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Abstract. We study the ergodic theory of a one-parameter family of interval

maps Tα arising from generalized continued fraction algorithms. First of all,
we prove the dependence of the metric entropy of Tα to be Hölder-continuous

in the parameter α. Moreover, we prove a central limit theorem for possibly

unbounded observables whose bounded variation grows moderately. This class
of functions is large enough to cover the case of Birkhoff averages converging

to the entropy.
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1. Introduction

Let α ∈ [0, 1]. Let us define the map Tα : [α − 1, α] → [α − 1, α] as Tα(0) = 0
and

(1) Tα(x) =
1

|x|
− aα(x)

with aα(x) :=
⌊

1
|x| + 1− α

⌋
. These systems were introduced by Nakada [12] and are

known in the literature as α-continued fractions, or Japanese continued fractions.
By taking xn,α = Tnα (x), an,α = aα(xn−1,α), εn,α = Sign(xn−1,α), the orbit under
Tα generates the generalized continued fraction expansion

x = a0,α +
ε1,α

a1,α +
ε2,α

a2,α+
...

The algorithm, analogously to the Gauss map in the classical case, provides
rational approximations of real numbers. It is known that for each α ∈ (0, 1] there
exists a unique invariant measure µα(dx) = ρα(x)dx absolutely continuous w.r.t.
Lebesgue measure, and this measure is ergodic (see [10]). In this paper we will
focus on the metric entropy of the Tα’s, which is given by Rohlin’s formula (see
[14])

(2) h(Tα) =

∫ α

α−1

log |T ′α|dµα

Nakada [12] computed exact values of h(Tα) for α ≥ 1
2 , showing that in this

interval h(Tα) is continuous, and smooth except for the point α =
√

5−1
2 , where the

left and right derivatives do not coincide.
In [10], Luzzi and Marmi studied the behaviour of h(Tα) as a function of α for

all parameters α ∈ (0, 1). They gave numerical evidence that this function is con-
tinuous but not smooth. Nakada and Natsui [13] then proved that this function
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is indeed not monotone, by giving explicit construction of infinitely many mono-
tonicity intervals. An extensive numerical study of these intervals has been carried
out in [2], and a complete characterization of all monotonicity intervals is given in
[3]. Even though the entropy is conjecturally smooth on any such interval, there
are points at which it is not even locally monotone, and the set of bifurcation
parameters has a complicated self-similar structure.

The first major result of this paper is the

Theorem 1.1. The entropy function α 7→ h(Tα) is Hölder-continuous of any ex-
ponent 0 < s < 1

2 .

The proof follows from spectral analysis of the transfer operator acting on the
space of functions of bounded variation. First (section 3.1), we prove a uniform
bound on the essential spectral radius (Lasota-Yorke inequality). Then (section
3.2), we prove that a suitable distance between the transformations Tα is Hölder-
continuous in α, and use a stability result of the spectral decomposition [7] to prove
Hölder-continuity of the invariant densities ρα in L1-norm. Note that invariant
densities are not continuous in BV -norm (see remark 3.3).

The second part of the paper deals with central limit theorems. In [10], entropy
is computed by approximating it with Birkhoff averages for the observable log |T ′α|,
and numerical evidence is given ([10], figure 3) that Birkhoff sums for different
orbits distribute normally around the average. We first show (section 4.1) that
the methods of [1] can be used to prove a central limit theorem for observables of
bounded variation.

Moreover, in section 4.2 we expand the class of observables we use in order to
encompass unbounded observables such as the logarithm. Indeed, we will define
a new family of Banach spaces BK,δ, consisting of possibly unbounded functions
whose total variation grows slowly on intervals which approach zero. Such functions
will be called of mild growth, and we prove the central limit theorem to hold in these
larger spaces:

Theorem 1.2. Let α ∈ (0, 1], 0 < δ < 1
2 , and K sufficiently large. Then, for every

non-constant real-valued f ∈ BK,δ there exists σ > 0 s.t.

lim
n→∞

µα

(
Sn(f −

∫
Iα
fdµα)

√
n

≤ v

)
=

1

σ
√

2π

∫ +∞

v

e−
t2

2σ2 dt ∀v ∈ R

As a corollary, Birkhoff sums for the observable log |T ′α| distribute normally
around the average value h(Tα).

Finally, in section 5 we discuss the dependence of the standard deviation of
Birkhoff averages on the parameter α. More precisely, given some observable f of
class C1, for which we proved the central limit theorem to hold, we will prove that
the variance σ2

α,f of the limit Gaussian distribution is continuous in α. The result

is motivated by numerical data in ([2], section 2.3).

Many different authors have studied the spectral properties of transfer operators
of expanding maps. For instance, a spectral decomposition for individual expanding
maps is proved in [1], [15] and [17]. A brief historical account with references is
given in [7]. In our case, however, it is essential to prove estimates on the spectral
radius which are uniform in α. Since new branches of Tα appear as α moves, and
Tα develops an indifferent fixed point as α → 0, proving uniformity requires more
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work. Unfortunately, although a uniform Lasota-Yorke inequality holds, the proof
provided by [10] contains a bug; we shall therefore produce a new proof in prop.
3.1. Another proof of continuity (not Hölder) of entropy is given in the very recent
paper [9] via a study of natural extensions.

Let us finally remark that our functional-analytic methods only use a few prop-
erties of Tα, hence they can be applied to a wider class of one-parameter families
of expanding interval maps. For instance, they apply to the case of (a, b)-continued
fraction transformations studied in [8] for parameters on the critical line b− a = 1.

2. Basic properties

Let us start by setting up the framework needed for the rest of the paper, and
establishing a basic spectral decomposition for the transfer operator. The literature
on thermodynamic formalism for interval maps is huge: the sources we mainly refer
to are [1], [15] and [17], which already make use of functions of bounded variation.

The total variation of a function f on a set X ⊆ R is

Var
X
f := sup

n∑
i=1

|f(xi)− f(xi+1)|

where the sup is taken over all finite increasing sequences x1 ≤ x2 ≤ · · · ≤ xn of
points of X. Given an interval I, let us denote BV (I) the Banach space of complex-
valued bounded variation functions of the interval I, modulo equality almost ev-
erywhere. The space is endowed with the norm

‖f‖BV (I) := inf

{
Var
I
g +

∫
I

|g(x)|dx : g = f a.e.

}
Observe that every f ∈ BV (I) has a (not necessarily unique) representative of
minimal total variation, namely such that

f(x) ∈ [ lim
y→x−

f(y), lim
y→x+

f(y)] ∀x ∈ I

In the following, we will always choose representatives for our functions of minimal
variation. Other basic properties of total variation are stated in the appendix.

2.1. Cylinders. For each α ∈ (0, 1), the dynamical system Tα defined in the intro-
duction acts on the interval Iα := [α−1, α]. Observe that there exists a partition of
Iα in a countable number of intervals Ij such that for every j the restriction Tα |Ij is
a strictly monotone, C∞ function and it extends to a C∞ function on the closure of
every Ij . The least fine of such partitions will be called P1, the partition associated
to Tα. More specifically, P1 = {I+

j }j≥jmin ∪ {I
−
j }j≥2 with jmin = d 1

α − αe where

I+
j =

(
1

j + α
,

1

j − 1 + α

)
if j ≥ jmin + 1 I+

jmin
=

(
1

jmin + α
, α

)
I−j =

(
− 1

j − 1 + α
,− 1

j + α

)
if j ≥ 3 I−2 =

(
α− 1,

1

2 + α

)
Moreover, for every n > 1, the set

{Iε1j1 ∩ T
−1
α (Iε2j2 ) ∩ · · · ∩ T−(n−1)(Iεnjn ) | Iε1j1 , . . . , I

εn
jn
∈ P1}

where εi ∈ {+,−}, is a partition of Iα in a countable number of intervals such that
on each of these the restriction of Tnα is monotone and C∞: such a partition will be
denoted by Pn and its elements called cylinders. The cylinder Iε1j1 ∩T

−1
α (Iε2j2 )∩· · ·∩
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T−(n−1)(Iεnjn ) will be denoted either by (Iε1j1 , . . . , I
εn
jn

) or by ((j1, ε1), . . . , (jn, εn)).

