
MAT137
(Section L0501, October 21, 2019)

For next day’s lecture, watch videos 3.10, 3.11, 3.12.
Today’s lecture will assume you have watched videos 3.6, 3.7, 3.9.
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From the derivative to the function

1 Sketch the graph of a continuous function whose derivative has the graph
below

2 Sketch the graph of a non-continuous function whose derivative has the
graph below
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More estimations

Without using a calculator, estimate 20√1.01 as well as you can.

Hint: Consider the values you know for f (x) = 20√x and its derivative.

Sourav Sarkar MAT137 October 21, 2019 3 / 9



True or False

Let a ∈ R.
Let f be a function with domain R.
Assume f is differentiable everywhere.
What can we conclude?

1 f (a) is defined.
2 lim

x→a
f (x) exists.

3 f is continuous at a.

4 f ′(a) exists.
5 lim

x→a
f ′(x) exists.

6 f ′ is continuous at a.

We will see a counterexample for (5) and (6) in next class!
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Computing derivatives

Problem 1. Compute the derivatives of the following functions:

1 f (x) = x100 + 3x30 − 2x15

2 f (x) = 3
√

x + 6

3 f (x) = 4
x4

4 f (x) =
√

x (1 + 2x)

5 f (x) = x6 + 1
x3

6 f (x) = x2 − 2
x2 + 2

Problem 2. Let 0 6= c ∈ R, and let f be a function that is differentiable
at c. Define a new function g by:

g(x) = f (x)
x7 .

Compute g ′(c).

Sourav Sarkar MAT137 October 21, 2019 5 / 9



Proving the quotient rule.
Recall the quotient rule for derivatives from the videos, which I’ll state
formally here:

Theorem
Let c ∈ R. Let f and g be functions defined at c and near c, and assume
that g(x) 6= 0 for all x near c.

Define a function h by h(x) = f (x)
g(x) .

If f and g are differentiable at c, then h is differentiable at c, and

h′(c) = f ′(c)g(c)− f (c)g ′(c)
[g(c)]2 .

First, use the definition of h′(c) to write down the limit you need to prove.

Then prove it.
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Recall a trick from the product rule.

In order to prove the product rule, we had to compute a similar limit, and
to do that we did a simple “trick” of adding zero in a creative way:

f (x)g(x)− f (c)g(c)
x − c

= f (x)g(x)− f (c)g(x) + f (c)g(x)− f (c)g(c)
x − c

= f (x)− f (c)
x − c g(x) + f (c)g(x)− g(c)

x − c

A similar (but not identical) trick will help you with this proof.

Be careful to explicitly justify any limits you evaluate in your proof.
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Check your proof of the quotient rule

1 Did you use the definition of the derivative?

2 Are there only equations and no words? If so, you haven’t written a
proof.

3 Does every step follow logically from the previous steps (with
explanation)?

4 Did you assume anything you couldn’t assume?

5 Did you assume at any point that a function is differentiatiable? If so,
did you justify it?

6 Did you assume at any point that a function is continuous? If so, did
you justify it?

If you answered “no” to Q6 above, your proof cannot be fully correct.
Sourav Sarkar MAT137 October 21, 2019 8 / 9



Critique this proof

h′(c) = lim
x→c

h(x)− h(c)
x − c = lim

x→c

f (x)
g(x) −

f (c)
g(c)

x − c

= lim
x→c

f (x)g(c)− f (c)g(x)
g(x)g(c) (x − c)

= lim
x→c

f (x)g(c)− f (c)g(c) + f (c)g(c)− f (c)g(x)
g(x)g(c) (x − c)

= lim
x→c

([ f (x)− f (c)
x − c g(c)− f (c)g(x)− g(c)

x − c

] 1
g(x)g(c)

)
=

[
f ′(c)g(c)− f (c)g ′(c)

] 1
g(c)g(c)
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