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Abstract: In this paper we study the energy spectrum of the Pauli–Fierz Hamiltonian
generating the dynamics of nonrelativistic electrons bound to static nuclei and interacting
with the quantized radiation field. We show that, for sufficiently small values of the
elementary electric charge, and under weaker conditions than those required in [3],
the spectrum of this Hamiltonian is absolutely continuous, except possibly in small
neighbourhoods of the ground state energy and the ionization thresholds. In particular, it
is shown that (for a large range of energies) there are no stable excited eigenstates. The
method used to prove these results relies on the positivity of the commutator between
the Hamiltonian and a suitably modified dilatation generator on photon Fock space.

1. Introduction

In this paper we extend the method of positive commutators to a family of Hamiltonians
related to the Pauli–Fierz Hamiltonian describing nonrelativistic electrons bound to static
nuclei and interacting with the quantized electromagnetic field, subject to an ultraviolet
cut-off. This is a standard Hamiltonian of quantum electrodynamics of nonrelativistic
particles. Lete andm be the electron charge and mass and� := e2

h̄c
, the fine-structure

constant. The physical value of� is approximately 1
137, however, in this paper it is

considered as a small dimensionless parameter. In dimensionless units in which the
energy, photon wave vector, particle coordinate, particle charge and particle mass are

measured in units ofmc2�2, �me
2

h̄2 , h̄2

me2 , e.�3=2K/−1 andm, respectively (hereK is
an ultraviolet cut-off defined below), the Pauli–Fierz Hamiltonian for a system ofN

charged particles (typically electrons) is given by

H.e/ =
N∑
j=1

1

2mj

(
pj − ejA.xj /

)2

+ V .x/⊗ 1f + 1part ⊗Hf ; (1.1)
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wheree := .e1; : : : ; eN/, ej is the electric charge,mj the mass,xj the position (-
operator), andpj := −i∇j the momentum operator of thej th particle, for j =
1; : : : ; N ; moreoverx := .x1; : : : ; xN/. The operatorK1=2A.y/ is the quantized elec-
tromagnetic vector potential, cut-off at large wave vectors, at the pointy in physical
spaceR3. It is assumed to satisfy the Coulomb gauge condition,

(∇ · A).y/ = 0. The
operatorV .x/ originates in a properly rescaled electrostatic (scalar) potential of the
charged particles (electrons) in the Coulomb field of static charges (nuclei) (see [2]).
Finally,Hf is the usual Hamiltonian of the noninteracting, quantized electromagnetic
field. The operatorsA.y/, y ∈ R

3, andHf are densely defined, self-adjoint operators
on the usual Fock space,Hf , of the quantized electromagnetic field (the photon Fock
space), andV .x/ is a multiplication operator on the particle Hilbert space,Hpart, which
is given by (a subspace of prescribed symmetry character of)L2.R3N/, with R

3N the
configuration space of the charged particles. The Hilbert space of the entire system con-
sisting of the charged particles and an arbitrary number of photons is given by the tensor
product spaceHpart ⊗ Hf . One can prove without much difficulty (see, e.g., [8,9]) that
H.e/ is a densely defined, self-adjoint operator onHpart⊗ Hf , whose energy spectrum
is bounded below by a finite constant (depending on the positions of the nuclei and their
electric charges). A proof can be based, either on diamagnetic type inequalities or on
constructing the semigroup exp

(−tH.e/), for t ≥ 0, with the help of path-integrals.
It should be noted that, for simplicity, we have set the magnetic moments of the

charged particles to zero. (Otherwise, the HamiltonianH.e/would contain an additional
term describing the Zeeman energies of magnetic moments in the ultraviolet cut-off,
quantized electromagnetic field. This term would complicate our analysis slightly.)

For |e| := ∑N
j=1 |ej | sufficiently small, we shall construct a suitable modification of

the (2nd -quantized) generator of dilatations on the photon Fock space, with the property
that its commutator with the HamiltonianH.e/ is positive, provided that we restrict the
energy to small neighbourhoods of the eigenvalues of the particle Hamiltonian,

Hpart =
N∑
j=1

1

2mj
p2
j + V .x/; (1.2)

corresponding to excited states of the atom or molecule. This result has the follow-
ing implications: In the vicinity of the eigenvalues ofHpart corresponding to excited
eigenstates,

(i) H.e/ has no eigenvalues;
(ii) the spectrum ofH.e/ is purely absolutely continuous;
(iii) H.e/ satisfies thelimiting absorption principle.

Implication (i) is derived from the basic positive-commutator estimate via a virial
theorem, while (ii) and (iii) follow from that estimate with the help of a slight extension of
Kato–Mourre theory presented in this paper. The limiting absorption principle represents
a first step towards analyzing properties of the time evolution of a quantum mechanical
system.

The results announced in the abstract follow from (i) and (ii) above, together with
similar (but simpler) results in Sect. IV of [3]. Results similar to (i) and (ii) above (but of
somewhat more detailed nature), were first obtained, understrongerhypotheses, in [2–
4]; (see remarks after Theorem 3.1). If the quantized electromagnetic field is not only cut
off in the ultraviolet, but also in the infrared (at small wave vectors), e.g., by introducing
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a small photon mass, results similar to ours have previously been established in [22,10,
12,11]. Furthermore, in [12], commutator estimates were derived that inspired, in part,
our findings. Parallel results for sufficiently high temperatures (here the temperature
leads to an effective infrared cut-off) were obtained in [15,16].

Commutator methods were introduced in [24,18], further developed in [19] and
turned into a deep theory in [20]. In [20,21,23,26] they were shown to yield a powerful
tool in analyzing spectral properties of Hamiltonians of quantum-mechanical systems
and in studying their time evolution. The present paper is inspired by these earlier
discoveries and should be viewed as a step towards understanding the time evolution of
systems of photons interacting with nonrelativistic, quantum-mechanical matter.

2. The Hamiltonian of Nonrelativistic QED

As announced, we study systems of nonrelativistic, quantum-mechanical, charged parti-
cles interacting with the quantized electromagnetic field. The dynamics of such systems
is described by the HamiltonianH.e/ introduced in (1.1). The potential energyV .x/
is assumed to satisfy standard Kato-type conditions specified below. The Hamiltonian
Hf of the noninteracting, quantized electromagnetic field can be expressed in terms of
standard photon creation- and annihilation operators,a∗.k/ anda.k/, as follows:

Hf =
∫
!.k/ a∗.k/ · a.k/ d3k; (2.1)

where! = !.k/ = |k| is the energy of a photon with wave vectork. The creation-
and annihilation operatorsa∗.k/ anda.k/ are transverse, vector-valued, operator-valued
distributions onHf satisfyingk · a∗.k/ = k · a.k/ = 0 anda.k/� = 0, for all k ∈ R

3,
where� is thevacuum(zero-photon)vectorin Hf . Furthermore, these operators satisfy
the canonical commutation relations

[
a#
i .k/ ; a

#
j .k/

] = 0;
[
ai.k/ ; a

∗
j .k/

] =
(
�ij − kik

′
j

|k|2
)
�.k − k′/; (2.2)

wherea#
i is theith component ofa# (in the plane perpendicular tok), anda# = a or a∗.

The cut-off electromagnetic vector potentialA.y/, y ∈ R
3, is the densely defined

self-adjoint operator onHf given by

A.y/ =
∫ (

e−iky ⊗ a∗.k/ + eiky ⊗ a.k/
) �.k/√

!.k/
d3k; (2.3)

where� is a real function onR3 of rapid decrease, as|k| → ∞. It describes the ultraviolet
cut-off and is necessary forA.y/ to be densely defined and self-adjoint, for everyy ∈ R

3.
We assume it lives on a scaleK, i.e., it is of the form�.k/ = K−1=2�0.k=K/, where
�0 is a fixed function. The particular form of�0 is irrelevant for our analysis. All that is
required are certain bounds on�0 and its derivatives.

It is convenient to forget the origin of the vector potentialA.y/ and consider a slighty
generalized form of it given by

A.y/ =
∫ (

Gy.k/⊗ a∗.k/ + Gy.k/⊗ a.k/
)
d3k; (2.4)
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where the functionGx.k/ is assumed to satisfy a variety of conditions (depending on
the problem we study), the most important one being

sup
x

{∫
1

!.k/
|Gx.k/|2 d3k

}
< ∞: (2.5)

This condition guarantees that, for|e| small enough, the operatorH.e/ is bounded below
and self-adjoint on the domain ofH.e = 0/ (see [5]).

We recall that we neglect the Zeeman term,

−
∑

�i Si · B.xi/; (2.6)

describing the interaction energy of the magnetic moments�i Si , whereSi is the spin
operator of theith particle, with the magnetic fieldB.y/ = curlA.y/.

