
If it looks and smells like the reals...
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Abstract

Given a topological space < X, T > ∈ M, an elementary submodel
of set theory, we define XM to be X ∩ M with topology generated by
{U ∩ M : U ∈ T ∩ M}. We prove that if XM is homeomorphic to R,
then X = XM . The same holds for arbitrary locally compact uncountable
separable metric spaces, but is independent of ZFC if “local compactness”
is omitted.

Given a model of set theory, i.e. a collection W of sets which satisfies the
usual set-theoretic axioms (ZFC), a set M ⊆ W is an elementary submodel of
W if for every natural number n and for every formula ϕ with n free variables
in the predicate calculus with = and a 2-place relation symbol ∈, and every
x1, · · · , xn ∈ M (we will systematically confuse the membership relation and
the symbol ’∈’), ϕ(x1, · · · , xn) holds in M if and only if it does in W. We
usually think of W as being V, the universe of all sets, but for technical reasons
officially deal with W = H(θ), the collection of all sets of hereditary cardinality
less than θ, a “sufficiently large” regular uncountable cardinal and rather than
dealing with ZFC, we deal with sufficiently large fragments of it. (For more on
these technical reasons, see [JW].) The non-logician reader will not lose much
by thinking of elementary submodels of V.

Elementary submodels have been used in set-theoretic topology with in-
creasing frequency and depth over the past 20 years (see e.g. [D]). As often
happens in mathematics, one’s tools become objects of study; thus in [JT] we
inaugurated a systematic investigation of the topological spaces induced by el-
ementary submodels. This paper is a continuation of that study, although it is
mainly independent of [JT].

The Downward Löwenheim-Skolem Theorem of Logic implies that, given
any set X ∈ H(θ) and an infinite cardinal κ ≤ |H(θ)| , there is an elementary
submodel M of H(θ) with X ∈ M and |M | = κ. Given a topological space
<X, T > ∈ M, we define XM to be the space X∩M with topology TM generated
by {U ∩M : U ∈ T ∩M}. The Downward Löwenheim-Skolem Theorem yields
XM ’s with X ∩ M having any infinite cardinality ≤ |X | ; a natural question
is whether an Upward Löwenheim-Skolem Theorem holds in this context, i.e.
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given a space <X, T >, is it equal or perhaps homeomorphic to YM ’s for Y ’s
of arbitrary cardinality > |X |, and suitable M ’s. We shall show that this in
general false, but that it is true in some special cases. Along the way, we come
across some perhaps unexpected rigidity properties of familiar spaces, e.g.

Theorem 1. If XM is homeomorphic to R, so is X.

Subsets of R are sufficient to illustrate diversity with respect to such rigidity:

Theorem 2.

a) For every infinite cardinal κ, there is an X of size κ and an M such that
XM is homeomorphic to Q.

b) It is independent of ZFC (modulo large cardinals) whether there is an X
such that XM is homeomorphic to a subspace of R of size ℵ1 but XM is
not homeomorphic to X (or even to a subspace of R).

Except for some excursions into large cardinals, our proofs will use little more
than the definition of elementary submodels, plus classic topology that can be
found in [E]. (We will refer to [E] rather than refer to the original authors and
papers.) Thus this paper is intended to be accessible both to logicians and to
topologists. Before proving a generalization of Theorem 1 we give a particularly
elementary proof of the next result, which illustrates our methods.

Theorem 3. If XM is an uncountable compact metric space, then XM = X.

Theorem 3 will be derived as a corollary to

Theorem 4. If [0, 1] ⊆ M and if XM is a hereditarily separable, hereditarily
Lindelöf T3 space, then XM = X.

To prove Theorem 4, we need several lemmas.

Lemma 5.

a) XM Hausdorff implies X Hausdorff.

b) XM regular implies X regular.

