THE ENTROPY OF NAKADA’S a-CONTINUED FRACTIONS:
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ABSTRACT. We study the ergodic theory of a one-parameter family of interval
maps T, arising from generalized continued fraction algorithms. First of all,
we prove the dependence of the metric entropy of Ty, to be Hélder-continuous
in the parameter . Moreover, we prove a central limit theorem for possibly
unbounded observables whose bounded variation grows moderately. This class
of functions is large enough to cover the case of Birkhoff averages converging
to the entropy.
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1. INTRODUCTION

Let o € [0,1]. Let us define the map T, : [ — 1,a] = [a — 1,a] as T,(0) =0
and

(1) To(r) = — —

with aq(z) = Li +1-— aJ. These systems were introduced by Nakada [12] and are

|]
known in the literature as a-continued fractions, or Japanese continued fractions.
By taking Tn,a = Tg(w)’ An,oa0 = aa(-rn—l,a)a €n,a = Sign(xn—l,a)v the orbit under
T, generates the generalized continued fraction expansion
€1,a

,
2,0

a2,a+

T =ag,q t+
Q1,0 +

The algorithm, analogously to the Gauss map in the classical case, provides
rational approximations of real numbers. It is known that for each « € (0, 1] there
exists a unique invariant measure u,(dz) = po(z)dz absolutely continuous w.r.t.
Lebesgue measure, and this measure is ergodic (see [10]). In this paper we will
focus on the metric entropy of the T,’s, which is given by Rohlin’s formula (see
[14])

@) WTa) = [ log[Tildu
a—1
Nakada [12] computed exact values of h(T,) for a > %, showing that in this
interval h(T,) is continuous, and smooth except for the point oo = ‘/52_1, where the

left and right derivatives do not coincide.

In [10], Luzzi and Marmi studied the behaviour of h(7,) as a function of « for
all parameters « € (0,1). They gave numerical evidence that this function is con-
tinuous but not smooth. Nakada and Natsui [13] then proved that this function
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is indeed not monotone, by giving explicit construction of infinitely many mono-
tonicity intervals. An extensive numerical study of these intervals has been carried
out in [2], and a complete characterization of all monotonicity intervals is given in
[3]. Even though the entropy is conjecturally smooth on any such interval, there
are points at which it is not even locally monotone, and the set of bifurcation
parameters has a complicated self-similar structure.

The first major result of this paper is the

Theorem 1.1. The entropy function a — h(T,,) is Héolder-continuous of any ex-
ponent 0 < s < %

The proof follows from spectral analysis of the transfer operator acting on the
space of functions of bounded variation. First (section 3.1), we prove a uniform
bound on the essential spectral radius (Lasota-Yorke inequality). Then (section
3.2), we prove that a suitable distance between the transformations 7T, is Holder-
continuous in «, and use a stability result of the spectral decomposition [7] to prove
Hoélder-continuity of the invariant densities p, in L'-norm. Note that invariant
densities are not continuous in BV-norm (see remark 3.3).

The second part of the paper deals with central limit theorems. In [10], entropy
is computed by approximating it with Birkhoff averages for the observable log |77,
and numerical evidence is given ([10], figure 3) that Birkhoff sums for different
orbits distribute normally around the average. We first show (section 4.1) that
the methods of [1] can be used to prove a central limit theorem for observables of
bounded variation.

Moreover, in section 4.2 we expand the class of observables we use in order to
encompass unbounded observables such as the logarithm. Indeed, we will define
a new family of Banach spaces By s, consisting of possibly unbounded functions
whose total variation grows slowly on intervals which approach zero. Such functions
will be called of mild growth, and we prove the central limit theorem to hold in these
larger spaces:

Theorem 1.2. Let v € (0,1],0 < d < %, and K sufficiently large. Then, for every

non-constant real-valued f € B s there exists o > 0 s.t.

Sn - d o +oo +2
lim pq 9 fI‘” Jdua) <wv]| = 1 / e 2:2dt Vv € R
n—0o0 \/ﬁ 0’\/27‘(‘ v

As a corollary, Birkhoff sums for the observable log|T}| distribute normally
around the average value h(T,).

