))η.

We now have a bound on how many applications of T̂ and Ŝ it takes to land in a

particular element of Pn,m, which gives bounds on A and B.

Alternatively, using the second part of proposition 5.27 with ℓ = 2/(64m+3n4) we

get a bound for all m ≥ 2.

5.1.1 Alternative Bound on the Return of n× 1 Words

Fix a particular length n Sturmian word w, and suppose w occurs in R⌊·⌋(α, 0). By

Theorem 2.33, we know the waiting time for w is bounded by n+ 1/|I|, where

I = {t : (R⌊·⌋(α, t))
n−1
0 = w}

is the interval of phases t such that w occurs as the starting word of R⌊·⌋(α, t). Thus,

bounding |I| would bound the waiting time for w. Of course, I is just an element of

πα(Pn), and as we have seen in Proposition 5.15, if α ∈ Ga,b, then |I| > 1/b.

Proposition 5.29. If α ∈ Gn,m, the maximum waiting time for a length-n subword

of R⌊·⌋(α, 0) is n+m.

Proof. This is a direct application of Theorem 2.33 and 5.15.
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Proposition 5.30 (Refinement of Theorem 5.28). Fix δ > 0 and let w be a n×1 con-

figuration in KC. Then, for large enough n, w occurs in every An×Bn configuration

in KC where An = 224n17.232+δ and Bn = 4n2 + n.

Proof. By arguments similar to those leading up to the proof of Theorem 5.28, for

any length-n word w, there is an interval Iw ⊂ Gn,4n
2
so that for α ∈ Iw and any t,

R⌊·⌋(α, t) contains w in every block of size at least n + 4n2 and |Iw| ≥ 1/(4n2). We

also have a bound of (12n2/ log 6)8.616+δ < 224n17.232+δ for how long it takes an f -orbit

to become 1/(4n2) dense. Combining these facts completes the proof.
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Appendices
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Appendix A

Code for Enumerating Kari-Culik

Configurations

Below is Python code that enumerates all misaligned straddle words that can occur in

the Kari-Culik tileset. The main function is enumerate misaligned straddle words()

which when given a set of tiles will first create all possible words of length four with

compatible left-right edges, then filters those words to make sure the top and bottom

labels form valid Sturmian subwords (by testing that they are balanced), and then it

filters to and only returns the set of words whose tops and bottoms are misaligned

straddle words.

The output from the code is

There are 0 pairs of misaligned straddle words of type 1/3

There are 0 pairs of misaligned straddle words of type 2.1

There are 2 pairs of misaligned straddle words of type 2.2

1 from __future__ import division , print_function

from math import *

3 from collections import defaultdict

from fractions import Fraction

5 F = Fraction

7 class Tile(dict):

""" A class to represent a Wang tile """

9 def __init__(self , top=’’, left=’’, bottom=’’, right=’’, stacked_middle=None)

:

dict.__init__(self)

11 self[’top’] = top

self[’left’] = left

13 self[’bottom ’] = bottom
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self[’right’] = right

15 self[’stacked_middle ’] = stacked_middle

self.type = Fraction (1,3) if self[’left’] in [’0/3’,’1/3’,’2/3’] else

Fraction (2,1)

17 def __hash__(self):

return self.__repr__ ().__hash__ ()

19 def __repr__(self):

return self.__str__ ()

21 def __str__(self):

return "[{} {} {} {}]".format(self[’left’],self[’top’],self[’bottom ’],

self[’right’])

23

# initialize the basic tilesets

25

TYPE_13 = [Tile(’0’,’0/3’,’1’,’1/3’),Tile(’0’,’1/3’,’1’,’2/3’),Tile(’1’,’2/3’,’1’

,’0/3’),

27 Tile(’0’,’0/3’,’2’,’2/3’),Tile(’1’,’1/3’,’2’,’0/3’),Tile(’1’,’2/3’,’2’

,’1/3’)]

TYPE_2 = [Tile("0’"," -1","0"," -1"),Tile("0’","0","0","0"),Tile("1","0","0"," -1")

,

29 Tile("1","-1","1","0"),Tile("2","-1","1","-1"),Tile("2","0","1","0"),

Tile("1","0","0’","-1")]

31 BLANK_TILE = Tile()

KC_TILES = TYPE_13 + TYPE_2

33

def create_stacked_tileset(input_tiles):

35 """ creates a tile set formed by stacking tiles from input_tiles on top of

eachother in

every possible way """

