
CSC 438F/2404F Notes (S. Cook) Fall, 2008

Incompleteness and Undecidability

First part: Representing relations by formulas

Our goal now is to prove the Gödel Incompleteness Theorems, and associated undecidability
results. Recall that TA (True Arithmetic) is the set of all sentences in the vocabulary
LA = [0, s,+, · ; =] which are true in the standard model. We will prove that TA is not a
recursive set, and not r.e., and in fact it has no recursive set of axioms. In view of this, we
will study a standard subset of TA known as Peano Arithmetic (or PA), which is the set of
sentences which are consequences of the Peano Postulates. Gödel’s Second Incompleteness
Theorem states that the consistency of PA cannot be proved in PA, and can be generalized
to apply to any theory which can formalize a sufficient amount of number theory.

The undecidability and incompleteness results very much depend on the richness of the
vocabulary LA; that is, both + and · must be present. As indicated on page 52 of the Notes,
if just + is present, then the set of true sentences (Presburger Arithmetic) is decidable and
has a nice axiomatization.

Notation: From now until the end of the course, the underlying vocabulary is L = LA =
[0, s,+, · ; =] (unless otherwise noted).

Recall that N is the standard model or structure for LA. That is, the universe M = N, and
0, s,+, · get their standard meanings.

Representing relations by formulas

If x1, ..., xn are distinct variables, and A is a formula, we will sometimes write A(x1, ..., xn)
(or A(~x)) to indicate that we are thinking of A as representing a relation whose arguments
are x1, ..., xn. In this case, if t1, ..., tn are terms, then A(t1, ..., tn) denotes A with the variables
x1, ..., xn simultaneously replaced by t1, ..., tn, respectively.

Numerals: We define s0 = 0 and sk+1 = ssk, k = 0, 1, ...

sk is a term (or numeral) representing k ∈ N. For example, s3 stands for the term sss0.
Numerals are syntactic objects. They represent numbers, which are semantic objects.

A(s~a) means A(sa1 , . . . , san) where a1, . . . , an ∈ N.

Definition: Suppose R is an n-ary relation, A(~x) is a formula such that all free variables in
A are among x1, ..., xn. Then A(~x) represents R iff for all ~a ∈ Nn

R(~a)⇔ N |= A(s~a)

(R(~a) holds iff the sentence A(s~a) is true in the standard model.)
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This notion ties together a syntactic object (a formula A) and a semantic object (a relation
R).

Definition: R is arithmetical iff R is representable by some formula (with vocabulary LA).

For example, the divisibility relation x|y (x divides y) is representable by the formula
A(x, y) =syn ∃z(x · z = y). Therefore x|y is an arithmetical relation.

We will show that many relations are arithmetical, including all recursive relations, all r.e.
relations, and many more.

Bounded Quantifiers

Syntactic Definitions: Let t1 and t2 be terms.

t1 ≤ t2 stands for ∃z(t1 + z = t2), where z does not occur in t1, t2.

∃x ≤ t A stands for ∃x(x ≤ t ∧ A), where x does not occur in t.

∀x ≤ t A stands for ∀x(x ≤ t ⊃ A), where x does not occur in t.

These are bounded quantifiers. Note that these definitions apply to formulas in the vocabulary
LA.

Notation: Let LA,≤ be the vocabulary LA expanded by the binary predicate symbol ≤.
We define bounded quantifiers for this vocabulary as above, except now x ≤ t is not an
abbreviation for ∃z(x+ z = t).

Definition of Bounded Formula and ∆0 Formula: A formula A in LA,≤ is a bounded
formula iff all of its quantifiers are bounded. A formula A in LA is bounded iff it is the
translation of a bounded formula in LA,≤ using the translation for t1 ≤ t2 given above. A
bounded formula of LA is also called a ∆0 formula.

Again “formula” always refers to a formula over LA, unless otherwise stated. Thus for
example if we write a formula

∃u ≤ y(u · x = y)

this stands for the LA formula

∃u((∃z u+ z = y) ∧ u · x = y)

Definition: R(~x) is a ∆0-relation iff some ∆0 formula A represents R.

Note that all ∆0 relations are arithmetical.

