MAT137

(Section L0501, March 09, 2020)

- For today's lecture: slides 13.10–13.12
- For next day's lecture, watch videos 13.13–13.17
- Contents: Integral and comparison tests.

Rapid fire: For which values of $a \in \mathbb{R}$ are these series convergent?

$$\bullet \sum_{n=0}^{\infty} \frac{1}{a^n}$$

$$\sum_{n=0}^{\infty} \frac{1}{n^a}$$

$$\sum_{n=0}^{\infty} a^n$$

More rapid fire: Convergent or divergent?

TRUE or FALSE

Let $\sum_{n=0}^{\infty} a_n$ be a series. Let $\{S_n\}_{n=0}^{\infty}$ be its partial-sum sequence.

- IF the sequence $\{S_n\}_{n=0}^{\infty}$ is bounded and eventually monotonic, THEN the series $\sum_{n=0}^{\infty} a_n$ is convergent.
- ② IF the series $\sum_{n=0}^{\infty} a_n$ converges

THEN the sequence $\{S_n\}_{n=0}^{\infty}$ is eventually monotonic.

- 3 If $\forall n \in \mathbb{N}, a_n > 0$ THEN the sequence $\{S_n\}_{n=0}^{\infty}$ is increasing
- 4 If $\sum_{n=0}^{\infty} a_n$ is convergent THEN $\lim_{k \to \infty} \left[\sum_{n=k}^{\infty} a_n \right] = 0$

Slower questions: convergent or divergent?

- $\sum_{n=0}^{\infty} e^{-n^2}$

Slower questions: convergent or divergent?

$$\sum_{n=1}^{\infty} \frac{1}{n \ln n}$$