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Introduction

The problem of classifying manifolds has always been central in geometry, and
different categories of manifolds can a priori give different equivalence classes.
The most famous classification problem of all times has probably been the
Poincare’ conjecture, which asserts that every manifold which is homotopy
equivalent to a sphere is actually homeomorphic to it. A large family of in-
variants have been developed by algebraic topologists in the fifties to try to
disprove the conjecture. In 1953, John Milnor analyzed some 7-manifolds aris-
ing as total spaces of fiber bundles and found examples of homotopy spheres
which were not diffeomorphic to S7. By looking at them more closely, he discov-
ered that what we had found was not a counterexample to the conjecture, but
still something remarkable. These manifolds were actually homeomorphic to the
sphere, but they carried a non-standard differentiable structure: they are now
known as exotic spheres. The aim of this paper is to present Milnor’s construc-
tion: first, we will analyze the classification and topology of S3 bundles over S4;
then we will develop the theory of characteristic casses, which will allow us to
define and compute the invariant which distinguishes between different smooth
structures; finally, we will use Morse theory to prove that these manifolds are
homeomorphic to S7.

1 Fiber bundles over spheres

The notion of fiber bundle is a generalization of that of vector bundle; intuitively,
they are spaces that are locally products of two given spaces.

More formally, let X,Y,B be topological spaces and p : X → B be a contin-
uous surjection, and G a group of homeomorphisms of Y . X is called the total
space, B is the base space, and X is the fiber. The quintuple (X,B, Y,G, p) is
called a fiber bundle if the following condition holds: there exists an open cover
{Ui} of B and homeomorphisms φi : p−1(B) → Ui × Y (called trivializations)
such that p(φ−1

i (x, y)) = x for every (x, y) ∈ Ui×Y , and for every pair of opens
Ui, Uj with Ui ∩Uj 6= ∅ there exist continuous functions gij : Ui ∩Uj → G such
that

φi ◦ φ−1
j |Ui∩Uj

: Ui ∩ Uj × Y → Ui ∩ Uj × Y
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is of the form (x, y) 7→ (x, gij(x)y)
A morphism of fiber bundles X,X ′ with same base and fiber is a continuous

map f : X → X ′ which is expressible in trivializations as

φ′i ◦ f ◦ φ−1
j : Uj ∩ U ′i × Y → Uj ∩ U ′i × Y

(x, y) 7→ (x, ψ(y))

with ψ(gy) = gψ(y) for every g ∈ G.
If the fiber and base space are smooth manifolds, the structure group acts

by diffeomorphisms, and all maps in the previous definition are smooth, then
trivializations allow us to define a differentiable structure on the total space.
This will be called a smooth fiber bundle.

A classical example of smooth fiber bundle is the Hopf fibration where X =
S3, B = S2, Y = S1, and p is the restriction of the defining map of CP1, when
we identify X with the unit ball in C2 and B as CP1. Quaternionic analogues
of this fibration will be our main objects of interest.

If the base space is the sphere Sn, there is an easy way to construct many
different fiber bundles: given any map

f : Sn−1 → G

we can construct the total space

Xf := (U0 × Y ) t (U1 × Y )/ ∼

where (u, y) ∼ (u, f(π(u))y), U0 = Sn \ {north pole}, U1 = Sn \ {south pole},
and π : U0∩U1 → Sn−1 the projection onto the equator. The following theorem
([9], Th.18.5) identifies all equivalence classes of fiber bundles over a sphere:

Theorem 1.1. For a fixed fiber Y , all fiber bundles over Sn are isomorphic to
one obtained by the previous construction, and two such bundles are isomorphic
iff the defining maps Sn−1 → G are homotopic, i.e. they are classified by
πn−1(G).

We will now focus on the case B = S4, Y = S3 and G = SO(4) the special
orthogonal group (this group acts naturally on the unit ball in R4); by the
preceding theorem, equivalence classes of such bundles are given by π3(SO(4)).

To compute this group, let us consider S3 as the unit ball in the 4-dimensional
real vector space of quaternions, denoted by H.

The map
SO(4)→ S3 × SO(3)

φ 7→ (φ(1), φ(1)−1φ)

is well defined, because since SO(4) preserves the norm, then φ(1) belongs to
the unit ball. On the other hand, φ(1)−1φ stabilizes 1, so it can be thought of
as an element of SO(3). It is quite easy to construct an inverse

S3 × SO(3)→ SO(4)
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(u, ψ) 7→ (v 7→ uψ(v))

where SO(3) is identified with the subgroup of SO(4) which acts trivially on
the first coordinate, hence

SO(4) ∼= S3 × SO(3)

It is also quite easy to see that SO(3) ∼= RP3, via the map

ρ : S3 → SO(3)

u 7→ (v 7→ uvu−1)

The latter is an R-linear, norm preserving map from H to itself, and ρ(q)1 = 1,
which means we can view it as an element of O(3). Since S3 is connected, the
image lands in the connected component of the identity, hence in SO(3). To
prove that the map is surjective, it is necessary to consider ρ(eiθ); it is clear
that

ρ(eiθ)1 = 1 ρ(eiθ)i = i

while
ρ(eiθ)j = eiθje−iθ = e2iθj = j cos(2θ) + k sin(2θ)

ρ(eiθ)k = k cos(2θ)− j sin(2θ)

so all rotations in the (j, k) plane belong to the image; similarly, all rotations in
the (i, j) and (i, k) plane do, and rotations w.r.t. the coordinate axes generate
the group of rotations in R3. Finally, since ρ is also a group homomorphism
whose kernel is {±1}, the map is a 2-sheeted covering space of S0(3), hence
π3(SO(3)) ∼= π3(S3) ∼= Z.

This implies

π3(SO(4)) ∼= π3(S3)⊕ π3(SO(3)) ∼= Z⊕ Z

Using the isomorphisms explicitly, we can describe completely representa-
tives of all the equivalence classes of fiber bundles over S4 with fiber S3 and
structure group SO(4).

