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2006 and 2015 [5]) and a rapid rise of interdisciplinary 
data science, with accompanying linear algebra curricular 
recommendations [1, 6, 10, 15] that include, for example, 
exposure to the singular-value decomposition (SVD) and 
its popular cousin, principal components analysis (PCA). 

In 1993, the Linear Algebra Curriculum Study Group 
(LACSG [4]) published recommendations for a first course 
in linear algebra – emphasizing the importance of serving 
client disciplines and decreasing emphasis on abstraction 
by focusing on matrices, with a recommended core set 
of topics consisting of: operations on matrices, linear 
systems, determinants, properties of Rn, eigenvectors and 
eigenvalues, and orthogonality. Recently, the National 
Science Foundation provided financial support to convene 
LACSG 2.0, bringing together experts on the teaching and 
learning of linear algebra along with representatives from 
client disciplines. Their forthcoming recommendations 
additionally emphasize the importance of linear maps, 
their compositions and inverses, as well as diagonaliza-
tion and the singular value decomposition [12]. Topics 
recommended for a second course by this group include an 
abstract treatment of vector spaces, matrix factorizations, 
inner product spaces, finite-dimensional spectral theorem, 
pseudo-inverses, operators, and Jordan form. The teaching 
of linear algebra, we note, has received considerable atten-
tion as a topic of research [7, 14].

We complement the above body of work with two use-
ful perspectives. First, our survey, which gathers data on 
topic coverage and client populations, situates the above 
recommendations (and ours) in the context of what is 

1.0. Introduction
Linear algebra is a stalwart of the undergraduate mathemat-
ics experience, one of the core areas of mathematics whose 
“unreasonable effectiveness” finds critical application in 
disciplines ranging from business analytics to quantum 
computing. Most universities offer a first course in linear 
algebra, although what such a course entails varies from 
one institution to another. Our goal in this paper is to re-
view the status of a first course in linear algebra in the US 
and Canada through an instructor survey and then discuss 
ways in which an updated linear algebra curriculum might 
better serve its constituents.

In our survey, 70% of instructors report their course is a 
service course for computer science, data science, econom-
ics, or engineering majors (only about 25% of the institu-
tions use linear algebra as an introduction-to-proof course). 
At the same time, universities have seen a recent dramatic 
increase in computing majors (a 200% increase between 
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products, Markov chains, QR decomposition, spectral the-
orem, SVD/PCA, quadratic forms, differential equations, 
Fourier series, scalar fields other than R and C, numerical 
linear algebra, Jordan forms). Note only 8% of respondents 
report covering SVD/PCA in a first course. Additional de-
tails are provided in Figure 1.

Breaking down the data by institution and class type, 
topic coverage appears similar across doctoral granting and 
liberal arts universities and across courses serving math 
majors and general science, technology, engineering, and 
mathematics (STEM) courses. The only notable differences 
appear in the often/sometimes covered topics of Canadian 
vs US schools. For example, 82% of Canadian institutions 
include cross products as a topic, compared to 10% of 
US institutions. In contrast, fewer than 55% of Canadian 
institutions include the topics of similar matrices, non-di-
agonalizable matrices, and Gram-Schmidt orthogonal-
ization, while more than 75% of US universities include 
those topics.

We also asked instructors to what extent they empha-
sized (i) applications, (ii) computer programming, (iii) 
rote computation, (iv) geometry, and (v) introduction to 
proofs. The vast majority (72–82%) of respondents report 
a medium or high level of emphasis on introduction to 
proofs, rote computation, geometry, and applications. In 
contrast, 83% of instructors report no or low emphasis on 
computer programming—providing evidence that poten-
tial points of synergy between linear algebra and computer 
programming are not widely leveraged in the teaching of a 
first course in linear algebra.
3.2. Who takes linear algebra and what texts are used?
Current implementations of linear algebra play the role 
of a service course for engineering and computer science 

actually being taught today. Second, the growth of new 
client populations together with the recently documented 
failure rates in calculus [2] bring fresh focus to the idea of 
having linear algebra provide an alternative to calculus as 
the first encounter with college math.

