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Peano Arithmetic

Goals Now

1) We will introduce a standard set of axioms for the language LA. The theory generated
by these axioms is denoted PA and called Peano Arithmetic. Since PA is a sound,
axiomatizable theory, it follows by the corollaries to Tarski’s Theorem that it is in-
complete. Nevertheless, it appears to be strong enough to prove all of the standard
results in the field of number theory (including such things as the prime number theo-
rem, whose standard proofs use analysis). Even Andrew Wiles’ proof of Fermat’s Last
Theorem has been claimed to be formalizable in PA.

2) We know that PA is sound and incomplete, so there are true sentences in the lan-
guage LA which are not theorems of PA. We will outline a proof of Gödel’s Second
Incompleteness Theorem, which states that a specific true sentence, asserting that PA
is consistent, is not a theorem of PA. This theorem can be generalized to show that
any consistent theory satisfying general conditions cannot prove its own consistency.

3) We will introduce a finitely axiomatized subtheory RA (“Robinson Arithmetic”) of
PA and prove that every consistent extension of RA (including PA) is “undecidable”
(meaning not recursive). As corollaries, we get a stronger form of Gödel’s first incom-
pleteness theorem, as well as Church’s Theorem: The set of valid sentences of LA is
not recursive.

The Theory PA (Peano Arithmetic)
The so-called Peano postulates for the natural numbers were introduced by Giuseppe Peano
in 1889. In modern form they can be stated in the language of set theory as follows. Let N
be a set containing an element 0, and let S : N → N be a function satisfying the following
postulates:

GP1: S(x) 6= 0, for all x ∈ N.
GP2: If S(x) = S(y) then x = y, for all x, y ∈ N.
GP3: Let A be any subset of N which contains 0 and which is closed under S (i.e. S(x) ∈ A
for all x ∈ A). Then A = N.

Note that GP3 is a form of induction.

It is not hard to show that any two systems 〈N, S, 0〉 and 〈N′, S ′, 0′〉 which both satisfy
GP1,GP2, GP3 are isomorphic, in the sense that there is a bijection φ : N → N′ such that
φ(0) = 0′ and

φ(S(x)) = S ′(φ(x)), for all x ∈ N

Thus the Peano postulates characterize N up to isomorphism.

96



However, when it comes to designing a formal theory in the predicate calculus based on these
Peano postulates we cannot formulate GP3 except in the context of formal set theory. It
turns out to be essentially impossible to formulate a completely satisfactory theory of sets.

One simple solution is to design a “first-order” theory of N in which the universe is supposed
to be N and the underlying language is [0, s; =]. This was done on pages 49-50, and the
result is a complete theory Th(s) which can be completely axiomatized. However this theory
cannot formulate much of interest, because + and · cannot be defined in this language.

Thus to formulate our theory PA we extend this simple language by adding + and · to
obtain the language LA = [0, s,+, ·; =]. In this language, postulates GP1 and GP2 are easily
formulated. The best we can do to formulate GP3 is to represent sets by formulas A(x) in
the language LA, where A(x) is supposed to represent the set {x | A(x)}. When this is done
carefully, we come up with the Induction Scheme below.

In order to complete the axioms of PA we need recursive definitions of + and ·. These are
formulated below as P3, P4 for + and P5,P6 for ·.

Axioms for PA

P1 ∀x(sx 6= 0)
P2 ∀x∀y(sx = sy ⊃ x = y) s is 1-1 function
P3 ∀x(x+ 0 = x)
P4 ∀x∀y(x+ sy = s(x+ y))

}
define +

P5 ∀x(x · 0 = 0)
P6 ∀x∀y(x · sy = (x · y) + x)

}
define ·

Induction Scheme: Let Ind(A(x)) be the sentence

∀y1 · · · ∀yk[(A(0) ∧ ∀x(A(x) ⊃ A(sx))) ⊃ ∀xA(x)]

where A is any formula whose free variables are among x, y1, · · · , yk. (The variables y1, · · · , yk
are called parameters.) All such sentences Ind(A) are axioms.