1. Since concatenation of maps with values in a topological group can be
represented by pointwise multiplication, all elements of π3(S3) can be
represented by maps

φa : S3 → S3 ∀a ∈ Z

φa(u) = ua

2. Since ρ, being a finite cover, is an isomorphism on π3, all elements of
π3(SO(3)) can be represented by

ρ ◦ φb : S3 → SO(3) ∀b ∈ Z
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therefore for every (a, b) ∈ Z2 we have a map

S3 → S3 × SO(3) → SO(4)
u 7→ (ua, ρ(ub)) 7→ (v 7→ ua+bvu−b)

We have proved

Proposition 1.2. The map

Z⊕ Z→ π3(SO(4))

(h, j) 7→ φhj

with φhj(u) : v 7→ uhvuj is a group isomorphism.

In the language of fiber bundles, a real vector bundle is a fiber bundle with
fiber Rn and structure group contained in GL(n,R). Given a fiber bundle
with fiber Sn−1 and structure group contained in O(n), one can construct an
associated vector bundle by considering the same transition functions as acting
on all Rn. Vicecersa, given a vector bundle with structure group contained in
O(n), by considering the unit ball in every fiber one gets a fiber bundle with
fiber Sn−1.

We will denote by Ehj the vector bundle associated to the map φhj .

An alternative way to classify vector bundles is as pullbacks of the tautological
vector bundle1 over an appropriate Grassmannian: in the following, we will only
need the

Proposition 1.3. Every vector bundle over Sm of real fiber dimension n is
isomorphic to the pullback of the tautological bundle on the Grassmannian of
n-planes in R2n. Moreover, the map πm−1(SO(n))→ πm(Gn(R2n)) is a group
homomorphism.

Proof. Let λ : Sm → [0, 1] be a smooth function such that λ ≡ 1 in a neighbour-
hood of the north pole and λ ≡ 0 in a neighbourhood of the south pole. We can
now define maps σ0, σ1 from the total space E given in terms of trivalizations

U0 × Rn → Rn U1 × Rn → Rn
σ0(u, v0) = λ(u)v0 σ1(u, v1) = (1− λ(u))v1

such that
σ : E → Rn ⊕ Rn

σ(x) = (σ0(x), σ1(x))

is linear and injective on every fiber, hence the map

Sm → Gn(R2n)

1The tautological vector bundle over the Grassmannian of n-planes in Rm is the bundle
whose fiber over the n-plane π is π itself.
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x 7→ σ(fiber over x)

identifies the bundle E → Sm with the pullback of the tautological bundle
on the Grassmannian. In more explicit terms, the map Ff : Sm → Gn(R2n)
induced by f is

Ff(u) = Span{(λ(u)v0, (1−λ(u))v1), v0, v1 ∈ Rn, v1 = f(π(u))v0 for u ∈ U0∩U1}

Given f, g : Sm−1 → SO(n), a representative of the sum in πm−1(SO(n)) is
(f ∨ g) ◦ p, where p : Sm−1 → Sm−1 ∨ Sm−1 is the pinching map. We have the
diagram

Sm−1

��

p // Sm−1 ∨ Sm−1
f∨g //

��

SO(n)

Sm
p // Sm ∨ Sm

Ff∨Fg // Gn(R2n)

where the lower row represents the sum [Ff ] + [Fg] in πm(Gn(R2n)). Since
one can check F (f ∨ g) = Ff ∨ Fg by the explicit formula, it also represents
F ([f ] + [g]).

2 Characteristic classes

To distinguish between the smooth structures of total spaces of the sphere bun-
dles we have considered so far, we need the machinery of characteristic classes.

Definition 2.1. An oriented vector bundle is a real vector bundle with structure
group contained in SL(n,R).

For every vector bundle E, let E0 be the set of nonzero vectors in the total
space, and Ex the fiber over x ∈ B. All cohomology groups are to be considered
with Z coefficients.

If E is an oriented vector bundle, for every x ∈ B, a trivialization gives an
isomorphism between Ex and Rn, so you can pullback the standard orientation
on Rn, which is nothing else than a generator of Hn(Rn,Rn \ {0}), and get an
element ux ∈ Hn(Ex, Ex \ {0}). Since all elements in the structure group have
positive determinants, this class does not depend on the trivialization.

Theorem 2.1. (Thom isomorphism) Let E be an oriented vector bundle over
the space B with fiber dimension n. There exists a unique cohomology class u ∈
Hn(E,E0) whose restriction to Hn(Ex, Ex \{0}) is equal to ux for every x ∈ B.
The correspondence y 7→ y ∪ u maps Hj(E) isomorphically onto Hj+n(E,E0).

The inclusion E → (E,E0) gives rise in cohomology to a morphismHn(E,E0)→
Hn(E), while the morphism Hn(B) → Hn(E) induced by the projection is an
isomorphism, since the total space retracts to the zero section. The image
of the class u given by the Thom isomorphism theorem in Hn(B) via these
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two morphisms will be called the Euler class of the bundle and denoted by
e(E) ∈ Hn(B;Z).

By the long exact cohomology sequence of the pair (E,E0) and using Thom
isomorphism we get the Gysin sequence

→ Hi(B;Z) ∪e→ Hi+n(B;Z)
p∗0→ Hi+n(E0;Z)→ Hi+1(B;Z) ∪e→

where ∪e means taking cup product with the Euler class e(E), while p∗0 is
the morphism in cohomology induced by the restriction p0 : E0 → B of the
projection defining the bundle.

Definition 2.2. A complex vector bundle is a fiber bundle with fiber Cn and
structure group contained in GL(n,C).

Let E → B be a complex vector bundle of complex fiber dimension n. The
complex structure on the fiber induces a canonical orientation on the fiber itself,
considered as a real vector space. Hence every complex vector bundle is also an
oriented even-dimensional real vector bundle; let us define the nth Chern class
of E as the Euler class of the underlying real oriented vector bundle

cn(E) := e(E) ∈ H2n(B;Z)

In order to define the other Chern classes, let us endow every fiber with a
hermitian metric (we can do it as long as the base space is paracompact); then,
given a complex bundle p : E → B one can define the new bundle E⊥ → E0,
where E0 is the set of nonzero vectors in the total space. E⊥ is defined as the
subbundle of p∗(E) whose fiber over every vector v ∈ p−1(x) is the (n − 1)-
dimensional space v⊥ in p−1(x), orthogonal to v with respect to the chosen
hermitian product.

