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Abstract

In this paper we construct a correspondence between the parameter spaces of two families of
one-dimensional dynamical systems, the α-continued fraction transformations Tα and unimodal
maps. This correspondence identifies bifurcation parameters in the two families, and allows one
to transfer topological and metric properties from one setting to the other. As an application,
we recover results about the real slice of the Mandelbrot set, and the set of univoque numbers.

1 Introduction

The goal of this paper is to discuss an unexpected connection between the parameter spaces of two
families of one-dimensional dynamical systems, and establish an explicit correspondence between
the bifurcation parameters for these families.

The family (Tα)α∈(0,1] of α-continued fraction transformations, defined in [Na], is a family of
discontinuous interval maps, which generalize the well-known Gauss map. For each α ∈ (0, 1], the
map Tα from the interval [α− 1, α] to itself is defined as Tα(0) = 0 and, for x 6= 0,

Tα(x) :=
1

|x|
− cα,x

where cα,x =
⌊

1
|x| + 1− α

⌋
is a positive integer. These maps have infinitely many branches, hence

infinite topological entropy, but each one admits an invariant probability measure absolutely con-
tinuous with respect to Lebesgue measure, so metric entropy is well-defined.

Several authors have studied the variation of the metric entropy of Tα as a function of the
parameter α. [LM] first produced numerical evidence that the entropy is continuous, but non-
monotone. Subsequently, [NN] found out that the entropy is monotone over intervals in parameter
space for which the orbits of the two endpoints collide after a finite number of steps (see eq. (6) on
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pg. 6). This analysis is completed in [CT], where intervals of parameters for which such relation
holds are classified, and it is proven that the union of all such intervals has full measure. The
complementary set, denoted by E , is the set of parameters across which the combinatorics of Tα
changes, hence it will be called the bifurcation set.

The second object we consider is the family of unimodal maps, i.e. smooth maps of the interval
with only one critical point, the most famous example being the logistic family. To any such map
one can associate a kneading invariant [MT] which encodes the dynamics of the critical point and
determines the combinatorial type of the map. Using an appropriate coding (see [IP], [Is]) the set
of all kneading invariants which arise from unimodal maps can be represented as the points of a
set Λ defined in terms of the tent map T (x) := min{2x, 2(1− x)}

Λ := {x ∈ [0, 1] : T k(x) ≤ x ∀k ∈ N} (1)

Λ is an uncountable, totally disconnected, closed set; the topology of Λ reflects the variation in
the dynamics of the corresponding maps as the parameter varies: for instance families of isolated
points in Λ correspond to period doubling cascades (see section 4.2). This set also parametrizes the
real slice of the boundary of the Mandelbrot set M (see section 5.1), because for each admissible
kneading sequence there exists exactly one real parameter on the boundary with that kneading
sequence.

The key result of this paper (section 4) is the following correspondence between the bifurcation
parameters of the two families:

Theorem 1.1. The sets Λ\{0} and E are homeomorphic. More precisely, the map ϕ : [0, 1]→ [12 , 1]
given by

x =
1

a1 +
1

a2 +
1

a3 +
1

. . .

7→ ϕ(x) = 0. 11 . . . 1︸ ︷︷ ︸
a1

00 . . . 0︸ ︷︷ ︸
a2

11 . . . 1︸ ︷︷ ︸
a3

. . .

is an orientation-reversing homeomorphism which takes E onto Λ \ {0}.

As a consequence, intervals in the parameter space of α-continued fractions where a matching
between the orbits of the endpoints occurs are in one-to-one correspondence with real hyperbolic
components of the Mandelbrot set, i.e. intervals in the parameter space of real quadratic polynomi-
als where the orbit of the critical point is attracted to a periodic cycle. In terms of entropy, intervals
over which the metric entropy of α-continued fractions is monotone (and conjecturally smooth) are
mapped to parameter intervals in the space of quadratic polynomials where the topological entropy
is constant (see figure 1). For instance, the matching interval ([0; 3], [0; 2, 1]), identified in [LM] and
[NN], corresponds to the “airplane component” of period 3 in the Mandelbrot set.

This dictionary illuminates many connections between seemingly unrelated objects in real dy-
namics, complex dynamics, and arithmetic, which we will explore in the rest of the paper. For
example, the following properties of Λ follow immediately by using the combinatorial tools devel-
oped in [CT]:

(i) Λ can be constructed via a bisection algorithm (section 4.1)

(ii) the sequences of isolated points in E observed experimentally in ([CMPT], sect. 4.2) are the
images of the well-known period doubling cascades for unimodal maps (section 4.2)
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Figure 1: Correspondence be-
tween the parameter space of
α-continued fraction transforma-
tions and the Mandelbrot set. On
the top: the entropy of α-c.f. as a
function of α, from [LM]; colored
strips correspond to matching in-
tervals. At the bottom: a section
of the Mandelbrot set along the
real line, with external rays land-
ing on the real axis. Matching
intervals on the top figure corre-
spond to hyperbolic components
on the bottom.

(iii) the derived set Λ′ is a Cantor set (section 4.3)

(iv) the Hausdorff dimension of Λ is 1 (section 4.4)

From the above properties of Λ we derive some consequences on corresponding sets. For exam-
ple, (iv) implies that the set of external rays of the Mandelbrot set which land on the real axis has
full Hausdorff dimension (section 5.1), a result first obtained in [Za].

Moreover, in section 5.2 we give an arithmetic interpretation of Λ. Namely, aperiodic elements
of Λ correspond to binary expansions of univoque numbers, i.e. the numbers q ∈ (1, 2) such that 1
admits a unique representation in base q. Univoque numbers have been studied by Erdös, Horváth
and Joó [EHJ] and many others (see section 5.2 for references), and once again the translation of
statements (i)-(iv) immediately yields several results previously obtained by different authors.