2.0. The Survey
We surveyed linear algebra instructors at 129 of the top-
ranked universities (including doctoral research universities 
and 4-year liberal-arts institutions that do not offer doc-
torates in mathematics) across the US and Canada. Our 
survey included 25 questions aimed at understanding the 
prerequisites, content, points of emphasis, and disciplines 
served for introductory linear algebra courses (see online 
supplemental materials here: https://www2.seas.gwu 
.edu/~simha/research/AMS-LinAlg-Supplemental 
.pdf). We solicited responses from linear algebra instruc-
tors teaching at all US universities ranked to be in the top 
100 of US News’s university rankings in 2020 (100 total, 
with 80% from the overall rankings and 20% from top 
liberal arts colleges) and all Canadian universities in the 
top 1000 of the Times Higher Education World University 
Rankings (29 total).

After soliciting via email one to two faculty members 
from each target institution, we received 70 responses, 
of which 64 related to a first course in linear algebra. 
Responses from research-intensive, doctoral-granting in-
stitutions comprised 69% of overall responses. About half 
of respondents were from US institutions, about a quarter 
were from Canadian institutions, and the rest did not 
identify a national affiliation. Most respondents reported 
significant linear algebra teaching experience, with 88% 
having taught linear algebra more than 5 times and 44% 
having taught linear algebra more than 10 times.

3.0. What Goes on in a First Linear Algebra 
Course?
Our survey data indicates: (a) there are eight “universally 
covered topics” in a first linear algebra course, (b) computer 
science or data science students make up a large portion of 
linear algebra students, (c) prerequisites vary but success 
in linear algebra courses is high, and (d) while the experi-
ence of teaching linear algebra comes with challenges, for 
most instructors who responded, it’s among their favorite 
courses to teach. We examine each of these findings in 
more detail below.
3.1. Core topics
Our survey revealed that a set of eight core topics is in-
cluded in at least 90% of all surveyed courses. We call these 
universally covered topics. In contrast, there are seven often 
covered topics (included in 55–90% of courses) and five 
sometimes covered topics (included in 35–54% of courses). 
The remaining 12 topics in the survey were included 
in fewer than 35% of courses (LU factorization, cross  

Figure 1. Percent of respondents who report covering each 
topic.

Universally 
covered 
topics

1.	 Solving systems using row reduction (97%)
2.	 Eigenvectors/values (97%)
3.	 Determining linear independence/dependence 

of a set (94%)
4.	 Dot products (92%)
5.	 Characteristic polynomials (92%)
6.	 Diagonalization (92%)
7.	 Determinant formulas (91%)
8.	 Producing bases for subspaces (91%)

Often 
covered 
topics

1.	 Fundamental subspaces of a matrix (83%)
2.	 Similar matrices (77%)
3.	 Geometric / algebraic multiplicity (72%)
4.	 Non-diagonalizable matrices (69%)
5.	 Gram-Schmidt orthogonalization (64%)
6.	 Function spaces / polynomial spaces (63%)
7.	 Change of basis (58%)

Sometimes 
covered 
topics

1.	 Determinants as volumes (52%)
2.	 Least squares (50%)
3.	 Complex numbers (48%)
4.	 Abstract vector spaces (42%)
5.	 Inner product spaces (36%)

https://www2.seas.gwu.edu/~simha/research/AMS-LinAlg-Supplemental.pdf
https://www2.seas.gwu.edu/~simha/research/AMS-LinAlg-Supplemental.pdf
https://www2.seas.gwu.edu/~simha/research/AMS-LinAlg-Supplemental.pdf
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(72% of respondents), science and economics majors (63% 
of respondents), and as a core course for mathematics and 
statistics majors (80% of respondents). About one fourth 
of respondents indicated that linear algebra functions as an 
introduction-to-proofs course for their students.

The most common textbook used is a version of Lay’s 
text, used by about 1/3 of respondents. About 8% of respon-
dents reported using each of the following texts: Nichol-
son, Poole, and Norman & Wolczuk. All other texts were 
reported as being used by only 2–3 respondents. References 
to the named textbooks above are provided in the online 
supplemental material.
3.3. Widely ranging prerequisites; largely positive 
outcomes
The most common highest-level prerequisite for linear 
algebra was either single-variable calculus (~45% total 
with ~15% requiring Calc I and ~30% requiring Calc II) or 
high-school mathematics (~30%). About 10% of the time 
multivariable calculus was a prerequisite, and only 3% 
required a different advanced math course as a prerequisite.