Let ΓPA = {P1, . . . , P6} ∪ {Induction axioms}. Then ΓPA is recursive. This is clear from
Church’s thesis.

Definition: PA = {A ∈ Φ0 | ΓPA |= A}

Thus PA is an axiomatizable theory. It is a sound theory since all of its axioms (and hence
all of its theorems) are true in the standard model N.

Terminology: We speak of sentences in PA as theorems of PA, because they can be proved
(for example, by LK proofs), from the axioms of PA. We use the notation PA ` A to mean
that A is a theorem of PA.
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Example 1:
We show that PA proves that all nonzero elements have predecessors. Let

A(x) = (x = 0 ∨ ∃y(x = sy))

In order to prove this by induction there are two steps:

Basis: x = 0 PA ` A(0)

Induction Step: z ← sz PA ` ∀x(A(x) ⊃ A(sx))

In fact, both A(0) and ∀x(A(x) ⊃ A(sx)) are valid sentences, so no axioms of PA are needed
to show that they are theorems of PA. It follows from the induction axiom Ind(A(x)) that

PA ` ∀xA(x)

Example 2:
We show that PA proves the associative law for +. Let

A(z) = (x+ y) + z = x+ (y + z)

We use the induction axiom Ind(A(z)).

Basis: z = 0
(x+ y) + 0 = x+ y P3

= x+ (y + 0) P3

Induction Step: z ← sz

(x+ y) + sz = s((x+ y) + z) P4
= s(x+ (y + z)) Induction Hypothesis
= x+ s(y + z) P4
= x+ (y + sz) P4

Thus by Ind(A(z)) it follows that

PA ` ∀x∀y∀zA(z)

Exercise 1 Show that PA proves the commutative law of addition, the associative and com-
mutative laws of multiplication, and that multiplication distributes over addition, using the
style of Example 2. In each case state carefully which induction axiom (or axioms) are
needed, and which axioms P1,...,P6 are needed, (or which earlier results).

Exercise 2 Recall the theory of successor Th(s) presented on pages 49-50. Show that all
of the axioms S3, S4, S5, ... follow from S1 and S2 together with the Induction Scheme
Ind(A(x)) for all formulas A(x) in the language of successor [0, s; =].
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PA is incomplete, because it is axiomatizable and sound (and has LA as the underlying
language): see Corollary 3, page 95. Later we will give explicit true sentences that are not
theorems of PA, including the assertion that PA is consistent.

An apparent paradox is that the Peano postulates GP1, GP2, GP3 characterize the natural
numbers in set theory (as explained above), and yet there are nonstandard models for PA.
(We know there are nonstandard models both from the fact that PA is incomplete, and by
the construction using compactness given on page 51.) However, the Peano Axioms only
characterize the natural numbers under the assumption that we could do induction using an
arbitrary set. In PA, we can only use induction on arithmetical sets.

Observed fact: All standard theorems of number theory are in PA. Even Wiles’ 1995 proof
of “Fermat’s Last Theorem” apparently can be formalized in PA. So famous open problems,
such as Goldbach’s conjecture and the prime pair conjecture, can probably be either proved
or disproved in PA. Goldbach’s conjecture can certainly be disproved in PA if it is false:
just present and verify a counter example. (Is the same true for the prime pair conjecture?)

RA: A finitely axiomatized subtheory of PA

Our main tool for showing that a theory such as PA is undecidable is showing that every r.e.
relation (including the undecidable set K) is representable in the theory (see the definition
below). This argument applies not only to PA, but to a weak subtheory of PA known as
RA.

Recall the syntactic definition of ≤ given on page 84: t1 ≤ t2 stands for ∃z(t1 + z = t2),
where z is a new variable.

We now extend P1,...,P6 with three new axioms.

P7 ∀x(x ≤ 0 ⊃ x = 0)
P8 ∀x∀y(x ≤ sy ⊃ (x ≤ y ∨ x = sy))
P9 ∀x∀y(x ≤ y ∨ y ≤ x)

Definition: RA is the theory whose axioms are P1, · · · , P6, P7, P8, P9.

Note that RA has no induction axioms. We note three important facts about RA:

1) RA ⊆ PA (i.e. P7, P8, P9 are in PA because they can be proved by induction).

