MAT137

(Section L0501, September 25, 2019)

Instructor Sourav Sarkar Email ssarkar@math.toronto.edu (always put "MAT137" in the subject line) Office hours Thursdays 4-6, PG003

- Course website: http://uoft.me/MAT137
- Webpage for this section: http://www.math.toronto.edu/ssarkar/137.html
- For next day's lecture, watch videos 2.10 and 2.11
- Today's lecture will **assume** you have watched videos 2.5, 2.6, 2.7, 2.8 (and 2.9).

Let's get started!!

Topics: Definition of limit and proofs from the definition

• Factorize
$$x^2 - a^2$$
 and $x^3 - a^3$.

Find all positive values of B, and C that make the following implication true

$$|x-3| < 1 \implies B < |x+5| < C$$

Given a real number x, we defined the **floor of** x, denoted by $\lfloor x \rfloor$, as the largest integer smaller than or equal to x. For example:

$$\lfloor \pi \rfloor = 3, \qquad \lfloor 7 \rfloor = 7, \qquad \lfloor -0.5 \rfloor = -1.$$

Sketch the graph of $y = \lfloor x \rfloor$. Then compute:

More limits from a graph

Compute:

$$\lim_{t\to 0^+}e^{1/t},\qquad \lim_{t\to 0^-}e^{1/t}.$$

Suggestion: Sketch the graph of $y = e^x$ first.

Write down the formal definition of

$$\lim_{x\to a} f(x) = L.$$

• Find one value of $\delta > 0$ s.t. $0 < |x - 2| < \delta \Rightarrow |f(x) - 2| < 0.5$

• Find all values of $\delta > 0$ s.t. $0 < |x - 2| < \delta \Rightarrow |f(x) - 2| < 0.5$

Definition

Let $a \in \mathbb{R}$.

Let f be a function defined at least on an interval around a, except possibly at a. Write a formal definition for

$$\lim_{x\to a}f(x)=\infty.$$

Implications

Let $a \in \mathbb{R}$. Let f be a function. Assume we know

$$0 < |x-a| < 0.1 \implies f(x) > 100$$

1 Which values of
$$\delta > 0$$
 satisfy ?

$$0 < |x - a| < \delta \implies f(x) > 100$$

2 Which values of $M \in \mathbb{R}$ satisfy ... ?

$$0 < |x - a| < 0.1 \implies f(x) > M$$

Preparation: choosing deltas

$$|x-3| < \delta \implies |5x-15| < 1.$$

2 Find *all* values of $\delta > 0$ such that

$$|x-3| < \delta \implies |5x-15| < 1.$$

 $\textbf{ § Find a value of } \delta > \textbf{0} \text{ such that }$

$$|x-3| < \delta \implies |5x-15| < 0.1.$$

4 Let us fix $\varepsilon > 0$. Find a value of $\delta > 0$ such that

$$|x-3|<\delta\implies |5x-15|<\varepsilon.$$

Your first $\varepsilon - \delta$ proof

Goal

We want to prove that

$$\lim_{x\to 3} (5x+1) = 16$$

directly from the definition.

- **1** Write down the formal definition of the statement (1).
- Write down what the structure of the formal proof should be, without filling the details.
- Write down a complete formal proof.

(1)

Goal

We want to prove that

$$\lim_{x\to 0} \left(x^3 + x^2 \right) = 0$$

directly from the definition.

- **1** Write down the formal definition of the statement (3).
- Write down what the structure of the formal proof should be, without filling the details.
- **3** Rough work: What is δ ?
- Write down a complete formal proof.

(2)

Is this proof correct?

Claim:

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t.} \quad 0 < |x| < \delta \implies |x^3 + x^2| < \varepsilon.$$

Proof.

• Let
$$\varepsilon > 0$$
. Take $\delta = \sqrt{\frac{\varepsilon}{|x+1|}}$.

• Let
$$x \in \mathbb{R}$$
. Assume $0 < |x| < \delta$. Then

$$|x^{3} + x^{2}| = x^{2}|x + 1| < \delta^{2}|x + 1| = \frac{\varepsilon}{|x + 1|}|x + 1| = \varepsilon.$$

• I have proven that $|x^3 + x^2| < \varepsilon$.

Choosing deltas again

We will go over this slide in the next class Let us fix numbers $A, \epsilon > 0$.

(1) Find a value of $\delta > 0$ such that	$ x < \delta \Rightarrow Ax^2 < \varepsilon$
2 Find <i>many</i> values of $\delta > 0$ such that	$ x < \delta \Rightarrow Ax^2 < \varepsilon$
(3) Find a value of $\delta > 0$ such that	$ x < \delta \Rightarrow x+1 < 10$
• Find many values of $\delta > 0$ such that	$ \mathbf{x} < \delta \Rightarrow \mathbf{x}+1 < 10$
③ Find a value of $\delta > 0$ such that	$ x < \delta \Rightarrow \left\{ \begin{array}{c} Ax^2 < \epsilon \\ x+1 < 10 \end{array} \right\}$
$\textbf{9} \ \ \text{Find a value of } \delta > \textbf{0} \ \text{such that}$	$ x < \delta \Rightarrow x^2 + x^3 < \varepsilon$

A harder proof

We will go over this slide in the next class

Goal

We want to prove that

$$\lim_{x\to 0} \left(x^3 + x^2 \right) = 0$$

directly from the definition.

- **1** Write down the formal definition of the statement (3).
- Write down what the structure of the formal proof should be, without filling the details.
- **3** Rough work: What is δ ?
- **Write down a complete formal proof.**

(3)