Proof. The first is left to the reader. For the second it suffices, by elemen-
tarity, to show M |= X is regular, i.e. that

(∀x ∈ X ∩M)(∀U ∈ T ∩M)(x ∈ U ∩M → (∃V ∈ T ∩M)
(x ∈ V ∩M & ∀y ∈ X ∩M)[(∀W ∈ T ∩M)(y ∈ W → W ∩ V �= ∅) → y ∈ U ]))
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But since the topology on XM is generated by {U ∩M : U ∈ T ∩M}, this
is equivalent to saying XM is regular.

Lemma 6. Suppose X,Y ∈ M, |X | ≥ |Y | and M ⊇ X. Then M ⊇ Y.

Proof. There is an injection g : Y → X. Hence there is an injection g ∈ M
such that g : Y → X. Suppose y ∈ Y and x = g(y). Then x ∈ M so y is
definable in M as the unique z such that <z, x> ∈ g , so y ∈ M.

Recall

Definition. {xα}α<κ ⊆ X is left-separated (right-separated) if there exist
open {Uα}α<κ such that for every α, xα ∈ Uα, but for all β > α (β < α)
xα /∈ Uβ .

Lemma 7. (see e.g. [R]). A space X is hereditarily separable (hereditarily Lin-
delöf) if and only if it includes no uncountable left (right)-separated subspace.

Lemma 8. If |ω1 ∩M | = ℵ1 and XM is hereditarily separable (hereditarily
Lindelöf), so is X.

Proof. Suppose X is not hereditarily separable. Then there is an injection
f : ω1 → X such that range f is left-separated. By elementarity, there is such
an f ∈ M, and if |ω1 ∩M | = ℵ1, this gives us a left-separated subspace of size
ℵ1 in XM . Similarly for hereditarily Lindelöf.

Actually, “|ω1 ∩M | = ℵ1” is equivalent to “ω1 ⊆ M”, but we don’t need
this here.

If X is hereditarily separable (hereditarily Lindelöf), so is XM but we don’t
need this here either. [JT] is concerned with going from properties of X to those
of XM ; here we do the converse. Of course the difference is purely conceptual.

Proof of Theorem 4. By Lemma 6, ω1 ⊆ M so X is hereditarily Lindelöf
and hereditarily separable. Since X is Hausdorff by Lemma 5a) and hereditarily
Lindelöf, |X | ≤ 2ℵ0 , so since X is (hereditarily) separable and by 5b) regular,
X has a basis of size ≤ 2ℵ0 . By hereditary Lindelöfness again, |T | ≤ 2ℵ0 , so by
Lemma 6, X and T are included in M , so XM = X.
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Now we move on to the proof of Theorem 3.

Proof. We use 5 classical results, two from [JT], and a new one.

Lemma 9. [E, 1.7.11]. Every uncountable compact metric space includes a
closed dense-in-itself subspace.

Lemma 10. [E, 4.5.5(a)]. Every compact metric dense-in-itself space includes
a copy of the Cantor set K.

Lemma 11. [E, 4.5.9(b)]. There is a continuous surjection from K to [0,1].

Lemma 12. [E, 2.1.8]. Any continuous function from a closed subspace of a
normal space into [0, 1] can be extended over the whole space.

Definition. A continuous function is perfect if it sends closed sets to closed
sets and if each point-inverse is compact.

Lemma 13. [E, 3.7.2]. The preimage of a compact space under a perfect map
is compact.

Lemma 14. [JT]. If X is locally compact T2, XM is the image of a subspace
of X under a perfect map.

Lemma 15. [JT]. For a first countable space X, XM coincides with the sub-
space topology on X ∩M.

The final lemma is due to Lucia R. Junqueira and is included with her kind
permission.
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Lemma 16. If XM is compact, so is X .

Proof. Suppose X has an open cover U that has no finite subcover. Then,
by elementarity, there is a U ∈ M such that M thinks U is an open cover of X
with no finite subcover. Then {U ∩ M : U ∈ U ∩ M} is an open cover of XM

and hence has a finite subcover {U ∩M : U ∈ U ′}, where U ′ is a finite subset
of U . Then U ′ ∈ M and M thinks U ′ covers X , so it does.