What is striking is that, among our respondents, failure rates 
for linear algebra courses were lower than failure rates for calcu-
lus courses regardless of prerequisites to the linear algebra courses. 
Namely, of the instructors surveyed, no one reported a 
failure rate of higher than 30%, with three quarters of all 
respondents reporting a failure rate of 10% or lower, and 
about 98% reporting a failure rate below 20% (see Figure 
2). Further, over half (12 of 22) of the instructors who 
taught a linear algebra class that did not require calculus as 
a prerequisite reported a failure rate below 10% and 91% 
reported a failure rate below 20%. A large national calculus 
study found that failure rates in calculus range between 
22–37% depending on institution type [2]. Taken together, 
this provides strong evidence that linear algebra courses 
have lower failure rates than calculus courses, regardless 
of prerequisites.

3.4. Challenges and instructor opinions
As part of our survey, we asked participants to characterize 
the biggest challenge in teaching linear algebra. One re-
spondent made a particularly strong argument for moving 
linear algebra earlier in the curriculum:

Perhaps it's that pre-calculus and calculus dom-
inate the last several years of most students' 
math training. I wonder sometimes if I'd have 
better luck teaching high school sophomores, 
who haven’t (yet) had their geometric intuition 
beaten out of them to make room for mechan-
ical calculus procedures!

While this response was not a dominant theme, it is 
related to the broader argument we make in this paper—
namely that linear algebra should appear earlier in the 
college curriculum in a way that could function as an 
alternative path to STEM. Other participants’ responses 
offer valuable insights into the challenges inherent in the 
teaching of linear algebra, which are critical to consider 
along with significant shifts in the location and role of 
linear algebra in the undergraduate curriculum.

About half of respondents described the biggest chal-
lenge of teaching linear algebra in relation to the nature of 
the content itself. These responses highlighted how ideas 
fit together, the need to bridge and balance computation 
and theory, and challenges related to abstraction and proof. 
One respondent explained this challenge in the following 
way:

It is like a puzzle. Every piece (that is, every 
topic in the course) is important, and if any are 
missing you won't be able to finish the puzzle. 
But you also can't see what you are trying to 
accomplish until you have assembled enough 
of the pieces, making it difficult to motivate 
students to keep working on every piece.

Another explained:

So many of the concepts depend on each other 
to really make sense; it takes a good ¾ of the 
term before I feel like I can really communi-
cate the big picture of what's going on to my 
students, and until then I'm leaving a lot of 
hanging ideas floating around.

Yet another linked this to the way in which students 
experience the flow of content:

Our course starts with a lot of really basic row 
reduction/matrix multiplication, inverses etc. 
that students tend to find easy. Then it quickly 
moves to Linear Transformation and abstract 
stuff. Students tend to think they are awesome 

Figure 2. Failure rates for first linear algebra course 
disaggregated by prerequisite.

Less than 5% 5-10% 11-20% 21-30%
No Calculus Prerequisite 2 10 8 2
Calculus Prerequisite 18 18 6 0
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confidence in mathematics (90%): “one of the clearest 
conclusions…[is] how effective this course is in destroying 
that confidence” (p. 182). Notably, women are 1.5 times 
more likely than men to leave STEM after taking a first 
college calculus course, a decision consistent with gendered 
differences in confidence but not performance [8].

Taken together, the considerations of a growing need for 
linear algebra knowledge in content disciplines and rela-
tively high pass rates with limited prerequisite knowledge 
required lead us to the question: Could linear algebra, remod-
eled as a service course and updated for its changing population, 
offer a parallel pathway to STEM? To stimulate discussion of 
these issues in the undergraduate mathematics community, 
we take up this possibility in the remainder of the paper, 
and include discussion of what a first course might imply 
for a more advanced second course. 
4.1. The case for linear algebra as a first collegiate 
encounter with mathematics
Note that the suggestion of broadly adopting a first-year 
linear algebra class isn’t new. Tucker, in 1993, called for 
a “‘redistricting’ of the lower-division mathematics se-
quences” to include linear algebra [13 p.8]. Our survey 
indicates that this is being done with remarkable success 
in some places, and that linear algebra features higher 
pass rates than calculus regardless of whether calculus is 
required as a prerequisite or not. Furthermore, the high 
level of agreement on a relatively small set of core topics for 
a linear algebra class lends itself nicely to the proposal to 
adapt linear algebra courses for a lower division audience.

