MAT137 (Section L0501, October 02, 2019)

- For next day's lecture, watch videos 2.16 and 2.17
- Today's lecture will **assume** you have watched videos 2.12, 2.13, 2.14 and 2.15.

- Last day's limit example again!
- Indeterminate form
- A theorem about limits from definition
- Squeeze theorem
- Sew continuous functions
- **o** A new theorem about products and product rule

Choosing deltas again

Let us fix numbers $A, \epsilon > 0$.

$ \ \ {\rm Sind} \ {\rm a \ value \ of} \ \delta > 0 \ {\rm such \ that} \ \ \ \ \ \ \ \ \ \ \ \ $	$ \mathbf{x} < \delta \Rightarrow \mathbf{A}\mathbf{x}^2 < \varepsilon$
⁽²⁾ Find <i>many</i> values of $\delta > 0$ such that	$ x < \delta \Rightarrow Ax^2 < \varepsilon$
$\begin{tabular}{ll} \hline \end{tabular} t$	$ x < \delta \Rightarrow x+1 < 10$
• Find many values of $\delta > 0$ such that	$ x < \delta \Rightarrow x+1 < 10$
§ Find a value of $\delta > 0$ such that	$ x < \delta \Rightarrow \left\{ \begin{array}{c} Ax^2 < \epsilon \\ x+1 < 10 \end{array} \right\}$
$\label{eq:interm} \begin{tabular}{ll} \begin{tabular}{ll} \bullet \\ \end{tabular} tab$	$ \mathbf{x} < \delta \Rightarrow \mathbf{x}^2 + \mathbf{x}^3 < \varepsilon$

Goal

We want to prove that

$$\lim_{x \to 0} \left(x^3 + x^2 \right) = 0$$

(1)

directly from the definition.

- **1** Write down the formal definition of the statement (1).
- Write down what the structure of the formal proof should be, without filling the details.
- **3** Rough work: What is δ ?
- **Write down a complete formal proof.**

Let $a \in \mathbb{R}$. Let f and g be functions defined near a. Assume

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0.$$

What can we conclude about
$$\lim_{x \to a} \frac{f(x)}{g(x)}$$
?

- The limit is 1.
- 2 The limit is 0.
- 3 The limit is ∞ .
- The limit does not exist.
- We do not have enough information to decide.

For each condition, give an example of a function f with domain $\mathbb R$ which satisfies that single condition.

Immodel{eq:starses}

$$\lim_{x \to 0} \frac{f(x)}{x} = 0$$
 Immodel{eq:starses}

$$\lim_{x \to 0} \frac{f(x)}{x} = 1$$
 Immodel{eq:starses}

$$\lim_{x \to 0} \frac{f(x)}{x}$$
 does not exist and is not equal to $\pm \infty$
 Immodel{eq:starses}

$$\lim_{x \to 0} \frac{f(x)}{x} = \infty$$

A theorem about limits

Theorem

Let f be a function with domain \mathbb{R} such that

$$\lim_{x\to 0} f(x) = 3.$$

Prove that

$$\lim_{\to 0} \left[5 f(2x) \right] = 15$$

directly from the definition of the limit. Do not use any limit laws.

- Write down the formal definition of what you want to prove.
- Write down what the structure of the formal proof.
- 8 Rough work.
- Write down a complete formal proof.

Proof feedback

- Is the structure of the proof correct? (First fix ε, then choose δ, then ...)
- 2 Did you say exactly what δ is?
- Is the proof self-contained?
 (I do not need to read the rough work)
- Are all variables defined? In the right order?
- O all steps follow logically from what comes before? Do you start from what you know and prove what you have to prove?
- Oid you remember not to assume your conclusion?