Now, by the Gysin sequence we know that for i < n the map p∗0 : H2i(B)→
H2i(E0) is an isomorphism. Hence we can define inductively the Chern classes
ci(E) for 1 ≤ i ≤ n− 1 by

ci(E) := (p∗0)−1ci(E⊥)

We define ci(E) to be zero for i > n.

We can define the total Chern class

c(E) = 1 + c1(E) + c2(E) + · · · ∈ H∗(B;Z)

The properties of Chern classes are the following:

1. Naturality: If E → B is a vector bundle and f : B′ → B a continuous
map, f∗E → B′ the pullback bundle, then ci(f∗E) = f∗ci(E) for every i.

2. Triviality: If εk = B × Ck → B is a trivial bundle, c(E ⊕ εk) = c(E).

3. Product formula: If E ⊕E′ is the Whitney sum of E and E′, then c(E ⊕
E′) = c(E)c(E′)
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Proof. 1. The naturality of the Euler class, and therefore of the top Chern
class, follows from uniqueness in Thom isomorphism theorem; then, by
induction: the map f : B′ → B induces a map f0 : (f∗E)0 → E0 such
that the bundle of orthogonal vectors (f∗E)⊥ is precisely f∗0 (E⊥). Hence,
considering the diagram

(f∗E)0

P0

��

f0 // E0

p0

��
B′

f // B

one has by inductive hypothesis ci((f∗E)⊥) = f∗0 ci(E
⊥), hence ci(f∗E) =

(P ∗0 )−1ci((f∗E)⊥) = (P ∗0 )−1ci(f∗0 (E⊥)) = f∗(p∗0)−1(ci(E⊥)) = f∗ci(E).

2. For k = 1, let us note that the bundle E′ = E ⊕ ε has a non-zero section
s : B → (E ⊕ ε)0, which means p0 ◦ s is the identity on B, hence on
cohomology the composition

Hn(B)
p∗→ Hn(E′)→ Hn(E′0) s∗→ Hn(B)

is the identity. By definition p∗(e(E′)) is the restriction of the Thom
class u to E′, and since the Thom class lies in Hn(E′, E′0), its image in
Hn(E′0) is zero. But the image of that class w.r.t. s∗ is e(E′), hence
e(E ⊕ ε) = 0, so cn+1(E ⊕ ε) = cn+1(E). Moreover, one can check that
s∗((E⊕ε)⊥) = E, and by definition of Chern classes, p∗0ci(E

′) = ci((E′)⊥),
hence ci(E′) = s∗p∗0(ci(E)) = s∗ci((E′)⊥) = ci(E). The case k > 1 follows
by induction.

3. See ([7], pag.164)

Given a complex vector bundle π : E → B, we can define the complex
conjugate bundle E as follows: if φi : π−1(Ui)→ Ui × Cn are trivializations for
E, the bundle E has total space E and trivializations

π−1(Ui)
φi→ Ui × Cn

τ→ Ui × Cn

with τ(x, v) = (x, v) is complex conjugation in the Cn-coordinate.

Lemma 2.2. The Chern classes of the complex conjugate bundle E are given
by

ci(E) = (−1)ici(E)

Proof. If (v1, . . . , vn) is a C-basis of a fiber, the induced oriented R-basis for E is
(v1, iv1, . . . , vn, ivn), while for the conjugate bundle it is (v1,−iv1, . . . , vn,−ivn),
hence the two induced orientations differ by (−1)n, so e(E) = (−1)ne(E). Since
E⊥ ∼= (E)⊥, then by induction ci(E) = (−1)ici(E).
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Given a real vector bundle E → B with fiber Rn, we can construct its
complexification E⊗RC as the complex vector bundle over B with fiber Cn and
transition function given by the transition functions of E under the inclusion
GL(n,R) ⊆ GL(n,C).

Definition 2.3. For i ≥ 0, let us define the i-th Pontrjagin class of the real
vector bundle E → B as

pi(E) := (−1)2ici(E ⊗R C) ∈ H4i(B;Z)

It follows from the definition that pi(E) = 0 for i > n
2 . The total Pontrjagin

class is defined as

p(E) := 1 + p1(E) + p2(E) + · · · ∈ H∗(B;Z)

.
The properties of Pontrjagin classes are quite similar to the properties of

Chern classes, except for the product formula having a weaker form:

Proposition 2.3. Let E → B be a real vector bundle.

1. For any continuous map f : B′ → B, pi(f∗E) = f∗(pi(E)) for every i.

2. If εk = B × Rk → B is a trivial bundle, p(E ⊕ εk) = p(E)

3. If F → B is another vector bundle, p(E ⊕ F ) − p(E)p(F ) is a 2-torsion
element (i.e. 2(p(E ⊕ F )− p(E)p(F )) = 0 in H∗(B,Z))

Proof. 1 and 2 follow directly from the corresponding properties of Chern classes.
For 3, one has to notice that, since E ⊗R C is isomorphic to E ⊗R C, by lemma
2.2 all odd Chern classes are 2-torsion elements, so one can write c(E) =∑
i≡0mod 2 ci(E) +

∑
i≡1mod 2 ≡

∑
(−1)ipi(E) modulo 2-torsion elements, and

then the result follows by the product formula for Chern classes.

One more property we need is related to orientation:

Lemma 2.4. If E− → B is the bundle with opposite real orientation, then

pi(E−) = pi(E)

Proof. It is clear from the definition that reversing orientation of a real bundle
reverses the Euler class. However, the real orientations induced on E ⊗ C and
E− ⊗ C are the same, hence they have the same Euler class and by induction
the same Chern classes.

Definition 2.4. If M is a smooth manifold, we can define

pi(M) := pi(TM)
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Example 2.1. Let us consider Sn ⊆ Rn+1. The tangent and normal bundles
to Sn are

TSn|x = {v ∈ Rn+1 : 〈x, v〉 = 0}

N |x = Rx

hence the normal bundle N is trivial, and TSn⊕N is also trivial. Therefore by
property (2)

p(Sn) = p(TSn) = p(TSn ⊕N) = 1

For complex vector bundles, there is a direct relationship between Chern
and Pontrjagin classes:

Lemma 2.5. The complexification E ⊗R C of the underlying real bundle of a
complex vector bundle is isomorphic over C to the Whitney sum E ⊕ E.

