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j-3 Consistency Results in Topology,
II: Forcing and Large Cardinals

When Quotable Principles fail one will have to turn to the
machinery of consistency proofs itself for a solution of the
problem.

Many topologists are familiar with the forcing method,
which we will describe in the first section of this article. This
method works fairly well when the problems involve sets of
bounded cardinality but it tends to fail when one wants to
prove something like “all spaces that are such and such are
so and so”. A prime example is the Normal Moore Space
Conjecture, which we now know cannot be proved consis-
tent assuming the consistency of ZFC alone – the proof re-
quires additional, stronger, axioms that most set theorists re-
gard as safe to assume. Such axioms assert the (consistency
of the) existence of large cardinals; these will be described
in the second section. In the last section we give a small sam-
ple of consistency results.

This article needs to be read in conjunction with the pre-
ceding one in this volume, in order to get a reasonable pic-
ture of the state of consistency results in topology. In particu-
lar, almost all of the propositions listed as consistent here are
known to be undecidable, but the consistency of their nega-
tions is often not mentioned, since it is most easily derived
from a combinatorial principle such as the ones discussed in
the preceding article.

Note to the reader: there is an extended version of this ar-
ticle, with references for all the results mentioned and more,
available on Topology Atlas, see [6].

1. Forcing

Forcing is a method for producing a new model of ZFC
from a given one, called “the ground model”. Proving that
the method works requires much attention to metamathe-
matical details (see [Ku], where an accessible introduction
to the forcing method can be found). The actual applications
of forcing, however, mainly boil down to verifying combi-
natorial properties of partial orders, orders either “taken off
the shelf” or specially constructed for the problem at hand.
Forcing is used to prove the consistency of both existential
and universal propositions.

To prove the consistency of an existential proposition one
constructs a partial order consisting of approximations to
the desired object, with the approximations (which are usu-
ally smaller in size than the desired object) being ordered by
p � q if p is a “better” approximation than q – this is like
the discussion of MA in the previous article but with a major
difference, as will become clear momentarily. For example,
to prove it consistent that 2ℵ0 � ℵ2, one could consider finite

approximations to a listing of ℵ2 distinct functions from ω

into 2, i.e., finite partial functions from ω2×ω into 2. These
approximations (forcing conditions) are then ordered by ex-
tension. A filter (i.e., an upward closed consistent subset) for
that partial order P naturally yields a partial function from
ω2 × ω into 2. The trick is to make that function total. For
that to happen, it would suffice to show that for each α ∈ ω2
and n ∈ ω, the filter met

Dα,n =
{
p ∈ P : 〈α,n〉 ∈ domp

}
.

Note Dα,n is a dense set, i.e., every element of the partial
order has an extension in Dα,n.

Given any countable collection of dense sets, it is easy
to construct a filter that meets each of them; a metamathe-
matical argument establishes that in fact when forcing, one
only has to consider those dense subsets of the partial order
which lie in a fixed countable model M . Thus one gets a fil-
ter that simultaneously meets all the Dα,n’s in M and thus
gets the generic function to be total. The requirement that
the induced map from ω2 to P(ω) be one-to-one can actu-
ally be dispensed with by meeting those Dα,β ’s, α,β ∈ ω2,
which are in M , where

Dα,β =
{
p ∈ P : (∃n)(p(α,n) 	= p(β,n)

)}
.

This shows the difference with the MA approach: there the
filter meeting the ‘good’ dense sets belongs to M , in the
present example, if CH holds in M there is no filter in M that
meets all Dα,β ’s; we adjoin the filter to M and use it to con-
struct an extension M[G]. This extension is a model of ZFC
and in it there is an injective map from ω2 into P(ω). If the
ground model M satisfies the GCH and we use ω3 instead of
ω2 then in M[G] all almost disjoint families of uncountable
subsets of ω1 have cardinality at most ℵ2, which is strictly
less than 2ℵ0 = 2ℵ1 .

A Souslin tree can be constructed by σ -closed or ccc forc-
ing. The existence of a Souslin tree shows that MA+ ¬CH
fails but one can do much better: Baumgartner constructed a
model where MA(ℵ1) fails completely in that for every ccc
partial order there is a family of ℵ1 many dense sets such
that no filter meets them all.