Example: The relation Prime(x) is represented by the following bounded formula A(x):

s0 < x ∧ ∀z ≤ x ∀y ≤ x(x = z · y ⊃ (z = 1 ∨ z = x))

Thus Prime(x) is a ∆0 relation.
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Example: The relation x|y is a ∆0 relation.

Side Remark: All ∆0 relations can be recognized in linear space on a Turing machine,
when input numbers are represented in binary notation.

Lemma: The ∆0 relations are closed under ∧,∨,¬ and the bounded quantifiers ∀ ≤, ∃ ≤.

Proof: Notice that in this lemma, the operations in question are semantic operations, since
they operate on relations (semantic objects). The boolean operations ∧,∨,¬, for example,
are discussed in the context of primitive recursive relations on page 62 of the notes, and the
operations of bounded quantification are discussed on page 63 of the notes.

However each of these semantic operations on relations corresponds to a syntactic operation
on formulas. For example, suppose that R and S are n-ary ∆0 relations. Then by definition
of ∆0, there are bounded formulas A and B which represent R and S, respectively. Then
the formula (A ∧ B) is a bounded formula which represents the relation R ∧ S. Therefore
R∧S is a ∆0 relation. A similar argument applies to each of the other operations mentioned
in the lemma.

Lemma: Every ∆0 relation is primitive recursive.

Proof: Structural Induction on bounded formulas in the vocabulary LA,≤. We use the fact
that the primitive recursive relations (i.e. predicates) are closed under the boolean operations
and bounded quantification, as discussed on pages 62 and 63 in the notes. �

Remark: The converse of the above lemma is false, as can be shown by a diagonal ar-
gument. For those familiar with complexity theory, we can clarify things as follows. As
noted in the Side Remark above, all ∆0 relations can be recognized in linear space on a
Turing machine. On the other hand, it follows from the Ritchie-Cobham Theorem that all
relations recognizable in space bounded by a primitive recursive function of the input length
are primitive recursive. In particular, space O(n2) relations are primitive recursive, and a
straightforward diagonal argument shows that there are relations recognizable in n2 space
which are not recognizable in linear space, and hence are not ∆0 relations.

Definition: A ∃∆0 formula (also called a Σ1 formula) is one of the form ∃yA, where A is a
∆0 formula.

Definition: R is a ∃∆0-relation iff R is represented by a ∃∆0 formula.

Notice that we are applying the same adjective “∃∆0” to both relations and formulas. Of
course all ∃∆0 relations are arithmetical.

Theorem: Every ∃∆0 relation is r.e. (defined page 75)

Proof: Suppose that R(~x) is a ∃∆0 relation. Then R is represented by a formula ∃yA(~x, y),
where A(~x, y) is a bounded formula. Then A represents a ∆0 relation S(~x, y), such that
R(~x) = ∃yS(~x, y). By the previous lemma, S is primitive recursive, and hence recursive, and
therefore R is r.e., by the definition of r.e. �
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The converse is also true, so that in fact the ∃∆0 relations coincide with the r.e. relations.

Exists Delta Theorem: Every r.e. relation is ∃∆0.

The proof will take the next three pages. This is our easy analog of the much more difficult
MRDP theorem stating that every r.e. relation is Diophantine (see page 81).

Unbounded quantifiers: We defined the Boolean operations ∧,∨,¬ and the bounded
quantifier operations ∀ ≤ and ∃ ≤ on pages 62 and 63. Now we defined the (unbounded)
quantifier operations ∀ and ∃. Note that these are operations on relations as opposed to
formulas, and hence they are semantic rather than syntactic operations.

Definition: The relation S(~x) is obtained from R(~x, y) by the operation ∃ (existential
quantification) if

S(~x) = ∃yR(~x, y), for all ~x ∈ Nn

Similarly S(~x) is obtained from R(~x, y) by the operation ∀ (universal quantification) if

S(~x) = ∀yR(~x, y), for all ~x ∈ Nn

Note that the class of recursive relations is not closed under either of the operations ∃,∀.
For example, the Kleene T -predicate T (z, x, y) is recursive, but K is not recursive, and yet

x ∈ K ⇐⇒ ∃yT (x, x, y)

Closure Lemma: The ∃∆0 relations are closed under ∃, ∧ and ∨, and the bounded quan-
tifiers ∃ ≤ and ∀ ≤. (See page 63 for the definitions of ∃ < and ∀ <, from which ∃ ≤ and
∀ ≤ can be obtained.)