Moreover, our characterization (see lemma 3.3) shows that E is essentially the same set appearing
in a paper of Cassaigne as the spectrum of recurrence quotients for cutting sequences of geodesics
on the torus ([Ca], Theorem 1.1). Indeed, our results on E answer some questions raised in [Ca],
such as the computation of Hausdorff dimension.

Finally, we would like to emphasize that the correspondence of theorem 1.1 opens up many
questions, and it is especially natural to ask to what extent results in the well-developed theory
of unimodal maps can be translated into the continued fraction setting. For instance, it would
be interesting to identify an analogue of renormalization for the α-continued fractions, and to
further explore the relation between the entropy of that family ([LM], [CMPT], [Ti], [KSS]) and
the topological entropy of unimodal maps ([MT] and [Do] among others).
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2 Preliminaries

Let T, F,G denote the tent map, the Farey map and the Gauss map of [0, 1], given by1

T (x) :=


2x if 0 ≤ x < 1

2

2(1− x) if 1
2 ≤ x ≤ 1

F (x) :=


x

1− x
if 0 ≤ x < 1

2

1− x
x

if 1
2 ≤ x ≤ 1

and G(0) := 0, G(x) :=
{
1
x

}
, x 6= 0. The action of F and T can be nicely illustrated with

different symbolic codings of numbers. Given x ∈ [0, 1] we can expand it in (at least) two ways:
using a continued fraction expansion, i.e.

x =
1

a1 +
1

a2 +
1

a3 +
1

. . .

≡ [0; a1, a2, a3, . . . ] , ai ∈ N

and a binary expansion, i.e.

x =
∑
i≥1

bi 2−i ≡ 0.b1 b2 . . . , bi ∈ {0, 1}

The action of T on binary expansions is as follows: for ω ∈ {0, 1}N,

T (0. 0ω) = 0. ω , T (0. 1ω) = 0. ω̂ (2)

where ω̂ = ω̂1ω̂2 . . . and 0̂ = 1, 1̂ = 0. The actions of F and G are given by F ([0; a1, a2, a3, . . . ]) =
[0; a1 − 1, a2, a3, . . . ] if a1 > 1, while F ([0; 1, a2, a3, ...]) = [0; a2, a3, ...], and G([0; a1, a2, a3, . . . ]) =
[0; a2, a3, . . . ]. As a matter of fact G can be obtained by F by inducing on the interval I1 = [1/2, 1],
i.e.

G(x) = F b1/xc(x) , x 6= 0 (3)

Now, given x = [0; a1, a2, a3, . . . ], one may ask what is the number obtained by interpreting the
partial quotients ai as the lengths of successive blocks in the dyadic expansion of a real number in
[0, 1]. This defines Minkowski’s question mark function ? : [0, 1]→ [0, 1]

?(x) =
∑
k≥1

(−1)k−1 2−(a1+···+ak−1) = 0. 00 . . . 0︸ ︷︷ ︸
a1−1

11 . . . 1︸ ︷︷ ︸
a2

00 . . . 0︸ ︷︷ ︸
a3

· · · (4)

which has the following properties (see [Sa]):

1Here bxc and {x} denote the integer and the fractional part of x, respectively, so that x = bxc+ {x}.
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• ?(x) is strictly increasing from 0 to 1 and Hölder continuous of exponent β = log 2

2 log
√
5+1
2

;

• x is rational iff ?(x) is of the form k/2s, with k and s integers;

• x is a quadratic irrational iff ?(x) is a (non-dyadic) rational;

• ?(x) is a singular function: its derivative vanishes Lebesgue-almost everywhere;

• it satisfies the functional equation ?(x)+?(1− x) = 1.

We shall see later that the question mark function ? plays a key role in the main result of this
paper (Theorem 1.1) because it conjugates the actions of F and T . For a more general analysis of
the role played by ? in a dynamical setting see [BI].

3 The bifurcation sets

3.1 The bifurcation set for continued fraction transformations

Let r ∈ (0, 1)∩Q be a rational number, and let r = [0; a1, . . . , an] be its continued fraction expansion,
with an ≥ 2. The quadratic interval associated to r will be the open interval Ir with endpoints

[0; a1, . . . , an−1, an] and [0; a1, . . . , an−1, an − 1, 1]

where [0; a1, . . . , an] denotes the real number with periodic continued fraction expansion of period
(a1, . . . , an) . The number r is called the pseudocenter of Ir. We also define the degenerate quadratic
interval I1 := (g, 1], where g := [0; 1̄] is the golden number.

Definition 3.1. The bifurcation set for continued fractions is

E := [0, 1] \
⋃

r∈(0,1]∩Q

Ir (5)

By [CT], the connected components of the complement of E are also quadratic intervals, called
maximal quadratic intervals. For all parameters belonging to a maximal quadratic interval, the
α-continued fraction transformation Tα satisfies a matching condition between the orbits of the
endpoints, with fixed combinatorics:
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Theorem 3.2 ([CT] thm 3.1). Let Ir be a maximal quadratic interval, and r = [0; a1, . . . , an] with
n even. Let

N =
∑
i even

ai M =
∑
i odd

ai

Then for all α ∈ Ir,
TN+1
α (α) = TM+1

α (α− 1) ∀α ∈ Ir (6)

As a consequence, by [NN], the metric entropy h(Tα) is locally monotone on the complement
of E . The set E can be given the following new characterization:

Lemma 3.3. Let x ∈ [0, 1]. The following are equivalent:

1. x ∈ E

2. Gk(x) ≥ x, ∀k ∈ N

3. F k(x) ≥ x, ∀k ∈ N

4. F k ◦Ψ1(x) ≤ Ψ1(x) ∀k ∈ N, where Ψ1(x) := 1/(1 + x) is an inverse branch of F .

Proof. Let x = [0; a1, a2, . . . ] be the continued fraction expansion of x.
(2)⇒ (3). Fix k ≥ 1, so F k(x) = [0;h, an+1, an+2, . . . ] for some n and 1 ≤ h ≤ an. Hence

F k(x) ≥ [0; an, an+1, . . . ] = Gn−1(x) ≥ x

(3) ⇒ (4). Let J ⊂ N be the subsequence given by the partial quotients sums, i.e. J =
{
∑n

i=1 ai}n≥1, and note that y := Ψ1(x) = [0; 1, a1, a2, . . . ]. If k /∈ J then F k(y) ≤ 1
2 ≤ y.

Otherwise, F k(y) = [0; 1, an+1, an+2, . . . ] = Ψ1(F
k(x)) for some n ≥ 1 so that

x = [0; a1, a2, a3, ...] ≤ [0; an+1, an+2, . . . ] = F k(x)⇒ F k(y) ≤ y

(4)⇒ (2). Fix k ≥ 1, and let s :=
∑k

j=1 aj , so that F s(x) = Gk(x). Now,

F s(Ψ1(x)) = [0; 1, ak+1, ak+2, . . . ] ≤ [0; 1, a1, a2, . . . ] = Ψ1(x)

therefore [0; ak+1, . . . ] = Gk(x) ≥ x = [0; a1, . . . ].
(1)⇒ (3). Let x ∈ E be the endpoint of a maximal interval, hence x = [0; a1, . . . , an]. Once you fix
k ≥ 0, then Gk(x) = [0; al+1, . . . , an, a1, . . . , al] with l ≡ k mod n. Now, by [CT], prop 4.5

Gk(x) = [0; al+1, . . . , an, a1, . . . , al] ≥ [0; a1, . . . , al, al+1, . . . , an] = x

i.e. (2), and hence (3). Since M is dense ([CT], thm 1.2), every point in E is a limit point of a
sequence of endpoints of maximal intervals, so inequality (3) extends to all of E by continuity of F .
(2)⇒ (1). If x /∈ E , then x belongs to a maximal interval Ia = (α−, α+). Let a = [0;A−] = [0;A+]
be the two continued fraction expansions of the rational number a, in such a way that α− = [0;A−]
and α+ = [0;A+]. Here A− is a finite string of integers of odd length l, and A+ is a finite string of
integers of even length m. The sequence

a = [0;A+] < [0;A+A+] < · · · < [0; (A+)n] < [0; (A+)n+1] < . . .
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tends to [0;A+] = α+, hence for any x ∈ [a, α+) there exists n ≥ 0 such that

[0; (A+)n+1] ≤ x < [0; (A+)n+2]

therefore y := Gm(x) < [0; (A+)n+1] ≤ x. If instead x ∈ (α−, a], then using the fact that l is odd

0 = Gl(a) ≤ Gl(x) < Gl(α−) = α−

so Gl(x) < α− < x.

3.2 Universal encoding for unimodal maps

We now introduce a set Λ which encodes the topological dynamics of unimodal maps in a universal
way. Several similar approaches are possible ([MT], [dMvS] among others); we follow [IP], [Is]. We
recall that a smooth map f : [0, 1] → [0, 1] is called unimodal if it has exactly one critical point
0 < c0 < 1, and we are going to assume f(0) = f(1) = 0. If x ∈ [0, 1] never maps to c0 under f , let
us define the itinerary of x ∈ [0, 1] to be the sequence

i(x) = s1s2 . . . with si =

{
0 if f i−1(x) < c0
1 if f i−1(x) > c0

If x eventually maps to c0, let us define i(x±) := limy→x± i(y) where the limit is taken over non-
precritical points. The kneading sequence of a unimodal map is the binary sequence K := i(c−1 ),
where c1 = f(c0) is the critical value.

Kneading sequences encode the combinatorics of the orbits and determine the topological en-
tropy. A nice way to decide whether a given binary sequence s ∈ {0, 1}N is the kneading sequence
of some unimodal map is the following: we first associate to s = s1s2 · · · ∈ {0, 1}N the number
τ(s) ∈ [0, 1] defined as

τ = 0.t1t2 · · · =
∑
k≥1

tk2
−k, tk =

k∑
i=1

si (mod 2) (7)

One readily checks that the following diagram is commutative:

[0, 1]
i−−−−→ {0, 1}N τ−−−−→ [0, 1]

f

y yσ yT
[0, 1]

i−−−−→ {0, 1}N τ−−−−→ [0, 1]

(8)

where T is the tent map (2) and σ : {0, 1}N → {0, 1}N is the shift map. Since the critical value
is the highest value in the image and the map τ ◦ i is increasing ([Is], Lemma 1.1), one has the
characterization

Proposition 3.4 ([IP], [Is]). A binary sequence s ∈ {0, 1}N is the kneading sequence of a continuous
unimodal interval map if and only if τ := τ(s) satisfies

T k(τ) ≤ τ for all k ≥ 0
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One is thus led to study the set

Λ := {x ∈ [0, 1] : T k(x) ≤ x, ∀k ∈ N} (9)

By considering T (x) ≤ x one immediately realizes that Λ \ {0} ⊆ [2/3, 1]. Note moreover that the
extremal situations in which T k(τ) = τ for some k > 0 correspond to periodic attractors (and thus
periodic kneading sequence) of the corresponding unimodal maps.

