Statics and Dynamics of Magnetic Vortices

I.M.Sigal
Based on the joint with S. Gustafson and T. Tzaneteas

Les Houches, August 2010 www.math.toronto.edu/sigal/leshouches2.pdf

Ginzburg-Landau Equations

Equilibrium states of superconductors (macroscopically) and of the U(1) Higgs model of particle physics are described by the Ginzburg-Landau equations:

$$-\Delta_A \psi = \kappa^2 (1 - |\psi|^2) \psi$$
$$curl^2 A = Im(\bar{\psi} \nabla_A \psi)$$

where $(\psi, A): \mathbb{R}^2 \to \mathbb{C} \times \mathbb{R}^2$, $\nabla_A = \nabla - iA$, $\Delta_A = \nabla_A^2$, the covariant derivative and covariant Laplacian, respectively, and κ is the Ginzburg-Landau material constant.

Origin of Ginzburg-Landau Equations

Superconductivity. $\psi: \mathbb{R}^2 \to \mathbb{C}$ is called the *order parameter*; $|\psi|^2$ gives the density of (Cooper pairs of) superconducting electrons.

 $A:\mathbb{R}^2 \to \mathbb{R}^2$ is the magnetic potential. The r.h.s. of the equation for A is the superconducting current.

Particle physics. ψ and A are the Higgs and U(1) gauge (electro-magnetic) fields, respectively.

(One can think of A as a connection on the principal U(1)- bundle $\mathbf{R}^2 \times U(1)$, and ψ , as the section of this bundle.)

Similar equations appear in the theory of superfluidity and of fractional quantum Hall effect.

Ginzburg-Landau Energy

Ginzburg-Landau equations are the Euler-Lagrange equations for the Ginzburg-Landau energy functional

$$\mathcal{E}_\Omega(\psi,A) := \frac{1}{2} \int_\Omega \left\{ |\nabla_A \psi|^2 + (\operatorname{curl} A)^2 + \frac{\kappa^2}{2} (|\psi|^2 - 1)^2 \right\}.$$

Superconductors: $\mathcal{E}(\psi, A)$ is the difference in (Helmhotz) free energy between the superconducting and normal states.

In the U(1) Higgs model case, $\mathcal{E}_{\Omega}(\psi, A)$ is the energy of a static configuration in the U(1) Yang-Mills-Higgs classical gauge theory.

Symmetries

The gauge symmetry: for any regular $\eta: \mathbb{R}^2 \to \mathbb{R}$,

$$\psi \mapsto e^{i\eta}\psi, \qquad A \mapsto A + \nabla \eta;$$

Translation symmetry: for each $t \in \mathbb{R}^2$,

$$\psi(x) \mapsto \psi(x+t), \qquad A(x) \mapsto A(x+t).$$

,

Rotation and reflection symmetry: for each $R \in O(2)$

$$\psi(x) \mapsto \psi(Rx), \qquad A(x) \mapsto R^{-1}A(Rx).$$

Quantization of Flux

Finite energy states (ψ, A) are classified by the topological degree

$$extit{deg}(\psi) := extit{deg}\left(\left.rac{\psi}{|\psi|}
ight|_{|x|=R}
ight),$$

where $R \gg 1$. For each such state we have the quantization of magnetic flux:

$$\int_{\mathbb{R}^2} B = 2\pi extit{deg}(\psi) \in 2\pi \mathbb{Z},$$

where B := curl A is the magnetic field associated with the vector potential A.

Vortices

Besides the homogenous solutions ($\psi \equiv 1, A \equiv 0$) (perfect superconductor) and ($\psi = 0$, curl A = constant) (normal metal), the Ginzburg-Landau equations have "radially symmetric" (more precisely *equivariant*) solutions of the form

$$\psi^{(n)}(x) = f_n(r)e^{in\theta}$$
 and $A^{(n)}(x) = a_n(r)\nabla(n\theta)$,

where n is an integer and (r, θ) are the polar coordinates of $x \in \mathbb{R}^2$. Note: $deg(\psi^{(n)}) = n$.

The pair $(\psi^{(n)}, A^{(n)})$ is called the *n*-vortex (magnetic or Abrikosov in the case of superconductors, and Nielsen-Olesen or Nambu string in the particle physics case).