Squeeze Theorem

```
Let a, L \in \mathbb{R}.

Let f, g, and h be functions defined near a, except possibly at a.

IF

• For x close to a but not a, f(x) \le g(x) \le h(x)

• \lim_{x \to a} f(x) = L

• \lim_{x \to a} h(x) = L

THEN \lim_{x \to a} g(x) = L.
```

Come up with a new version of this theorem which instead concludes that

$$\lim_{x\to a}g(x)=\infty$$

Hint: Draw a picture of the Squeeze Theorem. Then draw a picture of the new theorem.

Squeeze to infinity

Solve (4), (5) at home. If you have any difficulty talk to me

```
Squeeze Theorem (new version)

Let a \in \mathbb{R}.

Let f and g be functions defined near a, except possibly at a.

IF

• For x close to a but not a, f(x) \le g(x)

• \lim_{x \to a} f(x) = \infty

THEN \lim_{x \to a} g(x) = \infty.
```

- I Replace the first hypothesis with a more precise mathematical statement.
- Write down the definition of what you want to prove.
- Write down the structure of the formal proof.
- 4 Rough work
- S Write down a complete, formal proof.

Undefined function

Let $a \in \mathbb{R}$ and let f be a function. Assume f(a) is undefined.

What can we conclude?

- $\lim_{x\to a} f(x) \text{ exist}$
- 2 $\lim_{x \to a} f(x)$ doesn't exist.
- 3 No conclusion. $\lim_{x \to a} f(x)$ may or may not exist.

What else can we conclude?

- I is continuous at a.
- f is not continuous at a.
- **(6)** No conclusion. *f* may or may not be continuous at *a*.

We did not cover this in class. Go over this. If you have any difficulty, talk to me.

Let $a, b \in \mathbb{R}$. What does the following expression calculate?

$$f(a,b) = \frac{a+b+|a-b|}{2}$$

Prove it.

Hint: Plug in some values and guess.

Exercise: Find a similar expression for $\min\{a, b\}$.

We did not cover this in class. Go over this. If you have any difficulty, talk

to me.

We want to prove the following theorem

Theorem

IF f and g are continuous functions THEN $h(x) = \max{f(x), g(x)}$ is also a continuous function.

You are allowed to use all results that we already know. What is the fastest way to prove this?

Hint: No epsilons are required.

Is this claim true?

Claim

Let $a \in \mathbb{R}$.

Let f and g be functions defined near a.

• IF
$$\lim_{x \to a} f(x) = 0$$

• THEN
$$\lim_{x \to a} [f(x)g(x)] = 0$$

A new theorem about products

Solve (4). We will go over this in the next class.

Theorem

Let $a \in \mathbb{R}$. Let f and g be functions with domain \mathbb{R} , except possibly a. Assume

- $\lim_{x \to a} f(x) = 0$, and
- g is **bounded**. This means that

$$\exists M > 0 \text{ s.t. } \forall x \neq a, |g(x)| \leq M.$$

THEN $\lim_{x \to a} [f(x)g(x)] = 0$

- Write down the formal definition of what you want to prove.
- Write down the structure of the formal proof.
- 8 Rough work.
- Write down a complete formal proof.

Proof feedback

- Is the structure of the proof correct? (First fix ε, then choose δ, then ...)
- 2 Did you say exactly what δ is?
- Is the proof self-contained?
 (I do not need to read the rough work)
- Are all variables defined? In the right order?
- O all steps follow logically from what comes before?
- Did you only use things you know to be true? Did you prove what you have to prove?
- Ø Did you remember not to assume your conclusion?

We did not cover this in class. Go over this. If you have any difficulty, talk to me.

Let $a \in \mathbb{R}$.

Let f and g be functions with domain \mathbb{R} , except possibly a.

Assume

•
$$\lim_{x \to a} f(x) = L$$
, and

•
$$\lim_{x\to a} g(x) = M.$$

Show that g is bounded near a, that is

$$\exists M > 0 \text{ s.t. } \forall x \neq a, |g(x)| \leq M.$$

Hence show that $\lim_{x\to a} [f(x)g(x)] = LM$ (Hint: Write f(x) = (f(x) - L) + L and use the previous theorem)