Putting these together, let Z ⊆ X and π : Z → XM be perfect and onto.
Let L ⊆ XM be homeomorphic to K. Let f : L → [0, 1] be onto. Then, since X
is normal, f ◦ (π|π−1L) : π−1(L) → [0, 1] extends to a g mapping X onto [0, 1].
By elementarity, there is an onto g ∈ M, g : XM → [0, 1]M . But by Lemma
15, [0, 1]M = [0, 1]∩M with the subspace topology, so [0, 1]∩M is compact. It
includes Q, so it = [0, 1]. Thus [0, 1] ⊆ M.

Remark. We should mention that although XM is not in general compact
even if X is, there are examples of X ’s such that XM is compact and yet
XM �= X . For example, let X be a one-point compactification of a discrete
space and let |M | < |X |.

We next improve Theorem 3 to get

Theorem 17. If XM is a locally compact hereditarily Lindelöf uncountable
Hausdorff space, then XM = X.

Theorem 1 is then an immediate corollary. Indeed any separable metric
space is hereditarily Lindelöf.

Proof. We first need to show

Lemma 18. If XM is locally compact, so is X.

Proof. By elementarity, noting that finite subsets of members of M are in
M , it suffices to show

(∀x ∈ X ∩M)(∀U ∈ T ∩M)(∃V ∈ T ∩M)[x ∈ V ∩M&
(∀y ∈ X ∩M)([(∀W ∈ T ∩M)(y ∈ W ∩M → W ∩ V ∩M �= 0)] → y ∈ U)&
(∀S ∈ M)(S ⊆ T ∩M & (∀y ∈ X ∩M)[(∀W ∈ T ∩M)(y ∈ W →
W ∩ V ∩M �= ∅) → (∃S ∈ S)(y ∈ S)] → (∃ finite S′ ⊆ S)
(∀y ∈ X ∩M)[(∀W ∈ T ∩M)(y ∈ W → W ∩ V ∩M �= ∅] →
(∃S ∈ S′)(y ∈ S)]
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But since XM is locally compact, we have this.

Proof of Theorem 17. Since XM is locally compact and hereditarily
Lindelöf, it is σ-compact and first countable. Since it is σ-compact and un-
countable, it includes an uncountable compact first countable subspace. By a
standard Cantor-Bendixson argument, XM then has an uncountable compact
first countable subspace without isolated points. Such a subspace maps onto
[0, 1] [J, proof of 3.16]. As in the proof of Theorem 3, we then get a compact
subspace L of X and a map f from L onto [0, 1]. We then apply elementarity
to

Lemma 19. [E, 3.1.C]. If L is compact Hausdorff and f : L → Y is a continuous
(and hence closed if Y is T2) surjection, then there is a closed L′ ⊆ L such that
f |L′ maps L′ onto Y but no proper closed subset of L′ is mapped by f onto Y .

to get an F ∈ M such that F ∩ M is closed in XM , there is a continuous
surjection g from F ∩M (as a subspace of XM ) to [0, 1]∩M such that if H ∈ M
is a closed subset of X , then g(F ∩ H ∩ M) is closed in [0, 1] ∩ M , and if
g(F ∩H ∩M) = [0, 1] ∩M , then F ∩H ∩M = F ∩M .

F ∩ M is a closed subspace of a locally compact Hausdorff space and so
is locally compact and hence satisfies the Baire Category Theorem. We claim
[0, 1]∩M does also. It suffices to show that if V is dense open in [0, 1]∩M , then
g−1(V ) is dense open in F ∩M . If so, given {Vn}n<ω dense open in [0, 1] ∩M ,
take x ∈

⋂
n<ω g−1(Vn). Then g(x) ∈

⋂
n<ω Vn. To show g−1(V ) is dense open,

take W ∈ T ∩ M such that W ∩ F ∩ M �= ∅. If F ∩ M ⊆ W ∩ M , then
g−1(V )∩W ∩M �= ∅, so suppose F ∩M −W ∩M �= ∅. Then g((F −W )∩M) �=
[0, 1]∩M , so there is a y ∈ V ∩ [0, 1]∩M − g((F −W ) ∩M). Take x ∈ F ∩M
such that g(x) = y. Then x ∈ g−1(V ) ∩W ∩M .