Type I and II Superconductors

There is the critical value $\kappa=1/\sqrt{2}$, that separates superconductors into two classes with different properties:

 $\kappa < 1/\sqrt{2}$: Type I superconductors, exhibit first-order phase transitions from the non-superconducting state to the superconducting state (essentially, all pure metals);

 $\kappa > 1/\sqrt{2}$: Type II superconductors, exhibit second-order phase transitions and the formation of vortex lattices (dirty metals and alloys).

For $\kappa=1/\sqrt{2}$, Bogomolnyi has shown that the Ginzburg-Landau equations are equivalent to a pair of first-order equations. Using this Taubes described completely solutions of a given degree.

Stability/Instability of Vortices

Theorem

- 1. For Type I superconductors all vortices are stable.
- 2. For Type II superconductors, the ± 1 -vortices are stable, while the n-vortices with $|n| \geq 2$, are not.

The statement of Theorem I was conjectured by Jaffe and Taubes on the basis of numerical observations (Jacobs and Rebbi, ...).

Abrikosov Lattice States

Consider states (ψ, A) , defined on all of \mathbb{R}^2 , but such that physical quantities, $|\psi|^2$ and $\text{Im}(\bar{\psi}\nabla_A\psi)$, are doubly-periodic with respect to some lattice \mathcal{L} . By the gauge invariance for such (ψ, A) ,

$$\forall t \in \mathcal{L}, \ \exists g_t : \ \psi(x+t) = e^{ig_t(x)}\psi(x), \ A(x+t) = A(x) + \nabla g_t(x).$$

Such states will be called $(\mathcal{L}$ -) gauge or Abrikosov lattice states.

Critical Magnetic Fields

There are two key critical magnetic fields:

 H_{c1} is the field at which the first vortex enters the superconducting sample.

 H_{c2} is the field at which the normal material becomes superconducting.

Type I superconductors: $H_{c1} > H_{c2}$; Type II superconductors: $H_{c1} < H_{c2}$.

Consider Type II superconductors in two regimes: either

$$0 < H_{c2} - H \ll H_{c2}$$

or

$$0 < H - H_{c1} \ll H_{c1}$$
.

Abrikosov Lattices

Let $b := \langle B \rangle_{\Omega}$ be the average magnetic flux per basic lattice cell Ω .

Theorem

Let $\kappa > 1/2$. For every \mathcal{L} and every b, $0 < H_{c2} - b \ll H_{c2}$,

- (1) There exist non-trivial \mathcal{L} -lattice solution with one quantum of flux per cell and with average magnetic flux per cell equal to b;
- (2) The minimum of the average energy per cell is achieved on the solution corresponding to the triangular lattice.

Theorem

The solution above is linearly stable.

Theorem

Existence and stability for $0 < H - H_{c1} \ll H_{c1}$.

Abrikosov Lattice. Experiment

Time-Dependent Eqns. Superconductivity

In the leading approximation the evolution of a superconductor is described by the gradient-flow-type equations

$$\gamma(\partial_t + i\phi)\psi = \Delta_A \psi + \kappa^2 (1 - |\psi|^2)\psi$$

$$\sigma(\partial_t A - \nabla \phi) = -\operatorname{curl}^2 A + \operatorname{Im}(\bar{\psi} \nabla_A \psi),$$

 $Re\gamma \geq 0$, the time-dependent Ginzburg-Landau equations or the Gorkov-Eliashberg-Schmidt equations. (Earlier versions: Bardeen and Stephen and Anderson, Luttinger and Werthamer.)

The last equation comes from two Maxwell equations, with $-\partial_t E$ neglected, (Ampère's and Faraday's laws) and the relations $J=J_s+J_n$, where $J_s=\operatorname{Im}(\overline{\psi}\nabla_A\psi)$, and $J_n=\sigma E$.

Time-Dependent Eqns. U(1) Higgs Model

The time-dependent U(1) Higgs model is described by U(1)-Higgs (or Maxwell-Higgs) equations

$$\begin{split} \partial_t^2 \psi &= \Delta_A \psi + \kappa^2 (1 - |\psi|^2) \psi \\ \partial_t^2 A &= - \text{curl}^2 A + \text{Im} (\bar{\psi} \nabla_A \psi), \end{split}$$

coupled (covariant) wave equations describing the U(1)-gauge Higgs model of elementary particle physics (written here in the temporal gauge).