To prove the consistency of a universal proposition, one
usually uses iterated forcing (or repeated forcing), see [Ku]
and [1]. For example, to prove the consistency of “all per-
fectly marvelous subsets of R2 are splendiferous”, one
would iterate the process of forcing one perfectly marvelous
subset to be splendiferous. Alternatively, one could itera-
tively force to “kill” non-splendiferous perfectly marvelous
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subsets. Of course, inevitable difficulties arise. The process
of iterating the forcing could introduce new perfectly mar-
velous non-splendiferous sets, so one has to arrange that the
new ones are either made splendiferous or are killed, i.e.,
made not perfectly marvelous. This is done by an “initial
stage” argument – e.g., if the Continuum Hypothesis is as-
sumed, subsets of R2 have cardinality ℵ1; if one iterates
ℵ2 times, one argues that every perfectly marvelous non-
splendiferous subset appears at some stage and is taken care
of there. One also needs, e.g., that perfectly marvelous sets
one has forced to make splendiferous stay that way. Thus
one needs “preservation arguments”.

A typical example of a universal proposition proved con-
sistent by iterated forcing is the Souslin hypothesis. Here we
take as our partial orders the Souslin trees themselves – old
and new – with the order being the reverse of the tree order.
Actually, we first prune the trees so that each element of the
tree has successors at all levels beyond it. Then, noting that
compatibility = comparability in a tree, we observe that a
filter meeting each

Dα = {t : the height of t is at least α}

is a branch of length ω1 and therefore destroys Souslinity.
Once a tree has a branch all the way through it, it stays that
way, so one iterates ℵ2 times; the Souslin trees have cardi-
nality ℵ1 so appear at an initial stage, and, when killed, stay
dead.

This proof and others like it gave us both the formulation
and consistency proof of MA+¬CH; a study of this proof, as
presented in [Ku] for example, will reveal the basic techni-
cal problems one usually encounters in iterated forcing con-
structions.

A complication that arises in dealing with topological
spaces rather than with algebraic objects is that, after forc-
ing to produce a new (larger) model of set theory (called the
forcing extension, the generic extension or just the exten-
sion), a topological space in the ground model is no longer
a topological space; the best one can do is use the former to-
pology as a basis for a topology on the original set. This pre-
serves the separation axioms up to complete regularity but
properties like normality can be destroyed or created, see [4].

2. Large cardinals

Although set theorists have investigated a plethora of large
cardinals, we will confine ourselves here to several that ap-
pear most often in topological contexts, namely inaccessible,
weakly compact, measurable, strongly compact, supercom-
pact, and huge ones. In the definitions we shall implicitly
assume all the large cardinals are uncountable.

A note on the term large cardinal is in order. A cardinal
number is ‘large’ if the assumption of its existence, when
added to the axioms of ZFC, proves the consistency of ZFC.
This works as follows, for any cardinal κ one can consider
the set Hκ – the set of all sets which have size less than κ

and whose members and members of members and . . . all
have size less than κ . Loosely speaking κ is large if Hκ is a
model of ZFC.

A cardinal number κ is an inaccessible cardinal (also a
strongly inaccessible cardinal) if it is regular and 2λ < κ

whenever λ < κ is a cardinal. κ is a weakly compact cardi-
nal if it is inaccessible and, whenever T is a tree of height
κ with levels of size less than κ , then T has a branch of
length κ . κ is a measurable cardinal if there is a non-
principal κ-complete ultrafilter (i.e., closed under intersec-
tions of size less than κ). A cardinal κ is a strongly compact
cardinal if every κ-complete filter can be extended to a κ-
complete ultrafilter.

Sometimes measurability is defined using countable com-
pleteness (i.e., ω1-completeness) rather than κ-complete-
ness. Let us call such cardinals Ulam measurable. The least
Ulam-measurable cardinal is in fact measurable.

All of these cardinals have several equivalent formula-
tions. The easiest to state are often in terms of ultrafilters,
but the most useful involve elementary embeddings:

An inner model is a class M = {x: ϕ(x)}, for some for-
mula ϕ, such that ZFC holds in M . An elementary em-
bedding j :V → M , where V is the universe of sets, is a
function such that for every a1, . . . , an ∈ V , and for every
formula ψ(x1, . . . , xn), ψ(a1, . . . , an) holds if and only if
ψ
(
j (a1), . . . , j (an)

)
holds in M . M is closed under λ-se-

quences if λM , the class of all λ-sequences of members
of M , is a subclass of M .

