MAT137 (Section L0501, February 12, 2020)

- For today's lecture: slides 11.5-11.8
- For next day's lecture, watch videos 12.1-12.6 .
- Contents: Sequences.

Consider the sequence R_n defined by

$$R_0 = 1$$
$$\forall n \in \mathbb{N}, \quad R_{n+1} = \frac{R_n + 2}{R_n + 3}$$

Compute R_1 , R_2 , R_3 .

Is this proof correct?

Let R_n be the sequence in the previous slide. Claim: $\{R_n\}_{n=0}^{\infty} \to -1 + \sqrt{3}$

Proof.

• Let
$$L = \lim_{n \to \infty} R_n$$
.

•
$$R_{n+1} = \frac{R_n + 2}{R_n + 3}$$

•
$$\lim_{n \to \infty} R_{n+1} = \lim_{n \to \infty} \frac{R_n + 2}{R_n + 3}$$

• $L = \frac{L+2}{L+3}$

•
$$L(L+3) = L+2$$

•
$$L^2 + 2L - 2 = 0$$

•
$$L = -1 \pm \sqrt{3}$$

• *L* must be positive, so $L = -1 + \sqrt{3}$

Consider the sequence R_n defined by

$$R_0 = 1$$

 $\forall n \in \mathbb{N}, \quad R_{n+1} = \frac{R_n + 2}{R_n + 3}$

- Prove R_n is bounded below by 0.
- **2** Prove R_n is decreasing (use induction)
- Solution Prove R_n is convergent (use a theorem)
- Now the calculation in the previous slide is correct, and we can get the value of the limit.

Consider the Fibonacci sequence (or Pingala sequence) F_n defined by

$$F_0 = 1, F_1 = 1$$
$$\forall n \ge 2, \quad F_n = F_{n-1} + F_{n-2}$$

What are the first few terms of the Fibonacci sequence?
Performed and *n* ∈ N

$$R_n=\frac{F_{n+1}}{F_n}.$$

So Assume $\lim_{n\to\infty} R_n = L$ exists and L > 0.

④ Find L.

L is a famous ratio in mathematics!!

$$\lim_{n\to\infty}\frac{n!+2e^n}{3n!+4e^n}$$

$$\lim_{n \to \infty} \frac{2^n + (2n)^2}{2^{n+1} + n^2}$$

$$\lim_{n\to\infty}\frac{5n^5+5^n+5n!}{n^n}$$

Let a_n and b_n be positive sequences.

- IF $a_n \ll b_n$ THEN $\forall m \in \mathbb{N}$, $a_m < b_m$
- ② IF $a_n << b_n$ THEN $\exists m \in \mathbb{N}$ s.t. $a_m < b_m$
- IF $a_n \ll b_n$ THEN $\exists n_0 \in \mathbb{N}$ s.t. $\forall m \in \mathbb{N}, m \ge n_0 \Rightarrow a_m \ll b_m$

- IF $\forall m \in \mathbb{N}$, $a_m < b_m$ THEN $a_n << b_n$
- **●** IF $\exists m \in \mathbb{N}$ s.t. $a_m < b_m$ THEN $a_n << b_n$
- IF $\exists n_0 \in \mathbb{N}$ s.t. $\forall m \in \mathbb{N}, m \ge n_0 \Rightarrow a_m < b_m$ THEN $a_n << b_n$

Composition law

Write a proof for the following Theorem

Theorem

Let a_n be a sequence. Let $L \in \mathbb{R}$.

• IF
$$\begin{cases} a_n \longrightarrow L \\ f \text{ is continuous at } L \end{cases}$$

• THEN
$${f(a_n)}_{n=0}^{\infty} \longrightarrow f(L)$$
.

Write the definition of your hypotheses and your conclusion.

- 2 Using the definition of your conclusion, figure out the structure of the proof.
- O some rough work if necessary.
- Write a formal proof.

Composition law

Write a proof for the following Theorem

Theorem

Let a_n be a sequence. Let $L \in \mathbb{R}$.

• IF
$$\begin{cases} a_n \longrightarrow L \\ f \text{ is continuous at } L \end{cases}$$

• THEN
$${f(a_n)}_{n=0}^{\infty} \longrightarrow f(L)$$
.

Critique your proof!

- Does your proof have the correct structure?
- ② Did you introduce all your variables in the right order? Did you introduce all your variables?
- Oid you explain what you are doing?
- Gan the proof be fully understood without looking at your rough work?

An application of the previous theorem

Prove that

$$\sqrt{2+\sqrt{2+\sqrt{2+\ldots}}}=2$$

- Explicitly write the expression as the limit of a sequence {a_n}_{n∈ℕ} (Hint: try to define by a recurrence)
- **2** Show that $0 \le a_n \le 2$ for all $n \in \mathbb{N}$.
- **3** Show that $\{a_n\}_{n \in \mathbb{N}}$ is increasing.
- Conclude that $a := \lim_{n \to \infty} a_n$ exists.
- Solution Use that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} a_{n+1}$ and that $f(x) := \sqrt{2+x}$ is continuous at a to solve for a.