2) RA has only finitely many axioms.

2) The axioms of RA are ∀-sentences (over LA,≤).

Later we will show that RA 6= PA.

Exercise 3 Show that P7, P8, P9 are each theorems of PA. First translate each axiom into
the language LA by getting rid of ≤ (see page 84).
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Definition: A theory Σ is decidable iff {#A|A ∈ Σ} is recursive.

Informally, Σ is decidable iff there is an algorithm which, given any sentence A, determines
whether A is in Σ.

Definition: If Σ and Σ′ are theories, then Σ′ is an extension of Σ if Σ ⊆ Σ′.

We will show that RA is undecidable, and use this to prove that in fact every sound theory
(over the language LA) is undecidable. Our main tool is the representation theorem below.
Recall the definition (bottom of page 83) for a formula A(~x) to represent a relation R(~x).
We now extend this definition to apply to a theory Σ.

Definition: A formula A(~x) represents a relation R(~x) in a theory Σ if for all ~a ∈ Nn

R(~a)⇔ Σ ` A(s~a)

Note that according to our earlier definition, A(~x) represents R(~x) (with no theory men-
tioned) iff A(~x) represents R(~x) in TA.

Recall the definition (page 85) of a ∃∆0 formula.

RA Representation Theorem: Every r.e. relation is representable in RA (and in every
sound extension of RA) by an ∃∆0 formula.

This is a major result and will take several pages to prove. Of course we already know from
the Exists Delta Theorem (page 86) that every r.e. relation is representable in TA. The
extra work now is showing that the true ∃∆0 formulas are provable in RA.

Before giving the proof of the Theorem, we prove several consequences.

Corollary 1: Every sound extension of RA (including PA) is undecidable.

Proof: Let Σ be a sound extension of RA. It suffices to show K ≤m Σ, or more precisely to
show that K ≤m Σ̂, where Σ̂ is the set of codes for theorems of Σ; that is Σ̂ = {#A | Σ ` A}
(see page 90).

Since K is r.e., it follows from the theorem that K is represented in Σ by some ∃∆0 formula
A(x). Thus for all a ∈ N

a ∈ K ⇔ Σ ` A(sa)

Define the total computable function f : N→ N by

f(a) = #A(sa)

Then f is clearly computable by Church’s thesis, and in fact it can be obtained from the
computable function sub(m,n) defined on page 91. Namely, f(a) = sub(m0, a), where
m0 = #A(x). Thus

a ∈ K ⇔ f(a) ∈ Σ̂

as required. �
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Recall Corollary 1, page 94 states that the set V ALID of valid sentences of LA is r.e. Now
we can prove more:

Corollary 2: Church’s Theorem: The set V ALID of valid sentences in the language LA
is undecidable.

Proof: We use the fact that RA is undecidable, and has only finitely many axioms, P1,...,P9.
Let γ be the conjunction P1∧...∧P9 of these axioms. Then

A ∈ RA⇐⇒ (γ ⊃ A) is valid

Hence we’ve reduced the problem of membership in RA to the validity problem, so validity is
undecidable. (We’ve only given an informal argument for the reduction, so we need Church’s
thesis here.) �

Remark: In fact, the validity problem is undecidable for any language that contains a
binary predicate symbol. This can proved directly by reduction of the halting problem for
Turing machines to validity, as was shown in Turing’s famous 1936 paper introducing Turing
machines.

Decidability Theorem: Every complete axiomatizable theory is decidable.

Proof: We give an informal proof, using Church’s thesis. If Σ is axiomatizable, then by the
theorem on page 93, it is r.e. Here is an algorithm for determining whether a given formula
A is in Σ, assuming that Σ is complete. Enumerate the members of Σ. Sooner or later,
either A or ¬A will appear in the enumeration. If A appears, then it is in Σ. If ¬A appears,
then A is not in Σ. �.

Now we can obtain an alternative proof of Corollary 3 to Tarski’s Theorem, page 95:

Corollary: Every sound axiomatizable theory is incomplete.