One can prove that κ is measurable if and only if there is
an inner model M closed under κ-sequences and an elemen-
tary embedding j :V →M such that j (κ) > κ .

We now define supercompactness as a stronger version of
measurability: κ is a supercompact cardinal if for every
λ � κ , there is an inner model Mλ closed under λ-se-
quences, and an elementary embedding jλ :V →Mλ, such
that jλ(κ) > λ.

As for measurability, there is an equivalent formulation,
which we omit, which avoids the apparent difficulty of quan-
tifying over formulas.

I have listed these cardinals in order of increasing strength,
i.e., every supercompact cardinal is strongly compact, every
measurable cardinal is weakly compact, and so forth. Finer
analyses of large cardinals consider a hierarchy of consis-
tency strength, i.e., the consistency of a cardinal with prop-
erty P implies the consistency of a cardinal with property Q.
For example, define huge cardinals as another generalization
of measurable ones.

A cardinal κ is a huge cardinal if there is an inner
model M and elementary embedding j :V →M such that
j (κ) > κ and M is closed under j (κ)-sequences.

Huge cardinals need not be supercompact, but their con-
sistency strength is strictly stronger than supercompactness.
For more information about large cardinals, see Kanamori’s
book [5]. Large cardinals may either be used directly in a
proof or may be used to construct a model of set theory in
which a desired proposition holds.
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Very often a large cardinal property is a generalization of a
property of ℵ0 to the uncountable. For instance, ℵ0 is clearly
inaccessible: it is regular and 2n < ℵ0 for all n ∈ ω. For an-
other example, consider trees. A κ-Aronszajn tree is a tree
of height κ whose levels are of cardinality less than κ and
with no κ-branch. For definitions, see Todorčević’s survey
[KV, Chapter 6]. König’s Tree Lemma says there is no ℵ0-
Aronszajn tree. Generalizing this plus inaccessibility gives
us weak compactness. Likewise the existence of ultrafilters
on ω says that ℵ0 is ‘measurable’.

Large cardinals sometimes appear in purely topological
circumstances. We know from Jones’ Lemma that 2|D| �
2d(X) whenever D is a closed discrete subset of a normal
space X, where d(X) denotes the density of X. The extent
of X, denoted e(X), is the supremum of the cardinalities of
the closed discrete subsets of X and this suggests the natural
question whether also 2e(X) � 2d(X) for normal spaces. This
leads to inaccessible cardinals: if 2e(X) > 2d(X) then e(X)

is a weakly inaccessible cardinal (a regular limit cardinal)
and from an inaccessible cardinal one can prove the consis-
tency of the existence of a normal space satisfying the above
inequality.

An inaccessible cardinal is weakly compact if and only if
its absolute is normal – here the cardinal carries the order
topology.

Measurable cardinals date back to the 1930s and have a
number of significant – although isolated – direct applica-
tions to general topology. For example, a discrete space of
size κ is realcompact if and only κ is not Ulam-measurable.
It is also easy to prove that if X is a Lindelöf space with
points Gδ , then |X| is less than the first measurable cardinal.
On a different tack the existence of a measurable cardinal
is equiconsistent with the existence of a Baire space without
isolated points which is irresolvable, i.e., any two dense sets
meet.

Strongly compact and weakly compact cardinals can be
equivalently formulated topologically: κ is strongly compact
if and only if the κ-box product of κ-compact spaces is
κ-compact, wherein one takes the Tychonoff Product Theo-
rem and replaces “finite” by “< κ” everywhere; κ is weakly
compact is the ordinary product of κ-compact spaces is
again κ-compact.

There are other straightforward applications, e.g., if κ is
weakly compact and X is < κ-collectionwise Hausdorff and
χ(X) < κ , then X is κ-collectionwise Hausdorff. A more
difficult direct application is due to Watson, who proved that
if there is a strongly compact cardinal, there is a σ -discrete
hereditarily normal Dowker space, see the corresponding ar-
ticle in this volume.