Note that all kneading sequences which arise from unimodal maps can be actually realized
by real quadratic polynomials fc(z) = z2 + c, c ∈ [−2, 14 ]. By density of hyperbolicity, aperiodic
kneading sequences are realized by exactly one map fc. On the other hand, the set of parameters
which realize a given admissible periodic kneading sequence is an interval in parameter space, and
among those maps there is exactly one fc which has a parabolic orbit. In conclusion, Λ parametrizes
the set of topologically unstable parameters, hence it will be called the binary bifurcation set.

4 From continued fractions to kneading sequences

We are now ready to prove theorem 1.1, namely that the map ϕ : [0, 1] → [12 , 1] given by x =
[0; a1, a2, a3, ...] 7→ ϕ(x) = 0. 11 . . . 1︸ ︷︷ ︸

a1

00 . . . 0︸ ︷︷ ︸
a2

11 . . . 1︸ ︷︷ ︸
a3

. . . is an orientation-reversing homeomorphism

which takes E onto Λ \ {0}.
Proof of theorem 1.1. The key step is that Minkowski’s question mark function conjugates the

Farey and tent maps, i.e.
?(F (x)) = T (?(x)) ∀x ∈ [0, 1] (10)

Note that ϕ =? ◦ Ψ1, hence ϕ is a homeomorphism of [0, 1] onto the image of Ψ1, i.e. [12 , 1].
Moreover, by Lemma 3.3-4,

Ψ1(E) = {x ∈ (0, 1] : F k(x) ≤ x}

and by (10)
?(Ψ1(E)) = {x ∈ (0, 1] : T k(x) ≤ x} = Λ \ {0}.

In the following subsections we will investigate a few consequences of such a correspondence.

4.1 Construction of Λ and bisection algorithm

A direct consequence of the theorem is the following algorithm to construct Λ, which mimics the
one used to construct E : let ω = ω1 . . . ωn−11 be a binary word of length n (ending with 1) and
d = 0.ω the corresponding dyadic rational. Setting ω∗ = ω1 . . . ωn−10, we see that d has exactly
two representations:

d = 0. ω 0 and d = 0. ω∗1

where, if η is any finite binary word, η ∈ {0, 1}N denotes the infinite sequence obtained by repeating
η indefinitely. Now define the dyadic interval associated to d as the open interval Jd = (r−, r+)
whose endpoints are the (non-dyadic) rationals 2

r− = 0.ω∗ and r+ = 0.ωω̂,

2Since the correspondence is orientation reversing, the string defining r− corresponds to the string A+ which
defines the upper endpoint of the interval in [CT], section 2.2.
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Example. Take d = 13/16 = ϕ(2/5). Since the binary expansions of d are 0.11010 and 0.11001,
we get r− = 0.1100 = 4/5 and r+ = 0.11010010 = 14/17. (See also the example in section 4.2.)

Proposition 4.1. We have

Λ = [0, 1) \
⋃

d∈(0,1]∩Q2

Jd (11)

with Q2 := {k/2s : s ∈ N, k ∈ Z}.

Proof. From theorem 1.1 and eq. (5).

Note that in the previous construction there is substantial overlapping among the Jd. It is possible,
however, to directly produce all connected components of the complement of Λ by a bisection
algorithm: namely, one can produce a new component in the gap between two previously computed
components.

Definition 4.2. Let I = [a, b] ⊆ [0, 1] be a closed interval, a 6= b, and let the binary expansions3 of
a and b be

a = 0.a1a2 . . . b = 0.b1b2 . . .

Let n := min{i : ai 6= bi}. The binary pseudocenter of I is the dyadic rational

d(I) := 0.a1 . . . an−11 (12)

By translating one gets the following description of Λ:

Proposition 4.3. Let F0 = [0, 1], and for any n define recursively

Gn := {I | I is a connected component of Fn, I not an isolated point }

Fn+1 := Fn \
⋃
I∈Gn

Jd(I)

Then
Λ =

⋂
n∈N

Fn

Proof. From proposition 2.11 of [CT] and theorem 1.1.

4.2 Period doubling

Period doubling bifurcation is a well known phenomenon which occurs with a universal structure
in families of unimodal maps. Period doubling cascades are in one-to-one correspondence with
periodic windows consisting of isolated points in the set Λ \ {0}, as shown in [AC1], [IP]. We will
see how similar windows of isolated points occur in E , and in both cases the combinatorial pattern
can be understood in terms of the Thue-Morse sequence t := (tn)+∞n=0 = (0, 1, 1, 0, 1, 0, 0, 1, 1, ...).
Recall that t can be defined in terms of the power series expansion∏

k≥0
(1− z2k) = 1− z − z2 + z3 + · · · =

∑
n≥0

(−1)tnzn (13)

3If a or b are dyadic numbers, take the expansion of a which terminates with infinitely many zeros and the
expansion of b with infinitely many ones
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Definition 4.4. Define the map ∆ on the set of finite binary words as

∆(η) := η 1 η̂ (14)

Moreover, for any finite binary word η, let τ0(η) be the rational number 0.η0, and let for any j

τj(η) := τ0(∆
j(η)) τ∞(η) = lim

j→∞
τj(η) (15)

The periodic window associated to η is

Wη = [τ0(η), τ∞(η))

Let x ∈ Λ be a point with periodic binary expansion, and let x = 0.η0 with η0 minimal period.
Then the periodic window associated to η contains exactly the sequence of isolated points just
constructed:

Λ ∩Wη =
⋃
j≥0

τj(η)

Let us call generating number of the window Wη the pseudocenter d0(η) of the first interval
[τ0(η), τ1(η)].