There are two important arguments to be made in sup-
port of first-year linear algebra courses: (a) such courses 
would better serve the rapidly increasing population of 
computer and data science majors, and (b) first-year linear 
algebra courses have the potential to increase STEM oppor-
tunity for underrepresented groups.

Point (a) is supported directly by enrollment data but 
point (b) needs more explanation. We argue that a first-year 
course in linear algebra has the potential to level the playing 
field for incoming students, regardless of whether their high 
school is well-resourced in mathematics, and thus open up 
additional pathways to STEM. Because most students do 
not take linear algebra in high school, by making linear 
algebra an entry-level course, students would experience 
a more even playing field with regard to their high school 
coursework. In contrast, many students take calculus in 
high school, then take it again in college… sometimes 
without success [2]. This can foster an uneven playing field 
depending on the resources available to students at the 
high school level—as well as leaving students feeling un-
motivated and underprepared. Linear algebra, on the other 
hand, offers a chance to start afresh, as well as to usefully 
review more elementary topics in coordinate geometry and 
equation solving, together with an application-driven focus 
to motivate students.

and doing great and stop working as hard by 
the time they really need to.

And others situated challenges in relation to students’ 
prior coursework:

Linear algebra is often one of the first classes 
students see that is not procedural. It is full 
of new mathematical language, abstract and 
spatial thinking, algebraic arguments, visual 
arguments, real-life numerical applications, and 
other analyses that students must internalize 
in order to succeed. It is also a class where a 
computer algebra software system is required. 
Students who did well in earlier classes through 
short term memorization often struggle in lin-
ear algebra.

Other common themes included challenges related to 
variations in students’ needs and backgrounds (reported by 
20% of respondents) and limited resources (e.g., time, large 
class size, and the need for more high-quality problems and 
exercises; reported by about 20% of respondents). Only 
about 12% of respondents reported that the biggest challenge 
in teaching linear algebra was related to student interest, effort, 
or capability. We interpret this to mean that the instructors 
surveyed tended to have productive beliefs about their 
students’ capabilities in linear algebra, and there is ample 
evidence to suggest that this has important implications for 
more positive and equitable outcomes [3]. Indeed, about 
four times as many respondents pointed to the nature of 
the material as the biggest source of challenge, rather than 
any inherent issue with students and their preparation.

4.0. Could Linear Algebra Be an Alternate First 
Collegiate Math Course?
Calculus is currently the gateway to many STEM majors, 
commonly required in students’ first-year coursework for 
engineering, physics, mathematics, and statistics programs. 
Unfortunately, more than half of students entering college 
with the intent to major in STEM fail to complete a STEM 
major, according to a report by the President’s Council of 
Advisors on Science & Technology [11]. The same report 
squarely identifies the “math barrier” to STEM fields, and 
hints at the need for alternatives to the status quo, explain-
ing that “introductory mathematics courses often leave 
students with the impression that all STEM fields are dull 
and unimaginative, which has particularly harmful effects 
for students who later become K–12 teachers” (p. vi).

As mentioned earlier, a recent survey paper [2] on the 
state of collegiate calculus calls for rethinking introduc-
tory calculus’ harmful role on student motivation, given 
its high 22–37% DFW rate (with a remarkable 18% DFW 
rate among students who previously took calculus in high 
school) for a group of students who come in with high 
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(rotation, reflection, affine-extended translation) in 2D 
and 3D computer graphics. Thus, a reflection followed by 
a rotation can be both seen visually and easily computed 
through successive matrix multiplication; likewise “undo-
ing” a transformation can serve to motivate and set up ma-
trix inversion. However, including these applications raises 
questions about whether students and instructors should 
be expected to write code, whether this should occur in a 
separate lab, and whether computation can be supported 
at scale. We argue that it is relatively easy for instructors to 
demonstrate with software (without showing code) in class, 
and with a little help, students can run software to compute 
results that can then be viewed to confirm hand-calculated 
matrix-vector manipulations.