Finally, in section 5 we discuss the dependence of the standard deviation of
Birkhoff averages on the parameter oe. More precisely, given some observable f of
class C, for which we proved the central limit theorem to hold, we will prove that
the variance Ui, 7 of the limit Gaussian distribution is continuous in «. The result
is motivated by numerical data in ([2], section 2.3).

Many different authors have studied the spectral properties of transfer operators
of expanding maps. For instance, a spectral decomposition for individual expanding
maps is proved in [1], [15] and [17]. A brief historical account with references is
given in [7]. In our case, however, it is essential to prove estimates on the spectral
radius which are uniform in a. Since new branches of T, appear as o moves, and
T, develops an indifferent fixed point as @ — 0, proving uniformity requires more



THE ENTROPY OF NAKADA’S a-CONTINUED FRACTIONS: ANALYTICAL RESULTS 3

work. Unfortunately, although a uniform Lasota-Yorke inequality holds, the proof
provided by [10] contains a bug; we shall therefore produce a new proof in prop.
3.1. Another proof of continuity (not Holder) of entropy is given in the very recent
paper [9] via a study of natural extensions.

Let us finally remark that our functional-analytic methods only use a few prop-
erties of T,, hence they can be applied to a wider class of one-parameter families
of expanding interval maps. For instance, they apply to the case of (a, b)-continued
fraction transformations studied in [8] for parameters on the critical line b —a = 1.

2. BASIC PROPERTIES

Let us start by setting up the framework needed for the rest of the paper, and
establishing a basic spectral decomposition for the transfer operator. The literature
on thermodynamic formalism for interval maps is huge: the sources we mainly refer
to are [1], [15] and [17], which already make use of functions of bounded variation.

The total variation of a function f on a set X C R is

n
Varf = sup 32 1£(0:) = flavsa)
1=
where the sup is taken over all finite increasing sequences z; < xy < --- <z, of
points of X. Given an interval I, let us denote BV (I) the Banach space of complex-
valued bounded variation functions of the interval I, modulo equality almost ev-
erywhere. The space is endowed with the norm

IfllBv () := inf {Vlarg—&—/l|g(x)dx : g:fa.e.}

Observe that every f € BV(I) has a (not necessarily unique) representative of
minimal total variation, namely such that

f)ellim f@). lm f@)] Yeel

In the following, we will always choose representatives for our functions of minimal
variation. Other basic properties of total variation are stated in the appendix.

2.1. Cylinders. For each « € (0, 1), the dynamical system T, defined in the intro-
duction acts on the interval I, := [« —1, a]. Observe that there exists a partition of
I, in a countable number of intervals I; such that for every j the restriction T, |7, is
a strictly monotone, C'* function and it extends to a C'*® function on the closure of
every I;. The least fine of such partitions will be called Py, the partition associated
to T,,. More specifically, P; = {I;r}jzjmm U{I; }j>2 with jmin = [1 —a] where

1 1 1
F=(———— ) fj 2 jmin+t1l [ =(——, 0
J j+0¢ ] -1+« Jmin ]min"’a

1 1 1

I = —- ,—— ifj>3 I =(a—1—0

J ji—14+a jH4+a 2+«
Moreover, for every n > 1, the set

I N1 (IE) N0 T—("—”(I;:) | I5L,... I € Py}

where ¢; € {4, —}, is a partition of I, in a countable number of intervals such that
on each of these the restriction of T} is monotone and C'*°: such a partition will be
denoted by P,, and its elements called cylinders. The cylinder I;ll nT, 1([;22) N---N
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T*("*l)(I;:) will be denoted either by (I;ll, e ,I;) or by ((j1,€1),--, (ns€n))-
The cylinders I; € P, such that T (I;) = I, will be called full cylinders.
Let us define the function

gna Z ‘ (.’)3)
JEPn

The following estimates, proven in the appendix, will be used throughout the paper:

Proposition 2.1. For every a € (0,1) and for every n > 1
(1)
9n,alls < va
where 7, = max{a?, (o — 1)?}.