In order to simplify notation and exposition, we demonstrate our approach on the
model of a particle system interacting with a massless scalar field, instead of the vector
potential. The Hamiltonian for such a model is given by

H = Hpart ⊗ 1f + 1part ⊗Hf + gI; (2.7)

acting onHpart ⊗ F , where the Hilbert spaceHpart is the same as before,F is the
Fock space of scalar fields generated byL2.R3/,Hpart is given in (1.2) and is a particle
(atomic) Hamiltonian, acting onHpart, andHf is a scalar field Hamiltonian onF given,
similarly to (2.1), by

Hf =
∫
!.k/ a∗.k/ a.k/ d3k; (2.8)

with ! = !.k/ = |k|, as above. Finally, the interaction termI is defined by

I :=
∫ (

Gx.k/⊗ a∗.k/ + Gx.k/⊗ a.k/
)
d3k

= a∗.Gx/+ a.Gx/ ; (2.9)

wherex = .x1; : : : ; xN/ ∈ R
3N , and whereGx.k/ is required to satisfy (2.5) (we use the

same notation for coupling functions as in the vector case). The operatorsa∗.k/ anda.k/
are creation- and annihilation operators of a scalar quantum field acting onF . They obey
the canonical commutation relations,[a#.k/; a#.k′/] = 0, [a.k/; a∗.k′/] = �.k − k′/,
anda.k/� = 0, for all k; k′ ∈ R

3, where� is the vacuum vector inF . (For brevity
we continue to refer to the scalar field asphoton field.) Note that for a scalar field the
coupling to matter cannot be “minimal”, i.e., it cannot be described by replacing the
momentum operator by a covariant derivative.

The simplified model contains all the difficulties of the vector model, but the infrared
problem becomes visible in its pure form, unencumbered by vector notation and other
inessential particulars. In (2.9), it is straightforward to also include terms quadratic in
a anda∗. We do not pursue this in order not to muddle the key ideas underlying our
methods.
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Throughout the paper, we assume that

Hpart = H ∗
part on the domain of

N∑
j=1

1
2mj

p2
j and has several isolated eigenvalues,

E0; E1; : : : , of finite multiplicity below the bottom,6, of its essential spectrum:

E0 < E1 < · · · < 6:

This assumption is satisfied for a large class of potentials including many-body
Coulomb potentials (see e.g. [25]).

The HamiltonianH.e/ defined in (1.1) is self-adjoint under the above assumption
on the potentialV .x/ and under assumption (2.5) on the coupling functionGx . This is
proven by using diamagnetic-type inequalities or by considering the semigroupe−H.e/t .
It was shown in [3] that for|e| = ∑ |ej | sufficiently small, it is self-adjoint on the
domainD

(
H.e/

) = D
(
H.0/

)
. The self-adjointness of the HamiltonianH , defined in

(2.7)–(2.9), on the domainD.H/ = D.H0/, for g sufficiently small, follows from a
result of [3] (see Eq. (4.10) of Sect. 4).

In what follows,E1.H/ stands for the spectral projection of a self-adjoint operator
H associated with an interval1, while ��∈�, for the characteristic function of a set
� (thusE1.H/ = �H∈1). Below, we make use of the following exponential decay

estimate proven in [3]: If� ∈ C∞
0 , with supp� ⊂

(
− ∞; 6 − g2 sup

x

∫ |Gx |2
!

)
, then

‖e�|x|�.H/‖ ≤ C�; (2.10)

for � sufficiently small
(
� < 6−sup supp�−g2 sup

x

∫ |Gx |2
!

)
. Since the operatorsHf

and[H; x] areH -bounded, Eq. (2.10) implies that

‖〈x〉M ⊗ .Hf + 1/�.H/‖ < ∞ for anyM ≥ 0: (2.11)

3. Results

First we formulate the restrictions on the coupling functionsGx = Gx.k/ used in this
paper:

sup
x


∫ |Gx.k/|2

!.k/
d3k + 〈x〉−M

∫ ∣∣∣.k · ∇k/Gx.k/
∣∣∣2

!.k/
d3k

 < ∞; (3.1)

and

sup
x

〈x〉−M
2∑
n=1

∫ (
1 + !.k/−1)∣∣.k · ∇/nGx.k/

∣∣2d3k < ∞ (3.2)

for someM ≥ 0.
In order to simplify somewhat the technical part of the paper we assume that

sup
x;k

〈k〉2〈x〉−M |.k̂ · ∇k/nGx.k/| < ∞ ; (3.3)
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wherek̂ = k · |k|−1, for someM ≥ 0 and forn = 0;1, and that

g.�/ := sup
x

 ∫
!≤�

|Gx |2
!

1=2

≤ C�1=2: (3.4)

Let Ei and ispart, s = 1; : : : ; mi , be the eigenvalues and corresponding eigenfunc-

tions ofHpart, wherei = 0;1; : : : , andE0 < E1 < : : : . For i; j ≥ 0, we assume
that

∫
|k|=!.Aij /

∗AijdS! is continuous in! and vanishes at! = 0. HereAij are the

mi × mj matrices with the entriesg〈 i‘part;Gx 
jr
part〉, in the case of the Hamiltonian

H , and〈 i‘part;
N∑
a=1

ea
ma
p⊥
a Gxa 

jr
part〉, p⊥ = p − .p · k̂/k̂, with k̂ = k

|k| (the projection

of p onto the plane,k⊥, perpendicular tok), in the case of the HamiltonianH.e/.
Here‘ = 1; : : : ; mi andr = 1; : : : ; mj , anddS! is the area element on the sphere

{k ∈ R
3 | |k| = !}. For j ≥ 1 (i.e., for excited states jspart), we define the self-adjoint

matrix0j by

0j =
∑

i:Ei<Ej

∫
.Aij /

∗Aij �.! − Eji/ d3k; (3.5)

whereEji = Ej − Ei . The eigenvalues of this matrix are the resonance widths to
second order in the coupling constant, associated with the eigenvalueEj , what is known
in quantum mechanics as Fermi’s Golden Rule. We assume that

�j = lim inf|�|→0
.�−20j / > 0; (3.6)

where� = g in the case of the HamiltonianH and|e| = max
i

|ei |, in the case of the

HamiltonianH.e/.
The main result of this paper is the following theorem.

Theorem 3.1.Assume (3.1)–(3.4) and (3.6). Letj ≥ 1. Then for|e| sufficiently small,
the spectrum ofH.e/ in any interval containingEj , but not containing any other part of
the spectrum ofHpart, and whose distance tospecHpart ∩ .−∞; Ej / is � |e|, is purely
absolutely continuous. Moreover, in such an interval,H.e/ has the local decay property
(formulated below). A similar statement, but with|e| replaced byg, holds forH .

The first statement of the theorem was proved in [2–4] under additional assumptions

of analyticity ofGx and
∫

sup
x

|Gx |2
!1+� < ∞ for some� > 0, which is a stronger condition

in the infrared region,k → 0, than the one we require in this paper.
Next, we formulate the local decay property mentioned in Theorem 3.1. To this end,

we introduce the anti-self-adjoint operator

−A = 1part ⊗ 1

2

∫
a∗.k/

(
k · ∇k + ∇k · k

)
a.k/ d3k: (3.7)

This operator is a second quantization of the generator of dilatations in the one-photon
momentum space, i.e., of1

2.k · ∇k + ∇k · k/. In what follows, whenever no danger of
confusion arises, we omit the trivial factors1part⊗ and⊗1f . We say thatH has thelocal
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decay propertyin a spectral interval1 (with respect to an operatorA), if the following
estimate holds ∫ ∞

−∞

∥∥∥ 〈A〉−� e−iH t 
∥∥∥2
dt ≤ C� ‖ ‖2; (3.8)

for any � > 1=2 and any ∈ Ran�H∈1. (In fact, a slightly stronger property, the
limiting absorption principle with Hölder constant� < � − 1

2, holds in our case.)
Theorem 3.1 follows from a positive commutator estimate derived below (Theo-

rem 5.2) and from the Kato–Mourre theory mentioned in the introduction and expounded
upon in Sect. 5. We prove only the part of Theorem 3.1 concerning the operatorH . The
corresponding part for the operatorH.e/, given in (1.1), is proven in exactly the same

way, using some simple additional estimates related to the quadratic part
∑ e2

j

2mj
A.xj /

2

of the perturbationH.e/−H.0/.
We note that absolute continuity of the spectrum and the local decay property outside

of O.g2/- (resp.O.|e|2/-) neighbourhoods of the eigenvalues and thresholds ofHpart
has been proven in [3].