Making demonstrations of applications to computer 
graphics a key goal allows one to introduce Bezier curves 
and surfaces, a foundational element of computer anima-
tion. Because Bezier curves are constructed using linear 
combinations of polynomials, students get to see linear 
algebra at work with a different type of mathematical object 
and connect linear algebra with how animated movies are 
developed.

Linear algebra for data science: getting to PCA in a 
first-year course. At first glance, it might seem that the road 
to Principal Component Analysis (PCA) is a long one that 
winds through linear transformations, then to eigenvalues 
and characteristic equations, and from there to diagonal-
ization. However, once the course is past the core of linear 
algebra (span, basis, rank, dot products, orthogonality), 
there is a way to demonstrate and explain PCA through a 
shorter, less intensive path. With the computer graphics 
applications having shown how a matrix transforms one 
vector into another, one can then demonstrate that some 
resulting vectors have the same direction, and that even 
when the result is a different direction, repeated appli-
cation of the same matrix converges to a vector with this 
unusual property (the power method). By using software 
to compute eigenvalues and eigenvectors, one can avoid 
characteristic polynomials and go straight to explaining 
a change of basis using the eigenvectors as the new basis. 
With this background, students can take data matrices, 
perform mean-centering, calculate correlation and then 
apply the change of basis, after which they can plot the 
first two coordinates, a process sufficient for many datasets. 
In this sense, the focus is on change-of-basis rather than 
eigenvalue calculation. 

Linear algebra that integrates review of high-school 
math. A first-year linear algebra instructor should generally 
anticipate a wide range of mathematical exposure amongst 
students in the course. Fortunately, linear algebra offers 
the opportunity to review many topics from high school, 
including some for which students’ exposure may vary. 
These include coordinates, equations of lines and planes, 

4.2. Issues in the design of first-year linear algebra
Any consideration of moving linear algebra into the fresh-
man year, without a calculus prerequisite (and, as we pro-
pose, also with computer and data science applications), 
is naturally enmeshed with broader issues surrounding 
the mathematics curriculum. Questions arise related to 
sequencing across courses such as: Which later courses 
require calculus for specific calculus content as opposed 
to merely seeking mathematical maturity? Could linear 
algebra be a suitable alternative? If a second, more abstract 
course in linear algebra is to be offered, what flexibility does 
this afford the first course, and what should go into the 
second? Questions related to what happens within a first, 
freshman-level linear algebra course arise as well: What are 
the roles of computer programming and applications in a 
first-year linear algebra course? What might be the role of 
proof in a first-year linear algebra course? And how can 
client departments adjust their curricula to make best use 
of a freshman course in linear algebra?

In the following sections, we outline ideas for two 
courses, an introductory freshman-level course open to 
all, driven by computing and data science applications, 
and a later second course for majors, ensuring that topics 
omitted from the first can be addressed in the second and 
that proofs take their central place in a math-major course. 
What makes this possible, we believe, is that linear algebra 
as a content area is adaptable to both audiences. Our sugges-
tions are also informed by recommendations from Linear 
Algebra Curriculum Study Group’s 1993 report (and the 
forthcoming update) [4, 12], the various data science cur-
ricular reports cited, as well as the authors’ own experience 
with linear algebra. We emphasize that these ideas are intended 
to begin discussion and are not intended as a prescription.
4.3. What might a first-year linear algebra course look 
like?
In this section, we explore possibilities for a first-year linear 
algebra course. We take it as a given that a first-year linear 
algebra course is designed with the idea that math majors 
will also take a second linear algebra course (aimed at sec-
ond or third-year students), and therefore provides room 
to deviate from “traditional” approaches. We aim to spark 
conversation by showing some ways that linear algebra 
can be adapted for a first-year audience. This section is 
not meant to describe any specific course (for an example 
outline of a specific course, see Appendix 3 of the online 
supplemental materials). Instead, we highlight the versa-
tility of the subject through a few vignettes.

