MAT137 (Section L0501, January 13, 2020)

- Fot today's lecture: slides 7.5-7.9
- For next day's lecture, watch videos 7.10, 7.11, 7.12, 8.1, 8.2.
- Contents: integrability.

Example 1: non-continuous

Let
$$f(x) = \begin{cases} 0 & x = 0 \\ 5 & 0 < x \le 1 \end{cases}$$
, defined on $[0, 1]$.

- Let $P = \{0, 0.2, 0.5, 0.9, 1\}$. Calculate $L_P(f)$ and $U_P(f)$ for this partition.
- 2 Let $P = \{x_0, x_1, \dots, x_N\}$ be any partition of [0, 1]. What is $U_P(f)$? What is $L_P(f)$? (Draw a picture!)

③ Find a partition *P* such that
$$L_P(f) = 4.99$$
.

- What is the upper integral, $\overline{I_0^1}(f)$?
- What is the lower integral, $I_0^1(f)$?
- **(6)** Is f integrable on [0, 1]?

A very tricky question from last class

Let f be a bounded function on [a, b]. Which statement is true?

① There exists a partition P of [a, b] such that

$$\underline{I_a^b}(f) = L_P(f)$$
 and $\overline{I_a^b}(f) = U_P(f).$

2 There exist partitions P and Q of [a, b] such that

$$\underline{I}^b_{\underline{a}}(f) = L_P(f)$$
 and $\overline{I}^b_{\overline{a}}(f) = U_Q(f).$

True or False

Let f be a bounded function on [a, b].

3. There exists a partition P of [a, b] such that

$$\underline{I_a^b}(f) = L_P(f)$$

The " ε -characterization" of integrability

True or False?

Let f be a bounded function on [a, b].

 IF f is integrable on [a, b] THEN ∀ε > 0, ∃ a partition P of [a, b], s.t. U_P(f) - L_P(f) < ε.
 IF ∀ε > 0, ∃ a partition P of [a, b], s.t. U_P(f) - L_P(f) < ε, THEN f is integrable on [a, b]

" ε -characterization" of integrability

Let's prove this theorem from last slide.

Theorem Let f be a bounded function on [a, b]. IF $\forall \varepsilon > 0, \exists$ a partition P of [a, b], s.t. $U_P(f) - L_P(f) < \varepsilon$, THEN f is integrable on [a, b] IF f is integrable on [a, b] THEN $\forall \varepsilon > 0, \exists$ a partition P of [a, b], s.t. $U_P(f) - L_P(f) < \varepsilon$.

Claim 1

Let f be a bounded function on [a, b]. IF $\forall \varepsilon > 0, \exists$ a partition P of [a, b], s.t. $U_P(f) - L_P(f) < \varepsilon$ THEN f is integrable on [a, b]

Prove this claim. Hints:

- **1** Recall the definition of "f is integrable on [a, b]".
- Let P be a partition.
 Order the quantities U_P(f), L_P(f), <u>I_a^b(f)</u>, <u>I_a^b(f)</u>.
 (Draw a picture on the real line)

3 Order
$$U_P(f) - L_P(f)$$
, $\overline{I_a^b}(f) - \underline{I_a^b}(f)$, and 0.

Claim 2

Let f be a bounded function on [a, b]. IF f is integrable on [a, b]THEN $\forall \varepsilon > 0, \exists$ a partition P of [a, b], s.t. $U_P(f) - L_P(f) < \varepsilon$

Prove this claim. Hints:

- Assume f is integrable on [a, b].
 Let I be the integral. Fix ε > 0.
- 2 Recall the definition of "f is integrable on [a, b]".
- 3 There exists a partition P_1 s.t. $U_{P_1}(f) < I + \frac{\epsilon}{2}$. Why?
- There exists a partition P_2 s.t. $L_{P_2}(f) > I \frac{\epsilon}{2}$. Why?
- Solution What can you say about $U_{P_1}(f) L_{P_2}(f)$?
- Can you construct a partition P such that $L_{P_2}(f) \le L_P(f) \le U_P(f) \le U_{P_1}(f)$?