Remark 3.2.The requirement thatg is small is not completely satisfactory, since if
we, remembering the origin ofGx in (2.3), takeGx.k/ = �.k/√

!.k/
e−ik·x and�.k/ =

K−1=2�0.k=K/, then

〈x〉−2
∫ |k · ∇kGx.k/|2

!.k/
d3k = O.K2/ (3.9)

for largeK. However, the operator〈x〉−M=2k·∇k in conditions (3.1)–(3.2) on the coupling
functionGx.k/ can be replaced by the operatork ·∇k−x ·∇x . This is done by replacing
in our analysis the key operatorA, given in (3.7), by the operator

−A′ = 1part ⊗ 1

2

∫
a∗.k/.k · ∇k + ∇k · k/a.k/d3k

−
[1

2
.x · ∇x + ∇x · x/⊗ 1f

]
: (3.10)

Given standard additional conditions onV .x/ (see e.g. [6, 13]), most of the analysis
given below goes without a change. The advantage of the modified conditions onGx is
in the fact that they do not require the ultraviolet cut-offK to be small in the case of

interest:Gx.k/ = �.k/√
!.k/

e−ik·x with �.k/ = K− 1
2�0.k=K/. Indeed, in this case, e.g.

sup
x

∫ ∣∣.k · ∇k − x · ∇x/Gx.k/
∣∣2

!.k/
d3k = O.1/ (3.11)

instead of (3.9). Moreover, if, abstracting properties ofGx.k/ = �.k/√
!.k/

e−ik·x , we assume
thatGx satisfies

1∑
n=0

sup
x

∫ |.k · ∇k − x · ∇x/nGx.k/|2
!.k/

d3k < ∞; (3.12)

instead of (3.1), and a corresponding relation replacing (3.2), then the analysis presented
in Sect. 5 below simplifies considerably (see also Remark 5.7).

In what follows weabsorb the parameterg into the coupling functionGx.k/.
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4. Relative Bounds on the Interaction

In this section we collect some elementary bounds needed for the proof of Theorem 3.1.
In what follows, byH−1=2

f we always understandH−1=2
f P�, whereP� is the projection

onto the orthogonal complement of the vacuum state� in Fock space.

Lemma 4.1 (Relative bounds).

‖a.f / ‖Fock ≤
(∫ |f |2

!

)1=2 ∥∥∥.Hf /1=2 ∥∥∥
Fock

(4.1)

and

‖a∗.f / ‖2
Fock ≤

(∫ |f |2
!

) ∥∥∥.Hf /1=2 ∥∥∥2

Fock
+
(∫

|f |2
)

‖ ‖2
Fock: (4.2)

Proof. We drop the subindex “Fock” in the proof. By Schwarz’ inequality we have

‖a.f / ‖ ≤
∫

|f .k/| ‖a.k/ ‖ ≤
(∫ |f |2

!

)1=2 (∫
!.k/ ‖a.k/ ‖2

)1=2

: (4.3)

Thanks to ∫
!.k/ ‖a.k/ ‖2 = 〈 ; Hf 〉 ; (4.4)

this implies (4.1). Inequality (4.2) follows from

a.f /a∗.f / = a∗.f /a.f / + 〈f; f 〉1; (4.5)

〈 ; a∗.f /a.f / 〉 = ‖a.f / ‖2 and (4.1). ut
We rewrite bound (4.1) as

∥∥∥a.f /H−1=2
f

∥∥∥
Fock

≤
(∫ |f |2

!

)1=2

; (4.6)

∥∥∥H−1=2
f a∗.f /

∥∥∥
Fock

≤
(∫ |f |2

!

)1=2

: (4.7)

These two bounds are equivalent, since the expressions under the norm signs are adjoint
to each other. Moreover, (4.1) implies that

±〈a∗.f /+ a.f /〉 ≤ 2

(∫ |f |2
!

)1=2 ∥∥∥H 1=2
f  

∥∥∥ · ‖ ‖; (4.8)

which yields

±
(
a∗.f /+ a.f /

)
≤ �Hf + 1

�

∫ |f |2
!
; (4.9)
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for any� > 0. Furthermore, inequalities (4.1) and (4.2) imply∥∥∥ (a∗.f /+ a.f /
)
 

∥∥∥ ≤
(∫

|f |2
)1=2

‖ ‖ + 2

(∫ |f |2
!

)1=2 ∥∥∥H 1=2
f  

∥∥∥: (4.10)

Equation (4.9) implies thatI is Hf form-bounded with relative bound zero, provided

(2.5) holds, while Eq. (4.10) implies thatI isH 1=2
f -bounded with relative bound

2 sup
x

(∫ |Gx |2
!

)1=2

;

provided (2.5) holds. The latter of these two statements implies that, if (2.5) is satisfied,
thenH is self-adjoint on the domain ofHf .

To develop more refined bounds we need the Pull-through formulae (see [2,3])

a.k/g.Hf / = g.Hf + !.k//a.k/ (4.11)

and

g.Hf /a
∗.k/ = a∗.k/g.Hf + !.k//; (4.12)

valid for any piecewise continuous and bounded functiong. (These formulae follow
from the following commutation relation

a.k/Hf = .Hf + !.k//a.k/ (4.13)

and its adjoint.)
Now if  = �Hf≤� , then

‖a.k/ ‖Fock = ‖�Hf+!.k/≤�a.k/ ‖Fock

≤ �!.k/≤�‖a.k/ ‖Fock: (4.14)

Using this in (4.3) we obtain instead of (4.1) (or (4.6))∫
|f .k/|‖a.k/�Hf≤�‖Fock ≤

 ∫
!≤�

|f |2
!

1=2

· �1=2 : (4.15)

These estimates can be extended to products of several annihilation or creation operators.
Namely, relation (4.11) and a property of characteristic functions imply that(

m∏
1

a.kj /

)
�Hf≤� =

m∏
1

(
a.kj /�Hf≤�

)
: (4.16)

Applying estimate (4.15) to each factor on the r.h.s., we find∫ ∏⊗ |fj |‖
( m∏

1

a.kj /
)
�Hf≤�‖ ≤

m∏
1

 ∫
!≤�

|fj |2
!

1=2

�m=2; (4.17)

and similarly for certain operators:∫ ∏⊗ |fj |‖�Hf≤�
( m∏

1

a.kj /
)‖ ≤

m∏
1

 ∫
!≤�

|fj |2
!

1=2

�m=2: (4.18)
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5. Positive Commutators

In this section we formulate our key technical result. In the following, when we speak
of a commutator of two, in general unbounded, operators,H andA, we understand that
D.H/∩D.A/ is dense, and[H;A] is defined first as a form onD.H/∩D.A/ and then
extended to a bounded or unbounded operator.

We fix j ≥ 1 once and for all. LetPpart = P
j
part be the orthogonal projection onto the

eigenspace ofHpart corresponding to the eigenvalueEj . For a fixed energy scale�, we
define the projection operator

P = Ppart ⊗ �Hf≤� (5.1)

andP = 1 − P . We define a family of operators

AV = A + PVP − PV ∗P ; (5.2)

whereA is the second quantized dilatation generator defined in (3.7), and

V = �R
2
"I; R" = R"P ; (5.3)

for positive constants� and" to be chosen below, where

R" =
[
.H0 − Ej/2 + "2

]−1=2
: (5.4)

Note that"R2
" → �.H0 − Ej/, as" → 0. We note also thatAV depends on four

parameters,g, ", � and�.

Lemma 5.1.The commutator[H;AV ] can be defined as a quadratic form on the dense
setD.H0/∩D.A/ and can be extended from there to a.〈x〉M ⊗Hf /-bounded operator.

Moreover, for any� ∈ C∞
0 with supp� ⊂

(
− ∞; 6 − sup

x

∫ |Gx |2
!

)
the operator

�.H/[H;AV ] is bounded. (5.5)

Proof. The first statement of the lemma follows from the relationsD.H/ = D.H0/ and
D.AV / = D.A/. The second of these two relations is due to the fact that the operator
AV − A is bounded.