Proof: Again note that these operations are semantic operations. Consider the operation
∃, for example. Suppose R(~x, y) is represented by the formula ∃zA(~x, y, z), where A is a
bounded formula. Then ∃yR(~x, y) is represented by the ∃∆0 formula

∃u(∃y ≤ u∃z ≤ u A(~x, y, z))

The argument in similar for the other operations. The case of ∀ ≤ is interesting, but still
quite similar.

Exercise 1 Carry out the proof of the Closure Lemma for the other operations.

Remark: We cannot extend the above Lemma to the operations ∀ and ¬. This is because
the ∃∆0 relations coincide with the r.e. relations (by the previous two theorems). We know
that the r.e. relations are not closed under ¬, because Kc is not r.e.

Exercise 2 Prove that the r.e. relations are not closed under ∀.

86



Recall from page 79 that if f is an n-ary function, then graph(f) is the n+ 1-ary relation

R(~x, y) = (y = f(~x))

Main Lemma: If f is primitive recursive, then graph(f) is an ∃∆0 relation.

Example: The relation (y = 2x) is ∃∆0.

Proof of Exists Delta Theorem from Main Lemma: From this lemma it follows
trivially that every primitive recursive relation is a ∃∆0 relation, since

R(~x)⇔ (R(~x) = 0)

where on the right, we view R as a 0-1 valued function.

Now we can show that every r.e. relation is ∃∆0. Recall that one of our characterizations
of r.e. relation was R(~x) = ∃yS(~x, y), where S is primitive recursive (see part iii) of the
Theorem, page 77). We know that S is ∃∆0 by the paragraph above, and thus R is ∃∆0 by
the Closure Lemma. �

Proof of Main Lemma: Induction on primitive recursive functions. (Recall the definition
of primitive recursive function on page 57.)

Base Case Z, S, In,i

Relation ∃∆0 formula
(y = Z) y = 0
(y = S(x)) y = sx These are all ∆0 formulas
(y = In,i(~x)) y = xi

Induction step
Case I: f(~x) = g(h1(~x), . . . , hk(~x)), where g, h1, ..., hk each has a ∃∆0 graph. Then

(y = f(~x)) = ∃y1 · · · ∃yk(y1 = h1(~x) ∧ · · · ∧ yk = hk(~x) ∧ y = g(y1, . . . , yk))

The RHS is ∃∆0 by the Closure Lemma.

Case II: Primitive Recursion. This is the hard case, and requires a new idea: the Gödel β
Function. This provides us with a way of representing sequences of numbers by numbers,
using ∃∆0 formulas. Note that prime-power decomposition does not help us here, since it is
by no means immediately clear that the relation (z = xy) can be represented by a formula
in the vocabulary L = [0, s,+, ·; =], which does not include exponentiation as a function
symbol.

Definition: (Gödel β function)

β(c, d, i) = rm(c, d(i+ 1) + 1)

Recall rm(x, y) = x mod y.
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Lemma: (Gödel) For any n, r0, . . . , rn there exists c, d such that

β(c, d, i) = ri 0 ≤ i ≤ n

Thus the pair (c, d) represents the sequence r0, r1, ..., rn using β.

For the proof, we need

Chinese Remainder Theorem (CRT): Given r0, . . . , rn and m0, . . . ,mn such that

0 ≤ ri < mi 0 ≤ i ≤ n (1)

and
gcd(mi,mj) = 1 0 ≤ i < j ≤ n

there exists r such that
rm(r,mi) = ri 0 ≤ i ≤ n

Proof: of CRT is by counting: Distinct values of r, 0 ≤ r < Πmi, represent distinct
sequences. But the total number of sequences r0, ..., rn such that (1) holds is Πmi. Hence
every such sequence must be the sequence of remainders of some r, 0 ≤ r < Πmi. �

Proof of Gödel Lemma: Let d = (n+ r0 + · · ·+ rn + 1)!
Let mi = d(i+ 1) + 1
Claim: 0 ≤ i < j ≤ n⇒ gcd(mi,mj) = 1
For suppose p is prime, and p | mi and p | mj

Then p | d(i + 1) + 1 and p | d(j + 1) + 1. Hence p divides their difference, i.e. p | d(j − i).
But p cannot divide d and (d(i+ 1) + 1) both, so p | j − i. But then p ≤ j − i < n, so p | d,
a contradiction.