Proof: Let Σ be a sound axiomatizable theory. If Σ is not an extension of RA it is certainly
incomplete. If Σ is an extension of RA, then by Corollary 1 above Σ is undecidable, and
hence by the Decidability Theorem Σ is incomplete. �

Exercise 4 Prove that there is an ∃∆0 sentence A such that ¬A ∈ TA but PA 6` ¬A.
(Compare this with Corollary 2, page 104.)

In order to prove the RA Representation Theorem we need to recall the syntactic definitions
involving ≤ given on page 84.

MAIN LEMMA: Every bounded sentence in TA is in RA. That is, every true bounded
sentence can be proved from the axioms of RA. (Thus TA ∩∆0 = RA ∩∆0.)

Notation: When we write a specific number such as 4 in an example formula, this is an
abbreviation for the corresponding numeral; s4 (i.e. ssss0) in this case.
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Example of a true bounded sentence:

∀x ≤ 1000∃y ≤ 2 · x[x = 0 ∨ (x < y ∧ Prime(y))]

Notice that since the quantifiers are bounded, and the assertion is being made for only
finitely many pairs x, y. Each case can be proved separately by “brute force”.

To prove the MAIN LEMMA it is easier to expand the language LA to LA,≤ by adding the
binary connective ≤ as a primitive symbol (see page 84). Then we expand the theory RA
to the theory RA≤ over the language LA,≤ by interpreting ≤ in the axioms P7,P8,P9 as a
primitive symbol, and by adding the new axiom

P0 ∀x∀y(x ≤ y ↔ ∃z(x+ z = y))

Every formula A over LA,≤ can be translated to a formula A′ over LA by replacing each
atomic subformula of the form t1 ≤ t2 in A by the formula ∃z(t1 + z = t2), where z is a
variable not occurring in t1, t2 (see page 84). Notice that if ≤ does not occur in A, then
A =syn A

′.

Translation Lemma: For every formula A over LA,≤,

RA≤ ` A iff RA ` A′

Proof: There is a natural one-one correspondence between models of RA≤ and RA, namely

for each modelM of RA we associate the model M̂ of RA≤ which is the same asM except
we add the interpretation of ≤ in such a way that axiom P0 is satisfied. Then we claim that
for every LA,≤ formula A

M̂ |= A iff M |= A′

The claim is easily proved by structural induction on A. The Translation Lemma follows
easily from the claim. �

Proof of MAIN LEMMA: We prove the MAIN LEMMA for RA≤. It follows for RA by
the Translation Lemma.

Let A be a true bounded sentence. Move all ¬’s in A past other connectives so that they
govern only atomic formulas t = u. Do this by using DeMorgan’s Laws, and the equivalences

¬¬A⇐⇒ A, ¬∀x ≤ t B ⇐⇒ ∃x ≤ t¬B, ¬∃x ≤ t B ⇐⇒ ∀x ≤ t¬B

Exercise 5 Show from the definitions of the bounded quantifiers ∃x ≤ t and ∀x ≤ t that for
each of the three equivalences above the formulas on the left and right are logically equivalent
(this is obvious for the first equivalence).

The proof of the MAIN LEMMA proceeds by induction on the number of logical operators
(other than ¬) in this modified A.
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For the base case, A has one of the four forms t = u, t 6= u, t ≤ u, ¬t ≤ u.

Example: A is s0 + s0 = ss0. This can be proved in RA by the recursive definition of +:

x+ 0 = x (P3)
x+ sy = s(x+ y) (P4)

More generally:

Lemma A1: For all m,n ∈ N,

RA ` sm + sn = sm+n and

RA ` sm · sn = sm·n

Proof: The first line is proved by induction (outside the system) on n using P3 and P4, as
in the example. Then the second line is proved by induction on n using P5, P6, and the first
line. �

If t is any closed term (i.e. with no variables), then tM = n for some n ∈ N, whereM is the
standard model. Thus t = sn ∈ TA.

Lemma A: If t is a closed term and t = sn is in TA, then RA ` t = sn.

Proof: Induction on the length of t, using Lemma A1.

Lemma B: If m < n, then RA ` sn 6= sm.