Proof. For every real vector space V , recall that the complexification V ⊗ C is
nothing else that the real vector space V ⊕ V with complex structure J(x, y) =
(−y, x). If V is the underlying real space of a complex vector space, we already
have a multiplication by i on V . Now, the map

V ⊕ V → V ⊕ V = V ⊗R C

(x, y) 7→ (x+ y,−ix+ iy)

is an isomorphism of real vector spaces which is C-linear in the first variable
and C-antilinear in the second one, i.e. φ(ix, 0) = J(φ(x, 0)) and φ(0, iy) =
−J(φ(0, y)) hence it is a canonical C-linear isomorphism V ⊕ V ∼= V ⊗R C.
By defining this isomorphism on every fiber of a vector bundle you get the
thesis.

Lemma 2.6. For any complex vector bundle E with fiber dimension n, the
Chern classes determine the Pontrjagin classes by the formula

1− p1 + p2 − · · · = (1− c1 + c2 − . . . )(1 + c1 + c2 + . . . )

Proof. c(E ⊗R C) = c(E)c(E) =
∑∞
i=0 ci(E)

∑∞
i=0(−1)ici(E). Moreover, if

k ≡ 1 (mod 2) then ck(E ⊗ C) =
∑

0≤i≤k(−1)ici(E)ck−i(E) = 0, so the total
Chern class is just the sum of all even Chern classes.

3 The signature of a manifold

Let M be a smooth compact oriented manifold of dimension 4n with fundamen-
tal class µM ∈ H4n(M ;R). Then we can define the bilinear form

H2n(M ;R)×H2n(M ;R)→ R

(x, y) 7→ 〈µM , x ∪ y〉
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which is symmetric. The signature of such a form is called the signature of M
and denoted by σ(M).

Hirzebruch’s signature theorem relates the signature of a manifold to the
evaluation of certain Pontrjagin classes; in order to state the theorem we need
a little bit more machinery.

Consider the power series expansion
√
t

tanh
√
t

= 1 +
1
3
t− 1

45
t2 + · · ·+ (−1)i−1 22iBi

(2i)!
ti + ...

where Bi is the ith Bernoulli number, and denote as λi the coefficient of ti

A partition of a positive integer n is an unordered set I = (i1, . . . , ik) of
positive integers such that i1 + · · ·+ ik = n. Let us fix n; for every partition I,
let
∑
tI be the smallest (in the sense of containing fewer monomials) symmetric

polynomial in the variables (t1, . . . , tn) which contains the monomial ti11 . . . tikk ;
being a symmetric polynomial, it is a polynomial in the elementary symmetric
functions, i.e. there exists a unique polynomial sI ∈ Z[T1, . . . , Tn] such that

sI(σ1, . . . , σn) =
∑

tI

where σi ∈ Z[t1, . . . , tn] is the ith elementary symmetric polynomial in the
variables t1, . . . , tn.

For every n, let us now define the polynomial Ln ∈ Q[T1, . . . , Tn] by

Ln(T1, . . . , Tn) =
∑
I

λIsI(T1, . . . , Tn)

where the sum is over all partitions I of n, and λI := λi1 · · ·λik .

Example 3.1. For n = 1, one has only the partition (1) and
∑
t(1) = σ1, hence

L1(T1) = λ1T1 = 1
3T1.

For n = 2, we have the partitions (1, 1) and (2).
∑
t(1,1) = σ2 and

∑
t(2) =

σ2
1 − 2σ2, therefore L2(T1, T2) = (λ1)2T2 + λ2(T 2

1 − 2T2) = 1
45 (7T2 − T 2

1 ).

We are now ready to state the main theorem (for the proof see [7], chap.19):

Theorem 3.1. Let M be a smooth, oriented, compact manifold of dimension
4n with fundamental class [M ] ∈ H4n(M ;Z). Then the signature is given by

σ(M) = 〈[M ], Ln(p1(M), . . . , pn(M))〉

.

In the case of an 8-manifold we therefore have

σ(M) = 〈[M ],
1
45

(7p2(M)− p1(M)2)〉
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4 The quaternionic projective space

Using quaternions, it is possible to construct an analogue of projective space of
dimension 4n. We will compute Pontrjagin classes of its tangent bundle.

Definition 4.1. Let n ≥ 1. The quaternionic projective space HPn is defined
as the quotient space

Hn+1 \ {0}/ ∼

where (u0, . . . , un) ∼ (λu0, . . . , λun) for every λ ∈ H \ {0}.

We can construct a tautological vector bundle over HPn by considering

γnH = {(x, v) ∈ HPn ×Hn+1 s.t. [v] = x}

The map (x, v) 7→ x gives a fiber bundle γnH → HPn which can be thought of
both as a real vector bundle of fiber dimension 4 and a complex vector bundle
of fiber dimension 2.

Proposition 4.1. Let e be the Euler class of γnH. The cohomology ring of HPn
is

H∗(HPn;Z) =
Z[e]

(en+1)

Proof. If E0 is the set of nonzero vectors in the total space, the map

E0 → Hn+1

(x, v) 7→ v

‖v‖

is a homotopy equivalence between E0 and the unit ball S4n+3 in Hn+1 (the
inverse is S4n+3 3 v 7→ ([v], v) ∈ E0 ⊆ HPn × Hn+1), so the Gysin sequence of
γnH can be written as

→ Hi+3(S4n+3;Z)→ Hi(HPn;Z) ∪e→ Hi+4(HPn;Z)
π∗0→ Hi+4(S4n+3;Z)→

By consiedring the cases i = −4,−3,−2,−1 one gets

H0(HPn;Z) = Z H1(HPn;Z) = H2(HPn;Z) = H3(HPn;Z) = 0

then, for 0 ≤ i ≤ 4m− 2, multiplication by e gives an isomorphism

Hi(HPn;Z) ∼= Hi+4(HPn;Z)

hence by induction you get Hi(HPn) = 0 if 4 - i while H4i(HPn) is generated
by ei for 0 ≤ i ≤ n. (Higher classes are 0 since HPn is a 4n-manifold).