By the CRT, there is a number r = c so

β(c, d, i) = rm(c,mi) = ri, 0 ≤ i ≤ n �

Back to Case II of the Induction

f is defined by primitive recursion:
f(~x, 0) = g(~x)
f(~x, y + 1) = h(~x, y, f(~x, y))

where graph(g) and graph(h) are ∃∆0 relations.

Then z = f(~x, y) iff ∃r0, . . . , ry such that

(i) r0 = g(~x)
(ii) ri+1 = h(~x, i, ri), 0 ≤ i < y

and (iii) ry = z

Thus
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(z = f(~x, y)) = ∃c∃d[β(c, d, 0) = g(~x)∧
∀i < y(β(c, d, i+ 1) = h(~x, i, β(c, d, i)) ∧ β(c, d, y) = z]

The fact that the RHS is a ∃∆0 relation follows from the Closure Lemma and the following
two lemmas:

Lemma 1: graph(β) is a ∆0 relation.

Proof:
(y = β(c, d, i)) = [∃q ≤ c(c = q(d(i+ 1) + 1) + y) ∧ y < d(i+ 1) + 1]

Lemma 2: If R(~x, y) is a ∃∆0 relation, graph(f) is a ∃∆0 relation (where f is a total
function), and S(~x) = R(~x, f(~x)), then S is a ∃∆0 relation.

Proof:
S(~x) = ∃y(y = f(~x) ∧R(~x, y))

This completes the proof of the Main Lemma, that every primitive recursive function has a
∃∆0 graph, and of the Exists Delta Theorem. �

Exercise 3 Give a formula A(x, y) which represents the relation (y = 2x). Your presenta-
tion of A(x, y) may use a formula B(c, d, i, y) representing the graph of the Gödel β function
(y = β(c, d, i)).

Corollary to Exists Delta Theorem: Every r.e. relation is arithmetical (i.e. representable:
see page 84).

Notice that not all arithmetical relations are r.e., since the arithmetical relations are closed
under ∀ and ¬, unlike the r.e. relations. For example, Kc is arithmetical, but not r.e.

It follows from the Corollary that the set TA cannot be recursive or r.e. For example, K is
r.e., so there is some formula A(x) which represents K in TA. Thus

n ∈ Kc ⇐⇒ ¬A(sn) ∈ TA

If TA were r.e., it would follow that Kc is r.e., which yields a contradiction. In fact, this
argument shows that even the set of ∃∆0 sentences of TA is not recursive.

In the next section we prove Tarski’s Theorem, which is a much stronger statement about
the complexity of TA.

Exercise 4 Definition: f is a ∆0-function provided that f is a total n-ary function for
some n, and
(i) graph(f) is a ∆0 relation, and
(ii) For some polynomial p(~x) with coefficients in N,

f(~x) ≤ p(~x) for all ~x ∈ Nn
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(a) Show that the Initial Functions (Notes page 57) and the Gödel β function β(c, d, i) are
∆0 functions.

(b) Show that the class of ∆0 functions is closed under composition (as defined in the Notes,
page 57).

(c) Show that if R(~x, y) is a ∆0 relation and f(~x, y) is defined from R by bounded minimiza-
tion (Notes page 64), then f(~x, y) is a ∆0 function. Hint: This is easier than the argument
for the primitive recursive case given on page 65.

TARSKI’S THEOREM

Tarski’s theorem states that truth of sentences in the vocabulary LA cannot be expressed by
any one formula A(x) in LA. This is made precise using the notion of arithmetical relation.

As a corollary to Tarski’s Theorem we get a weak form of the Gödel Incompleteness Theorem:
TA has no recursive set of axioms. (See Corollary 2, page 95.)