(2)

2
sup sup <
JEP, z€I; |gna )| 1 -7,

(3) The set {T2(I;) | I; € Pn} is finite; more precisely,
#{T2(I;) | I; € P} <2n+1

(4) The total variation of g1, is universally bounded, i.e. there is a constant
Coy such that

\{argm < Cp < 40 Yo € (0,1)

2.2. Spectral decomposition. The transfer operator (also known as Ruelle-Perron-
Frobenius operator) ®, : L*(I1,) — L*(I,) is defined via the duality

/ Bo(fgde = / flgoTa)dz Vf e L=(I,)
T Io

o

Let us recall that the n'" iterate of the transfer operator is given by
foo;
@ )= 3 ez
JEPn

where o; : T3} (I;) — I; is the inverse of the restriction T3 |r,: I; — T3 ().

Even though ®,, is so far defined on L!, it turns out that the transfer operator
preserves the subspace BV (I,), and indeed it has good convergence properties in
BV-norm. More precisely, we can now prove the

Theorem 2.2. Let @, : L'(I,) — L'(I,) be the transfer operator for the system
To, with a € (0,1). Then one can write

®, =11, + 7,

where I, and ¥, are commuting, linear bounded operators on BV (I,). Moreover,
U, is a linear bounded operator on BV (I,) of spectral radius strictly less than 1,
and 11, is a projector onto the one-dimensional eigenspace relative to the eigenvalue
1. It is given by

17l
M, (f) = lim — ) ®F(f
(f) mn; (/)

where the convergence is in L'.
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Corollary 2.3. For every a € (0,1), T, has exactly one invariant probability
measure [, which is absolutely continuous w.r.t. Lebesque measure. Its density
will be denoted by p,.

Proof. Let us fix @ € (0,1). By proposition 2.1, we can apply ([1], prop. 4.1),
which yields via Tonescu-Tulcea and Marinescu’s theorem [5] the following spectral
decomposition

¢, = Zp: A0+ ¥,
=0

where |A;| = 1, and the ®; are linear bounded operators on BV (I,) with finite-
dimensional image, and p(¥,) < 1. Now, it is known ([10], lemma 1) that T, is
exact in Rohlin’s sense (see [14]); this implies that the invariant measure we have
found is ergodic and mixing, which in turn implies that the only eigenvalue of @,
of modulus 1 is 1 itself and that its associated eigenspace is one-dimensional (see
[17], chap. 3). O

The spectral decomposition also immediately implies the following exponential
decay of correlations:

Proposition 2.4. For any a € (0,1) there exist C,\, 0 < XA < 1 such that for
every n € N and for every fi1, fo € BV (1,)

/ £ () fo (T2 () dptr — / £ (2)dp / Jo(@)dpa| < CXM A1l mv Il ol
I, I, Io

allsv

Proof. One can take any A s.t. p(V,) < A <1 and C = 2|[pa||Bv Sup,,eny 5
O

3. CONTINUITY OF ENTROPY

The goal of this section is to prove theorem 1.1, namely the Holder-continuity
of the function a — h(Ty,).

The first step is to prove an estimate of the essential spectral radius of the
transfer operator acting on the space of BV functions (Lasota-Yorke inequality). If
one can prove a bound which is uniform in «, then the invariant densities p, turn
out to be continuous in the L'-topology and their BV-norms are bounded. This
method has been undertaken in [10], but unfortunately their estimates prove to be
too optimistic': the bulk of section 3.1 (prop. 3.1) is another proof of this uniform
Lasota-Yorke inequality.

The second step (section 3.2) is to estimate the modulus of continuity of h(Ty,):
we will prove Holder-continuous dependence of the invariant densities p, in the
L'-topology, by using a stability result for the spectral projectors [7]. The theorem
then follows from Rohlin’s formula.