To prove the second statement we observe that, by a direct computation,e�A, � ∈ R,
mapsD.H/ = D.H0/ into itself and therefore, in a sense of quadratic forms,

[H;A] = @

@�

∣∣∣
�=0

H�; (5.6)

whereH� = e−�AHe�A. A direct computation (see Eq. (5.18) below) and Lemma 4.1
show that the r.h.s. of this equality is a.〈x〉M ⊗ Hf /-bounded operator. Hence[H;A]
extends to a.〈x〉M ⊗Hf /-bounded operator. Furthermore, due to definition (5.1)–(5.4),
AV −A is a bounded operator mappingH = Hpart ⊗ F intoD.H/, so[H;AV −A] is
well defined. As can be easily shown, it is a bounded operator. Hence[H;AV ] extends
to a.〈x〉M⊗Hf /-bounded operator. Finally, the third statement follows from the second
one and estimate (2.11).ut
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Observe that it is not hard to show that the operator[H;AV ] is self-adjoint. Hence
taking adjoints in (5.5) one concludes that also the operator

[H;AV ]�.H/ is bounded. (5.7)

Let1 be an energy interval containingEj but no other parts of the spectrum ofHpart,
and let

�1 = inf 1 − sup
{
�.Hpart/ ∩ .−∞; inf 1/

}
> 0; (5.8)

i.e., the distance,�1, of inf 1 to the part of the spectrum ofHpart below1 is assumed
to be positive. The key technical result of this paper is

Theorem 5.2.Assume that Conditions (3.1)-(3.4) and (3.6) hold, and let, for simplicity,
the parameters", � , and� in (5.1)–(5.4) satisfy the inequalities" ≤ � ≤ �1 and" ≤ � .
If γj is the smallest eigenvalue of0j and

� = O
(
"�−1 + �"�−2 + �−1

1 ��2"−2 + �g2"−2�−1 + g
)

+ o".1/;

then

E1.H/ [H;AV ] E1.H/ ≥ �.2 − �/ γj

"
E1.H/

2: (5.9)

(Hereo".1/ → 0, as" → 0, and0j is the matrix introduced in (3.5).)

This theorem is proven in Sect. 7.
Sinceg � �1, we can pick the parameters", � and� in (5.1)–(5.4) satisfying the

inequalities √
�

�1
� � " � � ; �" � �2 ≤ �2

1 ; (5.10)

and

g � �−1=2"�1=2: (5.11)

Then the parameter� in (5.9) is much smaller than 1 and therefore the r.h.s. is strictly
positive on RanE1.H/. In what follows we assume that conditions (5.10)–(5.11) are
satisfied.

Before proceeding any further we derive the most important consequence of this
theorem – the instability of the eigenvalueEj .

Theorem 5.3 (Virial theorem). Let the conditions of Theorem 5.2 be satisfied. If is an

eigenfunction of the operatorH with an eigenvalueE < 6 − sup
x

∫ |Gx |2
!

, then is in

the domain of[H;AV ] and 〈
 ; [H;AV ] 〉 = 0: (5.12)

Consequently, in view of Theorem 5.2,H has no eigenvalues in any interval1 containing
only one eigenvalue ofHpart and satisfying�1 � g2 with �1 defined in (5.8).



568 V. Bach, J. Fröhlich, I. M. Sigal, A. Soffer

Proof. Let g1 ∈ C∞
0 .R/, be real, be supported in

(− ∞;
∑− sup

x

∫ |Gx |2
!

)
and satisfy

g1.E/ = 1. Theng1.H/ =  , so, as shown at the end of this proof, (5.12) is equivalent
to the relation 〈

 ; [g.H/;AV ] 〉 = 0 ; (5.13)

whereg.�/ := .� − E/g1.�/. Note g.H/ = 0. Since we do not know whether
 ∈ D.AV /, we must understand the commutator on the l.h.s. of (5.13) as an operator
resulting once the commutation is performed. Now we claim that

[A; g.H/] is bounded: (5.14)

Indeed, let̄g ∈ C∞
0 be s.t.ḡg = g and supp̄g ⊂

(
−∞; 6−sup

x

∫ |Gx |2
!

)
. The proof

of (5.14) will follow from the following formula

[A; g.H/] =
∫
dg̃.z/.z−H/−1[A;H ]ḡ.H/.z−H/−1

+
∫
d ˜̄g.z/.z−H/−1g.H/[A;H ].z−H/−1 ; (5.15)

understood in the sense of quadratic forms onD.A/. Here we use the notation and
definitions of Appendix B of [14]. Indeed, the l.h.s. is defined as a quadratic form on
D.A/ by 〈 ; [A; g.H/] 〉 = 2Re〈g.H/ ;A 〉, while the r.h.s. represents a bounded
operator by virtue of (5.5) and (5.7) withV = 0 and estimates (B.6) of [14] oñg and ˜̄g.

Thus it suffices to prove the representation above. To this end we use the formula

@� |�=0〈 ; e−�Ag.H/e�A 〉 = @� |�=0〈 ; e−�Ag.H/e�Aḡ.H/ 〉

+ @� |�=0〈 ; g.H/e−�Aḡ.H/e�A 〉 : (5.16)

It suffices to consider one of the terms on the r.h.s., say the first one. We use the Helffer–
Sjöstrand formula

g.H/ =
∫
dg̃.z/.z−H/−1

(see [14]) to obtain

@� |�=0〈 ; e−�Ag.H/e�Aḡ.H/ 〉 = @� |�=0

∫
dg̃.z/〈 ; .z−H�/

−1ḡ.H/ 〉 ;
(5.17)

where, recall,H� = e−�AHe�A and is given by an explicit formula

H� = Hpart ⊗ 1f + 1part ⊗ e−�Hf + I�

with I� = a∗.Gx;� /+ a.Gx;� /,Gx;� .k/ = e− 3�
2 Gx.e

−� k/.
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It is not difficult to see that the operator function.z − H�/
−1ḡ.H/ is differentiable

in � at � = 0: due to (5.7) withV = 0,

1

�

[
.z−H�/

−1 − .z−H/−1]ḡ.H/ = .z−H�/
−1 1

�
.H� −H/ḡ.H/.z−H/−1

→ .z−H/−1[H;A]ḡ.H/.z−H/−1

as� → 0, in the operator norm. Taking this into account and taking the� -derivative
under the sign of integral in (5.17) we arrive at

@� |�=0〈 ; e−�Ag.H/e�Aḡ.H/ 〉 =
∫
dg̃.z/〈 ; .z−H/−1[A;H ]ḡ.H/.z−H/−1 〉 :

The last equation together with a similar equation for the second term in (5.16) yields
(5.15).As was already mentioned Eq. (5.15) together with Eqs. (5.5) and (5.7) forV = 0
yields (5.14).

Equation (5.14) implies that[AV ; g.H/] is also bounded.
In order to write the l.h.s. of (5.13) as a quadratic form, which is what we ultimately

need for the proof, we proceed in a standard way by approximating it as follows〈
 ; [g.H/;AV ] 〉 = lim

�↑∞
〈
 �; [g.H/;AV ] �

〉
;

where � = R� , R� = �.� + A/−1. (Note that � →  as � → ∞.) Since
 � ∈ D.A/ = D.AV / we can write〈

 �; [g.H/;AV ] �
〉 = 2 Re

〈
g.H/ �;AV  �

〉
:

Sinceg.H/ = 0 and[g.H/; R�] = �.� + A/−1[A; g.H/].� + A/−1 (in a sense of
quadratic forms), we have

g.H/ � = R�[A; g.H/].�+ A/−1 :

Hence, due to (5.14),‖R�‖ ≤ 1 and‖.�+ A/−1 ‖ ≤ 1
�
‖ ‖, we have

‖g.H/ �‖ ≤ 1

�

∥∥[A; g.H/]∥∥∥∥ ∥∥:
Consequently, 〈

 �; [g.H/;AV ] �
〉 → 0

as� → ∞, so (5.13) follows.
Finally, we show the equivalence of (5.12) and (5.13). Define the family of functions

 � := g1.H/�.�+A/−1 . Then, as above, � →  as� → ∞. Moreover, since, due
to (5.14),g1.H/ mapsD.A/ into itself, we conclude that � ∈ D.A/. Hence

〈 ; [H;A] 〉 = lim
�→∞〈 �; [H;A] �〉

= 2 lim
�→∞ Im 〈H �;A �〉 = 2 lim

�→∞ Im 〈g.H/ �;A �〉
= lim
�→∞〈 �; [g.H/;A] �〉 = 〈 ; [g.H/;A] 〉:

Thus〈 ; [H;A] 〉 = 〈 ; [g.H/;A] 〉 and therefore (5.12) holds.ut
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To deduce the statements of Theorem 3.1, about absolute continuity and local decay,
from Theorem 5.2, we use an abstract Kato–Mourre theory. A standard variant of this
theory (see, e.g., [1, 6, 13, 20, 23]) requiresH -boundedness of the commutators[AV ;H ]
and

[
AV ; [AV ;H ]

]
. In our case, these commutators are notH -bounded for two reasons.

First, under Condition (3.1),[A;H ]and
[
A; [A;H ]

]
areH -bounded only forM = 0,

whereM is the exponent appearing in (3.1). This follows from the straightforward
computation (justified in the proof of Lemma 5.5 below)

adnA.H/ = Hf + a∗(.k · ∇k + 3

2
/nGx

)+ a
(
.k · ∇k + 3

2
/nGx

)
; (5.18)

where we used the standard notation adA.H/ = [H;A] (see, however, Remarks 3.2 and
5.7).