Corollary 4.2. The total Pontrjagin class of γnH is

p(γnH) = 1− 2e+ e2
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Proof. Since the real fiber dimension is 4, ci(γnH) = 0 for i > 2. SinceH2(HPn;Z) =
0, c1(γnH) = 0. Then the total Chern class has to be c(γnH) = 1 + c2(γnH) = 1 + e.
Therefore by lemma 2.6

1− p1(γnH) + p2(γnH) = (1 + c2(γnH))(1 + c2(γnH))

hence the thesis.

Let us recall that HP1 is diffeomorphic to S4, via the map

HP1 → S4 ⊆ R5

(u0, u1) 7→
(

2u1u0
‖u0‖2+‖u1‖2 ,

‖u0‖2−‖u1‖2
‖u0‖2+‖u1‖2

)
Under this correspondence, U0 = HP1 \ {u0 = 0} and U1 = HP1 \ {u1 = 0} are
charts for S4.

Proposition 4.3. The tautological bundle on HP1 is isomorphic, as oriented
real vector bundle, to E01.

Proof. Let us compute transition functions for γ = γ1
H: a choice of trivalizations

is
γ|{u0 6=0} → H×H

([1, t1], (s1, s1t1)) 7→ (s1, t1)

γ|{u1 6=0} → H×H

([t2, 1], (s2t2, s2)) 7→ (s2, t2)

hence the transition function is

g01 : U0 ∩ U1 → GL(H) ⊆ SL(4,R)

[u0, u1] 7→ (v 7→ vu−1
0 u1)

The transition function of E01 is g′01([u0, u1]) =
(
v 7→ vu−1

0 u1

‖u−1
0 u1‖

)
hence we can get

an isomorphism of real vector bundles by just rescaling every fiber: by defining
λ0 : U0 → R, λ1 : U1 → R

λ0([u0, u1]) =
{

1 if ‖u0‖ ≥ ‖u1‖
‖u1u

−1
0 ‖ if ‖u0‖ < ‖u1‖

λ1([u0, u1]) =
{

1 if ‖u0‖ ≤ ‖u1‖
‖u0u

−1
1 ‖ if ‖u0‖ > ‖u1‖

we can define the isomorphism on the two charts:

γ|U0
∼= U0 ×H→ U0 ×H ∼= E01|U0 γ|U1

∼= U1 ×H→ U1 ×H ∼= E01|U1

(u, v) 7→ (u, λ0(u)v) (u, v) 7→ (u, λ1(u)v)

Corollary 4.4.
p1(E01) = −2e

12



5 Milnor’s λ invariant

In this section, we will use our knowledge of characteristic classes to “cook-up”
an invariant which depends on the smooth structure and that will make us able
to distiguish between some of the 7-manifolds we constructed so far.

This construction will apply to a smooth, closed, oriented 7-manifold M
which is the boundary of an oriented 8-manifold and such that H3(M) =
H4(M) = 0. Actually, Thom [10] proved that every oriented 7-manifold is the
boundary of an 8-manifold, but we will not need this theorem in our arguments.

Let us fix an orientation µ ∈ H7(M) and suppose M = ∂B, with B an
oriented, smooth 8-manifold, and let us pick an orientation ν ∈ H8(B,M) which
induces the chosen orientation on M .

The relative cup product induces a symmetric biliner form

H4(B,M ;R)×H4(B,M ;R)→ R

(x, y) 7→ 〈ν, x ∪ y〉

whose signature will be called the signature of B and denoted by σ(B). By
the vanishing of 3 and 4-dimensional cohomology, we have that the inclusion
map

i : H4(B,M)→ H4(B)

is an isomorphism. The first Pontrjagin class p1(B) of the tangent bundle of B
lies in H4(B); let

q(B) := 〈ν, (i−1p1(B))2〉

Let us define the λ invariant of M (which a priori depends on B) as the
residue class modulo 7

λ(M) := 2q(B)− σ(B) (mod 7)

Example 5.1. For M = S7 the standard unit sphere in R8, we can take the
unit disk as B; since H4(B) = 0, we have λ(S7) = 0.

Theorem 5.1. The residue class of λ(M) modulo 7 does not depend on the
choice of B.

Proof. Let B1 and B2 be two oriented manifolds with boundary M and orienta-
tions ν1, ν2 which induce µ onM . Then we can glue them and get a differentiable
manifold C = B1∪B2 without boundary. Let us fix the orientation ν on C which
induces ν1 on B1 and −ν2 on B2. By Hirzebruch’s signature theorem

σ(C) =
〈
ν,

7p2(C)− p1(C)2

45

〉
which implies, by integrality of Pontrjagin classes,

2〈ν, p1(C)2〉 − σ(C) ≡ 0 mod 7 (1)

13



Now, for every n the relative Mayer-Vietoris sequence gives an isomorphism

h∗ : Hn(B1,M)⊕Hn(B2,M)→ Hn(C,M)

and similarly a corresponding one h∗ in cohomology. Moreover, from the long
exact sequence of the pair (C,M) you get a morphism j∗ : Hn(C)→ Hn(C,M)
and a dual one j∗ in cohomology. From the hypotheses on M , we know j∗

is an isomorphism for n = 4. Hence, every α ∈ H4(C) is of the form α =
j∗(h∗)−1(α1, α2) with αi ∈ H4(Bi,M). Therefore

〈ν, α2〉 = 〈ν, j∗(h∗)−1(α2
1, α

2
2)〉 = 〈j∗ν, (h∗)−1(α2

1, α
2
2)〉 = 〈ν1, α2

1〉 − 〈ν2, α2
2〉

hence
σ(C) = σ(B1)− σ(B2) (2)

Now, the inclusion ι : B1 → C is an embdding, so TB1 = ι∗(TC) and p1(B1) =
ι∗p1(C). Similarly for B2, so the restriction map H4(C) → H4(B1) ⊕H4(B2)
sends p1(C) to (p1(B1), p1(B2)). If we denote by il the isomorphism il : H4(Bl,M)→
H4(Bl), the same computation as before with α = p1(C), α1 = i−1

1 p1(B1),
α2 = i−1

2 p1(B2) shows

〈ν, p2
1(C)〉 = 〈ν1, (i−1

1 p1(B1))2〉 − 〈ν2, (i−1
2 p1(B2))2〉 = q(B1)− q(B2)

which together with (2) and (1) proves the theorem.