Proof: Induction on m, using P1 and P2. �

For example, consider ss0 6= s0. Recall that P2 is ∀x(sx = sy ⊃ x = y). Thus
ss0 = s0 ⊃ s0 = 0. But by P1, s0 6= 0. Therefore ss0 6= s0.

Remark: Arguments such as the one above could be formalized by an LK proof using the
equality axioms. However the implications are clear without bothering to carry out such a
formal proof, if we keep in mind the definition of logical consequence (page 23 ), and the
Basic Semantic Definition (page 22), and in particular that = must be interpreted as equality
in any structure.

The base case for the MAIN LEMMA for the sentences t = u and t 6= u follows easily from
Lemma A and Lemma B. For the case t ≤ u we apply P0, so the problem reduces to the first
case of Lemma A1. The case ¬t ≤ u follows from Lemma C below, together with Lemma B.

The induction step for the MAIN LEMMA follows from the following:

Lemma C: For all n, RA≤ proves the sentence

∀x(x ≤ sn ⊃ (x = 0 ∨ x = s1 ∨ ... ∨ x = sn))

Proof: Induction on n. The base case is x ≤ 0 ⊃ x = 0, which is P7. The induction step
follows easily from P8. � (Lemma C)
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For the induction step in the proof of the MAIN LEMMA, let A be a true bounded sentence.
We assume that ¬’s in A have been driven in as explained above, and A does not fit the
base case, so the principle connective of A is one of ∧, ∨, ∀ ≤, ∃ ≤. The cases of ∧ and ∨
are trivial: just apply the induction hypothesis.

Now consider the case ∀ ≤, say A is ∀x ≤ tB(x), and this is in TA. Since this is a sentence,
and by definition of ∀x ≤ t, x cannot occur in t, it follows that t is a closed term. Thus by
Lemma A, RA can prove t = sn for some n.

For example, suppose n = 23. Then it suffices to show that ∀x ≤ 23 B(x) is provable in
RA≤. By Lemma C, RA≤ proves

x ≤ 23 ⊃ (x = 0 ∨ x = 1 ∨ · · · ∨ x = 23)

By the Substitution Theorem (page 26) it follows in general, that for any closed term u,

∀x(x = u ⊃ (B(u)↔ B(x)))

is valid. Therefore it follows by reasoning in RA≤ that ∀x ≤ tB(x) is implied by

B(0) ∧B(1) ∧ · · · ∧B(23)

Since ∀x ≤ tB(x) is true, it follows that B(0), B(1), ... are each true, so by the induction
hypothesis each is in RA≤. Hence their conjunction is in RA≤, so ∀x ≤ tB is in RA≤.

The case ∃ ≤ is easier than the ∀ ≤ case and does not require Lemma C. � (MAIN
LEMMA)

Exercise 6 Prove the ∃ ≤ case in the above proof.

Corollaries to MAIN LEMMA

Corollary 1: The set of bounded sentences of TA is decidable. (This can also be proved
without the MAIN LEMMA, as was intended in Exercise 6, page 91.)

Corollary 2: Every ∃∆0 sentence (page 85) of TA is provable in RA.

Corollary 3: The set of ∃∆0 sentences of TA is r.e. (but not decidable).

Exercise 7 Prove the above three corollaries.

Exercise 8 Let ∃yA(x, y) be a ∃∆0 formula which represents K(x) in RA (where K(x) =
({x}1(x) 6= ∞) is the standard halting problem). Show that there is a consistent extension
Σ of RA such that ∃yA(x, y) does not represent K(x) in Σ. Hint: Form Σ by adding a
suitable false axiom to RA which retains consistency.
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Proof of RA Representation Theorem: (See page 100 for the statement.)

Proof: Suppose R(~x) is an r.e. relation. By the Exists Delta Theorem (page 86) R(~x) is
represented in TA by some ∃∆0 formula ∃yA(~x, y). Thus for all ~a ∈ Nn,

R(~a)⇔ [∃yA(sa1 , ..., san , y) ∈ TA]

By Corollary 2 above and the soundness of RA, this is equivalent to

R(~a)⇔ [Σ ` ∃yA(sa1 , ..., san , y)]

where Σ is any sound extension of RA(i.e. RA ⊆ Σ ⊆ TA). Thus by the definition
∃yA(~x, y) represents R(~x) in Σ. �

The following is a generalization of Church’s Theorem (page 101).