3.1. Spectral radius estimate. We are going to give a proof of the following
uniform Lasota-Yorke inequality (in order to simplify notation, from now on Vary_ f
will just be denoted Var f):

IThe mistake in [10] consists in using, in eq. (12), the estimate (1) of lemma 6.1 of the present

paper on the sets fén), which are not intervals if n > 1.
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Proposition 3.1. Let o € (0,1). Then there exist a neighbourhood U of o and
constants 0 < A < 1,C > 0,D > 0 such that for every a € U

Var @2 (f) < CA" Var f + D||f] 1 Yn > 1, Vf € BV(1,)

Although several inequalities of this type are present in the literature, (i.e. in
[15]), these are generally given for individual maps. However, for the goal of this
paper it is absolutely essential that coefficients A, C, D can be chosen uniformly in
«, hence one needs to take this dependence into account. As o moves, even just in
a neighbourhood of some fixed «, topological bifurcations are present (for instance
if o is a fixed point of some branch of T,,) hence in the formula (3) new boundary
terms appear, requiring a very careful control.

Lemma 3.2. For each a € (0,1), for each f € BV (I,)
Var @3 (f) < Var(f - gn,a)
Proof.

ZVar( oo’|XT (1>)

JEPn

Var ), = Var (

fooj
I E

JEPn

=3 var ( ) Var <f Z o >=Var(fgn,a)

J€Pn JEPn
O

Observe that g, o has infinitely many jumps discontinuities (indeed it is zero on
the boundary of any interval of the partition P,,), but all those jumps sum up to a
finite total variation. We will, however, need to prove the stronger statement that
the total variation of g, o decays exponentially fast in n, and uniformly in «. The
idea of the proof is to control the total variation of g, . by writing it as a sum of
two functions, hy, o and I, o in such a way that the total variation of I, . is always
very small, and h,, o, has always a finite, controlled number, of jump discontinuities.
The following lemma is the key lemma:

Lemma 3.3. For each € > 0, for each n > 1, for each a € (0,1) there exist two
non-negative functions hy o and l, o such that

In,a = hn,a + ln,oz
and for each «

(1) Vary, I, < 3"Ci e, where Cy is the constant in lemma 2.1;

(2) hn,a is smooth with |h;, .| < 1 outside a finite set Jy, o, where hy o has
jump discontinuities. Moreover, for each « there exists a neighbourhood
U=(a—n,a+n) of a« and r > 0 such that:

a. For each €U, JppC B(Jna,7)
b. For each x € Jy.o, #|JnpsgNB(x,r)]<n+1
c. Foreachye J,gNB(x,r), |v—y|<|a—p

Proof. By induction on n. If n = 1, let us note that

2?2 if  belongs to some I,
nae) = { : f

~ 1 0 otherwise
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hence we can choose L := [—+, 4] an interval around 0 such that, for all «,
Vary, g1, < € and define

l1,0 = g1,0XL h1,a = g1.aX1.\L

1. is clearly verified. To verify 2., note that given x € J; o, # a,a — 1, for §
sufficiently close to a, J; g intersects a neighbourhood of x in only one point. The
same happens if = a,a — 1 and T, (x) # o — 1. On the other hand, if x = a and
To(a) = a—1, then J1 g N [B —n, 5] = {y, B} contains at most two points, where
y= Tgl(ﬁ —1)N[B —n,B] and, since Tp is expanding, |y — o] < |a — 5|. The case
r=a—1,Ty(a—1)=a—1 is similar.

In order to prove the inductive step, let us remark that gn41,0 = gn,a ©Ta - 91,a-
Hence, we can define

hn—i—l,oz = hma oTy - hl,a

l7z+1,a = ln,a oTy - 91,0 T+ hn,oz oTy - ll,a
and check all properties are satisfied. First of all, we can prove by induction that
(4) Var by o < 2"ICr Ya € (0,1),¥n > 1