Notice that, if f : M1 → M2 is an orientation-preserving diffeomorphism,
the previous proof shows λ(M1) = λ(M2).

6 Computing λ

For any (h, j) ∈ Z2 we can now compute the characteristic classes of the vector
bundle Ehj ; let ι be the generator of H4(S4) corresponding to the Euler class e
of the tautological bundle on HP1 under the identification S4 ∼= HP1.

Proposition 6.1.
p1(Ehj) = 2(h− j)ι

e(Ehj) = (h+ j)ι

Proof. The computation of the Pontrjagin class is achieved in 3 steps:

1. p1(Ehj) is linear in h and j. This is because the map which assigns
to (h, j) the class p1(Ehj) ∈ H4(S4) is the composition of three group
homomorphisms: first, the isomorphism Z2 → π3(SO(4)) described in
proposition 1.2, then the homomorphism π3(SO(4))→ π4(G4(R8)) given
by proposition 1.3; the third map is

π4(G4(R8))→ H4(S4)

[f ] 7→ p1(f∗(γ4))

14



where γ4 is the tautological 4-plane bundle on G4(R8). This is also a group
homomorphism, because p1(f∗(γ4)) = f∗(p1(γ4)) and the map πn(X) →
Hom(Hk(X), Hk(Sn)) given by f → f∗ is a group homomorphism.

2. p1(Ehj) = c(h − j)ι for some constant c ∈ Z. Let us consider the bundle
Ehj given by taking the quaternionic conjugate of every fiber. Since it
reverses the orientation of fibers, p1(Ehj) = p1(Ehj) (lemma 2.4). On the
other hand, by conjugating the transition function u 7→ uhvuj

‖u‖h+j one gets
the transition function of the bundle E−j,−h, hence p1(Ehj) = p1(E−j,−h)
for every j, h ∈ Z.

3. p1(Ehj) = 2(h− j)ι. This follows from corollary 4.4 setting h = 0, j = 1.

Similarly, the Euler class is linear in h and j, and, since reversing orientation
carries such class to the negatve of itself, e(Ehj) = c(h + j)ι for some c ∈ Z.
Again, by comparison with the Euler class of the tautological bundle, we get
c = 1.

Let us now consider, for every (h, j), the sphere bundle obtained by taking
the unit sphere in every fiber of Ehj ; the total space Mhj is a smooth 7-manifold
which can be defined as

(H× S3) t (H× S3)/ ∼

(u, v) ∼
(
u−1,

uhvuj

‖u‖h+j

)
for u ∈ H \ {0}, v ∈ S3 ⊆ H

The cohomology of Mhj can be computed via the Gysin sequence of Ehj ,
since Mhj is homotopy equivalent to the set of nonzero vectors in such bundle.

One can easily see Hr(Mhj) = 0 for every r 6= 0, 3, 4, 7, and H0(Mhj) =
H7(Mhj) = Z. The computation of H3 and H4 is a little bit more interesting:

0→ H3(M)→ H0(S4) ∪e→ H4(S4)→ H4(M)→ 0

therefore since e(Ehj) = (h+ j)ι

H3(Mhj) ∼=
{

0 if h+ j 6= 0
Z if h+ j = 0 H4(M) ∼=

Z
(h+ j)Z

It is then clear that if h + j = 1, Mhj has the same cohomology as the 7-
sphere. By Poincare’ duality, it also has the same homology. Now, from the ex-
act sequence of the fibration Mhj → S4 one gets π1(Mhj) = 0; then by Hurewicz
theorem π7(Mhj) = H7(Mhj) = Z, hence we have a map S7 7→ Mhj which in-
duces an isomorphism on π7 and H7. It also trivially induces an isomorphism
on H0, and since all other homology groups are 0, it induces an isomorphism on
all homology groups. Now, a continuous map between connected, simply con-
nected CW complexes which induces an isomorphism in all homotopy groups is
a homotopy equivalence[[1], Prop.4.74], hence we have proved
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Proposition 6.2. For h + j = 1, the manifold Mhj is homotopy equivalent to
S7.

This gives us the motivation to restrict our attention to the case h+ j = 1.
Let k be an odd integer and let h and j such that h − j = k, h + j = 1. The
total space of the sphere bundle Mhj will be from now on denoted as Mk.

Such manifolds certainly have H3(Mk) = H4(Mk) = 0; moreover, Mk is the
boundary of the 8-manifold Bk, the total space of the unit disk bundle in Ehj ;
therefore we can compute λ(Mk).

Theorem 6.3.
λ(Mk) ≡ k2 − 1 (mod 7)

Proof. Since the inclusion of the zero section in Bk is a homotopy equivalence, it
induces an isomorphism in cohomology H∗(S4)→ H∗(Bk), so H4(Bk) is cyclic
and σ(Bk) can only be ±1. Let us fix the orientation on Bk (and therefore
also on Mk) so that σ(Bk) = 1. Now, the total space Bk embeds into the total
space of the vector bundle Ehj (with h = 1+k

2 , j = 1−k
2 ), hence to compute

characteristic classes of TBk it is sufficient the study the tangent bundle TEhj .
By choosing a Riemannian metric on each fiber, we determine an isomorphism

TEhj ∼= p∗(TS4)⊕ p∗(Ehj)

hence by proposition 2.3 (there are no torsion elements in H4(Ehj) ∼= H4(S4))

p1(TEhj) = p∗(p1(TS4)) + p∗(p1(Ehj)) = p∗(2kι)

where we used proposition 6.1 and example 2.1. Hence

p1(Bk) = 2kα

where α is the pullback of ι via the map Bk → Ehj → S4. Now

λ(Mk) = 2q(Bk)− σ(Bk) = 2〈ν, (i−1(2kα))2〉 − 1 ≡ k2 − 1 (mod 7)

Since we already computed λ for the standard smooth structure on S7, we have
proved

For k2 � 1 mod 7, Mk is a homotopy 7-sphere not diffeomorphic to S7.

