MAT137 (Section L0501, October 28, 2019)

- For next day's lecture, watch videos 3.19, 3.20, 4.1, 4.2.
- Today's lecture will **assume** you have watched videos 3.13, 3.15, 3.16, 3.17, 3.18 (and 3.14).
- Contents: 1) Implicit differentiation 2) exponentials and logarithms
 3) Miscellaneous

Let f be a continuous function with domain \mathbb{R} .

True or False? IF the average rate of change of f between x = 1 and x = 2 is -3, THEN f must be decreasing on [1, 2].

True or False?

IF, for every $1 \le x_1 < x_2 \le 2$, the average rate of change of f between x_1 and x_2 is negative, THEN f must be decreasing on [1, 2].

We know

$$f(0) = 2$$
, $f'(0) = 3$, $g(0) = 7$, $g'(0) = 6$.
Compute $\lim_{x \to 0} \frac{f(x)}{g(x)}$.

We know

$$f(0) = 0, \quad f'(0) = 3, \quad g(0) = 0, \quad g'(0) = 6.$$

- When x is close to 0, give estimates for f(x) and g(x).
- Use those estimates to compute $\lim_{x\to 0} \frac{f(x)}{g(x)}$.

An equation like $y = x^2 + \sin(x)$ expresses a relationship between values of x and y.

More specifically, it says that the values of y that satisfy the equation are related to the values of x that satisfy the equation by a function.

(The function is $f(x) = x^2 + \sin(x)$.)

If we want to figure out how y varies when x varies, we can simply differentiate f, in this case getting

$$\frac{dy}{dx} = 2x + \cos(x).$$

The equation $x^2 + y^2 = 1$ also expresses a relationship between values of x and y.

In this case though, the values of y cannot be expressed as an explicit function of x.

That is, there is no function f such that the equation y = f(x) encapsulates all the information in the earlier equation.

But we still might want to ask how y varies when x varies.

Implicit functions

In the particular case of $x^2 + y^2 = 1$, we know that by splitting into two cases—when y is non-negative or non-positive—the relationship in each case can be expressed by an explicit function:

When
$$y \ge 0$$
, we know $y = \sqrt{1 - x^2}$.
When $y \le 0$, we know $y = -\sqrt{1 - x^2}$.

We can also differentiate both of these functions to find out how y varies when x varies:

When
$$y \ge 0$$
, we find $\frac{dy}{dx} = \frac{-x}{\sqrt{1-x^2}} \left(=\frac{-x}{y}\right)$.
When $y \le 0$, we find $\frac{dy}{dx} = \frac{x}{\sqrt{1-x^2}} \left(=\frac{-x}{-\sqrt{1-x^2}} = \frac{-x}{y}\right)$.
So, no matter what x is, it turns out that $\frac{dy}{dx} = \frac{-x}{y}$. This equation accounts for both cases.

Sourav Sarkar

Implicit differentiation

Instead of splitting up the cases, we could have done all of this at once by *implicitly differentiating* the original equation $x^2 + y^2 = 1$, as you saw in video 3.12.

To do this you differentiate both sides of the equation, and treat y as though it's a function of x.

So for example if you see a y^2 , you apply the Chain Rule:

$$\frac{d}{dx}\left(y^2\right) = 2y\,y'.$$

In this case you'd get:

$$2x + 2y y' = 0 \implies y' = -\frac{x}{y}.$$

Notice that the RHS of this formula doesn't make sense when y = 0. That makes sense, since y cannot be thought of as a function of x around those points.

Consider $x^2 + y^2 = 1$. For which values of (x, y) on the curve can y be expressed as a function of x in an interval around x?

For which values of (x, y) on the curve can x be expressed as a function of y in an interval around y?

Something strange happens at (0,0) for $x^2 - y^2 = 0$.

Some quick derivatives with exponentials and logarithms

Problem. Compute the derivatives of the following functions:

- $f(x) = e^{\sin x + \cos x} \log(x)$
- $f(x) = \pi^{\tan x}$
- 3 $f(x) = \ln [e^x + \ln(\ln(\ln(x)))]$

Reminder: We know:

•
$$\frac{d}{dx}e^{x} = e^{x}$$

• $\frac{d}{dx}a^{x} = a^{x} \ln a$

•
$$\frac{d}{dx} \ln x = \frac{1}{x}$$