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Ginzburg-Landau Equations

Equilibrium states of superconductors (macroscopically) and of the
U(1) Higgs model of particle physics are described by the
Ginzburg-Landau equations:

−∆Aψ = κ2(1− |ψ|2)ψ
curl2A = Im(ψ̄∇Aψ)

where (ψ,A) : R2 → C× R2, ∇A = ∇− iA, ∆A = ∇2
A, the

covariant derivative and covariant Laplacian, respectively, and κ is
the Ginzburg-Landau material constant.
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Origin of Ginzburg-Landau Equations

Superconductivity. ψ : R2 → C is called the order parameter; |ψ|2
gives the density of (Cooper pairs of) superconducting electrons.

A : R2 → R2 is the magnetic potential. The r.h.s. of the equation
for A is the superconducting current.

Particle physics. ψ and A are the Higgs and U(1) gauge
(electro-magnetic) fields, respectively.
(One can think of A as a connection on the principal U(1)- bundle
R2 × U(1), and ψ, as the section of this bundle.)

Similar equations appear in the theory of superfluidity and of
fractional quantum Hall effect.
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Ginzburg-Landau Energy

Ginzburg-Landau equations are the Euler-Lagrange equations for
the Ginzburg-Landau energy functional

EΩ(ψ,A) :=
1

2

∫
Ω

{
|∇Aψ|2 + (curl A)2 +

κ2

2
(|ψ|2 − 1)2

}
.

Superconductors: E(ψ,A) is the difference in (Helmhotz) free
energy between the superconducting and normal states.

In the U(1) Higgs model case, EΩ(ψ,A) is the energy of a static
configuration in the U(1) Yang-Mills-Higgs classical gauge theory.
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Symmetries

The gauge symmetry: for any regular η : R2 → R,

ψ 7→ e iηψ, A 7→ A +∇η;

Translation symmetry: for each t ∈ R2,

ψ(x) 7→ ψ(x + t), A(x) 7→ A(x + t).

´
Rotation and reflection symmetry: for each R ∈ O(2)

ψ(x) 7→ ψ(Rx), A(x) 7→ R−1A(Rx).
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Quantization of Flux

Finite energy states (ψ,A) are classified by the topological degree

deg(ψ) := deg

(
ψ

|ψ|

∣∣∣∣
|x |=R

)
,

where R � 1. For each such state we have the quantization of
magnetic flux: ∫

R2

B = 2πdeg(ψ) ∈ 2πZ,

where B := curlA is the magnetic field associated with the vector
potential A.
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Vortices

Besides the homogenous solutions (ψ ≡ 1, A ≡ 0) (perfect
superconductor) and (ψ = 0, curl A = constant) (normal metal),
the Ginzburg-Landau equations have “radially symmetric” (more
precisely equivariant) solutions of the form

ψ(n)(x) = fn(r)e inθ and A(n)(x) = an(r)∇(nθ) ,

where n is an integer and (r , θ) are the polar coordinates of
x ∈ R2. Note: deg(ψ(n)) = n.

The pair (ψ(n),A(n)) is called the n-vortex (magnetic or Abrikosov
in the case of superconductors, and Nielsen-Olesen or Nambu
string in the particle physics case).
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Type I and II Superconductors

There is the critical value κ = 1/
√

2, that separates
superconductors into two classes with different properties:

κ < 1/
√

2: Type I superconductors, exhibit first-order phase
transitions from the non-superconducting state to the
superconducting state (essentially, all pure metals);

κ > 1/
√

2: Type II superconductors, exhibit second-order phase
transitions and the formation of vortex lattices (dirty metals and
alloys).

For κ = 1/
√

2, Bogomolnyi has shown that the Ginzburg-Landau
equations are equivalent to a pair of first-order equations. Using
this Taubes described completely solutions of a given degree.
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Stability/Instability of Vortices

Theorem

1. For Type I superconductors all vortices are stable.

2. For Type II superconductors, the ±1-vortices are stable, while
the n-vortices with |n| ≥ 2, are not.

The statement of Theorem I was conjectured by Jaffe and Taubes
on the basis of numerical observations (Jacobs and Rebbi, . . . ).
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Abrikosov Lattice States

Consider states (ψ,A), defined on all of R2, but such that physical
quantities, |ψ|2 and Im(ψ̄∇Aψ), are doubly-periodic with respect
to some lattice L. By the gauge invariance for such (ψ,A),

∀t ∈ L, ∃gt : ψ(x + t) = e igt(x)ψ(x), A(x + t) = A(x) +∇gt(x).

