MAT137 (Section L0501, February 10, 2020)

- Fot today's lecture: slides 11.3, 11.4
- For next day's lecture, watch videos 11.5-11.8 .
- Contents: Properties of sequences.

Let f be a function with domain $[0, \infty)$. We define a sequence as $a_n = f(n)$.

- IF f is increasing THEN a_n is increasing.
- IF a_n is increasing THEN f is increasing.

If you think any of them is false, prove it with a counterexample.

For each of the eight "???" boxes, construct an example sequence if possible.

If any of them is impossible, cite a theorem to justify why.

		convergent	divergent
monotonic	bounded	???	???
	unbounded	???	???
not monotonic	bounded	???	???
	unbounded	???	???

- If a sequence is convergent, then it is bounded above.
- If a sequence is convergent, then it is eventually monotonic.
- If a sequence diverges and is increasing, then there exists *n* ∈ \mathbb{N} such that *a_n* > 100.
- If $\lim_{n \to \infty} a_n = L$, then $a_n < L + 1$ for all n.
- If a sequence is non-decreasing and non-increasing, then it is convergent.
- If a sequence isn't decreasing and isn't increasing, then it is convergent.

Consider the sequence R_n defined by

$$R_0 = 1$$

 $\forall n \in \mathbb{N}, \quad R_{n+1} = \frac{R_n + 2}{R_n + 3}$

Compute R_1 , R_2 , R_3 .

Is this proof correct?

Let R_n be the sequence in the previous slide. Claim: $\{R_n\}_{n=0}^{\infty} \to -1 + \sqrt{3}$

Is this proof correct?

Let R_n be the sequence in the previous slide. Claim: $\{R_n\}_{n=0}^{\infty} \to -1 + \sqrt{3}$

Proof.

• Let
$$L = \lim_{n \to \infty} R_n$$
.

•
$$R_{n+1} = \frac{R_n + 2}{R_n + 3}$$

•
$$\lim_{n \to \infty} R_{n+1} = \lim_{n \to \infty} \frac{R_n + 2}{R_n + 3}$$

• $L = \frac{L+2}{L+3}$

•
$$L(L+3) = L+2$$

•
$$L^2 + 2L - 2 = 0$$

•
$$L = -1 \pm \sqrt{3}$$

• *L* must be positive, so $L = -1 + \sqrt{3}$

Consider the sequence R_n defined by

$$R_0 = 1$$

 $\forall n \in \mathbb{N}, \quad R_{n+1} = \frac{R_n + 2}{R_n + 3}$

- Prove R_n is bounded below by 0.
- **2** Prove R_n is decreasing (use induction)
- Solution Prove R_n is convergent (use a theorem)
- Now the calculation in the previous slide is correct, and we can get the value of the limit.