F ∩ M is a closed subspace of a σ-compact space so it is σ-compact, say
F∩M =

⋃
n<ω Fn, Fn compact. Then for some n, g(Fn) is a compact somewhere

dense subset of [0, 1] ∩ M . Therefore there are q < r ∈ Q ∩ [0, 1] such that
(q, r)∩M ⊆ g(Fn). But (q, r)∩M is dense in (q, r), so g(Fn) ⊇ [q, r]. But then
M ⊇ [0, 1] and we can finish off as in the proof of Theorem 3. We need only recall
that the weight (least cardinal of a base) of a locally compact Hausdorff space
does not exceed its cardinality [E, 3.3.6] so “local compactness” can substitute
for “hereditary separability” in Theorem 4.

Remark. We have in effect proved that closed irreducible images of Baire
spaces are Baire, as was noted in [AL]. I thank E. Michael for supplying the
reference.

After seeing this proof, S. Todorcevic came up with a considerably shorter
and simpler one which just uses the proof for the compact uncountable metric
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case, but I decided the technique of the proof given here is sufficiently interesting
to justify its inclusion.

Uncountability is necessary in Theorem 3, since if we take a countable M,
(ω1 + 1)M is a compact metric space. Also observe

Theorem 20. For any infinite regular X without isolated points, there is an
M such that XM is homeomorphic to Q.

Proof. Take a countable elementary submodel M containing X . Then XM

is regular [JT], has no isolated points, is countable, and has a countable base.
But countable metric spaces without isolated points are homeomorphic to Q [E,
6.2.A.(d)].

Hereditary Lindelöfness – or some countability condition – is necessary in
Theorem 17, else we could take the discrete space of size ℵ2 and then take an
elementary submodel of size ℵ1. An example which is better – since X has no
isolated points and M ⊇ [0, 1] – is to take the disjoint sum of (2ℵ0)+ copies of
[0, 1] and then take a countably closed elementary submodel of size 2ℵ0 . Then
XM is the sum of 2ℵ0 copies of [0, 1], so is a locally compact uncountable metric
space, but is not equal to X .

For general uncountable separable metric spaces, we enter the realm of large
cardinals . For example,

Theorem 21.

a) If 2ℵ0 = ℵ1 and 0� does not exist, then if XM is an uncountable separable
metric space, XM = X.

b) If Chang’s Conjecture holds, there is a non-metrizable X such that XM is
an uncountable separable metric space.

0� is a set of natural numbers, the existence of which has large cardinal
strength. The non-existence of 0� is equivalent to Jensen’s Covering Lemma for
L, which is more familiar to set-theoretic topologists. V = L implies 0� does
not exist. See [K] for details. Theorem 21a) follows quickly from Lemma 6,
Theorem 4, and
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Lemma 22 [KT]. If 0� does not exist and |M | ≥ κ, then κ ⊆ M.

Proof of Theorem 21a). Since XM and hence M is uncountable, ω1 ⊆ M .
By CH and Lemma 6, [0, 1] ⊆ M. By Theorem 4, we are done.

Definition. Chang’s Conjecture (see e.g. [K]) is the assertion that every
model M of size ℵ2 with a distinguished subset S of size ℵ1 has an elementary
submodel N of size ℵ1 such that |N ∩ S| = ℵ0.

Proof of Theorem 21b). The proof divides into two cases, depending
on the size of 2ℵ0 . First, assume 2ℵ0 ≥ ℵ2 and Chang’s Conjecture. Take an
elementary submodel M of size ℵ2 of some sufficiently large H(θ), with R ∈ M
and R ⊆ M. Expand <M,∈> to the model <M,∈, ω1 > which distinguishes
ω1. Take an elementary submodel <N,∈, ω1> of <M,∈, ω1> with |N | ≥ ℵ1

and |N ∩ ω1| = ℵ0. Now N |= |R| > ω1, so |N ∩ R| = ℵ1. Thus if L is the long
line, LN is separable, uncountable, and metrizable although L is not.