Such states will be called (L-) gauge or Abrikosov lattice states.
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Critical Magnetic Fields

There are two key critical magnetic fields:
Hc1 is the field at which the first vortex enters the superconducting
sample.

Hc2 is the field at which the normal material becomes
superconducting.

Type I superconductors: Hc1 > Hc2;
Type II superconductors: Hc1 < Hc2.

Consider Type II superconductors in two regimes: either

0 < Hc2 − H � Hc2,

or
0 < H − Hc1 � Hc1.
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Abrikosov Lattices

Let b := 〈B〉Ω be the average magnetic flux per basic lattice cell Ω.

Theorem
Let κ > 1/2. For every L and every b, 0 < Hc2 − b � Hc2,

(1) There exist non-trivial L-lattice solution with one quantum of
flux per cell and with average magnetic flux per cell equal to b;

(2) The minimum of the average energy per cell is achieved on the
solution corresponding to the triangular lattice.

Theorem
The solution above is linearly stable.

Theorem
Existence and stability for 0 < H − Hc1 � Hc1.
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Abrikosov Lattice. Experiment

I.M.Sigal Based on the joint with S. Gustafson and T. TzaneteasStatics and Dynamics of Magnetic Vortices



Time-Dependent Eqns. Superconductivity

In the leading approximation the evolution of a superconductor is
described by the gradient-flow-type equations

γ(∂t + iφ)ψ = ∆Aψ + κ2(1− |ψ|2)ψ

σ(∂tA−∇φ) = −curl2A + Im(ψ̄∇Aψ),

Reγ ≥ 0, the time-dependent Ginzburg-Landau equations or the
Gorkov-Eliashberg-Schmidt equations. (Earlier versions: Bardeen
and Stephen and Anderson, Luttinger and Werthamer.)

The last equation comes from two Maxwell equations, with −∂tE
neglected, (Ampère’s and Faraday’s laws) and the relations
J = Js + Jn, where Js = Im(ψ∇Aψ), and Jn = σE .

I.M.Sigal Based on the joint with S. Gustafson and T. TzaneteasStatics and Dynamics of Magnetic Vortices



Time-Dependent Eqns. U(1) Higgs Model

The time-dependent U(1) Higgs model is described by
U(1)−Higgs (or Maxwell-Higgs) equations

∂2
t ψ = ∆Aψ + κ2(1− |ψ|2)ψ

∂2
t A = −curl2A + Im(ψ̄∇Aψ),

coupled (covariant) wave equations describing the U(1)-gauge
Higgs model of elementary particle physics (written here in the
temporal gauge).
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Linear Stability

A solution (ψ,A) is linearly stability if the Hessian E ′′Ω(ψ,A)
satisfies

null E ′′Ω(ψ,A) = Z,

〈v , E ′′Ω(ψ,A)v〉 > 0, ∀v ⊥ Z.

Here
Z = {Gγ : g ∈ H2(R2,R)},

the space of gauge symmetry zero modes,

Gγ := (iγψ,∇γ).
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Properties of Hessian

I The Hessian E ′′Ω(ψ,A) is a real-linear operator;

I is symmetric (〈w ′, Lw〉 = 〈Lw ′,w〉) in the inner product

〈w ,w ′〉 =

∫
Re ξξ′ + α · α′,

where w = (ξ, α), etc;

I has gauge symmetry zero modes, Gγ := (iγψ,∇γ).

We extend E ′′Ω(ψ,A) to a complex-linear operator L (also called
Hessian) and study this operator.
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Idea of Proof of Stability

The key point: The Hessian L ∼ E ′′Ω(ψ,A) commutes with
magnetic translations:

TtL = LTt .

Here the magnetic translation Tt are given by

Tt = e−i b
2
t∧xSt ,

where St is the translation operator St f (x) = f (x + t) and

t ∧ x = t1x2 − t2x1.
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Magnetic translational symmetry

Recall Tt is the magnetic translation defined by

Tt = e−i b
2
t∧xSt , St f (x) = f (x + t).