Examples.
If η = ε, the empty word, we obtain the sequence {τj(ε)}j≥0 = {0, 23 ,

4
5 ,

14
17 , . . . } which converges

to τ∞(ε) = 0.824908..., and the generating number of Wε is d0(ε) = 1/2. Note that the binary
expansion of τ∞(ε) = 0.11010011001011... is the Thue-Morse sequence.
Taking η = (11) we get the sequence {τj(11)}j≥0 = {67 ,

8
9 ,

58
65 , . . . } which converges to the irrational

number τ∞(11) = 0.892360... and belong to the next-to-largest window W11 in Λ. Its generating
number is d0(11) = 7/8.

Windows of isolated points are present also in the set E and can be generated with a similar
procedure, introduced in [CMPT] and [CT] without connection to bifurcations of unimodal maps.
Indeed, let Ir be a maximal quadratic interval, and let r = [0;S0] = [0;S1] be the continued fraction
expansions of its pseudocenter, in such a way that S0 has even length and S1 has odd length. Let
us define Σ0 := S0, Σ1 := S1 and Σn+1 is generated from Σn via the substitutions S1 → S1S0,
S0 → S1S1. If we denote

αn(r) := [0; Σn] α∞(r) := lim
n→∞

αn(r)

it follows immediately from [CT], proposition 3.9 that

Lemma 4.5. For each Ir maximal quadratic interval of pseudocenter r,

E ∩ (α∞(r), α0(r)] =
⋃
n≥0

αn(r)

Limit points α∞(r) of these cascades have an aperiodic continued fraction expansion with a
common combinatorial structure which is again related to the Thue-Morse sequence t = (tn)∞0 :
indeed, for any r

α∞(r) = [0;Sk1 , Sk2 , Sk3 , . . . ]

10



where the sequence K := (k1, k2, k3, ...) = (1, 0, 1, 1...) is such that τ(K) =
∑+∞

j=0 tj2
−j . For

instance, if r = 1
2 , then α∞(12) = [ 0 ; 2, 1, 1, 2, 2, 2, 1, 1, 2, . . . ]4 ∼= 0.38674997... is the accumulation

point considered in [CMPT] and [KSS].
We end this section with a precise characterization of the points {τj(η)}j≥0 in Λ and of their

accumulation point τ∞(η), which we prove to be a transcendental number.

Lemma 4.6. Let η = η1 . . . ηp be a finite binary word of length p ≥ 0 such that τ0(η) ∈ Λ and
define recursively the integers:

• P0 :=
∑p

i=1 ηi2
p+1−i

• Pj+1 := (Pj + 2)(22
j(p+1) − 1)

• Qj := 22
j(p+1) − 1

Then τj(η) ∈ Λ for every j, and τj(η) = Pj/Qj. Moreover, the binary pseudocenters are given by

dj(η) = 2−2
j(p+1)(Pj + 1) =

Pj + 1

Qj + 1

Proof. We need the following elementary identity

0.ω1 . . . ωs =
2s

2s − 1

s∑
i=1

ωi
2i

(16)

for any binary word ω1 . . . ωs. P0 is the integer whose binary expansion is η0, hence from (16)
τ0 = P0/Q0. Moreover, if P is the integer whose binary expansion is ξ0, with ξ a binary string,
then the number whose binary expansion is ξ1ξ̂0 is P ′ = (P + 2)(2|ξ|+1 − 1). By the recursive
formulas (14) and (15) and identity (16) one has τj = Pj/Qj for all j ≥ 1. Finally, the binary

pseudocenter of the interval [0.ξ0, 0.ξ1ξ̂0] is d = 0.ξ1 = (P + 1)2−(|ξ|+1) hence the lemma follows
by taking P = Pj .

Furthermore, let us consider the generating function (cf. eq. (13))

Ξ(z) :=
∏
k≥0

(1− z2k) (17)

This function satisfies the functional equation Ξ(z) = (1− z)Ξ(z2), from which we see that all its
zeroes lie on the unit circle and are actually dense there (see also [Is]).

Proposition 4.7. Let η = η1 . . . ηp be a finite binary word of length p ≥ 0 such that τ0(η) ∈ Λ.
Then

τ∞(η) = 1−
(

1− d0(η)
)

Ξ

(
1

2p+1

)
(18)

In particular, τ∞(η) is transcendental.

4Notice that the sequence of partial quotients of α∞( 1
2
) coincides with the first difference sequence of

c = 1 3 4 5 7 9 11 12 13 · · · defined as n ∈ c ⇐⇒ 2n /∈ c.
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Proof. Setting τj(η) = Pj/Qj and using Lemma 4.6 we get for j ≥ 1

Qj − Pj = (2(p+1)2j−1 − 1)(Qj−1 − Pj−1) = · · · = (Q0 − P0)

j−1∏
k=0

(2(p+1)2k − 1) .

Therefore

τj(η) = 1− (Q0 − P0)

∏j−1
k=0(2

(p+1)2k − 1)

2(p+1)2j − 1
= 1−

∏j−1
k=0(1− 2−2

l(p+1))

1− 2−2j(p+1)
(1− d0(η))

where we used the relation Q0 − P0 = 2p+1(1 − d0(η)) given by lemma 4.6. The claimed identity
follows by taking the limit. Finally, Mahler proved in ([M], p.363) that Ξ(a) is transcendental for
every algebraic number a, with 0 < |a| < 1.