Chang’s Conjecture plus 2ℵ0 = ℵ2 follows from Martin’s Maximum [FMS],
which is consistent if there is a supercompact cardinal. Later, L.R. Junqueira
came up with another example using the same hypothesis, which has the ad-
vantage of being compact, although it is not first countable as is the long line.
It is simply the product of ℵ1 copies of the two-point discrete space. When I
presented my example in Toronto, S. Todorcevic informed me that , using a
result of Tarski [T], Baumgartner [B] had constructed in ZFC a linear order of
density ℵ1 and size ℵµ

1 where µ is the least cardinal such that ℵµ

1 > ℵ1. The
order is obtained in the usual way from the branches of length µ of a certain
tree. The corresponding linearly ordered topological space X has character µ;
thus if CH holds, the space has character ℵ1 and so is not metrizable. On the
other hand, its Chang Conjecture reflection will be an uncountable separable
linearly ordered space XM . This does not quite assure metrizability, but we can
modify X by sticking in a copy of Q between any two adjacent points. This
changes none of the relevant cardinal functions, but now the resulting XM will
have a countable base. As a bonus, it turns out that separable linearly ordered
metrizable spaces are embeddable in R [E, 6.3.2(c)] so whether or not CH holds,
we obtain

Corollary 23. Chang’s Conjecture implies there is a non-metrizable X such
that XM is homeomorphic to a subspace of R.

The point is that the LN above has cardinality ℵ1 < 2ℵ0 and is therefore
0-dimensional and so embeds in the Cantor set.

Remark. The long line provides an interesting counterexample to the topo-
logical metatheorem which asserts that “homeomorphic” is the same as “equal”
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as far as topology is concerned. We have seen that the long line L can have an
LN which is homeomorphic to a subspace of R, although L is not. On the other
hand, suppose we have a space <X, T> such that for some M,XM is actually
a subspace of R. Since R and its topology are definable, M |=<X, T > is a
subspace of R, so it is.

The conclusion of Theorem 21a) does not follow from the non-existence of
0�.

Theorem 24. It’s consistent that 2ℵ0 = ℵ2, 0� does not exist, and there is an
M such that RM is not homeomorphic to R.

Proof. Simply add say ℵ2 Cohen reals to a model of V = L. Then 0� does
not exist because it cannot be added by set forcing (see e.g. [K]). Then in the
extension simply take M to be any elementary submodel of size ℵ1 including ℵ1

reals of some sufficiently large H(θ), with R ∈ M.

Under CH, I. Farah proved all uncountable RM ’s are equal to R. See [KT].

If |XM | = 2ℵ0 , we do not need CH in Theorem 21a) so we have e.g.

Corollary 25. If 0� does not exist and XM is homeomorphic to an uncountable
Borel subspace of R, then XM = X.

I do not know if the non-existence of 0� is necessary, even for R −Q. Assum-
ing 0� does not exist, if |XM | = ℵ1 and XM is separable metric, then as in the
proof of Theorem 4, we have all finite powers of X are hereditarily Lindelöf and
hereditarily separable, so X has a Gδ−diagonal. Gary Gruenhage has shown
(private communication) that nonetheless X need not be metrizable.

Theorem 21a) cannot be improved to drop separability:

Example. It is consistent with CH and 0� doesn’t exist that there is a non-
metrizable first countable space of size ℵ2 such that XM is metrizable for every
M of size ℵ1.

Proof. V = L implies there is a stationary E ⊆ {α ∈ ω2 : cf(a) = ω} such
that E ∩ α is not stationary in α, for any α ∈ ω2.
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It follows that every subspace of E of cardinality < ℵ2 is metrizable, but E
is not.