The most significant uses of large cardinals in topology
occur in contexts in which one is proving the consistency of
universal statements about objects of unbounded cardinality,
for example, the Normal Moore Space Conjecture: all nor-
mal Moore spaces are metrizable, or the Moore–Mrówka
problem: compact spaces of countable tightness are sequen-
tial. The latter is an application of the Proper Forcing Ax-
iom (see the previous article), which is proved consistent

from the consistency of a supercompact cardinal, and ap-
plications of which – in contrast to those of Martin’s Axiom
– often require the practitioner to actually do some forcing.
Frequently, finer analyses of PFA consequences reveal that
in fact one need only consider objects of bounded cardinal-
ity, in particular ℵ1. In such cases, a more delicate forcing
argument enables one to avoid large cardinals. That is the
case with the Moore–Mrówka problem referred to above.

The Normal Moore Space Conjecture – more generally
the assertion that normal spaces of character less than the
continuum are collectionwise normal – was first shown con-
sistent by Nyikos who derived it in ZFC from the Product
Measure Extension Axiom, which had been proved consis-
tent by Kunen from the existence of a strongly compact car-
dinal (see [KV, Chapter 16]). More general results that do not
depend on measures were established in [3], wherein a gen-
eral framework was set up for proving the consistency of uni-
versal topological assertions involving objects of unbounded
cardinality and spaces of small character from the consis-
tency of supercompact (in special cases, strongly compact)
cardinals. Applying the machine to, e.g., getting a model in
which all silly spaces of character < κ (the supercompact
cardinal which will become small, e.g., 2ℵ0 ) are ridiculous
will reduce the problem to showing an appropriate forcing
notion preserves non-ridiculousness. When we say a forc-
ing preserves a topological property, we mean that if a space
satisfies the property in the ground model, then the space it
generates in the extension satisfies the property there.

Balogh noticed that in the particular context of normality
vs. collectionwise normality, this framework could be mod-
ified, weakening the character restriction, in order to obtain
that if it is consistent that there is a supercompact cardinal,
it is consistent that all normal spaces of pointwise countable
type – in particular all locally compact normal spaces and all
first-countable spaces – are collectionwise normal; a space is
of pointwise countable type (or of point-countable type)
if every point is contained in a compact set with a count-
able neighbourhood base (it is of countable type if every
compact set is contained in such a compact set). Grunberg,
Junqueira and Tall [4] then extended the method of [3] to
obtain a general method for proving the consistency of uni-
versal topological assertions involving objects of unbounded
cardinality and spaces of small pointwise type, obtaining in
particular a more useful proof of Balogh’s result.

Supercompact cardinals are the most useful of large car-
dinals for topologists, because they yield the Proper Forc-
ing Axiom, and, in contrast to weakly compact, measurable,
and huge cardinals, not only affect the cardinal itself, but all
larger cardinals. This phenomena is referred to as reflection.
Roughly speaking it tells us that if there is a counterexample
to some universal statement ϕ, there is one of size less than
the supercompact cardinal. For particular ϕ, one can then
try to make the supercompact cardinal κ small (e.g., ℵ1, ℵ2
or 2ℵ0 ) by forcing, and perhaps be able to prove that the re-
flection phenomena for ϕ at κ still hold.

In a similar vein one can take a property holding at a large
cardinal and bring it down so that some small cardinal such
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as ℵ1, ℵ2, or 2ℵ0 has that property. In this case – where one
is not so interested in what happens for cardinals larger than
that particular small cardinal – one can usually make do with
a weakly compact or measurable cardinal rather than a su-
percompact cardinal. For example, a weakly compact cardi-
nal may be collapsed to ℵ2 to create a model in which there
are no ℵ2-Aronszajn trees, see [KV, Chapter 6]. A more to-
pological example is Shelah’s theorem that if it is consis-
tent that there is a weakly compact cardinal then it is con-
sistent that there are no Lindelöf spaces of size ℵ2 with all
points Gδ , which brings down the fact there is no Lindelöf
space of size κ with all points Gδ , if κ is weakly compact.

The first use of supercompact cardinals in topology was
due to Shelah who proved that if it is consistent there is a
supercompact cardinal, then it is consistent that locally sepa-
rable first-countable ℵ1-collectionwise Hausdorff spaces are
collectionwise Hausdorff. The proof (or its progenitor con-
cerning reflection of stationary sets) is a prototypical ar-
gument; other applications include Axiom R and its conse-
quences, see [2] and [HvM, Chapter 1].