Indeed,
Yal“ hi,a < Yargl,a < Co

Yi«rhn+l,a = Z \@r(hn,aoTa'hl,Q) < Z \[a'r(hn,aoTa)Sllp hl,a"'sllp(hn,aoTa)Yar hl,a <

kepy 1k kepy Ik Iy I Iy
and since Ty, |7, is a homeomorphism
< \;ar R g sup hi,o + Sup hno E Var h1,q < 2\§ar R \;ar hia <2-2"71CF - Co
« kePy Tk Lo kep, Tk « “

where in the penultimate inequality we used the fact that sup; f < Vary f if
f(x) =0 for some z € I.
Let us now check 1.: similarly as before,

\gar lnt1,a = \gar(lnyaoTa.gl’a+hn7aoTa.llya) < 2\§ar by \;ar 91,a+2 \éar P \?arllya <

and by inductive hypothesis and (4)
<2-3"CP e Co+2-2"71CF - e < 3100

Since hi o is nonzero only on finitely many branches of T,,, then h,1 o has only
finitely many jump discontinuities. Now, if x is a jump discontinuity for hy o o T,
and not for hq ., then Ty is an expanding local homeomorphism at x for all 3 in
a neighbourhood of «, hence a., b. and c. follow. Let now x # a,«a — 1 be on the
boundary of some cylinder, i.e. T,(z) = a — 1. Then by inductive hypothesis c., if
B > «a is sufficiently close to a and 7 is sufficiently small, then

JnpgN[B—1,8—1+n={3-1}
hence
Jnt1,6 N Bw,r) = T3 (Jas N8 —n,8]) N B(z,7)
and b. follows. c. follows from the fact that T is expanding. If 8 < «, similarly
the claims follow because

Jnp1,8 N B, r) =Ty (JngN[B—1,8—1+n)NB(x,7)
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If x = a, then for 8 sufficiently close to «,
Jni1,8 N B(x,7) € (T (Jn,p) U{B}) N B(z,7)

has cardinality at most n + 2, and c. follows because T, is expanding. The case
xr = o — 1 is analogous.
O

Lemma 3.4. Let « € (0,1), n > 1 and ¢ > 0. Then there existn > 0, C > 0 and a
finite partition of [ — 1 —n,a + )] in closed intervals Ly, ... L, such that for each
Be(a—n,a+mn) and each i € 1,... 1 the following holds:

e 0<C<m(Lipg)<e
o Vary, 5 gnp < 2(n+1)[gn.plloc + 2€
where L; g :=L; N [B — 1, 5].

Proof. Given a,n, ¢, choose Ly, ..., L, in such a way that m(L;) < ¢, each element
of J, « lies in the interior of some L; and no two such elements lie in the same L;.
Moreover, set €; := ¢/ (3"03_1) and, for each (3 sufficiently close to «, choose a
decomposition g, g = hp g + Iy g as in lemma 3.3 relative to €;.

Varhn,gg/L y np@dr+ >0 lim hap(y)+ lm by s(y) <
i,8\In,B

L, —x~ —zt
B wGLi,ﬁﬂJnygy v

<m(Lig) +2#{Lig N Jn p}thnslloc < €+2(n+ 1]hngllo

hence Vary, , gn.p < Varg, , hnpg +lnp < 2 +2(n + 1)[|gn,g|lco- ]

Proof of proposition 3.1. Consider the partition Ly,..., L, given by lemma 3.4.
Then

s s
Var(f : gn,a) = Z‘é@r(fgn,a) < Z\éarfszlp In,a + \iar In,a 5Epf <

i=1 i=1

- 1
= —(T. \ <
< D lanolo s+ \pren (g [ S+ e s) <

2 2)lgn.alloo + 2
< 20+ 3l + 2 Vs £+ EE el 220 [ )0,
« Ia

Now, since ||gn,allcc < 73 decays exponentially, we can choose n large enough so
that A := (2n 4+ 4)72 < 1, and we can also choose 2¢ < ~2, hence we get that for
some constant D > 0, for each a € (a — 1, + 1),

