MAT137

(Section L0501, February 26, 2020)

- For today's lecture: slides 12.7–12.10
- For next day's lecture, watch videos 13.1–13.4.
- Contents: BCT and LCT for improper integrals.

Quick review

For which values of $p \in \mathbb{R}$ is each of the following improper integrals convergent?

A "simple" integral

What is
$$\int_{-1}^{1} \frac{1}{x} dx$$
?

3
$$\int_{-1}^{1} \frac{1}{x} dx$$
 is divergent.

True or False - Part I

Let $a \in \mathbb{R}$.

Let f and g be continuous functions on $[a, \infty)$.

Assume that

$$\forall x \geq a, \quad 0 \leq f(x) \leq g(x)$$

What can we conclude?

- ① IF $\int_{-\infty}^{\infty} f(x)dx$ is convergent, THEN $\int_{-\infty}^{\infty} g(x)dx$ is convergent.
- 3 IF $\int_{a}^{\infty} g(x)dx$ is convergent, THEN $\int_{a}^{\infty} f(x)dx$ is convergent.

True or False - Part II

Let $a \in \mathbb{R}$.

Let f and g be continuous functions on $[a, \infty)$.

Assume that

$$\forall x \geq a, \quad f(x) \leq g(x)$$

What can we conclude?

- ① IF $\int_{-\infty}^{\infty} f(x)dx$ is convergent, THEN $\int_{-\infty}^{\infty} g(x)dx$ is convergent.
- 2 IF $\int_{a}^{\infty} f(x)dx = \infty$, THEN $\int_{a}^{\infty} g(x)dx = \infty$.
- 3 IF $\int_{a}^{\infty} g(x)dx$ is convergent, THEN $\int_{a}^{\infty} f(x)dx$ is convergent.

True or False - Part III

Let $a \in \mathbb{R}$.

Let f and g be continuous functions on $[a, \infty)$.

Assume that

$$\exists M \geq a \text{ s.t. } \forall x \geq M, \quad 0 \leq f(x) \leq g(x)$$

What can we conclude?

- ① IF $\int_{-\infty}^{\infty} f(x)dx$ is convergent, THEN $\int_{-\infty}^{\infty} g(x)dx$ is convergent.
- § IF $\int_a^\infty g(x)dx$ is convergent, THEN $\int_a^\infty f(x)dx$ is convergent.

A simple BCT application

We want to determine whether $\int_1^\infty \frac{1}{x + e^x} dx$ is convergent or divergent.

We can try at least two comparisons:

Try both. What can you conclude from each one of them?

BCT calculations

Use the BCT to determine whether each of the following is convergent or divergent

$$\int_1^\infty \frac{1+\cos^2 x}{x^{2/3}} \, dx$$

$$\int_0^\infty \frac{\arctan x^2}{1+e^x} \, dx$$

$$\int_2^\infty \frac{(\ln x)^{10}}{x^2} \, dx$$

Rapid fire: convergent or ∞ ?

$$\int_{1}^{\infty} \frac{1}{x} dx$$

5.
$$\int_0^1 \frac{1}{x^2} dx$$

$$6. \int_0^1 \frac{1}{\sqrt{x}} dx$$

$$7. \int_0^1 \frac{1}{x} dx$$

$$8. \int_{1}^{\infty} \frac{3}{x^2} dx$$

$$9. \int_1^\infty \frac{1}{x^2 + 3} dx$$

$$10. \int_{1}^{\infty} \left(\frac{1}{x^2} + 3\right) dx$$

$$11. \int_{1}^{\infty} \left(\frac{1}{x^2 + x}\right) dx$$

A variation on LCT I

This is the theorem you have learned:

Theorem (Limit-Comparison Test)

Let $a \in \mathbb{R}$. Let f and g be positive, continuous functions on $[a, \infty)$.

- IF the limit $L = \lim_{x \to \infty} \frac{f(x)}{g(x)}$ exists and L > 0
- THEN $\int_{a}^{\infty} f(x)dx$ and $\int_{a}^{\infty} g(x)dx$ are both convergent or both divergent.

What if we change the hypotheses to L = 0 and $L = \infty$?

Hint: If $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$, what is larger f(x) or g(x)?

Prove it!

A variation on LCT II

Theorem (Limit-Comparison Test)

Let $a, b \in \mathbb{R}$. Let f and g be positive, continuous functions on (a, b].

- IF the limit $L = \lim_{x \to a+} \frac{f(x)}{g(x)}$ exists and L > 0
- THEN $\int_a^b f(x)dx$ and $\int_a^b g(x)dx$ are both convergent or both divergent to ∞ .

What should be the missing condition?

Prove as an exercise (Hint: same as the usual LCT proof)

Slow burn: convergent or divergent?

$$\int_0^1 \frac{\sin x}{x^{3/2}} \, dx$$