Constructing a ladder system on E (see e.g. [F]), one obtains a space with
the additional properties that it is a locally compact, locally separable Moore
space.

On the other hand,

Theorem 26. If for every M such that |X ∩M | ≤ ℵ1, XM is separable metriz-
able, then X is separable metrizable.

Proof. This is essentially proved in 3.2 of [D]. Actually, we only require
one special M :

Definition. M is ω−covering if every countable subset of M is included in
a member of M.

One can construct an ω−covering elementary submodel ofH(θ) with <X, T >

∈ M as
⋃

α<ω1

Mα, where <X, T > ∈ M0, a countable elementary submodel of

H(θ), Mα+1 ⊇ Mα ∪ {Mα} ∪ {xα}, Mα+1 a countable elementary submodel
of H(θ), {xα : α < ω1} ⊆ X , and α limit implies Mα =

⋃

β<α

Mβ . Since XM has

a countable base, there is a countable subset B of {U ∩M : U ∈ T ∩M} which
is a base, since {U ∩M : U ∈ T ∩M} is a base. But by ω−covering, we may
assume B ∈ M. Then M |= X has a countable base, so it does.

Corollary 27. 2ℵ0 = ℵ1 if and only if whenever <X, T > is a space such that
for every M such that |X ∩M | ≤ ℵ1, XM is homeomorphic to a subspace of R,
so is X.

Proof. Assuming CH, since by Theorem 26, X is separable metric and
therefore |X ∪ T | ≤ ℵ1 we may take an M ⊇ X ∪ T , |M | = ℵ1. Then X = XM

so X is homeomorphic to a subspace of R.

On the other hand, suppose 2ℵ0 > ℵ1. Take an elementary submodel M
of H(θ) of size ℵ1 containing R. Then (R × R)M is a separable 0-dimensional
metric space and hence embeddable in R, yet R × R is not embeddable in R.

An E as above shows that Theorem 26 is consistently not true if one drops
“separability”. It will be difficult to construct just in ZFC a non-metrizable X
such that all XM with |X ∩ M | ≤ ℵ1 are metrizable. The reason is that L.R.

10



Junqueira has shown (unpublished) that if there is an ω-covering M such that
XM is metrizable, then X is first countable and all subsets of size ≤ ℵ1 are
metrizable. No example in ZFC is known of such a non-metrizable X .

Assuming the existence of a supercompact cardinal, there is a topological
Upward Löwenheim-Skolem Theorem for large spaces:

Theorem 28. Suppose |X | ≥ κ, a supercompact cardinal, say<X, T > ∈ H(θ).
Then for every λ ≥ θ+ |X ∪ T | there is a <Y,S>, |Y | ≥ λ, a Ψ and an elemen-
tary submodelM ofH(Ψ) such that <Y,S> ∈ M and<X, T > is homeomorphic
to YM .

Proof. Take a supercompact embedding j with j(κ) ≥ λ. Take M =
j′′H(θ). Then M is an elementary submodel of H(j(θ)). Let Y = j(X) and
S = j(T ). Then <X, T > is homeomorphic to YM , which is just j′′X with
topology {j′′U : U ∈ T }.

One can attempt to carry out this construction in case we have a sufficiently
closed elementary embedding j existing in some generic extension of V. In this
case, however, YM /∈ V and is no longer homeomorphic to <X, T > − which is
no longer a topological space − but rather to the topology on X generated by
T in that generic extension.

Let me end by restating the most interesting remaining open problem.

Problem Is it a theorem of ZFC that if XM is homeomorphic to R − Q,
then X = XM?

11



This paper was written while the author was an Honorary Fellow at the Uni-
versity of Wisconsin (Madison) in the summer of 1997. He thanks the members
of the Department for their hospitality. He also thanks Ernest Schimmerling,
Menachem Magidor, Mirna Dzamonja, Kenneth Kunen, Stevo Todorcevic, and
Ilijas Farah for conversations concerning the subject of the paper.
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