Linear Stability

A solution (ψ, A) is *linearly stability* if the Hessian $\mathcal{E}''_{\Omega}(\psi, A)$ satisfies

$$\operatorname{\mathsf{null}} \mathcal{E}^{''}_{\Omega}(\psi, A) = \mathcal{Z},$$

$$\langle v, \mathcal{E}''_{\Omega}(\psi, A)v \rangle > 0, \ \forall v \perp \mathcal{Z}.$$

Here

$$\mathcal{Z} = \{G_{\gamma}: g \in H_2(\mathbb{R}^2, \mathbb{R})\},$$

the space of gauge symmetry zero modes,

$$G_{\gamma}:=(i\gamma\psi,\nabla\gamma).$$

Properties of Hessian

- ▶ The Hessian $\mathcal{E}_{\Omega}^{''}(\psi, A)$ is a real-linear operator;
- ▶ is symmetric $(\langle w', Lw \rangle = \langle Lw', w \rangle)$ in the inner product

$$\langle \mathbf{w}, \mathbf{w}' \rangle = \int \operatorname{Re} \overline{\xi} \xi' + \alpha \cdot \alpha',$$

where $w = (\xi, \alpha)$, etc;

▶ has gauge symmetry zero modes, $G_{\gamma} := (i\gamma\psi, \nabla\gamma)$.

We extend $\mathcal{E}_{\Omega}^{''}(\psi,A)$ to a complex-linear operator L (also called Hessian) and study this operator.

Idea of Proof of Stability

The key point: The Hessian $L \sim \mathcal{E}''_{\Omega}(\psi, A)$ commutes with magnetic translations:

$$T_t L = L T_t$$
.

Here the magnetic translation T_t are given by

$$T_t = e^{-i\frac{b}{2}t \wedge x} S_t,$$

where S_t is the translation operator $S_t f(x) = f(x+t)$ and

$$t \wedge x = t_1 x_2 - t_2 x_1.$$

Magnetic translational symmetry

Recall T_t is the magnetic translation defined by

$$T_t = e^{-i\frac{b}{2}t\wedge x}S_t, \quad S_tf(x) = f(x+t).$$

The particular form of the magnetic translation is due to our choice of gauge.

Using the flux quantization relation $bt \wedge s = 2\pi n$, one can show:

$$T_{t+s}=e^{-i\frac{b}{2}t\wedge s}T_tT_s.$$

Hence T_t defines a unitary projective group representation of \mathcal{L} on $L^2(\mathbb{R}^2;\mathbb{C})\times L^2(\mathbb{R}^2;\mathbb{R}^2)$. It can be lifted to a standard representation τ_t .

Direct Fibre Integral (Bloch Decomposition)

We use $\tau_t L = L\tau_t$, and the representation τ_t to decompose the operator L into the fiber direct integral

$$ULU^{-1} = \int_{\hat{\Omega}}^{\oplus} L_k d\mu_k$$

on the space

$$\mathscr{H}=\int_{\hat{\Omega}}^{\oplus}\mathscr{H}_k\mathsf{d}\mu_k,$$

where $\hat{\Omega}$ is the fundamental cell of the reciprocal lattice (the dual group to \mathcal{L} under addition mod the reciprocal lattice), and $d\mu_k = \frac{dk}{|\hat{\Omega}|}$ is the Haar measure on $\hat{\Omega}$.

Fibre Spaces and Operators

Above, $U:L^2(\mathbb{R}^2;\mathbb{C})\times L^2(\mathbb{R}^2;\mathbb{R}^2)\to \mathscr{H}$ is a unitary operator given by

$$(Uv)_k(x) = \sum_{t \in \mathcal{L}} \chi_t^{-1} \tau_t v(x),$$

where $\chi: \mathcal{L} \to U(1)$ is a character of the representation τ_t of \mathcal{L} , explicitly given by