The second reason is that the second part of the operatorAV (see Eqs. (5.2)–(5.4))
contains the projection�Hf≤� , entering in the definition ofP , and this operator, not
being differentiable inHf , has a very singular commutator with the dilatation generator
A (or any other operator not commuting withHf ).

To remedy the first problem, we weaken the conditions used in Mourre theory (see
Lemmata 5.5 and 5.6 below).

We go around the second problem by replacingAV by a smooth version, as follows. In
definition (5.2)–(5.4) of the operatorAV , we replace the projectionP by the projection
Ps , where

Ps = Ppart ⊗ �Hf≤s� : (5.19)

Thus, we just vary the photon energy scale a little. Denote the resulting operator byAV;s .
Let� be a non-negative function supported in the interval[1;2] and satisfying

∫
� = 1.

Define

A
.av/
V :=

∫
�.s/ AV;s ds: (5.20)

The next two lemmas establish the desired properties ofA
.av/
V .

Lemma 5.4.Theorem 5.2 holds if we replaceAV byA.av/V .

Proof. Inequalities (5.10)–(5.11) still hold true if we replace� by s� with 1 ≤ s ≤ 2.
Hence (5.9) holds afterAV is replaced byAV;s , for 1 ≤ s ≤ 2. Since� ≥ 0 and∫
� = 1, this implies (5.9) withAV replaced byA.av/V . ut

Lemma 5.5.Let � ∈ C∞
0 and supp� ⊂

(
− ∞; 6 − sup

x

∫ |Gx |2
!

)
, where6 =

inf �cont.Hpart/. Then the operators[A.av/V ;H ]�.H/ and
[
A
.av/
V ; [A.av/V ;H ]]�.H/ are

bounded.

Proof. The boundedness of the first commutator follows from Lemma 5.1 (see also the
sentence after Eq. (5.23)). To show the boundedness of the second commutator we write
A
.av/
V = A+Q, where

Q :=
∫
.P sV Ps − PsV

∗P s/�.s/ds: (5.21)
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We consider first the operatorA and make sense of the formal computation (5.18).
The casen = 1 was justified in the proof of Lemma 5.1. So we consider the casen = 2.
Due to (5.14),

�.H/ : D.A/ → D.A/: (5.22)

Hence, due to (5.7), the commutator
[[H;A]; A] is defined as a quadratic form on

�.H/D.A/. The fact thate�A, � ∈ R, preservesD.H/ = D.H0/ and a simple compu-
tation shows that

d2

d�2

∣∣∣∣
�=0

H� = [[H;A]; A];
where, recall,H� := e−�AHe�A, in a sense of quadratic forms. The l.h.s. of this equality
can be evaluated explicitly: it is exactly the r.h.s. of (5.18). Applying Eq. (4.10), with
f := 〈x〉−M.k · ∇k + 3

2/
nGx , to (5.18) and observing that Condition (3.1) guarantees

that supx.‖f ‖ + ‖!−1=2f ‖/ is finite, we conclude that the operators adn
A.H/〈x〉−M are

Hf -bounded forn = 1;2. Hence, due to Eq. (2.10),

adnA.H/�.H/ are bounded forn = 1;2. (5.23)

(Again,Q is a bounded operator, and Eqs. (5.2)–(5.4) show that so are the operators
H ·Q andQ ·H . Hence[A.av/V ;H ]�.H/ is bounded as was also shown above.)

Now we write[
[H;A.av/V ]; A.av/V

]
=
[
[H;A]; A

]
+
[
[H;A];Q

]
+
[
[H;Q]; A

]
+
[
[H;Q];Q

]
: (5.24)

By Eq. (5.23) and sinceQ and[H;Q] are bounded, the first two terms and the last term
on the r.h.s. of (5.24), multiplied by�.H/ on both sides, are bounded.

It remains to show that
[
[H;Q]; A

]
, the third term on the r.h.s. of (5.24), times�.H/,

is bounded. To this end, we want to use the Jacobi identity and rewrite this term as[
[Q; H ] ; A

]
=
[
[A ; Q] ; H

]
+
[
Q; [A ; H ]

]
: (5.25)

To demonstrate this identity we prove it first forA replaced by the bounded operator
A� := A · i�.i� + A/−1 and then take the limit� → ∞ for the quadratic forms. Now
we demonstrate that[A ; Q] andH · [A;Q] are bounded. We write

[A ; Q] = �.S + S∗/;

where

S =
[
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whereR";� = e�AR"e
−�A, etc., and where we have used thate�AHf e

−�A = e�Hf .
Therefore

e�A Ps e
−�A = Pse−� :

Next, using Leibnitz’ rule, we rewrite this relation as

S =
∫
�.s/ P s [A;R2

" ]P s I Ps ds +
∫
�.s/ P s R

2
" [A; I ]Ps ds

+
∫
�.s/

d

d�

(
P se−� R

2
" I Pse−�

)
ds

∣∣∣∣
�=0

:

Since[A;H0] and [A; I ]〈x〉−M areHf -bounded, the first two terms on the r.h.s. are
bounded. The last term on the r.h.s. can be rewritten as

−
∫
s �.s/

d

ds

(
P s R

2
" I Ps

)
ds =

∫
d.s �.s//

ds
P s R

2
" I Ps ds;

which shows that it is bounded, as well. Thus we proved that[A;Q] is bounded. Using
the above analysis and Eqs. (4.1) and (4.2), one shows thatH ·[A;Q] is bounded as well.
Consequently,

[[A;Q]; H ] is bounded. Next, since[A;H ] is .〈x〉M ⊗ Hf /-bounded
andQ.Hf + i/ is bounded, remembering Eq. (2.10) and commuting〈x〉−M through
Q, if necessary, we conclude that

[
Q; [A;H ]] is bounded. Thus by identity (5.25), the

boundedness of
[[Q;H ]; A] follows, which completes the proof of the lemma.ut

In the next lemma, we slightly weaken the hypotheses of Mourre theory (see, e.g.,
[1,6,13,20,23]), in order to accommodate our situation (see Lemma 5.5).

Lemma 5.6.LetH and iA be two self-adjoint operators, defined on the same Hilbert
space, and let1 b 1′ ⊂⊂ R be intervals such that for any real� ∈ C∞

0 .1
′/, the

operators[H;A] and
[[H;A]; A], defined originally as quadratic forms on the domains

D.H/ ∩D.A/ and�.H/D.A/, extend to unbounded operators satisfying

[H;A]�.H/ and�.H/
[[H;A]; A]�.H/ are bounded, (5.26)

�.H/[H;A]�.H/ ≥ ��.H/2, for some� > 0. (5.27)

Then the spectrum ofH in1 is absolutely continuous andH has the local decay property
in 1 with respect to the operatorA.

The proof of this lemma follows, by now standard, arguments of [20,23,6]. For the
reader’s convenience it is given in Appendix A. (For a different proof see [15].)

Proof of Theorem 3.1.By Lemma 5.4, we have a positive commutator estimate as in
(5.9), but withA.av/V replacingAV ,

E1.H/ [H;A.av/V ] E1.H/ ≥ �.2 − �/ γj

"
E1.H/

2; (5.28)

and by Lemma 5.5, we know that, for any� ∈ C∞
0 with supp� ⊂

(
− ∞; 6 −

sup
x

∫ |Gx |2
!

)
, the operators[A.av/V ;H ]�.H/ and

[
A
.av/
V ; [A.av/V ;H ]]�.H/ are bounded.
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Thus Lemma 5.6 implies that the spectrum ofH in 1 is absolutely continuous and that
the local decay property holds w.r.t.A.av/V . To pass to the local decay property w.r.t.
the operatorA, it suffices to observe that, due to (4.10),Q is a bounded operator and
therefore〈A〉−� · 〈A.av/V 〉� ≤ const, for� > 0. ut

Remark 5.7.The arguments presented above can be simplified if we use, from the begin-
ning, the operator (3.10) instead of (3.7). Indeed, under assumptions which generalize
the case of interest –Gx.k/ = g

�.k/√
!.k/

e−ik·x – (see Remark 3.2), the coupling functions

arising in the commutators[H;A′] and
[[H;A′]; A′] do not grow inx and therefore do

not require�.H/ for bounding them.

6. Positivity of the Truncated Commutator

Before tackling the proof of Theorem 5.2 head on, we go part of the way by proving the
positivity of a simpler commutator. Recall that we are considering Hamiltonian (2.7) but
with the parameterg absorbed into the coupling functionGx (see (2.9)). Now, let

B0;1 = P1 B0 P1; (6.1)

where

B0 = [H ; A ] (6.2)

and

P1 = P E1.H0/: (6.3)

Recall that1 is an energy interval containingEj but disjoint from the rest of the spectrum
of Hpart. The main result of this section is the following lemma.