The cylinders Ij ∈ Pn such that Tnα (Ij) = Iα will be called full cylinders.
Let us define the function

gn,α(x) :=
∑
j∈Pn

1

|(Tnα )′(x)|
χIj (x)

The following estimates, proven in the appendix, will be used throughout the paper:

Proposition 2.1. For every α ∈ (0, 1) and for every n ≥ 1

(1)

‖gn,α‖∞ ≤ γnα
where γα := max{α2, (α− 1)2}.

(2)

sup
j∈Pn

sup
x∈Ij

∣∣g′n,α(x)
∣∣ ≤ 2

1− γα
(3) The set {Tnα (Ij) | Ij ∈ Pn} is finite; more precisely,

#{Tnα (Ij) | Ij ∈ Pn} ≤ 2n+ 1

(4) The total variation of g1,α is universally bounded, i.e. there is a constant
C0 such that

Var
Iα

g1,α ≤ C0 < +∞ ∀α ∈ (0, 1)

2.2. Spectral decomposition. The transfer operator (also known as Ruelle-Perron-
Frobenius operator) Φα : L1(Iα)→ L1(Iα) is defined via the duality∫

Iα

Φα(f)gdx =

∫
Iα

f(g ◦ Tα)dx ∀f ∈ L∞(Iα)

Let us recall that the nth iterate of the transfer operator is given by

(3) Φnα(f) =
∑
j∈Pn

f ◦ σj
|(Tnα )′ ◦ σj |

χTnα (Ij)

where σj : Tnα (Ij)→ Ij is the inverse of the restriction Tnα |Ij : Ij → Tnα (Ij).

Even though Φα is so far defined on L1, it turns out that the transfer operator
preserves the subspace BV (Iα), and indeed it has good convergence properties in
BV -norm. More precisely, we can now prove the

Theorem 2.2. Let Φα : L1(Iα) → L1(Iα) be the transfer operator for the system
Tα, with α ∈ (0, 1). Then one can write

Φα = Πα + Ψα

where Πα and Ψα are commuting, linear bounded operators on BV (Iα). Moreover,
Ψα is a linear bounded operator on BV (Iα) of spectral radius strictly less than 1,
and Πα is a projector onto the one-dimensional eigenspace relative to the eigenvalue
1. It is given by

Πα(f) = lim
n→∞

1

n

n∑
k=1

Φkα(f)

where the convergence is in L1.
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Corollary 2.3. For every α ∈ (0, 1), Tα has exactly one invariant probability
measure µα which is absolutely continuous w.r.t. Lebesgue measure. Its density
will be denoted by ρα.

Proof. Let us fix α ∈ (0, 1). By proposition 2.1, we can apply ([1], prop. 4.1),
which yields via Ionescu-Tulcea and Marinescu’s theorem [5] the following spectral
decomposition

Φα =

p∑
i=0

λiΦi + Ψα

where |λi| = 1, and the Φi are linear bounded operators on BV (Iα) with finite-
dimensional image, and ρ(Ψα) < 1. Now, it is known ([10], lemma 1) that Tα is
exact in Rohlin’s sense (see [14]); this implies that the invariant measure we have
found is ergodic and mixing, which in turn implies that the only eigenvalue of Φα
of modulus 1 is 1 itself and that its associated eigenspace is one-dimensional (see
[17], chap. 3). �

The spectral decomposition also immediately implies the following exponential
decay of correlations:

Proposition 2.4. For any α ∈ (0, 1) there exist C, λ, 0 < λ < 1 such that for
every n ∈ N and for every f1, f2 ∈ BV (Iα)∣∣∣∣∫

Iα

f1(x)f2(Tnα (x))dµα −
∫
Iα

f1(x)dµα

∫
Iα

f2(x)dµα

∣∣∣∣ ≤ Cλn‖f1‖BV ‖f2‖L1

Proof. One can take any λ s.t. ρ(Ψα) < λ < 1 and C = 2‖ρα‖BV supn∈N
‖Ψnα‖BV

λn .
�

3. Continuity of entropy

The goal of this section is to prove theorem 1.1, namely the Hölder-continuity
of the function α 7→ h(Tα).

The first step is to prove an estimate of the essential spectral radius of the
transfer operator acting on the space of BV functions (Lasota-Yorke inequality). If
one can prove a bound which is uniform in α, then the invariant densities ρα turn
out to be continuous in the L1-topology and their BV -norms are bounded. This
method has been undertaken in [10], but unfortunately their estimates prove to be
too optimistic1: the bulk of section 3.1 (prop. 3.1) is another proof of this uniform
Lasota-Yorke inequality.

The second step (section 3.2) is to estimate the modulus of continuity of h(Tα):
we will prove Hölder-continuous dependence of the invariant densities ρα in the
L1-topology, by using a stability result for the spectral projectors [7]. The theorem
then follows from Rohlin’s formula.

3.1. Spectral radius estimate. We are going to give a proof of the following
uniform Lasota-Yorke inequality (in order to simplify notation, from now on VarIα f
will just be denoted Var f):

1The mistake in [10] consists in using, in eq. (12), the estimate (1) of lemma 6.1 of the present

paper on the sets Ĩ
(n)
ξ , which are not intervals if n > 1.
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Proposition 3.1. Let α ∈ (0, 1). Then there exist a neighbourhood U of α and
constants 0 < λ < 1, C > 0, D > 0 such that for every α ∈ U

Var Φnα(f) ≤ Cλn Var f +D‖f‖L1 ∀n ≥ 1, ∀f ∈ BV (Iα)

Although several inequalities of this type are present in the literature, (i.e. in
[15]), these are generally given for individual maps. However, for the goal of this
paper it is absolutely essential that coefficients λ,C,D can be chosen uniformly in
α, hence one needs to take this dependence into account. As α moves, even just in
a neighbourhood of some fixed α, topological bifurcations are present (for instance
if α is a fixed point of some branch of Tα) hence in the formula (3) new boundary
terms appear, requiring a very careful control.

Lemma 3.2. For each α ∈ (0, 1), for each f ∈ BV (Iα)

Var Φnα(f) ≤ Var(f · gn,α)

Proof.

Var Φnα(f) = Var

(∑
j∈Pn

f ◦ σj
|(Tnα )′ ◦ σj |

χTnα (Ij)

)
≤
∑
j∈Pn

Var

(
f ◦ σj

|(Tnα )′ ◦ σj |
χTnα (Ij)

)
=

=
∑
j∈Pn

Var

(
f

|(Tnα )′|χIj
)

= Var

(
f
∑
j∈Pn

1

|(Tnα )′|χIj

)
= Var(fgn,α)

�

Observe that gn,α has infinitely many jumps discontinuities (indeed it is zero on
the boundary of any interval of the partition Pn), but all those jumps sum up to a
finite total variation. We will, however, need to prove the stronger statement that
the total variation of gn,α decays exponentially fast in n, and uniformly in α. The
idea of the proof is to control the total variation of gn,α by writing it as a sum of
two functions, hn,α and ln,α in such a way that the total variation of ln,α is always
very small, and hn,α has always a finite, controlled number, of jump discontinuities.
The following lemma is the key lemma:

Lemma 3.3. For each ε > 0, for each n ≥ 1, for each α ∈ (0, 1) there exist two
non-negative functions hn,α and ln,α such that

gn,α = hn,α + ln,α

and for each α

(1) VarIα ln,α ≤ 3nCn−1
0 ε, where C0 is the constant in lemma 2.1;

(2) hn,α is smooth with |h′n,α| ≤ 1 outside a finite set Jn,α, where hn,α has
jump discontinuities. Moreover, for each α there exists a neighbourhood
U = (α− η, α+ η) of α and r > 0 such that:

a. For each β ∈ U , Jn,β ⊆ B(Jn,α, r)
b. For each x ∈ Jn,α, #|Jn,β ∩B(x, r)| ≤ n+ 1
c. For each y ∈ Jn,β ∩B(x, r), |x− y| ≤ |α− β|

Proof. By induction on n. If n = 1, let us note that

g1,α(x) :=

{
x2 if x belongs to some Ij
0 otherwise
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hence we can choose L := [− 1
K ,

1
K ] an interval around 0 such that, for all α,

VarL g1,α ≤ ε and define

l1,α := g1,αχL h1,α := g1,αχIα\L

1. is clearly verified. To verify 2., note that given x ∈ J1,α, x 6= α, α − 1, for β
sufficiently close to α, J1,β intersects a neighbourhood of x in only one point. The
same happens if x = α, α− 1 and Tα(x) 6= α− 1. On the other hand, if x = α and
Tα(α) = α − 1, then J1,β ∩ [β − η, β] = {y, β} contains at most two points, where

y = T−1
β (β − 1)∩ [β − η, β] and, since Tβ is expanding, |y − α| ≤ |α− β|. The case

x = α− 1, Tα(α− 1) = α− 1 is similar.
In order to prove the inductive step, let us remark that gn+1,α = gn,α ◦ Tα · g1,α.