At this point, Milnor thought he had found a counterexample to the Generalized
Poincare’ Conjecture. Actually, not quite...

7 A (little) bit of Morse theory

It turns out that these manifolds Mk are actually homeomorphic to S7, so they
are examples of exotic differentiable structures on the 7-sphere.

16



In order to prove that, we need some basic results from Morse theory. Let
M be a smooth, compact manifold, and f : M → R a smooth function; f is
called a Morse function if every critical point of f is non-degenerate, i.e. if at
any point where the differential of f vanishes, the hessian matrix ∂2f

∂xi∂xj
is non-

singular. The goal of Morse theory is to infer the topology of M by studying
the behaviour of f at the critical points.

A fundamental lemma one needs to do so is

Lemma 7.1. If x0 is a critical point of f , there exists coordinates v1, . . . , vn
on a neighbourhood V of x0 such that f |V is expressible as

f(v1, . . . , vn) = f(x0) + v2
1 + · · ·+ v2

k − v2
k+1 − · · · − v2

n

Proof. We can of course assume that we are working in a convex neighbourhood
of 0 in Rn, and f(0) = 0. Then

f(x1, . . . , xn) =
∫ 1

0

df(tx1, . . . , txn)
dt

dt =
∫ 1

0

n∑
1=1

∂f

∂xi
(tx1, . . . , txn)xidt

Therefore the functions

gi(x1, . . . , xn) =
∫ 1

0

∂f

∂xi
(tx1, . . . , txn)dt

are smooth functions such that

f(x1, . . . , xn) =
n∑
i=1

xigi(x1, . . . , xn)

and gi(0) = ∂f
∂xi

(0). Applying the same trick to the gi, we get

f(x1, . . . , xn) =
n∑

i,j=1

xixjhij(x1, . . . , xn)

for some smooth hij . Then by taking h̃ij = hij+hji

2 we can assume the matrix
(h̃ij(0)) to be symmetric and, by the non-degeneracy condition, non-singular.
The rest of the proof is by induction: suppose that there exists coordinates
u1, . . . , un in a neighbourhood of 0 so that

f = ±u2
1 ± · · · ± u2

r−1 +
∑
i,j≥r

uiujHij(u1, . . . , un)

for Hij smooth functions with Hij = Hji. Being the matrix Hij(0) equal up to
sign to the hessian of f at 0, we can perform a linear change in the last n−r+1 co-
ordinates so that Hrr(0) 6= 0. The function G(u1, . . . , un) =

√
|Hrr(u1, . . . , un)|
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is smooth in a (possibly smaller) neighbourhood of 0, and we can introduce the
new variables v1, . . . , vn:{

vi = u1 for i 6= r

vr(u1, . . . , un) = G(u1, . . . , un)
(
ur +

∑n
i=r+1 ui

Hir(u1,...,un)
|Hrr(u1,...,un)|

)
By the inverse function theorem, the vi are coordinate functions in a neighbour-
hood of 0; f can be expressed there as

f =
∑
i≤r

±v2
i +

∑
i,j≥r+1

vivjH
′
ij(v1, . . . , vn)

which completes the inductive step.

In our case, only a simple instance of the main theorem of Morse theory is
required, namely

Theorem 7.2. Let M be a closed, smooth manifold of dimension n. If there
exists a Morse function f : M → R with only two critical points, then there exists
a homeomorphism of M onto Sn which is a diffeomorphism except possibly at
one point.

Proof. By compactness, f has at least a minimum x0 and a maximum x1; since
there are only two critical points, they have to be exactly x0 and x1. By acting
with a linear transformation, we can reduce to the case f(x0) = 0, f(x1) = 1.
By the previous lemma, there exists V a neighbourhood of x0 and coordinates
v1, . . . , vn on V such that f(v1, . . . , vn) = v2

1 + . . . v2
n (there are no negative

terms by the minimum condition). We can now define a Riemannian metric on
V of the form ds2 = dv2

1 + · · ·+dv2
n; by using partitions of unity, one can extend

that to a Riemannian metric on M . This allows us to define the gradient vector
field ∇f , which is singular exactly at x0 and x1. The differential equation

dx

dt
=
∇f
‖∇f‖2

(3)

can be solved explicitly on V \ {x0}: for any n-tuple a = (a1, . . . , an) such that
a2
1 + . . . a2

n = 1, the trajectory

xa(t) = (a1t
1/2, . . . , ant

1/2)

is an integral curve for t ∈ (0, ε), and can be extended uniquely as long as it
does not land on x0 or x1. Since xa → 0 as t → 0, one can also extend it
continuously (though not smoothly) to t = 0.

Let us note that, if x(t) satisfies (3),

∂f(x(t))
∂t

= f∗

(
∇f
‖∇f‖2

∣∣∣∣
x(t)

)
= 〈∇f, ∇f

‖∇f‖2
〉 = 1
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hence if x(0) = 0, f(x(t)) = t; this tells us that all these solutions can be
extended smoothly to xa : (0, 1) → M \ {x0, x1}; by letting t → 1 one notices
they can also be extended continuously to [0, 1]. Now, the map Φ defined on
the closed unit disk Dn ⊆ Rn

Φ : Dn →M

(x1, . . . , xn) 7→ x(
x1
‖x‖ ,...,

xn
‖x‖ )

(‖x‖2)

is certainly smooth on the interior of Dn (since the flow of a nonsingular smooth
vector field depends smoothly on the initial condition) except possibly at 0; by
expressing it in the coordinates (v1, . . . , vn) in a neighbourhood of 0, one realizes

Φ(x1, . . . , xn) = (a1t
1/2, . . . , ant

1/2) = (x1, . . . , xn)

because ai = xi

‖x‖ , t = ‖x‖2, hence it is clearly a local diffeomorphism. Now, we
claim that the restriction of Φ to the interior of Dn is a diffeomorphism onto
M \ {x1}: it is injective by the uniqueness of integral curves of smooth vector
fields on compact manifolds, and it is surjective because by reversing the flow
one can get arbitrarily close to x0; moreover, the backward flow gives us an
explicit smooth inverse. Now, Φ maps the boundary of Dn to {x1}, hence it
induces a continuous bijective map Sn → M ; since Sn is compact and M is
Hausdorff, this map is a homeomorphism.

