MAT137 (Section L0501, January 22, 2020)

- Fot today's lecture: slides 8.5, 8.6, 9.1–9.4
- For next day's lecture, watch videos 9.5-9.9 .
- Contents: FTC 2 and integration by substitution.

• Define FTC1

• Define FTC2

Definite integrals

Compute

$$\int_{1}^{2} x^{3} dx$$

$$\int_{0}^{1} \left[e^{x} + e^{-x} - \cos(2x) \right] dx$$

$$\int_{1/2}^{1/\sqrt{2}} \frac{4}{\sqrt{1 - x^{2}}} dx$$

$$\int_{\pi/4}^{\pi/3} \sec^{2} x \, dx$$

$$\int_{1}^{2} \left[\frac{d}{dx} \left(\frac{\sin^{2} x}{1 + \arctan^{2} x + e^{-x^{2}}} \right) \right] dx$$

$$\int_{-1}^{1} \frac{1}{x^4} dx = \left. \frac{-1}{3x^3} \right|_{-1}^{1} = \frac{-2}{3}$$

However, x^4 is always positive, so the integral should be positive.

Calculate the area of the bounded region...

1 ... between the x-axis and
$$y = 4x - x^2$$
.

2) ... between
$$y = \cos x$$
, the x-axis, from $x = 0$ to $x = \pi$.

3 ... between
$$y = x^2 + 3$$
 and $y = 3x + 1$.

$$\bigcirc$$
 ... between $y = 1$, the y-axis, and $y = \ln(x + 1)$.

(

Calculate the value of these integrals without computing any antiderivative.

$$\int_{-2}^{2} \sin x^{3} dx$$

$$\int_{0}^{\pi} \cos^{2} x dx$$

$$\int_{-1}^{1} \arccos x dx$$

Hint: Sketch the graphs with Desmos. Then use symmetry to compute it. Afterwards, try to express the symmetry with an algebraic statement.

Calculate

$$\int \frac{\sin\sqrt{x}}{\sqrt{x}} \, dx$$

Hint: Use the substitution $u = \sqrt{x}$.

Computation practice: integration by substitution

Use substitutions to compute:

$$\int \frac{\sqrt{x}}{\sqrt{x}} dx$$

$$\int e^x \cos(e^x) dx$$

 $\int \sin \sqrt{x}$

$$\int \cot x \, dx$$

$$\int x^2 \sqrt{x+1} \, dx$$

Computation practice: integration by substitution

Use substitutions to compute:

1.
$$\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$$
 1. $\int \frac{e^{2x}}{\sqrt{e^x + 1}} dx$
 1. $\int e^x \cos(e^x) dx$
 1. $\int \frac{(\ln \ln x)^2}{x \ln x} dx$
 1. $\int \frac{1}{x \ln$

Integral of products of sin and cos

We want to compute

$$I = \int \sin^3 x \cos^2 x \, dx$$

- **1** Attempt the substitution $u = \sin x$
- 2 Attempt the substitution $u = \cos x$
- **③** One worked better than the other. Which one? Why? Finish the problem.

Integral of products of sin and cos

We want to compute

$$I = \int \sin^3 x \cos^2 x \, dx$$

- **1** Attempt the substitution $u = \sin x$
- **2** Attempt the substitution $u = \cos x$
- **③** One worked better than the other. Which one? Why? Finish the problem.

Assume we want to compute

$$\int \sin^n x \cos^m x \, dx$$

When will the substitution $u = \sin x$ be helpful? When will the substitution $u = \cos x$ be helpful?

Definite integral via substitution

This final value is right, but the write-up is WRONG. Why?

Calculate
$$I = \int_0^2 \sqrt{x^3 + 1} x^2 dx$$

WRONG answer

Substitution: $u = x^3 + 1$, $du = 3x^2 dx$.

$$I = \frac{1}{3} \int_0^2 \sqrt{x^3 + 1} (3x^2 dx) = \frac{1}{3} \int_0^2 u^{1/2} du$$

= $\frac{1}{3} \frac{2}{3} u^{3/2} \Big|_0^2$
= $\frac{1}{9} (x^3 + 1)^{2/3} \Big|_0^2$
= $\frac{2}{9} (2^3 + 1)^{3/2} - \frac{2}{9} (0 + 1)^{3/2} = \frac{52}{9}$