Hence, we can define

hn+1,α := hn,α ◦ Tα · h1,α

ln+1,α := ln,α ◦ Tα · g1,α + hn,α ◦ Tα · l1,α
and check all properties are satisfied. First of all, we can prove by induction that

(4) Var
Iα

hn,α ≤ 2n−1Cn0 ∀α ∈ (0, 1),∀n ≥ 1

Indeed,
Var
Iα

h1,α ≤ Var
Iα

g1,α ≤ C0

Var
Iα

hn+1,α =
∑
k∈P1

Var
Ik

(hn,α◦Tα·h1,α) ≤
∑
k∈P1

Var
Ik

(hn,α◦Tα) sup
Ik

h1,α+sup
Ik

(hn,α◦Tα) Var
Ik

h1,α ≤

and since Tα |Ik is a homeomorphism

≤ Var
Iα

hn,α
∑
k∈P1

sup
Ik

h1,α + sup
Iα

hn,α
∑
k∈P1

Var
Ik

h1,α ≤ 2 Var
Iα

hn,α Var
Iα

h1,α ≤ 2 · 2n−1Cn0 · C0

where in the penultimate inequality we used the fact that supI f ≤ VarI f if
f(x) = 0 for some x ∈ I.

Let us now check 1.: similarly as before,

Var
Iα

ln+1,α = Var
Iα

(ln,α◦Tα·g1,α+hn,α◦Tα·l1,α) ≤ 2 Var
Iα

ln,α Var
Iα

g1,α+2 Var
Iα

hn,α Var
Iα

l1,α ≤

and by inductive hypothesis and (4)

≤ 2 · 3nCn−1
0 ε · C0 + 2 · 2n−1Cn0 · ε ≤ 3n+1Cn0 ε

Since h1,α is nonzero only on finitely many branches of Tα, then hn+1,α has only
finitely many jump discontinuities. Now, if x is a jump discontinuity for hn,α ◦ Tα
and not for h1,α, then Tβ is an expanding local homeomorphism at x for all β in
a neighbourhood of α, hence a., b. and c. follow. Let now x 6= α, α − 1 be on the
boundary of some cylinder, i.e. Tα(x) = α− 1. Then by inductive hypothesis c., if
β > α is sufficiently close to α and η is sufficiently small, then

Jn,β ∩ [β − 1, β − 1 + η] = {β − 1}

hence

Jn+1,β ∩B(x, r) = T−1
β (Jn,β ∩ [β − η, β]) ∩B(x, r)

and b. follows. c. follows from the fact that Tβ is expanding. If β < α, similarly
the claims follow because

Jn+1,β ∩B(x, r) = T−1
β (Jn,β ∩ [β − 1, β − 1 + η]) ∩B(x, r)
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If x = α, then for β sufficiently close to α,

Jn+1,β ∩B(x, r) ⊆ (T−1
β (Jn,β) ∪ {β}) ∩B(x, r)

has cardinality at most n + 2, and c. follows because Tα is expanding. The case
x = α− 1 is analogous.

�

Lemma 3.4. Let α ∈ (0, 1), n ≥ 1 and ε > 0. Then there exist η > 0, C > 0 and a
finite partition of [α− 1− η, α+ η] in closed intervals L1, . . . Lr such that for each
β ∈ (α− η, α+ η) and each i ∈ 1, . . . , r the following holds:

• 0 < C ≤ m(Li,β) ≤ ε
• VarLi,β gn,β ≤ 2(n+ 1)‖gn,β‖∞ + 2ε

where Li,β := Li ∩ [β − 1, β].

Proof. Given α, n, ε, choose L1, . . . , Lr in such a way that m(Li) ≤ ε, each element
of Jn,α lies in the interior of some Li and no two such elements lie in the same Li.

Moreover, set ε1 := ε/(3nCn−1
0 ) and, for each β sufficiently close to α, choose a

decomposition gn,β = hn,β + ln,β as in lemma 3.3 relative to ε1.

Var
Li,β

hn,β ≤
∫
Li,β\Jn,β

h′n,β(x)dx+
∑

x∈Li,β∩Jn,β

lim
y→x−

hn,β(y) + lim
y→x+

hn,β(y) ≤

≤ m(Li,β) + 2#{Li,β ∩ Jn,β}‖hn,β‖∞ ≤ ε+ 2(n+ 1)‖hn,β‖∞

hence VarLi,β gn,β ≤ VarLi,β hn,β + ln,β ≤ 2ε+ 2(n+ 1)‖gn,β‖∞. �

Proof of proposition 3.1. Consider the partition L1, . . . , Lr given by lemma 3.4.
Then

Var(f · gn,α) =

r∑
i=1

Var
Li

(fgn,α) ≤
r∑
i=1

Var
Li

f sup
Li

gn,α + Var
Li

gn,α sup
Li

f ≤

≤
r∑
i=1

‖gn,α‖∞Var
Li

f + Var
Li

gn,α

(
1

m(Li,α)

∫
Li

f(x)dx+ Var
Li

f

)
≤

≤ [(2n+ 3)‖gn,α‖∞ + 2ε] Var
Iα

f +
(2n+ 2)‖gn,α‖∞ + 2ε

C

∫
Iα

f(x)dx

Now, since ‖gn,α‖∞ ≤ γnα decays exponentially, we can choose n large enough so
that λ := (2n + 4)γnα < 1, and we can also choose 2ε ≤ γnα, hence we get that for
some constant D > 0, for each α ∈ (α− η, α+ η),

(5) Var Φnα(f) ≤ λVar f +D‖f‖1

and by iteration and euclidean division (see e.g. [15], lemma 7 and prop. 1) the
claim is proven. �
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3.2. Stability of spectral decomposition. The next step to prove Hölder-continuity
is proving the continuous dependence of invariant densities ρα in L1-norm. In order
to guarantee the stability of spectral projectors of the transfer operator, we will use
the following theorem of Keller and Liverani [7]:

Theorem 3.5. Let Pε be a family of bounded linear operators on a Banach space
(B, ‖ · ‖) which is also equipped with a second norm | · | such that | · | ≤ ‖ · ‖. Let us
assume that the following conditions hold:

(1) ∃C1,M > 0 s.t. for all ε ≥ 0

|Pnε | ≤ C1M
n ∀n ∈ N

(2) ∃C2, C3 > 0 and λ ∈ (0, 1), λ < M , such that for all ε ≥ 0

‖Pnε f‖ ≤ C2λ
n‖f‖+ C3M

n|f | ∀n ∈ N ∀f ∈ B

(3) if z ∈ σ(Pε), |z| > λ, then z is not in the residual spectrum of Pε
(4) There is a monotone continuous function τ : [0,∞) → [0,∞) such that

τ(ε) > 0 if ε > 0 and

|||P0 − Pε||| ≤ τ(ε)→ 0 as ε→ 0

where the norm ||| · ||| is defined as

|||Q||| := sup
‖f‖≤1

|Qf |

Let us now fix δ > 0 and r ∈ (λ,M) and define

Vδ,r := {z ∈ C : |z| ≤ r or dist (z, σ(P0)) ≤ δ}

and η := log(λ/r)
log(λ/M) . Then there exist H,K > 0 such that if τ(ε) ≤ H then σ(Pε) ⊆

Vδ,r and

|||(z − Pε)−1 − (z − P0)−1||| ≤ Kτ(ε)η ∀z /∈ Vδ,r

In our context, the norm | · | will be the L1 norm and ‖ · ‖ will be the BV norm.
Our goal is to apply this result to the family {Φα}α∈U where U is a suitable neigh-
bourhood of a given α ∈ (0, 1).