Theorem: Every sound theory is undecidable.

Exercise 9 Prove the theorem.

Results for consistent (possibly unsound) theories

Our goal now is to prove the following theorem:

Main Theorem: Every consistent extension of RA is undecidable.

Corollary: Every consistent axiomatizable extension of RA is incomplete.

Proof of Corollary: This follows from the Decidability Theorem (page 101). �

Notice that this strengthens the Corollary 3, page 95, to Tarski’s Theorem, since we no longer
need to assume soundness in order to conclude that an axiomatizable theory is incomplete
(provided that the theory includes RA). Notice that soundness is a semantic notion, whereas
consistency can be given a syntactic definition (there is no proof of 0=1). The proof of the
Main Theorem can be made to avoid the complex semantic notion of truth of an arbitrary
sentence of LA.

An example of an unsound consistent extension of RA is the theory Th(Z[X]+) consisting of
all sentences in the language LA which are true in the structure Z[X]+, where the universe of
Z[X]+ is the set of all polynomials p(X) with integer coefficients such that either p(X) is the
zero polynomial, or the leading coefficient of p(X) is positive. (Here + and · are polynomial
addition and multiplication, and the successor of p(X) is p(X) + 1.) The axioms P1,...,P9
are in the theory Th(Z[X]+), but the theory is unsound, because the sentence

A = ∃x∀y(x 6= y + y ∧ x 6= y + y + s0) (1)

is not in TA but is in Th(Z[X]+). (To check the latter claim, let x be the polynomial X.)

Thus Th(Z[X]+) is undecidable, by the Main Theorem.
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Corollary: RA 6= PA

Proof: Let A be the sentence in (1) above. Then ¬A is a theorem of PA (it can be proved
by induction on x), but ¬A is not a theorem of RA, since the structure Z[X]+ just described
is a model of RA which satisfies A.

Exercise 10 Is Th(Z[X]+) axiomatizable? Justify your answer.

Notice that the structure Z[X]+ is a nonstandard model of RA. There are no such nice
nonstandard models of PA. In fact one can prove that for any nonstandard model of PA
with universe N, the interpretations of + and · are uncomputable functions.

In order to prove the Main Theorem we need a stronger notion of representability.

Recall the definition of represents in a theory Σ (page 100):

A represents R in Σ iff ∀~a ∈ Nn (R(~a)⇔ A(s~a) ∈ Σ).

Definition: A strongly represents R in Σ iff ∀~a ∈ Nn

R(~a)⇒ (A(s~a) ∈ Σ), and ¬R(~a)⇒ (¬A(s~a) ∈ Σ)

Notice that if Σ is a consistent theory, then if A(~x) strongly represents R(~x) in Σ it follows
that A(~x) also represents R(~x) in Σ. The converse is not always true (unless Σ is complete).

In order to prove the Main Theorem, we will prove the following two results:

Undecidability Theorem: If every recursive relation is representable in a theory Σ then
Σ is undecidable.

Strong RA Representation Theorem: Every recursive relation is strongly representable
in RA by an ∃∆0 formula.

Exercise 11 Prove the converse of the above Theorem: If R is strongly representable in
RA, then R is recursive.

Proof of the Main Theorem: This follows from the preceding two theorems by the follow-
ing simple fact: If a relation is strongly representable in RA then it is strongly representable
in every extension of RA, and hence it is representable (rather than strongly representable)
in every consistent extension of RA. This is immediate from the definitions of representable
and strongly representable (page 106). �

We now turn to the proof of the Undecidability Theorem. First note that if the hypothesis
of this theorem is strengthened to assume that every r.e. (as opposed to recursive) relation is
representable in Σ, then it would be very easy to prove that Σ is undecidable. (See the proof
of Corollary 1 to the RA Representation Theorem, page 100). The reason the theorem is
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stated with the weaker hypothesis is to make the argument in the preceding paragraph work.
See exercise 8 to see what goes wrong when using the alternative form of the Undecidability
Theorem.

