Welcome back to MAT137!

(Section L5101, Tuesday 6-9 and Thursday 6-9)

- Problem set 2 due this Friday
- For next day's lecture, watch videos 3.6, 3.7, 3.9-3.12.
- Today's topics: IVT, EVT, Definition of Derivative, Differentiation Rules (Videos 2.21, 2.22, 3.1-3.5, 3.8)

- Open today's slides alongside Zoom.
- Mute your mic and camera to avoid lag. Please, without exception!
- Reply to Polls!
- Use the chat if you have any question/doubt and when you give an answer
- Ask questions.

Let's get started!!

Any question from previous class?

What does it mean to say that a function f is differentiable at a?

Limit-Composition Theorem

We did not solve this in last class, but did you?

Theorem Let $a, L \in \mathbb{R}$. IF f and g are functions such that (a) $\lim_{x \to a} f(x) = L$ (b) g(x) is continuous at x = L (b) g(x) is continuous at x = L THEN $\lim_{x \to a} g(f(x)) = g(L).$

Limits at infinity

Compute:

Prove that the equation

$$x^4 - 2x = 100$$

has at least two solutions.

In each of the following cases, does the function f have a maximum and a minimum on the interval I?

1
$$f(x) = x^2$$
, $I = (-1, 1)$.
2 $f(x) = \frac{(e^x + 2)\sin x}{x} - \cos x + 3$, $I = [2, 6]$

Can this be proven? (Use IVT)

- Prove that there exists a time of the day when the hour hand and the minute hand of a clock form an angle of exactly 23 degrees.
- Ouring a Raptors basketball game, at half time the Raptors have 51 points. Prove that at some point they had exactly 26 points.
- Prove that at some point during Donald Trump's life, his height in centimetres was exactly equal to 10 times his weight in kilograms. Some data:
 - His height at birth: 47 cm
 - His weight at birth: 3.2 kg
 - His height today: 190 cm

True or False

Are the following two statements true?

• IF f(x) > 0 for all x and $\lim_{x\to 0} f(x) = L$ exists, THEN L > 0.

2 IF $\lim_{x\to 0} f(x) = L$ exists, then $\lim_{x\to 0} \frac{1}{f(x)}$ exists.

Definition of a minimum

Problem. Let f be a function with domain D. Which of the following statements, if any, is a definition of

f has a minimum on D.

If you think one of them is not a correct definition, tell me what the statements mean.

- **2** $\exists C \in D$ such that $\forall x \in D$, $f(x) \geq C$.
- **③** $\exists C \in \mathbb{R}$ such that $\forall x \in D$, $f(x) \ge C$.
- $\exists C \in \mathbb{R} \text{ such that } \forall x \in D, f(x) > C.$
- **③** $\exists c \in D$ such that $\forall x \in D$, f(x) ≥ f(c).
- **(**) $\exists c \in D$ such that $\forall x \in D, f(x) > f(c)$.

Computing derivatives from the definition

Let f be the function defined by

$$f(x)=\frac{2}{\sqrt{x}}.$$

Compute f'(9) directly from the definition of the derivative as a limit.

Derivatives.

Problem. Let *f* be the function defined by f(x) = x|x|.

Is f differentiable at 0? If so, what is its derivative?

Hint: Write f as a piecewise function.

Another way to write this function is

$$f(x) = \begin{cases} -x^2 & x < 0\\ x^2 & x \ge 0 \end{cases}$$

Computing derivatives(Homework?)

Problem 1. Compute the derivatives of the following functions:

a
$$f(x) = x^{100} + 3x^{30} - 2x^{15}$$
a $f(x) = \sqrt[3]{x} + 6$
b $f(x) = \frac{3}{\sqrt{x}} + 6$
c $f(x) = \frac{x^6 + 1}{x^3}$
d $f(x) = \frac{x^6 + 1}{x^3}$
e $f(x) = \frac{x^2 - 2}{x^2 + 2}$

Problem 2. Let $0 \neq c \in \mathbb{R}$, and let f be a function that is differentiable at c. Define a new function g by:

$$g(x)=\frac{f(x)}{x^7}.$$

Compute g'(c).

Prove these statements are all false with counterexamples

Let C be a curve. Let P be a point in C.

The line tangent to C at P intersects C at only one point: P.

2

If a line intersects C only at P, then that line must be the tangent line to C at P.

3

The tangent line to C at P intersects C at P and "does not cross" C at P. (This means that, near P, it stays on one side of C.)

4

If a line intersects C at P and "does not cross" C at P, then it is the tangent line to C at P.

Sourav Sarkar

Derivative from a graph

Below is the graph of the function f. Sketch the graph of its derivative f'.

Estimations

Let f be a continuous function with domain \mathbb{R} .

- We know f(4) = 3 and f(4.2) = 2.2.
 Based only on this, give your best estimate for f(4.1).
- We know f(4) = 3 and f'(4) = .5.
 Based only on this, give your best estimate for f(4.1).
- We know f(4) = 3 and f(4.1) = 4.
 Based only on this, give your best estimate for f'(4).

Without using a calculator, estimate $\sqrt[20]{1.01}$ as well as you can.

Hint: Consider the values you know for $f(x) = \sqrt[20]{x}$ and its derivative.

True or False

Let $a \in \mathbb{R}$. Let f be a function with domain \mathbb{R} . Assume f is differentiable at a. What can we conclude?

- f(a) is defined.
- $\lim_{x\to a} f(x) \text{ exists.}$
- I is continuous at a.

- f'(a) exists.
- $Iim_{x \to a} f'(x)$ exists.
- f' is continuous at a.

We will see a counterexample for (5) and (6) in next class!