Hypothesis (1) is trivial since transfer operators have unit L1-norm, and (2) is
precisely proposition 3.1. In the context of one-dimensional piecewise expanding
maps, (3) is an immediate corollary of (2):

Lemma 3.6. For every α ∈ (0, 1) there exists ε > 0 such that for |α− α| < ε,

ρess(Φα) ≤ λ

where λ is the same as in proposition 3.1 and therefore condition (3) holds.

Proof. By a result of Hennion [4], the uniform Lasota-Yorke inequality plus the fact
that the injection BV (I)→ L1(I) is compact implies the estimate on the essential
spectral radius; therefore the elements of the spectrum of modulus bigger than λ are
eigenvalues with finite multiplicity and cannot belong to the residual spectrum. �

To prove condition (4) it is necessary to estimate the distance between the Φα
as α varies in a neighbourhood of a fixed α; by a result of Keller [6] the distance
between the transfer operators is related to the following distance between the
transformations:



10 GIULIO TIOZZO

Definition 3.1. Let T1, T2 : I → I two maps of the interval I. We define the
Keller distance between T1 and T2 as

d(T1, T2) := inf{κ > 0 | ∃A ⊂ I measurable with m(A) > 1− κ,

∃σ : I → I diffeo s.t. T1 |A= T2 ◦ σ |A, sup
x∈I
|σ(x)− x| < κ, sup

x∈I

∣∣∣∣ 1

σ′(x)
− 1

∣∣∣∣ < κ}

Lemma 3.7 ([6], lemma 13). If P1 and P2 are the transfer operators associated to
the interval maps T1 and T2, then |||P1 − P2||| ≤ 12d(T1, T2) where d is the Keller
distance.

We verify now that this convergence result applies to our case of α-continued
fractions. In order to do so, it is necessary to translate the maps in such a way
that they are all defined on the same interval, which will be [0, 1] in our case. We

therefore consider the maps T̃α : [0, 1]→ [0, 1]

T̃α(x) = Tα(x+ α− 1) + 1− α

The relative invariant densities will be

ρ̃α(x) = ρα(x+ α− 1)

Lemma 3.8. Fix α ∈ (0, 1). Then there exists a neighbourhood U of α and a
positive constant C such that, for α, β ∈ U , we have

d(T̃α, T̃β) ≤ C|α− β|1/2

Proof. Having fixed α, β, let us define

y(x) :=
x+ α− 1

1 + (β − α)|x+ α− 1|
+ 1− β

It is immediate to verify that T̃α(x) = T̃β(y(x)) ∀x ∈ [0, 1] and y′(x) = 1
(1+(β−α)|x+α−1|)2

We also have

sup
x∈[0,1]

|y(x)− x| = |y(1)− 1|

because when |α − β| is small we have that, for α > β, y(x) − x has positive
derivative and y(0) > 0, while, for α < β, y(x) − x has negative derivative and
y(0) < 0. Thus, for |α− β| sufficiently small,

sup
x∈[0,1]

|y(x)− x| = |α− β|
∣∣∣∣ 1 + αβ

1 + (β − α)α

∣∣∣∣ ≤ 2|α− β|

sup
x∈[0,1]

∣∣∣∣ 1

y′(x)
− 1

∣∣∣∣ = |β − α| sup
x∈[0,1]

∣∣2|x+ α− 1|+ (β − α)|x+ α− 1|2
∣∣ ≤ 3|α− β|

In order to compute the Keller distance we need to find a diffeomorphism σ of the
interval such that T̃α = T̃β ◦ σ on a set of large measure; the y defined so far is not
a diffeo, so it is necessary to modify it a bit at the endpoints and we will do it by
introducing two little linear bridges. Let δ be such that δ2 = supx∈[0,1] |y(x)−x| ≤
2|α− β|; we can define

σ(x) =


y(δ)
δ x for x ≤ δ
y(x) for δ ≤ x ≤ 1− δ
1−y(1−δ)

δ (x− 1 + δ) + y(1− δ) for x ≥ 1− δ
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For the sup norm we have

sup
x∈[0,1]

|σ(x)− x| ≤ max

{
|y(δ)− δ|, sup

x∈[δ,1−δ]
|y(x)− x|, |y(1− δ)− 1 + δ|

}
≤

≤ sup
x∈[0,1]

|y(x)− x| ≤ 2|β − α|

Since |y(δ)| ≥ δ − |y(δ)− δ| ≥ δ − δ2, one gets supx∈[0,δ]

∣∣∣ 1
σ′(x) − 1

∣∣∣ ≤ δ
1−δ and

sup
x∈[0,1]

∣∣∣∣ 1

σ′(x)
− 1

∣∣∣∣ ≤ max

{
3|α− β|, δ

1− δ

}
≤ C|α− β|1/2

Now, σ is a homeomorphism of [0, 1] with well defined, non-zero derivative except
for the points x = δ, 1−δ. Hence one can construct smooth approximations σn of σ
which coincide with it except on [δ− 1

2n , δ+ 1
2n ]∪[1−δ− 1

2n , 1−δ+ 1
2n ] and such that

previous estimates still hold. These σn will be diffeomorphisms of the interval s.t.
T̃α(x) = T̃β(σn(x)) for x ∈ [δ + 1

2n , 1− δ −
1

2n ]. Since supm([δ + 1
2n , 1− δ −

1
2n ]) =

1− 2δ ≥ 1− 2|α− β|1/2, then the claim is proven. �

3.3. Hölder-continuity of entropy. By using the perturbation theory developed
so far, we complete the proof that the function α 7→ h(Tα) is locally Hölder-
continuous. Note that the uniform Lasota-Yorke inequality proven in section 3.1
would already imply continuity by the methods in [10], while here we get a quan-
titative bound on the continuity module.

Proposition 3.9. Let δ > 0, and 0 < s < 1
2 . Then there exists a constant C > 0

such that
|h(Tα)− h(Tβ)| ≤ C|α− β|s ∀α, β ∈ [δ, 1]

Proof. Let us fix η ∈ (0, 1), and choose r such that η = log(λ/r)
log(λ) . By thm 3.5 applied

to the family Φα, (using proposition 3.1, lemma 3.6 and lemma 3.8 as hypotheses),
for each α ∈ (0, 1) there exist ε, C1 > 0 such that

|||Πα −Πβ ||| ≤ C1|α− β|η/2 ∀β ∈ (α− ε, α+ ε)

Now, in theorem 3.5 the bounds (H,K) depend only on the constants C1, C2, C3,
λ, M , and in proposition 3.1 and lemma 3.8 these constants are locally uniformly
bounded in α, hence the following stronger statement is true: for each α ∈ (0, 1)
there is C1 > 0 and some neighbourhood U of α such that

|||Πα −Πβ ||| ≤ C1|α− β|η/2 ∀α, β ∈ U
Since ρ̃α = Πα(1), the previous equation implies

‖ρ̃α − ρ̃β‖L1 = O(|α− β|
η
2 )

By prop. 3.1, ‖ρ̃α‖BV is locally bounded, hence so is ‖ρ̃α‖∞ and for any p > 1

‖ρ̃α − ρ̃β‖Lp = O(|α− β|
η
2p )

By Rohlin’s formula, h(Tα) = −2
∫ 1

0
log |y + α− 1|ρ̃α(y)dy, thus

|h(Tα)− h(Tβ)| ≤ 2

∫ 1

0

|log |y + α− 1|ρ̃α(y)− log |y + β − 1|ρ̃β(y)| dy ≤

by separating the product and applying Hölder’s inequality, for any p > 1

≤ 2‖ρ̃α‖∞‖ log |y + α− 1| − log |y + β − 1|‖L1 + ‖2 log(y + β − 1)‖Lp/p−1‖ρ̃α − ρ̃β‖Lp
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Now, basic calculus shows ‖ log |y+α−1|−log |y+β−1|‖L1 = O(−|α−β| log |α−β|)
and ‖2 log(y+α−1)‖Lp/p−1 is bounded independently of α. Since this is true ∀η < 1
and ∀p > 1, the claim follows. �

Remark. One has to be careful with the norm he uses to get the convergence,
because while L1-convergence of the densities is assured by uniform Lasota-Yorke,
the invariant densities in general DO NOT converge to each other in BV -norm.