Examples of τ∞(η) are

τ∞(ε) = 1− 1

2
Ξ

(
1

2

)
, τ∞(11) = 1− 1

8
Ξ

(
1

8

)
and τ∞(1101) = 1− 5

32
Ξ

(
1

32

)

A corresponding transcendence result can be given for E . Namely, accumulation points of period
doubling cascades α∞(r) have continued fraction expansion given by the substitution rule explained
above, hence they are transcendental by [AB].

It has been widely conjectured that all numbers with non-eventually periodic bounded partial
quotients are transcendental. Let us point out that such a statement is equivalent to the transcen-
dence of all non-quadratic irrationals in E . Similarly, one might ask whether all irrational points
in Λ are transcendental as well.

4.3 The topology of bifurcation sets

By using the bisection algorithm and proposition 4.7 it is immediate to determine the topology of
bifurcation sets, namely

Proposition 4.8. Let Q1 be the set of rational numbers with odd denominator. Then

1. The set Λ ∩Q1 is dense in Λ.

2. The derived set Λ′ is a Cantor set (i.e. a closed set with no interior and no isolated points).
As a corollary, Λ′ and Λ have cardinality 2ω.

3. Let C be the usual Cantor middle-third set, let Ωk = (αk, βk), k ≥ 1 be the connected compo-
nents of the complement [0,∞) \C. For each k, pick a countable set of points Pk ⊆ Ωk which
accumulate only on αk. Then Λ is homeomorphic to C ∪

⋃
k≥1 Pk.

4. Any open neighbourhood of an element τ ∈ Λ\Q1 contains a subset of Λ which is homeomor-
phic to Λ itself (fractal structure).

Note that, even though the proposition was stated for Λ, the same result holds for E since they are
homeomorphic. The only change is that you have to replace Q1 by the set of quadratic irrationals
with purely periodic continued fraction expansion.

12



Proof. 1. Λ is closed with no interior by prop. 4.1, hence the endpoints of the connected com-
ponents of its complement are dense in it. The connected components of the complement of
Λ are intervals of type Jd, so their endpoints have purely periodic binary expansion, hence
they belong to Q1.

2. By the homeomorphism, it is equivalent to prove the same result for E . Let P denote the
points of E which are periodic under G

P := {λ ∈ E : Gk0(λ) = λ for some k0 ∈ N}

and let us define the set of primitive elements as

P0 := {λ ∈ P : λ has even minimal period}.

Lemma 4.9. The set of isolated points of E is precisely P \ P0.

Proof. If α is not a limit point of E then it is the separating element between two adjacent
maximal quadratic intervals J0 and J1, so α is the left endpoint of the rightmost interval and
has odd minimal period (see [CT]).

Moreover, if λ ∈ P, we denote with α∞(λ) the limit point of the period doubling cascade
generated5 by λ and let Wλ := (α∞(λ), λ) be the corresponding period doubling window. We
also set P∞ := {α∞(λ) : λ ∈ P}, hence by lemma 4.9

E ′ = [0, 1) \
⋃
λ∈P0

(α∞(λ), λ).

Now, no two intervals of the form (α∞(λ), λ) with λ ∈ P0 are adjacent to each other, since
the right endpoint λ is always a quadratic irrational while α∞(λ) is always transcendental
(see prop. 4.7), therefore E ′ has no isolated points and it is a Cantor set.

3. Every closed subset of the interval with no interior and no isolated points is homeomorphic
to the usual Cantor middle-third set via a homeomorphism of the ambient interval. Such an
extension can be chosen so that it maps any period doubling cascade to some Pk.

4. Immediate from 3.

Let us remark that similar results have been obtained for the set of univoque numbers in [EHJ],
[KL2], and by Allouche and Cosnard for a similar number set ([A], [AC1], [AC2]). For details on
the relations between these sets see section 5.2.

Moreover, E shares some features with the Markov spectrum, since the Gauss map is the first-
return map on a section of geodesic flow on the modular surface. Even though the two sets are not
homeomorphic, property 2. also holds for the Markov spectrum [Mo].

5So for instance α∞(g) = 0.38674997... ([CMPT], pg. 24).
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4.4 Hausdorff dimension

In [CT] it is proved that dimHE = 1 by providing estimates on the Hausdorff dimension of its
segments. More precisely, setting

EK := E ∩ [1/(K + 1), 1/K], BK := {x = [0; a1, a2, a3, ...] : ai ≤ K ∀i ∈ N}, f(x) :=
1

K + x

it is easy to check that
f(BK−1) ⊂ EK ⊂ BK , (19)

and this implies that6 dimHE = limK→∞ dimHEK = limK→∞ dimHBK = 1.
We can use our dictionary to obtain analogous results in the linear setting, where in fact one can

explicitely compute the Hausdorff dimension of segments of Λ. Let ΛK := Λ∩ [1−2−K , 1−2−K−1],
g(x) := x 7→ 1− 2−Kx and

CK := {x ∈ [1/2, 1] : x does not contain sequences of K + 1 equal digits};

using the correspondence of theorem 1.1, the inclusions (19) become g(CK−1) ⊂ ΛK ⊂ CK , and
thus

dimHCK−1 ≤ dimHΛK ≤ dimHCK . (20)

CK is a self-similar set, therefore its Hausdorff dimension can be computed by standard techniques
(see [F], theorem 9.3). More precisely, if aK(n) is the number of binary sequences of n digits whose
first digit is 1 and do not contain K + 1 consecutive equal digits, one has the following linear
recurrence: 7

aK(n+K) = aK(n+K − 1) + ...+ aK(n+ 1) + aK(n) (21)

which implies

Proposition 4.10. For any fixed integer K ≥ 2 the Hausdorff dimension of CK is log2(λ), where
λ is the only positive real root of the characteristic polynomial

PK(t) := tK − (tK−1 + ...+ t+ 1)

As a consequence, a simple estimate on the unique positive root of PK yields

dimH Λ = lim
K→+∞

dimHCK = 1

5 Kneading sequences, complex dynamics and univoque numbers

The goal of this section is to explore the relations between the bifurcation sets we described and
other well-known sets for which a combinatorial description can be given, namely the real slice of
the abstract Mandelbrot set and the set of univoque numbers.