We have just shown that all r.e. relations are arithmetical. We now point out some easy
closure properties of the set of arithmetical relations.

Lemma: The set of arithmetical relations is closed under the Boolean operations ∧,∨,¬,
and the quantifiers (bounded and unbounded) ∀ ≤, ∃ ≤,∀,∃.

Proof: The (easy) proof is essentially the same as for the corresponding lemma for the ∆0

relations (see p73).

Exercise 5 Show that the set of arithmetical relations is closed under substitution of total
computable functions for variables.

Assigning numbers to formulas: We assign a “Gödel” number #t to each term t and
a Gödel number #A to each formula A in the same manner that we assigned numbers to
commands and programs in the section on computability (page 66). The exact details of the
assignment are not important, as long as there are algorithms which can go from terms and
formulas to their numbers and from numbers to the terms and formulas that they represent.

Thus we can think of a set of sentences as a set of numbers:

Definition: If Γ is a set of sentences, then Γ̂ = {#A | A ∈ Γ}.

We say that Γ is recursive, r.e., arithmetical, etc iff Γ̂ is recursive, r.e., arithmetical, etc.

Theorem: (Tarski) TA is not arithmetical. More precisely, if we define the relation Truth
by

Truth(m)⇔ m = #A, for some A ∈ TA
Then Truth is not arithmetical.
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Proof: We show that if Truth were arithmetical, then we could formulate the self-contradictory
sentence “I am false”. This idea is based on the liar paradox. The underlying technique is
to get sentences in the vocabulary LA to refer to themselves. This idea is due to Gödel.

Gödel’s method is to use the substitution function:

sub(m,n) =

{
#A(sn) if #A(x) = m

0 if m is not the number of any formula

Lemma: The function sub is computable.

For the proof, we note that sub is clearly computable by an algorithm, so it is computable,
by Church’s Thesis. �

We define the “diagonal function” d(n) by

d(n) = sub(n, n)

Thus d(n) = #A(sn), where #A(x) = n. Then d is a computable function.

Now suppose, contrary to Tarski’s Theorem, that Truth is arithmetical. Define the Relation

R(x) = ¬Truth(d(x))

Then by the Lemma and Exercise above, R is an arithmetical relation. Say A(x) represents
R(x), and #A(x) = e. Then

d(e) = #A(se)

Thus intuitively A(se) says “I am false”. In fact,
A(se) ∈ TA⇔ ¬Truth(d(e)) (because A represents R)

⇔ A(se) 6∈ TA (def’n of Truth)
This is a contradiction, so Truth is not arithmetical. �

It follows from Tarski’s theorem that the true sentences of arithmetic are not recursive, not
r.e., not co-r.e., etc. In other words, they are wildly noncomputable.

Exercise 6 Show using Church’s Thesis that the set of true ∆0 sentences is recursive, and
therefore arithmetical. (Just give an informal algorithm.) Show the the set of true ∃∆0

sentences is r.e., and therefore arithmetical.

Arithmetic Hierarchy

For k ≥ 1 we define a Σk formula to be one of the form

∃y1∀y2∃y3 · · ·QykA(~x, y1, . . . , yk)

where Q is ∃ if k is odd and Q is ∀ if k is even, and A is a ∆0 formula.
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Thus a Σ1 formula is the same as an ∃∆0 formula, and a Σ2 formula has the form

∃y∀zA(~x, y, z)

We define Σk to be the set of relations R(~x) such that R(~x) is represented by a Σk formula.

Thus Σ1 is the set of r.e. relations. It turns out that the sequence Σ1,Σ2, . . . forms a strict
hierarchy of sets of relations:

Σ1 ( Σ2 ( Σ3 ( · · ·
This is called the arithmetic hierarchy. Strictness can be proved by a diagonal argument,
using the fact that for each k ≥ 1, there is a binary relation Uk(z, x) which is universal for
all unary Σk relations. For example the r.e. relation

U1(z, x) = ∃yT (z, x, y)

is universal for the set of unary r.e. relations.

The union
⋃

k Σk is the set of arithmetical relations.