For example we have for α ≥
√

5−1
2

ρα(x) =
1

log(1 + α)

(
χ

[0, 1−α
2

α ]
(x)

1

x+ 2
+ χ

( 1−α2

α ,1]
(x)

1

x+ 1

)
so

Var
[0,1]

(ρ̃α − ρ̃α) ≥

∣∣∣∣∣∣ lim
x→

(
1−α2

α

)−(ρα − ρα)− lim
x→

(
1−α2

α

)+(ρα − ρα)

∣∣∣∣∣∣
which does not converge to 0 as α→ α.

4. Central limit theorems

The goal of this section is to prove a central limit theorem (CLT) for the systems
Tα. Given an observable f : Iα → R, we denote by Snf the Birkhoff sum

Snf =

n−1∑
j=0

f ◦ T jα

The function x 7→ Snf(x)
n is called Birkhoff average and it can be seen as a random

variable on the space Iα = [α− 1, α] endowed with the measure µα. By ergodicity,
this random variable converges a.e. to a constant. Our goal is to prove that the
difference from such limit value converges in law to a Gaussian distribution.

Heuristically, this means the sequence of observables {f ◦ Tnα } (which can be
seen as identically distributed random variables on Iα) behave as if they were in-
dependent, i.e. the system has little memory of its past. A convergence property
of this type is also useful to confirm numerical data, since it implies the variance
of Birkhoff averages up to the nth iterate decays as 1√

n
, hence one can get a good

approximation of the limit value by computing Birkhoff averages up to a suitable
finite time n (see [10]).

First (subsection 4.1), we will prove CLT for observables of bounded variation.
A particularly important observable is log |T ′α|, because by Rohlin’s formula its
expectation is the metric entropy. Such observable, however, is not of bounded
variation: in subsection 4.2, we will enlarge the class of observables we work with
in order to encompass certain unbounded functions, including log |T ′α|. In order to
do so, we need to define ad hoc Banach spaces.

4.1. CLT for functions of bounded variation.

Theorem 4.1. Let α ∈ (0, 1] and f be a real-valued nonconstant element of

BV (Iα). There exists σ > 0 such that the random variable
Sn(f−

∫
fdµα)

σ
√
n

converges

in law to a Gaussian N (0, 1), i.e. for every v ∈ R we have

lim
n→∞

µα

(
Snf − n

∫
I
fdµα

σ
√
n

≤ v
)

=
1√
2π

∫ v

−∞
e−x

2/2dx
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The proof of theorem 4.1 follows a method developed by A. Broise [1].

Perturbations of Φα
Given f ∈ BV (Iα) with real values and given θ ∈ C, let us define the operator

Φf (θ) : BV (Iα)→ BV (Iα) with

Φf (θ)(g) = Φ(exp(θf)g)

For f fixed, this family of operators has the property that Φf (0) = Φ and the
function θ → Φf (θ) is analytic; the interest in this kind of perturbations resides in
the identity

Φnf (θ)(g) = Φn(exp(θSnf)g) with Snf =

n−1∑
k=0

f ◦ T kα

Since in our case all eigenvalues of modulus 1 are simple, the spectral decomposition
transfers to the perturbed operator:

Φnf (θ)(g) = λn0 (θ)Φ0(θ)(g) + Ψn
f (θ)(g)

where the functions θ 7→ Φ0(θ), θ 7→ λ0(θ) and θ 7→ Ψf (θ) are analytic in a

neighbourhood of θ = 0. Moreover, ρ(Ψf (θ)) ≤ 2+ρ(Ψ)
3 ≤ |λ0(θ)|.

Let us now consider the variance of Snf :

Proposition 4.2 ([1], thm. 6.1). Let α ∈ (0, 1] and f be a real-valued element of
BV (Iα). Then the sequence

Mn =

∫
Iα

(
Snf − n

∫
fdµα√

n

)2

dµα

converges to a real nonnegative value, which will be denoted by σ2. Moreover, σ2 = 0
if and only if there exists u ∈ L2(µα) such that uρα ∈ BV (Iα) and

(6) f −
∫
Iα

fdµα = u− u ◦ Tα

Now, if σ > 0, the method of ([1], chap. 6) yields the central limit theorem. The
main steps in the argument are:

(1) λ′0(0) =
∫
Iα
fdµα

(2) If
∫
Iα
fdµα = 0, then λ′′0(0) = σ2

(3) If
∫
Iα
fdµα = 0, then limn→∞

∫
Iα

Φnf ( it
σ
√
n

)(ρα)dm = exp(− t
2

2 )

CLT then follows by Lévy’s continuity theorem, LHS in previous equation being

the characteristic function of the random variable
Sn(f−

∫
Iα
fdµα)

σ
√
n

.

In order to prove the CLT for a given observable we are now left with checking
that equation (6) has no solutions. The following proposition completes the proof
of theorem 4.1.

Proposition 4.3. For every real-valued nonconstant f ∈ BV (Iα), equation (6) has
no solutions.

Proof. By proposition 2.1, Tα satisfies the hypotheses of a theorem of Zweimüller
[18], which asserts that there exists Cα > 0 such that ρα ≥ Cα on {ρα 6= 0}.
Hence, the function 1

ρα
χ{ρα 6=0} belongs to BV (Iα), so if it exists u such that fρα−
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(
∫
Iα
fdµα)ρα = uρα−u◦Tα ·ρα in BV (Iα), then we can multiply by 1

ρα
χ{ρα 6=0} and

get f −
∫
Iα
fdµα = u−u◦Tα in BV (Iα), with u in BV (Iα) because uρα ∈ BV (Iα);

by knowing that f ∈ BV (Iα) we get u ◦ Tα ∈ BV (Iα). For each cylinder Ij ∈ P1,
since Tα |Ij : Ij → Iα is a homeomorphism,

Var
Ij

(u ◦ Tα) = Var
Tα(Ij)

u

hence

Var
Iα

(u ◦ Tα) ≥
∑
Ij∈P1

Ij full

Var
Ij

(u ◦ Tα) ≥
∑
Ij∈P1

Ij full

Var
Tα(Ij)

u =
∑
Ij∈P1

Ij full

Var
(α−1,α)

u

and, since the set of j s.t. Ij is full is infinite, u ◦ Tα has a representative with
bounded variation only if Var(α−1,α) u = 0, i.e. u is constant a.e. �

4.2. CLT for unbounded observables. In order to prove a central limit theo-
rem for the entropy h(Tα) one has to consider the observable x 7→ log |T ′α(x)| =
−2 log |x|, which is not of bounded variation on intervals containing 0. Therefore,
one has to enlarge the space of functions to work with so that it contains such
observable, and use some norm which still allows to bound the essential spectral
radius of the transfer operator. Such technique will be developed in this section.

The strategy is to use the Ionescu-Tulcea and Marinescu theorem to get a spectral
decomposition of the transfer operator, as we did in section 2.2. This theorem
requires a pair of Banach spaces contained in each other such that the operator
preserves both. Traditionally, this is achieved by considering the pair BV (I) ⊂
L1(I). In our case, we will replace the space of functions of bounded variation
with newly-defined, larger spaces BK,δ ⊆ L1, which allow for functions with a mild
singularity in 0.