6In fact, the asymptotics of [He] yields the estimate dimHEK = 1− 6/π2K + o(1/K).
7Sequences satisfying this relation are known as multinacci sequences, being a generalization of the usual Fibonacci

sequence; the positive roots of their characteristic polynomials are Pisot numbers.
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5.1 Relation to the Mandelbrot set

Let us recall that the Mandelbrot set encodes the dynamical properties of the family of quadratic
polynomials

pc(z) := z2 + c c ∈ C

namely it can be defined as

M := {c ∈ C | pnc (0) does not tend to ∞}

A combinatorial model of the Mandelbrot set can be constructed by using the theory of invariant
quadratic laminations, as developed by Thurston [Th].

Consider the unit disk in the complex plane with the action of the doubling map

f(z) = z2

on the boundary. A leaf L is a simple curve embedded in the interior of the circle joining two
points on the boundary. It is usually represented as a geodesic for the hyperbolic metric in the
Poincaré disk model. One can extend the action of f to the whole lamination: the image of a leaf
L is, by definition, the leaf which connects the images of the endpoints of L. We define the length
`(L) of a leaf to be the (euclidean) length of the shortest arc of circle delimited by its endpoints,
measured on the boundary circle and normalized in such a way that the whole circumference has
length 1 (hence, for any leaf L, 0 ≤ `(L) ≤ 1

2). A leaf is real if it is invariant with respect to
complex conjugation. The doubling map f preserves the set of real leaves.

A lamination is a closed subset of the disk which is a union of leaves, and such that any two
leaves in the lamination can intersect only on the boundary of the disk. A quadratic invariant
lamination is a lamination whose set of leaves is completely invariant with respect to the action
of the doubling map (we refer to [Th], pg. 66 for a complete definition of this invariance). Given
an invariant quadratic lamination, its longest leaves are called its major leaves, and their image
the minor leaf. There can be at most 2 major leaves, and they both have the same image. In
the well-known theory of Douady, Hubbard and Thurston, the leaves of an invariant quadratic
lamination define an equivalence relation on the boundary circle and the quotient space is a model
for the Julia set of a certain quadratic polynomial.

The quadratic minor lamination QML is the set of all minor leaves of any quadratic invariant
lamination

QML := {L | ∃ an invariant quadratic lamination L0 s.t. L is its minor leaf}

Similarly to the Julia set case, the space obtained by identifying points on the disk which belong
to the same leaf of QML is a model of the classical Mandelbrot set.

We will consider the set RQML ⊆ QML of real leaves inside the quadratic minor lamination:
under the previous correspondence, they correspond to real points on the boundary of the Man-
delbrot set. Moreover, let R = RQML ∩ S1 be the set of endpoints of all leaves in RQML. Since
RMQL is symmetric, it is enough to consider the “upper half” R∩ [0, 12 ].

Proposition 5.1. The map x 7→ 2x maps R∩ [0, 12 ] bijectively onto Λ. Hence

R =

(
1

2
Λ

)
∪
(

1− 1

2
Λ

)

15



(a) The invariant quadratic lamination for the pa-
rameter 5

6
∈ Λ. In red the minor leaf joining ( 5

12
, 7
12

),
in blue the major leaves. The corresponding param-

eter in E through the dictionary of section 4 is 3−
√
5

2
,

the square of the golden mean.

(b) The quadratic minor lamination QML is the col-
lection of all minor leaves. Real leaves are drawn in
red, and the set R is the set of all endpoints of red
leaves. A thicker red line represents the minor leaf
corresponding to the lamination to the left.

Proposition 5.1, together with the fact that dimHΛ = 1, yields a new proof of the main result
in [Za]

Corollary 5.2. The Hausdorff dimension of R is 1.

Because of the fact that the set of rays which possibly do not land has zero capacity and by
Makarov’s dimension theorem, we proved

Corollary 5.3. The intersection of the boundary of the Mandelbrot set with the real line has
Hausdorff dimension 1 .

Proof of proposition 5.1. The first ingredient is the fact that the action induced by the doubling
map on the lengths of leaves is essentially given by the tent map, namely for any leaf L

2`(f(L)) = T (2`(L)) (22)

Let x ∈ R ∩ [0, 12 ] be the endpoint of a minor leaf, let m be the minor leaf and M be one of
the corresponding major leaves. By maximality of M and invariance of the quadratic lamination,
`(M) ≥ `(fk(M)) for all k ∈ N, hence by (22)

2`(M) ≥ T k(2`(M)) ∀k ∈ N (23)

From this and the fact that x = 2/3 is a fixed point for T follows that the major leaf is longer than
1
3 , hence

`(m) =
1

2
T (2`(M)) = 1− 2`(M)
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Moreover, by symmetry of the minor leaf with respect to complex conjugation,

`(m) = 1− 2x

hence x = `(M) and by (23)
2x ≥ T k(2x) ∀k ∈ N

hence 2x belongs to Λ. Conversely, if y = 2x ∈ Λ, one can construct the real leaf m which joins x
with 1 − x. The fact that m is a minor leaf follows from the criterion ([Th], pg. 91): a leaf m is
the minor leaf of an invariant quadratic lamination if and only if

(i) all forward images have disjoint interior;

(ii) no forward image is shorter than m;

(iii) if m is non-degenerate, then m and all leaves on the forward orbit can intersect the (at most
2) preimage leaves of m of length at least 1

3 only on the boundary.