Σ1 ⊂ Σ2 ⊂ · · ·
where Σ1 is the set of r.e. sets and in general Σi is the set of all relations representable
by ∃∀ · · ·∆0 formulas; i.e. formulas which begin with i quantifiers starting with ∃ and
alternating between ∃ and ∀, followed by a ∆0 formula. Then the unions

⋃
i Σi is the set of

all arithmetical relations.

Theories

Notation: Φ0 denotes the set of LA-sentences (no free variables).

Thus TA= {A ∈ Φ0 : N |= A}. TA stands for True Arithmetic, the set of all true sentences
in the language of arithmetic.

Definition: A theory is a set Σ of sentences closed under logical consequence. That is, if A
is a sentence and Σ |= A then A ∈ Σ.

Notation: If Σ is a theory, we often write Σ ` A (read “Σ proves A”) for A ∈ Σ. This is
consistent with the notation Φ ` A introduced on page 47 in the context of LK proofs. It is
perhaps more appropriate when the theory Σ is axiomatizable, but we will use this notation
for any theory.

Since our underlying vocabulary is LA, we may assume (for this part of the Notes) that
Σ ⊆ Φ0, for every theory Σ.

Definitions concerning a theory Σ

Σ is consistent iff Σ 6= Φ0

Σ is complete iff Σ is consistent, and for all sentences A either Σ ` A or Σ ` ¬A.
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Fact: Σ is consistent iff for all A ∈ Φ0, not both A ∈ Σ and ¬A ∈ Σ. (Observe that for
all A,B ∈ Φ0, {A,¬A} |= B.) Thus Σ is complete iff for all sentences A, exactly one of
Σ ` A and Σ ` ¬A holds.

Exercise 7 Prove that a theory Σ is consistent iff Σ has a model.

Notation: If M is a structure over the language L, then Th(M) (the theory of M) is the
set of all sentences A such that M |= A.

Exercise 8 Prove that Th(M) is a complete theory, for every structure M.

For example, TA = Th(N), so TA is a complete theory.

Definition: Σ is sound iff Σ ⊆ TA.

In other words, Σ is sound iff all of its sentences are true in the standard model.

Thus TA is a theory which is complete, consistent and sound.

However a consistent theory need not be sound. For example the set of logical consequences
of ∀x∀y(x = y) is consistent, because it has a model with a single-element universe, but it
is not sound.

Notation: V ALID = {A ∈ Φ0 : |= A}.

Thus V ALID is the set of valid sentences of LA. V ALID is a theory which is sound and
consistent, but not complete. There are lots of sentences for which neither they nor their
negation is valid. For example, 0 = 1 6∈ V ALID and ¬0 = 1 6∈ V ALID.

V ALID is the smallest theory. That is, V ALID ⊆ Σ for all theories Σ.

Axiomatizable Theories

Definition: If Σ is a theory and Γ ⊆ Σ then Γ is a set of axioms for Σ iff 1) Γ is recursive
and 2) Γ |= A for all A ∈ Σ. We say Σ is axiomatizable iff Σ has a set of axioms.

Theorem: A theory Σ is axiomatizable iff Σ is r.e.

Proof: ⇐: The right-to-left direction is not so interesting, and is proved by a simple trick:

Suppose Σ is r.e. Then by the Lemma page 76 Σ̂ = ran(f), where f is a total, computable
function of one variable. Thus Σ̂ = {f(0), f(1), . . .}.

Let An = be the sentence s.t. #An = f(n). Then Σ = {A0, A1, . . .}, and this is an effective
enumeration of Σ.

What is the set Γ of axioms? Let Bn = A0 ∧ A1 ∧ · · · ∧ An (with associativity to the left).
Thus Bn ∈ Σ. (Why?) Let

Γ = {B0, B1, B2 · · · }
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Claim: Γ is a set of axioms for Σ.

Condition 2) in the definition is obvious since A0 ∧ A1 ∧ · · · ∧ An |= An

To demonstrate condition 1) (Γ is recursive) we need an algorithm to check whether a
given formula C is in Γ. First C should be syntactically a conjunction of subformulas, say
C = C0 ∧C1 ∧ · · · ∧Cm for some m. Now enumerate the first m+ 1 formulas Ai, and check
whether Ai = Ci, i = 0, ...,m.