4.2.1. A new family of Banach spaces. Fix α ∈ (0, 1]. Given a positive integer K
and some 0 < δ < 1, let us define the K, δ-norm of a function f : Iα → C as

‖f‖K,δ := sup
k≥K

(
k−δ Var

Lk
f +

∫
Lk

|f(x)|dx
)

where the Lk are a sequence of increasing subintervals of Iα, namely

L+
k :=

⋃
j≥k

I+
j =

[
1

k + α
, α

]
L−k :=

⋃
j≥k

I−j =

[
α− 1,− 1

k + α

]
and Lk := L+

k ∪ L
−
k , with VarLk f := VarL+

k
f + VarL−k

f . Let us now define the

space BK,δ of functions of mild growth as

BK,δ := {f ∈ L1 : f has a version g with ‖g‖K,δ <∞}

Let us now establish some basic properties of these spaces. First of all, they are
Banach spaces:

Proposition 4.4. For every K ∈ N, 0 < δ < 1, the space BK,δ endowed with the
norm

‖f‖K,δ := inf{‖g‖K,δ, g = f a.e.}
is a Banach space.
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Proof. This is obviously a normed vector space. Let us prove completeness. If
{fn} is a Cauchy sequence, then there exists for every k a function fk such that
fn |Lk→ fk in BV (Lk)-norm for n → ∞. Also, by restricting fn |Lk+1

→ fk+1 to

Lk one can conclude fk+1 |Lk= fk, hence one can define f : [α − 1, α] \ {0} → C
s.t. f |Lk= fk. Now, ∀ε > 0 ∃N ∀m,n ≥ N ∀k ≥ K

‖fm − fn‖L1(Lk) + k−δ Var
Lk

(fm − fn) ≤ ε

and by taking the limit for n→∞ one has ‖fm − f‖K,δ ≤ ε. �

Note that ‖f‖L1(Iα) ≤ ‖f‖K,δ, and BK,δ is a BV -module, i.e.

f ∈ BK,δ, g ∈ BV ⇒ fg ∈ BK,δ
Another useful property of these spaces is the following:

Lemma 4.5. For K > max
{

1
α ,

1
1−α

}
(K ≥ 1 if α = 1), 0 < δ < 1, ∃A > 0 s.t.

∀f ∈ BK.δ

|f(x)| ≤ A

|x|δ
‖f‖K,δ ∀x ∈ [α− 1, α] \ {0}

Proof. For f ∈ BK,δ, x ∈ L+
k \ L

+
k−1

|f(x)| ≤ |f(x)− f(α)|+ |f(α)| ≤ Var
L+
k

f + sup
L+
K

|f | ≤

and since x ≤ 1
k−1+α

≤ kδ‖f‖K,δ + Var
L+
K

f +
‖f‖L1(Iα)

m(L+
K)

≤

((
1

|x|
+ 1

)δ
+Kδ +

1

m(L+
K)

)
‖f‖K,δ

Similarly for x < 0. �

Moreover, just as in the case of BV , the inclusion BK,δ → L1 is compact.

Proposition 4.6. For every K sufficiently large, δ > 0, the unit ball

B = {f ∈ BK,δ, ‖f‖K,δ ≤ 1}

is compact in the L1-topology.

Proof. This fact is well-known when you consider BV instead of BK,δ. Now, given
{fn} ⊆ B, for any k the sequence of restrictions fn |Lk sits inside a closed ball
in BV (Lk) hence it has a subsequence which converges in L1(Lk) to some Fk ∈
BV (Lk). By refining the subsequence as k →∞, one finds a subsequence fnl ∈ B
such that for every k, fnl |Lk→ Fk in L1(Lk) and a.e. for l → ∞. By uniqueness
of the limit there exists F such that F |Lk= Fk. By lower semicontinuity of total
variation, k−δ VarLk F + ‖F‖L1(Lk) ≤ 1, so F ∈ B. We are just left with proving

fnl → F in L1(Iα) for l→∞. By lemma 4.5∫
Iα

|fnl − F | ≤
∫
Iα\Lk

|fnl |+ |F |+
∫
Lk

|fnl − F | ≤ 2

∫
Iα\Lk

A

|x|δ dx+

∫
Lk

|fnl − Fk|

The first term tends to 0 as k → ∞ and the second does so for l → ∞ as k is
fixed. �
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4.2.2. Spectral decomposition in BK,δ. The goal of this section is to prove a spectral
decomposition analogous to theorem 2.2 in the space BK,δ, namely

Theorem 4.7. For every α ∈ (0, 1], 0 < δ < 1 and K sufficiently large, the transfer
operator Φα : BK,δ → BK,δ decomposes as

Φα = Πα + Ψα

where Πα and Ψα are bounded linear, commuting operators on BK,δ, ρ(Ψα) < 1
and Πα is a projection onto a one-dimensional eigenspace.

The main ingredient to get the spectral decomposition is again a Lasota-Yorke
type estimate:

Proposition 4.8. Let α ∈ (0, 1], 0 < δ < 1. Then there exist K ∈ N, 0 < λ < 1,
C > 0, D > 0 such that

‖Φnα(f)‖K,δ ≤ Cλn‖f‖K,δ +D‖f‖L1 ∀f ∈ BK,δ

Proof. First consider the case α < 1. By formula (3) and lemma 6.1, 4.

Var
L+
k

Φnα(f) ≤
∑
j∈Pn

Var
Tnα (Ij)∩L+

k

f ◦ σj
|(Tnα )′ ◦ σj |

+ 2 sup
Tnα (Ij)∩L+

k

∣∣∣∣ f ◦ σj
|(Tnα )′ ◦ σj |

∣∣∣∣ ≤
and by lemma 6.1, 1. and the fact that Tnα : Ij → Tnα (Ij) is a homeomorphism

≤
∑
Ij∈Pn

3 Var
Ij

f

|(Tnα )′|+
2
∫
Ij
|f(x)|dx

m(Tnα (Ij) ∩ L+
k )
≤ 3

∑
Ij∈Pn

Var
Ij

(fgn,α)+
2‖f‖1

infj∈Pn{m(Tnα (Ij) ∩ L+
k )}

where the inf is taken over all non-empty intervals. Now, note that by lemma 6.1,
3. and prop. 2.1, 2.∑

Ij∈Pn

Var
Ij

(fgn,α) ≤
∑
Ij∈Pn

Var
Ij

f sup
Ij

gn,α +
2‖f‖1
1− γα

hence we are left with only one term to estimate: in order to do so, we will split
the sum in several parts, according to the filtration Lk:

∑
Ij∈Pn

Var
Ij

f sup
Ij

gn,α ≤ ‖gn,α‖∞
∑
Ij∈Pn
Ij⊆Lk

Var
Ij

f +

∞∑
h=1
ε=±

∑
Ij∈Pn

Ij⊆Lε(h+1)k
\Lε
hk

Var
Ij

f sup
Ij

gn,α ≤

≤ γnα Var
Lk

f+

∞∑
h=1
ε=±

Var
Lε

(h+1)k

f sup
Lε

(h+1)k
\Lε
hk

gn,α ≤ γnαkδ‖f‖K,δ+
∞∑
h=1

‖f‖K,δ[(h+1)k]δ sup
L(h+1)k\Lhk

g1,α ≤

and since L(h+1)k \ Lhk =
[
− 1
hk+α ,−

1
(h+1)k+α

)
∪
(

1
(h+1)k+α ,

1
hk+α

]
≤ ‖f‖K,δkδ

(
γnα +

∞∑
h=1

(h+ 1)δ

h2k2

)
≤ ‖f‖K,δkδ

(
γnα +

M

K2

)
for some universal constant M for all k ≥ K. The same estimate holds for
VarL−k

Φnα(f). Moreover, for fixed n and α the set {Tnα (Ij) | Ij ∈ Pn} is finite,

and since L+
k and L−k are increasing sequences of intervals, inf{m(Tnα (Ij) ∩ L±k ) :

Ij ∈ Pn, k ≥ K} is bounded below by a positive constant, and for every α one can
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choose n and K such that λ := 6
(
γnα + M

K2

)
< 1. By combining all estimates, there

exists a constant D such that

‖Φnα(f)‖K,δ ≤ λ‖f‖K,δ +D‖f‖1 ∀f ∈ BK,δ

and by iteration the claim follows. The case α = 1 follows similarly; in this case
‖g1,α‖∞ = 1, but proposition 2.1 is replaced by

‖gn,α‖∞ ≤ 4

(√
5− 1

2

)2n−4

‖g′n,α‖∞ ≤ 2

�

Proof of theorem 4.7. By propositions 4.6 and 4.8, the transfer operators Φα
acting on BK,δ satisify the hypotheses of Ionescu-Tulcea and Marinescu’s theorem
[5], hence we have a spectral decomposition of Φα with a finite number of spectral
projectors onto eigenvalues of unit modulus. Moreover, mixing of Tα still implies
there is only one eigenvalue of modulus one and its eigenspace is one-dimensional.