Linear algebra for computer science: computer graph-
ics. Applications of linear algebra to computer graphics are 
both visually compelling and directly useful to the growing 
population of computer science students in linear algebra 
courses. For example, as the outline in Appendix 3 of the 
online supplemental materials shows, many ideas in linear 
algebra can be motivated with standard transformations 
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many parallels to help them grapple with abstraction: the 
parallels between reals and complex numbers, dot versus 
inner products, linear versus bilinear transformations, 
tensor products, finite versus infinite-dimensional, and 
an abstract treatment of operators. Mathematicians might 
benefit from the adoption of conventions from physics in 
the second course such as left-side conjugation for inner 
products, and even the dreaded Dirac notation. Once ex-
amples that demonstrate its power are presented, students 
will eventually get comfortable with the notation, and it 
will be extremely valuable for physics and computer science 
students who go further with quantum topics.
4.5. Further mathematics education research 
One problem with papers like this is that much of the above 
advocacy is based on argument and author experience, a 
problem that also afflicts any kind of stance rooted more 
in theoretical speculation than in empirical evidence. 
While there has been a considerable amount of research 
published on the teaching and learning of linear algebra 
over the last 15 years, much of it has focused on how 
students reason about particular topics in the context of 
linear algebra courses (e.g., span, linear independence), and 
instructional innovations organized around use of technol-
ogy or inquiry-oriented instruction [15]. The mathematics 
community would benefit from a careful and detailed study 
of how exactly various micro-topics from mathematics 
are used by its students in the application disciplines: For 
any subtopic X: who really uses X and why? How often do 
engineers use determinants or the concept of a null space, 
and for what purpose? How exactly do economists use 
eigenvalues and eigenvectors? Knowing precisely both the 
usage of a topic and the proficiency needed (is the proof 
needed, just the idea, or the calculation experience?) will 
greatly help the design of the standard math courses with 
the largest enrollments and whose impact is critical.

polynomials, mean, variance, correlation, and sigma no-
tation for summation.

It has been documented that high-achieving mathemat-
ics high school students are largely successful solving linear 
equations with a unique solution [9], but identifying when 
those equations are never or always true is more challeng-
ing. Thus, it is reasonable that linear algebra could provide 
a rich opportunity for such students to extend and build on 
their knowledge of linear equations and systems of linear 
equations and their solution sets - while also broadening 
students’ conceptions of how lines and planes can be 
represented in 2 and 3 dimensions (e.g., with parametric 
vector equations). Additionally, opportunities to explore 
applications of polynomials in a realistic, meaningful 
context such as computer graphics could importantly build 
students’ fluency with these mathematical objects and ex-
tend students’ appreciation of their usefulness within and 
beyond mathematics.

A point we want to emphasize is that we don’t advocate 
for including “more” in a first-year linear algebra course. 
Instead, we argue that specific tradeoffs can and should be 
made to reimagine linear algebra as a first-year course. For 
example, the course outlined in the online supplemental 
materials does not introduce characteristic polynomials or 
determinants (two topics often covered in a linear algebra 
course). This frees up time to explore PCA, which would 
be a justified tradeoff for a course aimed at a broader 
population. By breaking from the “traditional,” there is 
an opportunity to create a new and useful experience for 
first-year students.
4.4. What might a second course in linear algebra look 
like?
Coupled with a first-year introduction to the subject, a 
second linear algebra course, suitable both for math ma-
jors as well as physics and theoretically inclined computer 
science students, provides an opportunity to dive more 
deeply into linear algebra theory. What topics might such a 
course cover if students have had the first course? We offer 
a potential organizing theme for commonly covered topics 
that is useful and compelling for students who enjoy both 
theory and seeing its application. This theme, we believe, 
also fills an inexplicable oversight in the current landscape 
of linear algebra teaching, the fact that nearly all linear 
algebra textbooks fail to cover its spectacularly successful 
application: quantum mechanics.

The core ideas of quantum mechanics and quantum 
computing are based on the linear algebra of complex 
vectors, with Hermitian and unitary matrices playing key 
roles. One can begin more approachably with qubits and 
finite-dimensional vectors before transitioning to Hilbert 
spaces. Several introductory books in quantum computing 
are now available that do not require any physics; the linear 
algebra topics from these books could serve as the starting 
point for a second course. Thus, students would get to see 
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