The particular form of the magnetic translation is due to our
choice of gauge.

Using the flux quantization relation bt ∧ s = 2πn, one can show:

Tt+s = e−i b
2
t∧sTtTs .

Hence Tt defines a unitary projective group representation of L on
L2(R2; C)× L2(R2; R2). It can be lifted to a standard
representation τt .
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Direct Fibre Integral (Bloch Decomposition)

We use τtL = Lτt , and the representation τt to decompose the
operator L into the fiber direct integral

ULU−1 =

∫ ⊕
Ω̂

Lkdµk

on the space

H =

∫ ⊕
Ω̂

Hkdµk ,

where Ω̂ is the fundamental cell of the reciprocal lattice ( the dual
group to L under addition mod the reciprocal lattice), and
dµk = dk

|Ω̂|
is the Haar measure on Ω̂.
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Fibre Spaces and Operators

Above, U : L2(R2; C)× L2(R2; R2)→H is a unitary operator
given by

(Uv)k(x) =
∑
t∈L

χ−1
t τtv(x),

where χ : L → U(1) is a character of the representation τt of L,
explicitly given by

χt = e ik·t , k ∈ Ω̂,

Lk is the restriction of the operator L to H2(Ω), satisfying

τtv(x) = χtv(x), t ∈ basis.
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Θ-function

In the leading order the analysis of the ground states of the fiber
operators is reduced to construction of an entire function
Θ(z), z = x1 + ix2 ∈ C, satisfying the periodicity conditions

Θ(z + 1) = Θ(z),

Θ(z + τ) = e i(k2−k1τ)e−2inze−inτzΘ(z),

where τ = r ′

r , with r , r ′ a basis for a lattice L ⊆ C.
(The complex number τ characterizes (the shape of) the lattice L.
Θ has inherited these conditions from the gauge-periodicity of ψ.)
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Lowest Eigenfunctions (Leading Order)

The first relation above ensures that Θ have an absolutely
convergent Fourier expansion

Θ(z) =
∞∑

m=−∞
cme2miz .

The second relation leads to the relation for the coefficients:

cm+n = e i(k1τ−k2)e inπτe2miπτcm.

→ Such functions are parameterized by c0, . . . , cn−1.
This gives the ground states of the fibers, Lk , of linearized operator
L in the leading order. A perturbation theory finishes the proof.
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Dynamics of Several Vortices

Consider a dynamical problem with initial conditions, describing
several vortices, with the centers at points z1, z2, . . . and with the
degrees n1, n2, . . . , glued together, e.g.

ψz,χ(x) = e iχ(x)
m∏

j=1

ψ(nj )(x − zj),

Az,χ(x) =
m∑

j=1

A(nj )(x − zj) +∇χ(x) ,

where z = (z1, z2, . . . ) and χ is an arbitrary real function.
We will assume that R(z) := minj 6=k |zj − zk | � 1.
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Vortex Dynamics: Superconductors

The superconductor model : for initial data (ψ0,A0) close to some
(ψz0,χ0 ,Az0,χ0) with e−R(z0)/

√
R(z0) ≤ ε� 1 we have

(ψ(t),A(t)) = (ψz(t),χ(t),Az(t),χ(t)) + O(ε log1/4(1/ε))

and that the vortex dynamics is governed by the system

γnj żj = −∇zj W (z) + O(ε2 log3/4(1/ε)).

Here W (z) ∼
∑

j 6=k(const)njnk
e
−|zj−zk |√
|zj−zk |

is the effective energy and

γn > 0.
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Vortex Dynamics: U(1)-Higgs Model

The Higgs model : for times up to O
(

1√
ε

log
(

1
ε

))
, the effective

dynamics is given by

γnj z̈j = −∇zj W (z(t)) + o(ε).

with γn > 0 and with the same effective energy/Hamiltonian

W (z) ∼
∑
j 6=k

(const)njnk
e−|zj−zk |√
|zj − zk |

.
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Open Problems

I Extend the previous results to the Chern-Simons equations,
appearing in the macroscopic theory of the fractional quantum
Hall effect (FQHE);

I Nonlinear stability of Abrikosov lattices;

I Abrikosov lattices at higher fluxes;

I Asymptotic dynamics of vortices.
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Thank-you for your attention.
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