�

Note that since BV (Iα) ⊆ BK,δ, the invariant density ρα previously obtained is
still a fixed point of Φα, hence Πα is nothing but projection onto Cρα.

4.2.3. End of proof. The proof of theorem 1.2 now follows from standard application
of the martingale central limit theorem. We will refer to the version given in ([17],
Thm. 2.11). In order to adapt it to our situation, we need the following two
lemmas:

Lemma 4.9. Let α ∈ (0, 1], 0 < δ < 1
2 , and K s.t. theorem 4.7 holds, and

consider f ∈ BK,δ with
∫
Iα
fdµα = 0. Denote by F0 the Borel σ-algebra on Iα and

Fn := T−nα (F0). Then

∞∑
n=0

‖E(f | Fn)‖L2(µα) < +∞

Proof.

‖E(f | Fn)‖L2(µα) = sup

{∫
Iα

(ψ ◦ Tnα )fdµα : ψ ∈ L2(µα), ‖ψ‖L2(µα) = 1

}
=

= sup

{∫
Iα

ψΦnα(fρα)dx : ψ ∈ L∞(µα), ‖ψ‖L2(µα) = 1

}
≤
‖Φnα(fρα)‖L2(dx)√

inf ρα

Now, by lemma 4.5 and since 0 < δ < 1
2 , ‖Φnα(fρα)‖L2(dx) ≤ C‖Φnα(fρα)‖K,δ, and

by theorem 4.7 Φnα(fρα) = Ψn(fρα) goes to 0 exponentially fast in BK,δ-norm as
n→∞. �

Lemma 4.10. Let f ∈ BK,δ real-valued, non-constant such that
∫
Iα
fdµα = 0.

Then there exists no function u ∈ BK,δ such that

f = u− u ◦ Tα µα − a.e.
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Proof. Notice that µα and Lebesgue measure are abs. continuous w.r.t. each other,
hence measure zero sets are the same. Suppose there exists u which satisfies the
equation; then, u ◦ Tα belongs to BK,δ. However,

Var
L+
k

(u ◦ Tα) ≥
∑
Ij full

j≤k

Var
Ij

(u ◦ Tα) =
∑
Ij full

j≤k

Var
(α−1,α)

u = (k − jmin) Var
(α−1,α)

u

On the other hand, VarL+
k

(u ◦ Tα) ≤ kδ‖u ◦ Tα‖K,δ with δ < 1, which contradicts

the previous estimate unless Var(α−1,α) u = 0, i.e. u is constant a.e. �

Proof of theorem 1.2. We can assume
∫
Iα
fdµα = 0. By ([17], Thm. 2.11) and

lemma 4.9, the claim follows unless there exists u ∈ L2(µα) such that

f = u− u ◦ Tα µα − a.e.

If there exists such u, one can assume that
∫
u dµα = 0, and then, by the proof of

([17], Thm. 2.11), u is given by

u = −
∞∑
j=1

Φjα(fρα)

ρα

where convergence of the series is in L2(µα). By the spectral decomposition,∑
j Φj(fρα) converges also in BK,δ ⊆ L2(µα). Moreover, since ρα is in BV and is

bounded from below, then 1
ρα

is in BV . Thus, u lies in BK,δ, and this contradicts

lemma 4.10 unless f is constant. �

Now, the function x 7→ log |x| belongs to every BK,δ, therefore

Corollary 4.11. For every α ∈ (0, 1], the Birkhoff averages for the observable
log |T ′α(x)| = −2 log |x| distribute normally around the value h(Tα).

5. Stability of standard deviation

Having established the convergence of Birkhoff sums to a Gaussian distribution,
we are now interested in analyzing how the standard deviation of this Gaussian
varies when α varies. The question is motivated by the numerical simulations in
[2], section 2. We prove the following

Theorem 5.1. Let f : (−1, 1)→ R of class C1. For every α ∈ (0, 1) let us consider
the variance

σ2
α := lim

n→∞

∫
Iα

(
Snf − n

∫
Iα
fdµα√

n

)2

dµα

Then, for every α ∈ (0, 1)

lim
α→α

σ2
α = σ2

α.

The variance σ2
α of the limit distribution is the second derivative of the eigenval-

ues λ0(θ) of the perturbed transfer operators {Φα,f,θ} (see the discussion in section
4.1, and in particular eq. 2. after prop. 4.2). In order to prove the theorem, we
will prove uniform convergence in α of the eigenvalues, via application of theorem
3.5 to the family {Φα,f,θ}{|α−α|<ε,|θ|<ε,‖f−f‖∞<ε}.

Hypothesis (1) of thm. 3.5 is easily proved:
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Lemma 5.2. For any C > 0, there exists M > 0 such that

‖Φnα,f,θ‖1 ≤Mn ∀n ∈ N ∀α ∈ (0, 1) ∀|θ| < C

for every f ∈ L∞(Iα) s.t ‖f‖∞ ≤ C.

Proof. For g ∈ BV
‖Φnα,f,θ(g)‖1 = ‖Φnα(eθSnfg)‖1 ≤ ‖eθSnfg‖1 ≤ ‖eθSnf‖∞‖g‖1 ≤ en|Reθ|‖f‖∞‖g‖1

where we used that the unperturbed operators have unit norm on L1. �

Hypothesis (4) follows directly from lemma 3.8; the precise statement, whose
proof we omit, is the following:

Lemma 5.3. Let α ∈ (0, 1). Then there exist ε, C > 0 such that for any f, f ∈
BV ([0, 1]) s.t. ‖f − f‖∞ < ε, ∀|θ| < ε, ∀|α− α| < ε

|||Φα,f,θ − Φα,f,θ||| ≤ C
(
|α− α|1/2 + ‖f − f‖∞

)
We now check condition (2), using the estimates in section 3.1 to get a Lasota-

Yorke inequality which is uniform in both α and θ.

Proposition 5.4. Let α ∈ (0, 1). There exist 0 < λ < 1, ε, C2, C3 such that

Var
Iα

Φnα,f,θ(g) ≤ C2λ
n Var

Iα
g + C3‖g‖1 ∀n ∈ N

for every α ∈ (α − ε, α + ε), for every |θ| < ε and for every f ∈ C1(Iα) with
‖f‖C1 ≤ 1.

Proof. Let us fix g ∈ BV . We have

Var
Iα

Φnα,f,θ(g) = Var
Iα

Φnα(eθSnfg) ≤ Var
Iα

(eθSnfg · gn,α) =
∑
j∈Pn

Var
Ij

(eθSnfg · gn,α)

Note that, since gn,α |∂Ij= 0,

Var
Ij

(eθSnfggn,α) ≤ Var
Ij

(eθSnfggn,α) + en|θ|‖f‖∞ Var
Ij

(ggn,α)

Now, by lemma 6.1, 3

Var
Ij

(eθSnfgn,αg) = Var
Ij

eθSnfg

|(Tnα )′| ≤ sup
Ij

∣∣∣∣∣
(
eθSnf

(Tnα )′

)′∣∣∣∣∣
∫
Ij

|g|+ sup
Ij

∣∣∣∣eθSnf(Tnα )′

∣∣∣∣Var
Ij

g

and by expanding the derivative(
eθSnf

(Tnα )′

)′
=

(eθSnf )′

(Tnα )′
+

(
1

(Tnα )′

)′
eθSnf =

eθSnfθ
∑n−1
k=0 (f ′ ◦ T kα)(T kα)′

(Tnα )′
+

(
1

(Tnα )′

)′
eθSnf =

= eθSnf
[
θ

n−1∑
k=0

(f ′ ◦ T kα)

[(Tn−kα )′ ◦ T kα ]
+

(
1

(Tnα )′

)′]
≤ en|θ|‖f‖∞ |θ|‖f

′‖∞ + 2

1− γα
Moreover, by the estimates of proposition 3.1 (eq. (5)), for each α ∈ (0, 1) and

each n there exist η,D such that

Var
Iα

(ggn,α) ≤ (2n+ 4)γnα Var
Iα

g +D‖g‖1 ∀α ∈ (α− η, α+ η)

hence by combining all previous estimates

Var
Iα

Φnα,f,θ(g) ≤ (2n+ 5)en|θ|‖f‖∞γnα Var
Iα

g + en|θ|‖f‖∞
(
|θ|‖f ′‖∞ + 2

1− γα
+D

)
‖g‖1
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and the claim follows by choosing some n large enough and iterating. �

Remark. Notice this is the only place where we need f ∈ C1. This is because, if
f ∈ BV , eθSnf will not in general be of bounded variation.