Proof of the Undecidability Theorem: (Like the proof of Tarski’s Theorem)

Assume Σ is recursive. The idea is to formulate a sentence “I am not in Σ”. This should be
true, because Σ is consistent, but then it should be in Σ by representability, a contradiction.

Recall d(x) = sub (x, x) from the proof of Tarski’s theorem. Then d is a function (semantic
notion) with the property that for all a ∈ N, d(a) = #A(sa) where a = #A(x). Note that d
is a recursive function.

Define R(x)⇔ (x = #A, for some A ∈ Σ). Thus R = Σ̂, and Σ is recursive iff R is recursive.
In order to get a contradiction, assume R is recursive. Let

S(x)⇔ ¬R(d(x))

Then S is recursive. Hence by hypothesis, S(x) is represented in Σ by some formula B(x).

By definition of representable
(1) ¬R(d(a))⇔ (B(sa) ∈ Σ), for all a ∈ N

Let e = #B(x). Then d(e) = #B(se) by definition of d(x). Then by (1),

¬R(d(e))⇔ (B(se) ∈ Σ)

The LHS asserts B(se) 6∈ Σ, because R represents membership in Σ. This is a contradiction,
hence Σ is not recursive. �

Proof of the Strong RA Representation Theorem: Suppose R(~x) is a recursive re-
lation. Then both R and ¬R are r.e., so by the Exists Delta Theorem, there are bounded
formulas B1 and B2 such that ∃yB1(~x, y) represents R(~x) in TA and ∃yB2(~x, y) represents
¬R(~x) in TA. As pointed out in the previous proof, ∃yB1(~x, y) also represents R(~x) in RA,
but in general it will not strongly represent R(~x) in RA. For strong representation we define
a formula

A(~x) ≡ ∃y[B1(~x, y) ∧ ∀z ≤ y¬B2(~x, z)]

Claim: A(~x) strongly represents R(~x) in RA.

First we establish that for all ~a ∈ N,

R(~a)⇒ RA ` A(s~a) (2)

Since ∃yB1(~x, y) represents R(~x) in RA, we conclude from R(~a) that

RA ` B1(s~a, sb), for some b ∈ N

By the property of B2 we know ∀z ≤ sb¬B2(s~a, z) ∈ TA, so by the MAIN LEMMA this
sentence is in RA. This establishes (2) (take y = b).
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It remains to establish
¬R(~a)⇒ RA ` ¬A(s~a) (3)

Assume ¬R(~a). Note that ¬A(s~a) is equivalent to

∀y[¬B1(s~a, y) ∨ ∃z ≤ yB2(s~a, z)] (4)

Since ∃zB2(~x, z) represents ¬R(~x) in RA it follows that for some c ∈ N

RA ` B2(s~a, sc) (5)

By P9,
RA ` ∀y(y ≤ sc ∨ sc ≤ y)

(This is the only place that P9 is needed.) Thus to establish (4) in RA we consider two
cases, depending on whether y ≤ sc or sc ≤ y. For the first case, we note that

∀y ≤ sc¬B1(sa, y)

is a true bounded formula, and therefore by the MAIN LEMMA provable in RA, so (4)
follows in RA

For the second case, by (5) we have

RA ` ∀y(sc ≤ y ⊃ ∃z ≤ yB2(sa, z))

so again (4) follows in RA. �

Exercise 12 Let ¬RA = {A | RA ` ¬A}. Thus ¬RA is the set of sentences which RA
proves false. Prove that RA and ¬RA are recursively inseparable. That is, prove that there
is no recursive set S of sentences such that

RA ⊆ S and ¬RA ⊆ Sc

where Sc = {A ∈ Φ0 | A 6∈ S}. (Note that S need not be a theory.)

Hint: Study the proof of Tarski’s Theorem (page 91) and of the Undecidability Theorem (page
107). Assume that there is a recursive set S satisfying the indicated conditions. Formulate
a sentence asserting “I am not in S”, and obtain a contradiction.
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