$$\chi_t = e^{ik \cdot t}, \ k \in \hat{\Omega},$$

 L_k is the restriction of the operator L to $H_2(\Omega)$, satisfying

$$\tau_t v(x) = \chi_t v(x), t \in \mathsf{basis}.$$

Θ-function

In the leading order the analysis of the ground states of the fiber operators is reduced to construction of an entire function $\Theta(z), \ z=x^1+ix^2\in\mathbb{C}$, satisfying the periodicity conditions

$$\Theta(z+1) = \Theta(z),$$

$$\Theta(z+\tau) = e^{i(k_2 - k_1 \tau)} e^{-2inz} e^{-in\tau z} \Theta(z),$$

where $\tau = \frac{r'}{r}$, with r, r' a basis for a lattice $\mathcal{L} \subseteq \mathbb{C}$. (The complex number τ characterizes (the shape of) the lattice \mathcal{L} . Θ has inherited these conditions from the gauge-periodicity of ψ .)

Lowest Eigenfunctions (Leading Order)

The first relation above ensures that Θ have an absolutely convergent Fourier expansion

$$\Theta(z) = \sum_{m=-\infty}^{\infty} c_m e^{2miz}.$$

The second relation leads to the relation for the coefficients:

$$c_{m+n} = e^{i(k_1\tau - k_2)}e^{in\pi\tau}e^{2mi\pi\tau}c_m.$$

 \rightarrow Such functions are parameterized by c_0, \ldots, c_{n-1} .

This gives the ground states of the fibers, L_k , of linearized operator L in the leading order. A perturbation theory finishes the proof.

Dynamics of Several Vortices

Consider a dynamical problem with initial conditions, describing several vortices, with the centers at points z_1, z_2, \ldots and with the degrees n_1, n_2, \ldots , glued together, e.g.

$$\psi_{\underline{Z},\chi}(x) = e^{i\chi(x)} \prod_{j=1}^m \psi^{(n_j)}(x-z_j),$$

$$A_{\underline{Z},\chi}(x) = \sum_{j=1}^m A^{(n_j)}(x-z_j) + \nabla \chi(x) ,$$

where $\underline{\mathbf{z}}=(z_1,z_2,\dots)$ and χ is an arbitrary real function. We will assume that $R(\underline{\mathbf{z}}):=\min_{j\neq k}|z_j-z_k|\gg 1$.

Vortex Dynamics: Superconductors

The superconductor model: for initial data (ψ_0, A_0) close to some $(\psi_{\underline{Z}_0,\chi_0}, A_{\underline{Z}_0,\chi_0})$ with $e^{-R(\underline{Z}_0)}/\sqrt{R(\underline{z}_0)} \leq \epsilon \ll 1$ we have

$$(\psi(t), A(t)) = (\psi_{\underline{Z}(t), \chi(t)}, A_{\underline{Z}(t), \chi(t)}) + O(\epsilon \log^{1/4}(1/\epsilon))$$

and that the vortex dynamics is governed by the system

$$\gamma_{n_j}\dot{z}_j = -\nabla_{z_j}W(\underline{z}) + O(\epsilon^2\log^{3/4}(1/\epsilon)).$$

Here $W(\underline{z}) \sim \sum_{j \neq k} (const) n_j n_k \frac{e^{-|z_j - z_k|}}{\sqrt{|z_j - z_k|}}$ is the effective energy and $\gamma_n > 0$.

Vortex Dynamics: U(1)-Higgs Model

The *Higgs model*: for times up to $O\left(\frac{1}{\sqrt{\epsilon}}\log\left(\frac{1}{\epsilon}\right)\right)$, the effective dynamics is given by

$$\gamma_{n_j}\ddot{z}_j = -\nabla_{z_j}W(\underline{z}(t)) + o(\epsilon).$$

with $\gamma_n > 0$ and with the same effective energy/Hamiltonian

$$W(\underline{z}) \sim \sum_{j \neq k} (const) n_j n_k \frac{e^{-|z_j - z_k|}}{\sqrt{|z_j - z_k|}}.$$

Open Problems

- Extend the previous results to the Chern-Simons equations, appearing in the macroscopic theory of the fractional quantum Hall effect (FQHE);
- Nonlinear stability of Abrikosov lattices;
- Abrikosov lattices at higher fluxes;
- Asymptotic dynamics of vortices.

Thank-you for your attention.