Lemma 6.1.Assumeg2 � � ≤ �1. Then

B0;1 ≥ 1

2
Hf P1 ≥ 1

2
� P1; (6.4)

and, if in addition3|z| ≤ �, then∥∥∥ |B0;1 − z|−1=2 P1  

∥∥∥ ≤ 2
∥∥∥H−1=2

f P1  

∥∥∥; (6.5)

where|A| := √
A∗A, for a closed operatorA.

Proof. We begin with a computation. ForB0 as in (6.2), we have by (5.15) withn = 1,

B0 = Hf + Ĩ ; (6.6)

whereĨ = a∗.G̃x/+ a.G̃x/, and

G̃x.k/ := k · ∇kGx.k/ + 3

2
Gx.k/: (6.7)
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Inequality (4.9) with� = 1=4 andf = G̃x yields

±Ĩ ≤ 1

4
Hf + 4

∫ |G̃x |2
!

; (6.8)

which implies

B0 ≥ 3

4
Hf − 4

∫ |G̃x |2
!

: (6.9)

SinceHf ≥ 0, inequality (2.10) implies that∥∥∥ 〈x〉M E1.H0/

∥∥∥ ≤ CM; (6.10)

for anyM < ∞, provided sup1 < inf cont specHpart − sup
x

∫ |Gx |2
!

. The last two

inequalities imply that

B0;1 ≥
(

3

4
Hf − Cg2

)
P1: (6.11)

Next, definition (5.1) yields that

P = P part ⊗ 1 + Ppart ⊗ �Hf≥�: (6.12)

Since, by energy conservation,

P part E1.H0/ =
∑

i:Ei<Ej
P ipart E1.Hf + Ei/; (6.13)

we have that

Hf P partE1.H0/ ≥ �1P partE1.H0/; (6.14)

where�1 is given in (5.8). This yields

Hf P1 ≥ min.�1; �/ P1 = � P1; (6.15)

which, together with (6.11) and the conditiong2 � �, implies (6.4).
The proof of (6.5) is based on the following identity:(

B0;1 − z
)−1 = H

−1=2
f

(
1 +K

)−1
H

−1=2
f ; (6.16)

where

K = H
−1=2
f P1 .Ĩ − z/ P1 H

−1=2
f : (6.17)

It suffices to prove that forg2 � �,

‖K‖ ≤ 1

2
; (6.18)
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which would imply (6.5). To prove the latter inequality, we writeK = K0 +K1, where

K0 = −zH−1
f P

2
1 (6.19)

and

K1 = H
−1=2
f P1 Ĩ P1 H

−1=2
f : (6.20)

Since|z| ≤ �=3, we have that‖K0‖ ≤ 1=3, due to (6.4). Next, using (6.7), inequality
(4.6) withf = G̃x , and inequality (6.10) again, we arrive at

K1 = H
−1=2
f P1 O.g/ + O.g/ P1 H

−1=2
f ; (6.21)

which, together with (6.15), yields that‖K1‖ = O.�−1=2g/. Sinceg2 � � and since
‖K0‖ ≤ 1=3, this implies (6.18) which in turn yields (6.5).ut

Now we boost this proposition to a more complicated result. Let

BV := [H ; AV ] and BV;1 := P1 BV P1: (6.22)

Lemma 6.2.Assumeg2 � � ≤ �1 andg � "3=4�1=2. Then

BV;1 ≥ 1

2
Hf P1 ≥ 1

2
� P1; (6.23)

and, if in addition3|z| ≤ �, then∥∥∥ |BV;1 − z|−1=2 P1  

∥∥∥ ≤ 2
∥∥∥H−1=2

f P1  

∥∥∥: (6.24)

Proof. By the definition ofAV , we have

BV;1 = B0;1 − E; (6.25)

where, sinceP1P = PP1 = 0,

E = −P1
[
I ; PV P − PV ∗P

]
P1

= P1 I P V
∗P1 + h:c:

= � P1 I P I R
2
" P1 + h:c: (6.26)

We claim that

‖E‖ ≤ C�g2 "−3=2: (6.27)

Indeed, sinceI = a∗.Gx/+ a.Gx/, estimates (4.6) and (4.7) imply that

‖P1IP ‖ ≤ Cg: (6.28)

It remains to estimate the operatorPIR
2
" . It is shown in Lemma 6.4 below that‖PIR"‖ ≤

cg"−1=2. The last two estimates and the inequality‖R"‖ ≤ "−1 imply (6.27). The latter
estimate together with (6.25) and (6.4) implies (6.23). Equation (6.24) is proven similarly
to (6.5). ut
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Remark 6.3.It suffices to prove an appropriateHf -form bound onE, rather than the
norm bound, Eq. (6.27). The former bound would improve our final estimates.

Lemma 6.4.We have

‖PIR"‖ ≤ Cg"−1=2: (6.29)

Proof. We write

.R"IP /
∗.R"IP / = PIR

2
"IP : (6.30)

Next, we analyze the operatorIR
2
"I restricted to Ran�Hf≤� . To this end we need

the Pull-through formulae (see (4.11) - (4.12))

a.k/R" = R";!.k/ a.k/; (6.31)

R" a
∗.k/ = a∗.k/ R";!.k/; (6.32)

where

R";! = R"
∣∣
Hf→Hf+!: (6.33)

Recalling (2.9) and pulling, inIR
2
"I =

(
a∗.Gx/+ a.Gx/

)
R

2
"

(
a∗.Gx/+ a.Gx/

)
,

thea’s to the right and thea∗’s to the left with the help of the Pull-through formulae
(6.31) and (6.32), we obtain

I R
2
" I = M + L; (6.34)

where

M =
∫
Gx.k/R

2
";!.k/ Gx.k/ d

3k (6.35)

and, with!i = !.ki/,

L = a∗.Gx/R
2
" a.Gx/ +

∫ ∫
Gx.k1/ a

∗.k2/ R
2
";!1+!2

a.k1/Gx.k2/d
3k1d

3k2

+
∫
Gx.k/R

2
";!.k/ a.k/ a.Gx/d

3k + adjoint: (6.36)

Using that‖R";!‖ ≤ "−1, we estimate the latter operator by∥∥∥ �Hf≤� L �Hf≤�
∥∥∥ ≤ 2"−2

∫ ∫
|Gx.k1/Gx.k2/| ‖a.k1/a.k2/�Hf≤�‖

+2

(
"−1

∫
|Gx.k/| ‖a.k/�Hf≤�‖

)2

: (6.37)

Applying inequalities (4.17) and (4.18) to the r.h.s., we arrive at∥∥∥ �Hf≤� L �Hf≤�
∥∥∥ ≤ 4"−2�g.�/2; (6.38)
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where, recall,g.�/ := sup
x

( ∫
!≤�

|Gx |2
!

)1=2

. Since by our restrictionsg.�/ ≤ Cg
√
�,

this in turn yields that, on Ran�Hf≤� ,

I R
2
" I = M + O."−2g2�2/: (6.39)

Now it is not hard to convince oneself that

‖M‖ ≤ Cg2"−1: (6.40)

Indeed, remembering expression (6.12) forP , one can representM as a sum of terms
of the form

∞∫
0

fi.!/d!

.! +Hf − Eji/2 + "2 ;

wherefi.!/ are bounded byCg2 (in fact, decaying at∞), continuous functions. Insti-
tuting the change of variable as! → � = "−1.! + Hf − Eji/, one shows easily that
each integral is bounded byCg2"−1.

Estimates (6.30), (6.39) and (6.40) and the condition�2 ≤ " imply (6.29). ut

7. Proof of Theorem 5.2

First we estimate from below the following operator

BV;1 := E1.H0/ [H ; AV ] E1.H0/: (7.1)

Using the definition ofAV (see Eq. (5.2)), we writeBV;1 as

BV;1 = BV;1 + P1 C
∗ P1 + P1 C P1 + P1 F P1; (7.2)

where, in accordance with (5.2), (6.2), (6.3) and (6.22),

P1 = P E1.H0/; (7.3)

C = [H − Ej ; V ] + B0; (7.4)

F = B0 + V ∗ P I + I P V: (7.5)

Here we used that, by virtue of the definition ofV , we may identifyV ≡ PVP .
The key to the proof is the following inequality which follows from an application

of the Feshbach projection method (a derivation is given in Appendix B):

�0 ≥ inf spec
{
E � RanP1

}
; (7.6)

where

�0 = inf spec
{
BV;1 � RanE1.H0/

}
(7.7)

and

E = F − C∗ (BV;1 − �0

)−1
C: (7.8)
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We may assume here that 3�0 ≤ �; otherwise Theorem 5.2 follows readily from con-
ditions (5.10)–(5.11) on the parameters. With this assumption, Lemma 6.2 is applicable

and yields that
(
BV;1 − �0

)−1
is bounded on RanP1. Hence (7.8) is well-defined.