Indeed, (i) follows since images of real leaves are real; (ii) follows from (23), and (iii) follows
from the fact that the preimages of a real leaf of length less than 1

3 are also real.

5.2 An alternative characterization and univoque numbers

Definition 5.4. A real number q ∈ (1, 2) is called univoque if 1 admits a unique expansion in base
q, i.e. if it exists a unique sequence {ck} ∈ {0, 1}N such that∑

k≥1
ck q
−k = 1

In 1991, Erdös, Horváth and Joó discovered that univoque numbers are infinitely many [EHJ],
forming a set called the univoque set U . Subsequently, the elements of U were studied by various
authors, leading in particular to the determination (in [KL1]) of the smallest one, q1 = 1.78723...,
which is not isolated in U and whose expansion coincides with the shifted Thue-Morse sequence
(tn)n≥1. The topological structure of U is specified by the following properties (see [KL2]):

• U has 2ω elements;

• U has zero Lebesgue measure;

• U is of first category;

• U has Hausdorff dimension 1.

Moreover, the elements of U can be characterized algebraically by establishing (via a greedy algo-
rithm) a strictly increasing bijection between U and the set of binary sequences γ = (γi)i≥1, called
admissible, satisfying for all k ≥ 1 (see, e.g., [KL2], Thm 2.2)

γ > max{σk(γ), σk(γ̂)}

where γ̂ = (γ̂i)i≥1 and “ > ” denotes the lexicographical order.
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In a series of papers (see [A], [AC1], [AC2]), J.-P. Allouche and M. Cosnard introduced the
number set

Γ := {x ∈ [0, 1] : 1− x ≤ {2kx} ≤ x, ∀k ∈ N} (24)

and recognized ([AC2], Prop. 1) admissible binary sequences to be in a one-to-one correspondence
with the elements of Γ which have non-periodic expansions. We will see that in fact this set is
essentially our Λ, namely

Lemma 5.5.
Λ \ {0} = Γ (25)

Proof. Let x = 0.ω1ω2 . . . be a binary expansion of x ∈ [0, 1]. From (2) it follows that

T k(x) =

{
0.ωk+1ωk+2 . . . if

∑k
i=1 ωi = 0 (mod 2)

0.ω̂k+1ω̂k+2 . . . if
∑k

i=1 ωi = 1 (mod 2)

Define

Sk(x) := max{{2kx}, 1− {2kx}} =

{
0.ωk+1ωk+2 . . . if ωk+1 = 1
0.ω̂k+1ω̂k+2 . . . if ωk+1 = 0

then Γ = {x ∈ [0, 1] : Sk(x) ≤ x, ∀k ∈ N} and since T k(x) ≤ Sk(x) we have Γ ⊆ Λ.
Let now x ∈ Λ \ {0}, and let I = {ik}k∈N = {i ∈ N : T i(x) = 0.1 . . . } (0 ∈ I since x 6= 0). Given
l ∈ N, either l ∈ I or l /∈ I. If l ∈ I, then Sl(x) = T l(x) ≤ x. If instead l /∈ I, then there exists a
unique k s.t. ik < l < ik+1. Thus

T ik(x) = 0. 1 . . . 1︸ ︷︷ ︸
ik+1−ik

0 . . . , T l(x) = 0. 0 . . . 0︸ ︷︷ ︸
ik+1−l

1 . . .

and hence
Sl(x) = 0. 1 . . . 1︸ ︷︷ ︸

ik+1−l

0 . . . < 0. 1 . . . 1︸ ︷︷ ︸
ik+1−ik

0 . . . = T ik(x) ≤ x

As an immediate application, we see that Λ can be given the following arithmetic interpretation:

Proposition 5.6. There is a one-to-one correspondence between U and Λ \Q1. More specifically,
a number τ =

∑
k≥1 ck 2−k with non-periodic binary expansion belongs to Λ if and only if 1 =∑

k≥1 ck q
−k for some 1 < q < 2 and the expansion is unique.

It has been shown in [AC3] that q1 ∈ U is transcendental. The argument used there can be adapted
to show that the image in U of all the numbers τ∞(η) dealt with in prop. 4.7 are transcendental
as well.

Proposition 5.7. Let τ∞(η) ∈ Λ be an accumulation point of a period doubling cascade, and let
q ∈ [1, 2] be the corresponding univoque number. Then q is transcendental.
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Proof. Let τ∞(η) =
∑

k≥1 ck2
−k and 1 − d0(η) :=

∑n
i=1 ai2

−i, with ck, ai ∈ {0, 1}. Define the

formal power series A(z) :=
∑

k≥1(1− ck)zk and B(z) := (a1z + · · ·+ anz
n)Ξ(zp+1). By equation

(18) A(12) = B(12), hence A(z) = B(z) as formal power series, since 1− τ∞(η) has a unique binary
expansion being transcendental. As a consequence, A(1q ) = B(1q ), and since

∑
k≥1 ckq

−k = 1,

A(1q ) = 1
q−1−1. If q is algebraic, then A(1q ) is algebraic, hence also B(1q ) and Ξ( 1

qp+1 ) are algebraic,

contradicting Mahler’s criterion ([M], p. 363).

From our construction it follows that rational elements of Λ correspond to algebraic elements in
U (and are in fact dense in U [dV]); rephrasing the question posed at the end of section 4.2, one
might ask whether these are the only non-transcendental elements of U .
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