We are now ready to draw consequences for the spectral decomposition: let us
denote by λα,f (θ) the eigenvalue of Φα,f,θ which is closest to 1.

Lemma 5.5. Let α ∈ (0, 1), and suppose we have a family {fα}α∈(0,1) of functions

fα : [0, 1]→ R of class C1 for every α and such that

- ‖fα − fα‖∞ → 0 for α→ α
- supα∈(0,1) ‖f ′α‖∞ <∞

Then there exists ε > 0 such that λα,fα(θ) converges to λα,fα(θ) on |θ| < ε uniformly
in θ as α→ α.

Proof. Let us fix r ∈ (λ0, 1) and δ such that 0 < δ < 1−r
2 . Then the projectors

(7) Πα,fα,θ :=
1

2πi

∮
∂B(1,δ)

(z − Φα,fα,θ)
−1dz

are defined for |α − α| < ε and |θ| < ε for some ε and for δ sufficiently small
rank(Πα,fα,θ) = rank(Πα,fα,0) = 1 ([7], cor. 3) so they are all projections on the 1-
dimensional eigenspace relative to the eigenvalue which is closest to 1. By Dunford
calculus we also have

(8) λα,fα(θ)Πα,fα,θ = Φα,fα,θΠα,fα,θ =
1

2πi

∮
∂B(1,δ)

z(z − Φα,fα,θ)
−1dz

By thm. 3.5 and proposition 5.3 there exists C such that for |α−α| < ε and |θ| < ε

|||(z − Φα,fα,θ)
−1 − (z − Φα,fα,θ)

−1||| ≤ C
(
|α− α|1/2 + ‖fα − fα‖∞

)η
with η > 0 fixed by thm. 3.5 so by eqns 7 and 8

|λα(θ)− λα(θ)| = O(|α− α|1/2 + ‖fα − fα‖∞)η

uniformly in θ as α→ α. �

Proof of theorem 5.1. Let fα : [0, 1]→ R be fα(x) := f(x+ α− 1)−
∫ α
α−1

fdµα.

Since ρ̃α → ρ̃α in L1 and f(x+α−1)→ f(x+α−1) in L∞, we have
∫ α
α−1

fdµα →∫ α
α−1

fdµα, and the family {fα} satisfies the hypotheses of lemma 5.5, therefore

λα,fα(θ) converges uniformly in a nbd of θ = 0 to λα,fα(θ). Since all λα,fα(θ) are
analytic in θ you also have convergence of all derivatives, in particular λ′′α,fα(0)→
λ′′α,fα(0). We now note that

∫ 1

0
fα(x)ρ̃α(x)dx = 0, which implies, as we have seen

in section 2.2, that λ′′α,fα(0) = σ2
α. �

6. Appendix

Let us recall a few well-known properties of total variation:

Lemma 6.1. Let I ⊆ R be a bounded interval, J ⊆ I a subinterval and f of
bounded variation. Then:

(1)

sup
x∈J
|f(x)| ≤ Var

J
f +

1

m(J)

∫
J

|f(x)|dx
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(2) If g ∈ BV (J),

Var
J

(fg) ≤ sup
x∈J
|f(x)|Var

J
g + sup

x∈J
|g(x)|Var

J
f

(3) If g is of class C1 on J ,

Var
J

(fg) ≤ Var
J
f sup
x∈J
|g(x)|+ sup

x∈J
|g′(x)|

∫
J

|f(x)|dx

(4)

Var
I

(fχJ) ≤ Var
J
f + 2 sup

J
|f |

Let us also prove the basic properties of Tα mentioned in section 2.1. Proof of
proposition 2.1.

(1)

sup
j∈P1

sup
x∈Ij

1

|(Tα)′(x)|
= sup
x∈[α−1,α]

x2 ≤ max{α2, (α− 1)2}

The case for n > 1 follows from the chain rule for derivatives.
(2) Let Kn := supj∈Pn supx∈Ij

∣∣g′n,α(x)
∣∣. For n = 1,

K1 = sup
j∈P1

sup
x∈Ij

∣∣∣∣∣
(

1

(Tα)′

)′
(x)

∣∣∣∣∣ = sup
x∈[α−1,α]

2|x| ≤ 2

Now,

(Tn+1
α )′(x) = (Tnα )′(Tα(x))T ′α(x)

(Tn+1
α )′′(x) = (Tnα )′′(Tα(x))[T ′α(x)]2 + (Tnα )′(Tα(x))T ′′α (x)

For every x in the interior of some interval Ij ∈ Pn+1,∣∣∣∣ (Tn+1
α )′′(x)

[(Tn+1
α )′(x)]2

∣∣∣∣ ≤ ∣∣∣∣ (Tnα )′′(Tα(x))(T ′α(x))2

[(Tnα )′(Tα(x))T ′α(x)]2
+

(Tnα )′(Tα(x))T ′′α (x)

[(Tnα )′(Tα(x))T ′α(x)]2

∣∣∣∣ ≤
≤
∣∣∣∣ (Tnα )′′(Tα(x))

[(Tnα )′(Tα(x))]2

∣∣∣∣+

∣∣∣∣ T ′′α (x)

[T ′α(x)]2

∣∣∣∣ 1

|(Tnα )′(Tα(x))|
≤ Kn +K1γ

n
α

hence Kn+1 ≤ Kn + 2γnα and by induction Kn ≤
∑n−1
k=0 2γkα ≤ 2

1−γα .

(3) By induction on n: let I−jM be the interval of the partition P1 which contains

α− 1 and I+
jm

be the one which contains α.

For n = 1, Tα(Ij) = Iα for Ij 6= I−jM , I
+
jm

, hence

{Tα(Ij)|Ij ∈ P1} ⊆ {Iα, Tα(I−jM ), Tα(I+
jm

)}
Let n > 1; consider an element of the partition Pn+1, which will be of

the form Ij0 ∩ T−1(Ij1) ∩ · · · ∩ T−n(Ijn) 6= ∅, with Ij0 , . . . , Ijn ∈ P1. If we

let L := Ij1 ∩ · · · ∩ T−(n−1)(Ijn), we have L 6= ∅ and L ∈ Pn. Moreover,
one verifies that

Tn+1
α (Ij0 ∩ T−1

α (Ij1) ∩ · · · ∩ T−nα (Ijn)) ⊆ Tnα (Ij1 ∩ · · · ∩ T−(n−1)
α (Ijn)) = Tnα (L)

At this point we have two cases:
• if Tα(Ij0) ⊇ L then

Tn+1
α (Ij0 ∩ T−1

α (Ij1) ∩ · · · ∩ T−nα (Ijn)) = Tnα (L)
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• otherwise we have Tα(Ij0) + L but Tα(Ij0)∩L 6= ∅ (if the intersection is
empty, so it is the interval we started with); since Tα(Ij) = I for Ij 6=
I−jM , I

+
jm

, this implies Ij0 ∈ {I−jM , I
+
jm
}. Moreover, because Tα(I−jM )

and Tα(I+
jm

) are intervals with supremum equal to α, there exists at

most one interval Iµ of the partition Pn s.t. Tα(I+
jm

) ∩ Iµ 6= ∅ and

Tα(I+
jm

) + Iµ; in the same way there exists only one interval Iν of the

partition Pn such that Tα(I−jM ) ∩ Iν 6= ∅ and Tα(I−jM ) + Iν , therefore
either L = Iµ or L = Iν .

In conclusion {Tn+1
α (Ij) | Ij ∈ Pn+1} is contained in

{Tnα (Ij) | Ij ∈ Pn} ∪ Tn+1
α (I+jm ∩ T

−1
α (Iµ)) ∪ Tn+1

α (I−jM ∩ T
−1
α (Iν))

hence at every step the cardinality can only increase by at most 2.
(4) Recall that

g1,α(x) :=

{
x2 if x belongs to some Ij
0 otherwise

hence the claim follows from sommability of the series
∑

1
k2 .

�
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