Our task is to estimateE on RanP1 from below. The first term on the r.h.s. of (7.8)
can be easily analyzed. Due to (5.3),

V ∗ P I + I P V = 2� I R
2
" I: (7.9)

Next, Eqs. (6.6)–(6.10) imply that

P1 B0P1 ≥
(

3

4
Hf − Cg2

)
P1 ≥ −Cg2P1: (7.10)

Hence, on RanP1,

F ≥ 2� I R
2
" I − Cg2: (7.11)

Next, we estimate from above the operator

G := C∗ (BV;1 − �0

)−1
C; (7.12)

on RanP1. A large part of the remainder of this section is devoted to this estimate.
As mentioned after Eq. (7.8), Lemma 6.2 is applicable to (7.12). It yields

| 〈G 〉 | ≤ 2
∥∥∥H−1=2

f P1 C  

∥∥∥2
: (7.13)

From now on, we assume that ∈ RanP , which implies thatP1 = 0. This relation,
the definition ofC (Eq. (7.4)), and Eq. (6.6) imply that∥∥∥H−1=2

f P1 C  

∥∥∥ ≤
∥∥∥H−1=2

f P1 Ĩ  

∥∥∥+ 
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where

A1 := H
−1=2
f P1.H0 − Ej/R

2
"IP; (7.18)

A2 := −H−1=2
f P1R

2
"IPHf ; (7.19)

A3 := −H−1=2
f P1R

2
"IP IP (7.20)

and
A4 := H

−1=2
f P1IR

2
"IP : (7.21)

To estimate the first of these terms we use the expressionP1 (Eqs. (6.3) and (6.12)) and
the estimate‖.H0 − Ej/R"‖ ≤ 1 to obtain

‖A1‖ ≤ ‖H−1=2
f E1.H0/P part‖ · ‖R"IP ‖

+ ‖Ppart ⊗ �Hf≥�R"‖ · ‖H−1=2
f IP ‖:

Now we use that, due to (4.6)–(4.7),‖PIP ‖ ≤ 2g, ‖PHf ‖ ≤ �,∥∥∥H−1=2
f �Hf≥� I P

∥∥∥ ≤
∥∥∥H−1=2

f a∗.Gx/
∥∥∥ + �−1=2

∥∥∥a.Gx/ P ∥∥∥ ≤ 2g; (7.22)

use inequality (6.29) and use the fact thatHf ≥ �1 on Ran.E1.H0/P part/ to obtain

‖A1‖ ≤ C�
−1=2
1 "−1=2g + 2�−1g: (7.23)

Similarly we have

‖A2‖ ≤ C�
−1=2
1 "−3=2g� + 2�−1g: (7.24)

Next using the estimates‖H−1=2
f P1‖ ≤ 2�−1=2 (see (6.15)),‖R"‖ ≤ "−1, (6.29)

and‖PIP ‖ ≤ g
√
�, we find

‖A3‖ ≤ "−3=2g2:

Now taking into account expressions (6.3) and (6.12) forP1, we estimate‖P1H−1=2
f ‖ ≤

C�−1=2. Next, using (4.6) and (4.7) we find

‖P1H−1=2
f IR"‖ ≤ ‖H−1=2

f a∗.Gx/‖‖R"‖
+ ‖P1H−1=2

f ‖‖a.Gx/R"‖
≤ C.g · "−1 + �−1=2g"−1/:

Finally using (6.29), we obtain

‖A4‖ ≤ C�−1=2"−3=2g2: (7.25)

Collecting the estimates above and remembering (7.17) and remembering that" ≤ �,
we find

‖H−1=2
f P1[H − Ej ; V ]P ‖ ≤ C�g

(
�−1 + �

−1=2
1 �"−3=2 + �−1=2"−3=2g

)
: (7.26)
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This together with (7.13), (7.14) and (7.16) gives

G ≥ −Cg2.1 + �2�−2 + �−1
1 �2�2"−3 + �2�−1"−3g2/: (7.27)

Finally, combining the last inequalities with (7.8), (7.11) and (7.24) yields on RanP1,

E ≥ 2�IR
2
"I − Cg2.1 + �2�−2 + �−1

1 �2�2"−3 + �2g2"−3�−1/: (7.28)

This estimate together with (6.39) implies that on RanP ,

E ≥ 2�M − Cg2.1 + �2�−2 + �2�2"−3 + �2g2"−3�−1 + �"−2�−2/: (7.29)

Now we analyze the operatorPMP . Introducing

P
.≤j/
part :=

∑
i:Ei≤Ej

P ipart and P
.>j/
part := 1part − P

.≤j/
part ; (7.30)

and noting that.Hpart − Ej/ P
.>j/
part ≥ �P

.>j/
part , for some� > 0, we estimate∥∥∥∥PMP − P

( ∫
Gx.k/ P

.≤j/
part R

2
";!.k/ Gx.k/ d

3k

)
P

∥∥∥∥ ≤ Cg2: (7.31)

This relation can be rewritten as

PMP =
∑

i:Ei≤Ej

∫
fij .!/

[
.Hf + ! − Eji/2 + "2

]−1
d!P + O.g2/; (7.32)

whereEji := Ej −Ei andfij .!/ = ∫
|k|=!

.Aij /
∗AijdS! with the matricesAij defined

in the paragraph preceeding Eq. (3.5). Now using the change of the variables formula
and the mean value theorem we find∫

fij .!/[.Hf + ! − Eji/2 + "2]d!

=
∫
fij .� −Hf /[.� − Eji/2 + "2]d�

=
∫
fij .�/[.� − Eji/2 + "2]−1d� + R;

where

R =
∫ 1

0

∫
f ′
ij .� − sHf /[.� − Eji/2 + "2]−1d�dsHf :

Since the functionsfij have, by the assumptions onGx.k/, bounded derivatives, we
obtain that

RP = O

(
g2�

"

)
: (7.33)
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Using this together with Eq. (7.32) and with the fact thatfij .!/ vanish at! = 0 and
remembering the definition of0i (see Eq. (3.5)) yields on RanP ,

M = 0j

"
·
[
1 + o".1/+O.�/

]
+O.g2/; (7.34)

whereo".1/ stands for a function of" vanishing as" → 0.
Equation (7.34) inserted into (7.29) yields

E ≥ �0j

"

[
2 − o".1/−O.�/

]
−O.g2/

[
1 + �2�−2 + �−1

1 �2�2"−3 + �2g2"−3�−1 + �"−2�2]: (7.35)

Since0j ≥ �jg
2 with �j positive and independent ofg and since� ≥ ", we may write

(7.35) on RanP1 as

E ≥ � 0j .2 − �1/

"
; (7.36)

where

�1 = O

(
"

�
+ �"

�2 + ��2

"2�1
+ �g2

�"2 + �2

"

)
+ o".1/ < 2: (7.37)

This together with (7.6)–(7.8) (see also the paragraph after Eq. (7.8)) implies

BV;1 ≥ � γj .2 − �1/

"
E1.H0/

2; (7.38)

where, we recall,γj is the smallest eigenvalue of0j .
Now we derive (5.9) from (7.38). Let1 ⊂⊂ 1′ and pick a smooth functionh

supported in1′ and equal to 1 on1. Moreover, we denoteE1.�/ = 1 − E1.�/. We
use the estimate ∥∥∥ (h.H/− h.H0/

)
.H0 + i/1=2

∥∥∥ ≤ C g=|1|; (7.39)

which can be easily derived using operator calculus (see, e.g., [14]) and (4.6)–(4.7).
Recalling thatBV;1 = E1.H0/ BV E1.H0/ andBV = [H;AV ], we may write

E1.H/BV E1.H/ = E1.H/BV;1′E1.H/ + S + T ; (7.40)

where

S = E1.H/E1′.H0/ BV E1′.H0/E1.H/ + adjoint;

and

T = E1.H/E1′.H0/ BV E1′.H0/E1.H/:

Writing E1.H/E1′.H0/ asE1.H/
(
h.H/−h.H0/

) ·E1′.H0/ and using Eq. (7.39) we
obtain

E1.H/E1′.H0/ = E1.H/O.g/; .∗/
and similarly for the adjoint operator. The latter estimate implies that

T = E1.H/O.g
2/E1.H/: .7:41/
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Next, we write
BV = [H0; A] + U;

whereU := [H0; PV P − PV ∗P ] + [I; AV ] and use that[H0; A] = Hf and therefore
commutes withE1′.H0/ so that

S = E1.H/E1′.H0/UE1′.H0/E1.H/+ h.c.:

Again Eqs. (6.29) and.∗/, together with elementary estimates similar to those performed
above imply that

S = E1.H/O.�"
−3=2g2�/E1.H/: .7:42/

Combining estimates (7.40)–(7.42), we obtain

E1.H/BVE1.H/ ≥ E1.H/.BV;1 − C�"−3=2g2�/E1.H/:

Now using inequalities (7.38) and (7.39) we arrive at

E1.H/BVE1.H/ ≥
[�γj .2 − �1/

"

(
1 −O.g/

)− C�"−3=2g2�
]
E1.H/

2:

It is not hard now to identify this inequality with (5.19).

