#### Welcome back to MAT137- Section L5101

- Assignment #1 due tomorrow.
- Mute your mic and camera to avoid lag

- Before next class:
  - Watch videos 2.7, 2.8, 2.9

# Let's get started!!

Today's videos: 2.5, 2.6 Today's topic: The formal definition of limit Any question from previous class?

# $\delta$ from a graph



1. Find one value of  $\delta > 0$  s.t.  $0 < |x - 2| < \delta \implies |f(x) - 2| < 0.5$ 2. Find *all* values of  $\delta > 0$  s.t.  $0 < |x - 2| < \delta \implies |f(x) - 2| < 0.5$ 

# Write down the formal definition of

$$\lim_{x\to a}f(x)=L.$$

# Side limits

#### Recall

Let  $L, a \in \mathbb{R}$ . Let f be a function defined at least on an interval around a, except possibly at a.

$$\lim_{x\to a}f(x)=L$$

means

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t.} \quad 0 < |x-a| < \delta \implies |f(x)-L| < \varepsilon.$$

Write, instead, the formal definition of

$$\lim_{x\to a^+} f(x) = L, \quad \text{and} \quad \lim_{x\to a^-} f(x) = L.$$

# Definition

Let  $a \in \mathbb{R}$ . Let f be a function defined at least on an interval around a, except possibly at a. Write a formal definition for

$$\lim_{x\to a}f(x)=\infty.$$

#### Infinite limits - 2

Which one(s) is the definition of  $\lim_{x\to a} f(x) = \infty$  ?

- 1.  $\forall M \in \mathbb{R}, \exists \delta > 0 \text{ s.t. } 0 < |x a| < \delta \implies f(x) > M$
- 2.  $\forall M \in \mathbb{Z}, \exists \delta > 0 \text{ s.t. } 0 < |x a| < \delta \implies f(x) > M$
- 3.  $\forall M > 0, \exists \delta > 0$  s.t.  $0 < |x a| < \delta \implies f(x) > M$
- 4.  $\forall M > 5, \exists \delta > 0 \text{ s.t. } 0 < |x a| < \delta \implies f(x) > M$

5.  $\forall M \in \mathbb{R}, \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \implies f(x) \ge M$ 

#### Related implications

Let  $a \in \mathbb{R}$ . Let f be a function. Assume we know  $0 < |x - a| < 0.1 \implies f(x) > 100$ 

1. Which values of  $M \in \mathbb{R}$  satisfy ... ?

$$0 < |x-a| < 0.1 \implies f(x) > M$$

#### Related implications

Let  $a \in \mathbb{R}$ . Let f be a function. Assume we know  $0 < |x - a| < 0.1 \implies f(x) > 100$ 

1. Which values of  $M \in \mathbb{R}$  satisfy ... ?

$$0 < |x - a| < 0.1 \implies f(x) > M$$

2. Which values of  $\delta > 0$  satisfy ... ?

$$0 < |x - a| < \delta \implies f(x) > 100$$

Let f be a function with domain  $\mathbb{R}$ . One of these statements implies the other. Which one?

1.  $\forall M \in \mathbb{R}, \exists N \in \mathbb{R} \text{ s.t. } x > N \implies f(x) > M$ 2.  $\forall M \in \mathbb{R}, \exists N \in \mathbb{R} \text{ s.t. } x > N \implies f(x) \ge M$ 

# Let f be a function with domain $\mathbb{R}$ . Write the negation of the statement:

IF 
$$2 < x < 4$$
, THEN  $1 < f(x) < 3$ .

#### Existence

Write down the formal definition of the following statements:

1. 
$$\lim_{x\to a} f(x) = L$$

- 2.  $\lim_{x \to a} f(x)$  exists
- 3.  $\lim_{x \to a} f(x)$  does not exist