37

ret = set()

39 for top_t in input_tiles:

for bottom_t in input_tiles:

41 if top_t[’bottom ’] == bottom_t[’top’]:

ret.add(Tile(top=top_t[’top’], bottom=bottom_t[’bottom ’], left=

top_t[’left’]+" "+bottom_t[’left’], right=top_t[’right’]+" "+bottom_t[’right’

], stacked_middle=top_t[’bottom ’]))

43 return ret

45 # initialize the type 2.1 and 2.2 tiles

47 # if two consecutive rows of tiles of type 2 appear , we can group those tiles

into one stacked tileset , TYPE_22

TYPE_22 = list(filter(lambda x: x[’top’] != "0’" and x[’bottom ’] != "0’",

create_stacked_tileset(TYPE_2)))

49 # if TYPE_2 tiles are sandwitched between two rows of type 1/3, they must be

these tiles

TYPE_21 = list(filter(lambda x: x[’top’] != "0’" and x[’bottom ’] != "0’", TYPE_2)

)

51

53 #

#### tools for enumerating tiles ####



84

55 #

def create_adjacency_graph(tiles):

57 """ returns a dictionary giving tiles that follow to the right of a given tile

"""

ret = {}

59 for t in tiles:

ret[t] = set()

61 for t2 in tiles:

if t[’right ’] == t2[’left’]:

63 ret[t].add(t2)

return ret

65

def enumerate_tiles(graph , length=4, ret=None):

67 """ returns a list of all walks on the graph of length ’length ’ """

# no more tiles to add

69 if length <= 0:

return ret

71 # base case , we’re just starting out

if ret == None:

73 ret = [[t] for t in graph.keys()]

return enumerate_tiles(graph , length - 1, ret)

75 # we have initial lists , we’re going to append to

new_ret = []

77 for row in ret:

prev_tile = row[-1]

79 for poss_tile in graph[prev_tile ]:

new_ret.append(row + [poss_tile ])

81 return enumerate_tiles(graph , length - 1, new_ret)

83 def enumerate_misaligned_straddle_words(tiles):

""" given a tile set , enumerate all words of length 4 that can be constructed

85 and return a list of ones that contain misaligned straddle words """

g = create_adjacency_graph(tiles)

87 all_words = enumerate_tiles(g, length =4)

misaligned = []

89 for word in all_words:

tops = proj(word , ’top’)

91 bottoms = proj(word , ’bottom ’)

93 if is_straddle_word(tops) and is_straddle_word(bottoms) and (

straddle_alignment(tops) != straddle_alignment(bottoms)):

misaligned.append(word)

95 return misaligned

97 def balanced(l,n=2):

""" returns whether sums of n consecutive labels differ by at most one """

99 sums = set()

for i in range(len(l)-n+1):

101 s = sum(int(w) for w in l[i:i+n])

sums.add(s)

103 return max(sums) - min(sums) <= 1

105 def is_sturmian(l):
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""" returns whether the sequence l is Sturmian """

107 for n in range(1,len(l)):

if balanced(l, n) == False:

109 return False

return True

111

def is_straddle_word(l):

113 """ returns whether or not l is a straddle word.

I.e., it is length 4, Sturmian , its first and last

115 symbols agree and its middle symbols disagree. """

if len(l) != 4:

117 raise Error("A straddle word must be length 4. \"{}\" isn’t".format(l))

if is_sturmian(l) and (l[0] == l[3]) and (l[1] != l[2]):

119 return True

return False

121

def straddle_alignment(l):

123 """ returns the alignment of a straddle word , ’left ’ or ’right ’

depending on which symbol is bigger , the left , or the right of the middle """

125 if l[1] > l[2]:

return "left"

127 return "right"

129 def proj(l, determined=’top’):

""" Project onto the determined label """

131 return [x[determined] for x in l]

133 # detect if we’re being executed as opposed to imported as a module

if __name__ == "__main__":

135 misaligned = enumerate_misaligned_straddle_words(TYPE_13)

print("There are {} pairs of misaligned straddle words of type 1/3".format(

len(misaligned)))

137 misaligned = enumerate_misaligned_straddle_words(TYPE_21)

print("There are {} pairs of misaligned straddle words of type 2.1".format(

len(misaligned)))

139 misaligned = enumerate_misaligned_straddle_words(TYPE_22)

print("There are {} pairs of misaligned straddle words of type 2.2".format(

len(misaligned)))

code/enumerate misaligned.py
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