A. Proof of Lemma 5.6

Both statements of Lemma 5.6 follow in a standard fashion (see [25], Theorems XIII.23
and XIII.25) from the following result (cf. Theorem 4.9 of [6] and Theorem 7.1 of [23]).

Theorem A.1.Under the assumptions of Lemma 5.6,

‖〈A〉−�.H − z/−1〈A〉−�‖ ≤ C (A.1)

uniformly inz ∈ C
+ with Re z ∈ 1, provided� > 1

2.

Proof. Here we prove this theorem for� = 1. Its extension to the case of� > 1
2 is done

by repeating the proof of Theorem 7.8 of [23].
Our proof follows closely the proofs of Theorem 4.9 of [6] and Theorem 7.1 of [23].

Let1 ⊂⊂ 11 ⊂⊂ 12 ⊂⊂ 1′ andf ∈ C∞
0 .12/, with f ≡ 1 on11 andf ≥ 0. We use

the following notation,

M := f .H/[A;H ]f .H/: (A.2)

Note that due to (5.27),M ≥ �f .H/2 andM∗ = M. Since‖.H − i"M − z/u‖ ≥
Im〈.−H + i"M + z/u; u〉=‖u‖ ≥ Im z‖u‖ and similarly for the adjoint operator, we
have that (see Lemma 4.4(a) of [6] or Lemma 7.3(a) of [23]):

for " ≥ 0 and Imz > 0,H − i"M − z is invertible. (A.3)

DenoteG".z/ = .H − i"M − z/−1. Moreover, we introduce also

F".z/ := DG".z/D with D = 〈A〉−1:

In what follows the argumentz is assumed to satisfy Rez ∈ 1 and Im z > 0; it is fixed
and often omitted from the notation. We begin with a series of simple lemmata.
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Lemma A.2. For z ∈ C
+ with Re z ∈ 1, and" ≥ 0,

‖G".z/‖ ≤ C=": (A.4)

Proof. Letf = f .H/. The relations‖fG"’‖2 = 〈G∗
"f

2G"〉’ ,M ≥ �f 2 and Im z ≥ 0
imply

‖fG"’‖2 ≤ 1

2"�
〈G∗

"2"MG"〉’

≤ 1

2"�
〈G∗

".2"M + 2 Im z/G"〉’;
where we used the notation〈B〉’ = 〈’;B’〉. Now, an application of the second resolvent
equation yields‖fG"’‖2 ≤ 1

2"� 〈iG∗
" − iG"〉’ , which in turn implies

‖fG"’‖ ≤ 1√
"�

∣∣〈G"〉’∣∣1=2; (A.5)

and therefore

‖fG"‖ ≤ 1√
"�

‖G"‖1=2: (A.6)

Next, applying the second resolvent equation toG" andG0 and using that‖f̄ G0‖ <
∞, thanks to dist.z;R\11/ > 0, we find

‖f̄ G"‖ ≤ C.1 + "‖G"‖/; (A.7)

wheref̄ = 1 − f . This inequality together with (A.6) implies (A.4).ut
This lemma and its proof have two consequences important for us:

‖f̄ .H/G".z/‖ ≤ C; (A.8)

uniformly in " > 0, wheref̄ .H/ = 1 − f .H/, due to Eqs. (A.4) and (A.7); and

‖f .H/G".z/D‖ ≤ C"−1=2‖F".z/‖1=2; (A.9)

due to Eq. (A.5) with’ = Du. The last two equations imply in turn that

‖G".z/D‖ ≤ C
(
1 + "−1=2‖F".z/‖1=2): (A.10)

In what follows we assume that� is a cut-off function satisfying

� ≥ 0;
√
� ∈ C∞

0 .1
′/ and � ≡ 1 on12: (A.11)

Next, we introduce the symmetric operator

A� := �.H/A�.H/; (A.12)

which is well defined inD.A/, due to (5.19). Now define[H;A�] as a quadratic form
onD.A/ ∩D.H/. Then

[H;A�] = �.H/[H;A]�.H/ (A.13)

in a sense of quadratic forms. This relation implies that the operator

B� := [H;A�] is bounded. (A.14)
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Lemma A.3. LetB := [H;A]. For any ∈ C∞
0 .12/, the operator

 .H/[B;A�] .H/ is bounded. (A.15)

Here the operator in (A.15) is initially defined in a sense of quadratic forms.

Proof. In the proof below we omit the argumentH in �.H/ and .H/. Using that
 · � =  , we compute as quadratic forms

 [B;A�] =  [B;A] +  B[�;A] +  [�;A]B : (A.16)

Since, by (5.5), (5.14) and (5.27), B, B , [�;A] and [B;A] are bounded we
conclude that the r.h.s. of (A.16) is bounded, so (A.15) follows.ut

Our last preparatory step is the following

Lemma A.4. The operator[M;A�] defined initially in a sense of quadratic forms is
bounded.

Proof. Using thatf ·� = f and omitting again the argumentH , we compute in a sense
of quadratic forms

[M;A�] = fB[f;A�] + f [B;A�]f + [f;A�]Bf:
SincefB, Bf , [f;A�] = �[f;A]� andf [B;A�]f are bounded by virtue of (5.26),
(5.14) and (A.15), the statement follows.ut

Now we are ready for a core estimate of this proof.

Lemma A.5. We have the following estimate:∥∥∥dF".z/
d"

∥∥∥ ≤ C
(‖F".z/‖ + "−1=2‖F".z/‖1=2 + 1

)
: (A.17)

Proof. Using the definitions ofG".z/ andF".z/, we compute

−dF"
d"

= DG"MG"D:

Sincef · � = f , we have thatM = fB�f . Now we decompose

dF"

d"
= Q1 +Q2 +Q3; (A.18)

where

Q1 = DG"f̄ B�f̄G"D;

Q2 = DG"f̄ B�fG"D +DG"fB�f̄G"D;

Q3 = −DG"B�G"D:
We bound now theQj ’s. Equations (A.14) and Eq. (A.8) imply

‖Q1‖ ≤ ‖DG"f̄ ‖2‖B�‖ ≤ C: (A.19)
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Next, (A.8), (A.9) and (A.14) yield

‖Q2‖ ≤ 2‖DG"f̄ ‖‖B�‖‖fG"D‖
≤ C√

"
‖F"‖1=2: (A.20)

The termQ3 is more complicated. We decompose it as

−Q3 = Q4 +Q5; (A.21)

where

Q4 = DG"[H − i"M − z;A�]G"D .∗/
and

Q5 = i"DG"[M;A�]G"D:
Expanding the commutator in.∗/, we find

Q4 = DA�G"D −DG"A�D:

Hence, due to‖DA�‖ ≤ C and (A.10),

‖Q4‖ ≤ 2‖DA�‖‖G"D‖
≤ C.1 + "−1=2‖F"‖1=2/: (A.22)

Finally, we have due to (A.10) and Lemma A.4,

‖Q5‖ ≤ "‖DG"‖2‖[M;A�]‖
≤ C." + ‖F"‖/: (A.23)

Now, Eqs. (A.18)–(A.23) imply (A.17).ut
To complete the proof of Theorem 5.5 we iterate the rough estimate

‖F".z/‖ ≤ C

"
; (A.24)

which follows from (A.4), with the help of differential inequality (A.17). On the first

step plugging (A.24) into the r.h.s. of (A.17) we obtain
∥∥∥ dF".z/d"

∥∥∥ ≤ C
"

. Integrating

the latter inequality from" to 1 and using that, due to (A.24),‖F1.z/‖ ≤ C, we find
‖F".z/‖ ≤ C log 1

"
. Plugging the latter estimate into the r.h.s. of (A.17) yields now∥∥∥ dF".z/d"

∥∥∥ ≤ C

√
log 1

"
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B. Feshbach Projection Method

Lemma B.1.LetB be a self-adjoint operator on a Hilbert spaceH = H1 ⊕ H2 and let
(in the obvious notation)B22 ≥ � idH2, � > 0. Then�0 := inf specB is either≥ � or
it satisfies the relation

�0 = inf spec

{
B11 − B12.B22 − �0/

−1B21

}
: (B.1)

Proof. Let �0 < � . The Feshbach projection method implies that� ∈ �.B/ iff

� ∈ �
(
B11 − B12.B22 − �/−1B21

)
; (B.2)

provided� < � , which implies (B.1). ut
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