Whenever one uses large cardinals to establish (the con-
sistency of) a topological statement, one wonders whether
they are actually necessary. As mentioned earlier, conse-
quences proved from PFA can often be proved consistent
without large cardinals. The usual way one shows that a
statement ϕ requires large cardinals for its proof is to show
that if ϕ holds, then there is an inner model which has a large
cardinal. For example, having noted [Ku, VIII, §3] that the
consistency of the existence of an inaccessible cardinal en-
ables one to prove the consistency of there being no Kurepa
trees, one then shows that if there is no Kurepa tree, then
ℵ2 is an inaccessible cardinal in Gödel’s constructible uni-
verse L (see [Ku, VII, B9]), and hence that it is consistent
that there is an inaccessible cardinal.

L yis an inner model for inaccessible cardinals, which
means that if κ is an inaccessible cardinal, then κ is inacces-
sible in L. There are more complicated inner models for a
measurable cardinal, for “many” measurable cardinals (e.g.,
if there is a sequence of measurable cardinals, they are all
still measurable in the inner model), etc. These inner mod-
els however do have L-like characteristics which are useful
in showing that large cardinals are required in order to ob-
tain the consistency of certain propositions. Finding inner
models for supercompact cardinals is an ongoing area of re-
search in set theory; at present there are no good techniques
for showing that the use of a supercompact cardinal in a con-
sistency proof is necessary. In practice, topologists have not
as yet actually engaged in inner model theory, but rather
have shown that topological statements imply combinator-
ial statements of known large cardinal strength. A typical
example is Fleissner’s proof (see [KV, Chapter 16]) that the
Normal Moore Space Conjecture has large cardinal strength.
He proved that the NMSC entailed the failure of the Cover-
ing Lemma. The Covering Lemma (for an inner model M)
asserts that every uncountable set is included in some mem-
ber of M of the same cardinality. The failure of the Cover-
ing Lemma for, e.g., M , an inner model for “many” measur-
ables implies that in fact there are “many” measurables in M .

Another example of this technique is due to C. Good, who
showed that the Covering Lemma entails the existence of a
first-countable Dowker space with sundry additional proper-
ties (see the article on Dowker spaces). Note: the Covering
Lemma for L is often referred to via an equivalent formula-
tion as “0# does not exist”.

3. Methods and models

In this section we shall briefly discuss some of the most use-
ful models employed in consistency results, equivalently, the
most useful partial orders.

Cohen reals
The simplest non-trivial forcing employs the partial order
of finite partial functions from ω into 2 ordered by reverse
inclusion. It adds a new f :ω→ 2 and hence a new real,
called a Cohen real. Interestingly, from a single Cohen real
one can already construct a Souslin tree.

Using finite partial functions from κ × ω into 2 instead,
as mentioned previously, one shows that κ new reals are
added. Since |κ | = |κ × ω|, one may as well use κ instead
of κ ×ω. This forcing is referred to as “adding κ Cohen re-
als” and the corresponding extension is commonly called the
Cohen model. It is particularly useful when κ is supercom-
pact since reflection phenomena persist. For example, every
space of character < 2ℵ0 in which subspaces of size < 2ℵ0

are metrizable is metrizable [3]. Aside from general machin-
ery for handling large cardinals and forcing, the key lemma
is that adding Cohen reals preserves non-metrizability. Typ-
ically, one gets some weaker results without large cardinals,
e.g., upon adding ℵ2 Cohen reals, if a first-countable space
of weight ℵ1 has all its subspaces of size ℵ1 metrizable, then
it is metrizable.

Countably closed forcing
Countably closed forcing (every countable descending se-
quence of conditions has a lower bound) covers a wide
variety of models, so it is somewhat misleading to group
them together since they may exhibit incompatible behav-
iors. Nonetheless they do have common features such as
L-like phenomena (e.g., ♦ is forced if new subsets of ω1 are
added) and the use of an ω1-descending sequence of forc-
ing conditions deciding the properties of a function from ω1
into V in the extension. Most of the time one is interested
in such orders with countable conditions. The simplest ex-
ample is forcing with countable partial functions from κ

into 2, where κ is a regular cardinal. For κ � ℵ2, this yields
a model in which normal spaces of character < κ are ℵ1-col-
lectionwise Hausdorff. This forcing is called “adding κ Co-
hen subsets of ω1”.