⇒ The left-to-right direction of the Theorem is more interesting. Assume Σ is axiomatizable,
and let Γ be a set of axioms for Σ. Then Γ is recursive, Γ ⊆ Σ, and Σ = {A | Γ |= A}. To
show Σ is r.e. we show how to effectively enumerate it, i.e. we show how to enumerate the
logical consequences of Γ.

For this we use the completeness theorem for LK (and compactness). The idea is that we
enumerate all possible LK proofs for sentences in the vocabulary of arithmetic, and for each
one check whether it is a proof of the form

B1, ..., Bk ` A

where each Bi is a sentence in Γ. If so, then we output A.

This argument can be made more formal as follows: First define the (semantic) relation
P (a, b) by the condition

P (a, b)⇔ b is the number of a LK proof that A is valid, where #A = a

Clearly there is an algorithm which, given a and b, checks whether P (a, b) holds. Therefore
P is recursive, by Church’s Thesis.

Now define Q(a, b) by

Q(a, b)⇔ [b = #(¬B1 ∨ · · · ∨ ¬Bk ∨ A) where #A = a and B1, ..., Bk ∈ Γ]

Again Q is recursive, by Church’s thesis. (Recall that Γ is recursive.)

Note that
A ∈ Σ
⇔ Γ |= A
⇔ ∃k∃B1 · · ·Bk ∈ Γ such that (¬B1 ∨ · · · ∨ ¬Bk ∨ A) is valid.

(The last equivalence uses the Compactness Theorem.) Thus

a ∈ Σ̂⇔ ∃b∃p [P (b, p) ∧Q(a, b)]︸ ︷︷ ︸
recursive

Thus Σ̂ is r.e. �

Corollary 1: V ALID is r.e., where V ALID is the set of valid sentences (page 93).
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Proof: V ALID can be axiomatized by the empty set of axioms, and the empty set is
recursive.

Remark: Later we will show that V ALID is not recursive. It follows that the set of nonvalid
sentences is not r.e. (why?). Hence the set of satisfiable sentences of LA is not r.e., since
A is nonvalid iff ¬A is satisfiable, so the set of nonvalid sentences is many-one reducible to
the set of satisfiable sentences. On the other hand, the set of unsatisfiable sentences is r.e.
(why?).

Corollary 2: TA is not axiomatizable.

Proof: By Tarski’s Theorem, TA is not arithmetical, so it is not r.e.

Corollary 3: Every sound axiomatizable theory is incomplete.

Proof: If Σ is sound then Σ ⊆ TA, and if Σ axiomatizable, then Σ 6= TA. So Σ ( TA.
Hence there is A ∈ TA, (A is true) s.t. A 6∈ Σ. Also ¬A 6∈ Σ because ¬A is false. Hence Σ
is incomplete.

These results are very robust. We just proved them for a specific vocabulary but let Σ′ be
any theory (not necessarily based on the vocabulary [0, s,+, · ; =]). For example, Σ′ could
be Zermelo Fraenkel set theory with the axiom of choice (ZFC), which is strong enough to
formalize all “ordinary” mathematics.

Assume that natural #’s can be defined in Σ′. In ZFC, this can be done as follows:

∅ = 0, and in general n+ 1 = n ∪ {n}

Assume we can define 0, s,+, · on N in Σ′ (we can in ZFC). Let TA′ be the translation
of TA to the new vocabulary. If we assume TA′ ⊆ Σ′, then Tarski’s theorem still works.
All notions of representable, arithmetical still apply. If Σ′ is axiomatizable then the set of
all theorems (i.e. Σ′) is r.e. Also the set of number-theoretic theorems is r.e. Hence these
theorems are a proper subset of TA′.

In particular, there are sentences in TA whose translations into set theory are not theorems
of ZFC.

Famous Conjectures:

Goldbach’s conjecture: Every even integer is the sum of 2 primes

Riemann Hypothesis

P 6= NP

One can speculate that one of these might be true, but does not follow from the Zermelo-
Fraenkel Axioms. (However it seems more likely that natural assertions like these will even-
tually either be proved or disproved in ZFC.)
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