In the end, we can apply this theorem to our manifolds Mk. Recall Mk is
given as (H×S3)t(H×S3)/ ∼ with (u, v) ∼ (u′, v′) = (u−1, u

hvu1−h

‖u‖ ), h = 1+k
2 .

Let us consider the function f : Mk → R given in the first chart by

f(u, v) =
<v

(1 + ‖u‖2)1/2
(4)

where <v stands for the real part of the quaternion v. This map has on this chart
only two critical points, namely for u = 0, v = ±1, and they are non-degenrate;
on the overlap of the two charts we get the expression

f(u′, v′) =
<((u′)hv′(u′)1−h)

(1 + ‖u′‖2)1/2

and by setting the new coordinates (u′′, v′) (instead of (u′, v′)) with u′′ = v′u′,
we have

f(u′′, v′) =
<(u′′)

(1 + ‖u′′‖2)1/2

This means that f can be extended smoothly to the second chart, giving a
smooth function on all Mk, and moreover it is immediate to check that f has
no critical points on the second chart; therefore we are in the hypothesis of the
theorem, and finally we get

Proposition 7.3. For every k ∈ Z, Mk is homeomorphic to S7.
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8 How many?

Since there are 4 possible values of k2 − 1 with k ∈ Z/7Z, so far we have
constructed 4 different smooth structures on the 7-sphere. It is quite easy to
get 7 of them, by taking connected sums.

Definition 8.1. Let M1, M2 be two oriented smooth manifolds of same dimen-
sion n, and fix h1 : Rn → M1, h2 : Rn → M2 two imbeddings, such that h1

preserve orientation and h2 reverse it. Then you can define an oriented smooth
manifold

M1#M2 := (M1 \ h1(0)) t (M2 \ h2(0))/ ∼

with h1(x) ∼ h2( x
‖x‖2 ).

It has been proved by Cerf (see [6]) that M1#M2 is well defined up to
orientation-preserving diffeomorphism, and the connected sum of two topologi-
cal spheres is a topological sphere. If dim M = 4n−1, one has the isomorphism
H2n(B1#B2,M1#M2)→ H2n(B1,M1)⊕H2n(B2,M2) which gives you

λ(M1#M2) = λ(M1) + λ(M2)

Since, for example, we know λ(M3) ≡ 1, then

S7,M3,M3#M3, . . . ,M3# . . .#M3︸ ︷︷ ︸
6 times

all belong to distinct diffeomorphism classes.
This invariant λ can be generalized quite easily to higher dimensions, (see [5])

and allows you to distinguish between a large number of differentiable structures
on spheres (e.g. one can find 1414477 structures on the 23-sphere), but it turns
out to be too strong to distinguish between all possible structures. In 1963,
J.Milnor and M.Kervaire completed the classification in dimension higher than
4, proving that there is only a finite number of differentiable structures on
every n-dimensional sphere and reducing the computation of this number to
some classical problems in algebraic topology.

Their solution relies heavily on the Generalized Poincare’ conjecture which
had been meanwhile proved in dimension ≥ 5 by S.Smale. What Milnor and
Kervaire really classify are h-cobordism classes of homotopy spheres:

Definition 8.2. Two oriented manifolds M1 and M2 are h-cobordant if their
disjoint union is the boundary of a manifold W which induces the given orien-
tation on M1 and the opposite one on M2 and such that both M1 and M2 are
deformation retracts of W .

Now, the h-cobordism classes of manifolds of dimension n form an abelian
group under the connected sum operation. The neutral element is the stan-
dard Sn, while the inverse of a manifold is the same manifold with opposite
orientation. Such a group is denoted by Θn.

20



For n ≥ 5, S.Smale also proved that two homotopy n-spheres are h-cobordant
iff they are diffeomorphic. Hence the classification problem is reduced to com-
puting Θn. The method used by Milnor and Kervaire consists of splitting Θn

in two parts:

Definition 8.3. A manifold M is parallelizable if its tangent bundle is trivial,
and it is almost parallelizable if there exists a finite set F such that M \ F
is parallelizable. The set of all h-cobordism classes of n-manifolds which are
boundaries of parallelizable manifolds is denoted by bPn+1.

One has to check that bPn+1 is actually a group, and then study separately
bPn+1 and the quotient Θn/bPn+1.

1. For Θn/bPn+1, it turns out that there is an inclusion

Θn

bPn+1
→ Πn

Jn(πn(SO))

where Πn = limk→∞ πn+k(Sk) is the nth stable homotopy group of spheres
and Jn : πn(SO) → Πn is the Hopf-Whitehead homomorphism (see [2],
chap.3). Since Serre proved Πn is a finite group, Θn/bPn+1 is also finite:
for n = 7, J7 is known to be surjective, hence Θ7/bP8 = {0}.

2. The group bPn+1 is always finite cyclic: it is trivial for n even and it
has order 1 or 2 for n ≡ 2 (mod 4). For n = 4m, it is determined by
the signature: let σm be the smallest positive value of σ(W ) as W varies
among almost-parallelizable manifolds of dim 4m without boundary. If M
is a homotopy 4m − 1-sphere which is the boundary of the parallelizable
manifold B, one can send

M 7→ σ(B) (mod σm)

and get a homomorphism bP4m → Z/σmZ which turns out to be injective,
hence bP4m is cyclic. The image has actually order σm/8, and Milnor and
Kervaire compute

σm = 22m−1(22m−1 − 1)
Bmamjm

m

where Bm is the mth Bernoulli number, am = 1 for m even and 2 for m
odd, and jm is the order of the image of the Hopf-Whitehead homomor-
phism J4m−1. Adams proved that j4m−1 is the denominator of Bm/4m.
For m = 2, B2 = 1/30, so j2 = 240 and therefore

|bP8| = |σ2/8| = 28

giving exactly 28 differentiable structures on the 7-sphere.
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