A very useful one alluded to earlier is the Lévy-collapse,
which makes a large cardinal κ into ℵ2 by creating maps
from ω1 onto each uncountable cardinal smaller than κ .
Countably closed partial orders using countable conditions
to create a subset of ω2 have been employed to construct
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complicated Lindelöf spaces, e.g., ones of size ℵ2 with
points Gδ or ones of that size with no Lindelöf subspaces
of size ℵ1.

Random real forcing
This is forcing with the product measure algebra on {0,1}κ .
We say we are “adding κ random reals”. See [KV, Chap-
ter 20] for a description. The new random reals are ob-
tained from a generic filter G as follows: let F denote the
set of finite partial functions from κ to 2 whose associates
clopen subset of {0,1}κ belongs to G. The union

⋃
F is a

total function from κ to 2 and gives rise to new reals via a
bijection between κ and κ ×ω.

Adding at least ℵ2 random reals yields a model in which
d = ℵ1 yet 2ℵ0 > ℵ1, see the article on βN for the defini-
tion of d. It is particularly interesting to force to add ℵ2 or
more random reals over a model of MA+¬CH, since much
of that axiom is preserved. For instance, in contrast with just
one Cohen real, no Souslin tree is created. Adding strongly
compact many random reals produces a model of the Prod-
uct Measure Extension Axiom mentioned earlier, see [KV,
Chapter 16].

Other forcings
There are many other ways of adding new reals; the ‘to-
tal failure of MA’ alluded to above was obtained by adding
Sacks reals.

The Proper Forcing Axiom, has many strong conse-
quences mentioned above. To prove a proposition ϕ is un-
decidable by MA+¬CH, the standard stratagem is to show
PFA implies ϕ, but that a carefully constructed example of
¬ϕ constructed from CH or ♦ remains an example under
countable chain condition forcing. A noteworthy example is
Szentmiklóssy’s S-space that is consistent with MA+¬CH.
Another one is a Baire space of size ℵ1 without isolated
points, consistent with MA+¬CH.

It is often useful to have some example that contradicts
MA + ¬CH, while retaining as much of that axiom as pos-
sible. The standard procedure is to construct the example
using CH or ♦ and then iterate forcing with partial orders
having a strong form of countable chain condition that pre-
serves the example. The first such example was a Souslin
line consistent with Martin’s Axiom for partial orders with
property K (every uncountable set contains an uncountable
subset of pairwise compatible elements).

Consistency results in topology have come a long way
from the initial applications of MA+¬CH and V = L. A re-
cent trend in particular is to obtain models in which conse-
quences of these two contradictory axioms hold simultane-
ously. The key idea is to first force to construct a particularly
nice Souslin tree S, then force as much of MA + ¬CH as
can possibly be compatible with the existence of S, and then
force with S. This stratagem enabled Larson and Todorčević
to solve an old problem of Katětov by showing it consistent
that whenever X2 is compact hereditarily normal, then X

is metrizable. In this model there are no S- or L-subspaces
of compact first-countable spaces – a strong consequence
of MA + ¬CH, yet there are also no Q-sets, contradicting
MA+¬CH.

Extending the method to PFA, rather than MA, yields that
subspaces of compact spaces with countable tightness are
hereditarily Lindelöf if and only if they are hereditarily sep-
arable (Todorčević). By doing preliminary forcing one can
also get normal first-countable spaces to be collectionwise
Hausdorff. This was used by Larson and Tall to obtain the
consistency (relative to a supercompact cardinal) of every
locally compact perfectly normal space being paracompact.

By using proper partial orders that don’t add reals, one
can get some consequences of PFA consistent with CH. For
example, that every compact space of countable tightness is
sequentially compact and has points of character � ℵ1. It
is possible to obtain some of the consequences of PFA that
imply ¬CH and yet still have 2ℵ0 < 2ℵ1 . This was accom-
plished by Eisworth, Nyikos and Shelah in order to obtain
the consistency of there being no separable, hereditarily nor-
mal, locally compact space of size ℵ1.

As with any other field of mathematics that has reached
a certain level of maturity, particular difficult problems re-
quire either a new method apparently unique to them or an
intricate combination of known methods. An example of the
latter is the difficult forcing construction by Gruenhage and
Koszmider of a locally compact normal metacompact space
which is not paracompact.
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