() Var @5 (f) < AVar f + DI| f[|s

and by iteration and euclidean division (see e.g. [15], lemma 7 and prop. 1) the
claim is proven. [
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3.2. Stability of spectral decomposition. The next step to prove Holder-continuity
is proving the continuous dependence of invariant densities p,, in L'-norm. In order

to guarantee the stability of spectral projectors of the transfer operator, we will use
the following theorem of Keller and Liverani [7]:

Theorem 3.5. Let P. be a family of bounded linear operators on a Banach space
(B, || - |I) which is also equipped with a second norm || such that |-| < -|. Let us
assume that the following conditions hold:

(1) 3C1, M >0 s.t. foralle >0
IP"| < CiM"™  WneN
(2) 3C3,C3 >0 and X € (0,1), A < M, such that for all € > 0
IPEfI < CoAM||fl + CsM™|f| ¥neN VfeB

(3) if z € o(P.),|z| > A, then z is not in the residual spectrum of P.
(4) There is a monotone continuous function T : [0,00) — [0,00) such that
7(e) >0 4fe >0 and

IPo— P <7(e) >0 ase—0
where the norm || - || is defined as

IQI == sup |Qf]
IfI<1

Let us now fir § > 0 and r € (A, M) and define
Vsri={2€C:|z| <r ordist (z,0(P)) <}

and n = %. Then there exist H, K > 0 such that if 7(¢) < H then o(P.) C
Vs,r and

I(z = P)™ = (z = R) T S K7(e)" V2 ¢ Vs,

In our context, the norm | - | will be the L* norm and || - || will be the BV norm.
Our goal is to apply this result to the family {®, }oc where U is a suitable neigh-
bourhood of a given a € (0, 1).

Hypothesis (1) is trivial since transfer operators have unit L!'-norm, and (2) is
precisely proposition 3.1. In the context of one-dimensional piecewise expanding
maps, (3) is an immediate corollary of (2):

Lemma 3.6. For every « € (0,1) there exists € > 0 such that for |a — a| <,
pess(‘ba) <A

where X is the same as in proposition 3.1 and therefore condition (3) holds.

Proof. By aresult of Hennion [4], the uniform Lasota-Yorke inequality plus the fact
that the injection BV (I) — L'(I) is compact implies the estimate on the essential
spectral radius; therefore the elements of the spectrum of modulus bigger than X are
eigenvalues with finite multiplicity and cannot belong to the residual spectrum. [

To prove condition (4) it is necessary to estimate the distance between the ®,,
as « varies in a neighbourhood of a fixed a; by a result of Keller [6] the distance
between the transfer operators is related to the following distance between the
transformations:



10 GIULIO TIOZZO

Definition 3.1. Let T1,T5 : I — I two maps of the interval I. We define the
Keller distance between T7 and Ty as

d(T1,Tz) :=inf{x > 0 | A C I measurable with m(4) > 1 — &,

1
Jo: I — I diffeo s.t. Ty |a=T2 00 |a, suplo(z) — x| < &, sup‘ - < K}
el zel

a@)—ll

Lemma 3.7 ([6], lemma 13). If P; and Py are the transfer operators associated to
the interval maps Ty and Ty, then |P1 — P < 12d(T1,T>) where d is the Keller
distance.

We verify now that this convergence result applies to our case of a-continued
fractions. In order to do so, it is necessary to translate the maps in such a way
that they are all defined on the same interval, which will be [0,1] in our case. We
therefore consider the maps Ty, : [0,1] — [0, 1]

To(z) =Tolz+a—-1)+1—a

The relative invariant densities will be

pa(t) = palz +a—1)
Lemma 3.8. Fiz o € (0,1). Then there exists a neighbourhood U of a and a
positive constant C' such that, for a, f € U, we have

d(T,,Tp) < Cla — p|'/?
Proof. Having fixed «, 8, let us define

r+a—-1

- 1+(B—a)|x+a—1|+1_ﬁ

y(z)

It is immediate to verify that T, (z) = T(y(z)) Yz € [0,1] and ¢/ (z)

_ 1
T (+(B-a)|zta—1])?
We also have

sup |y(z) — x| = [y(1) — 1|

z€[0,1]
because when |a — (| is small we have that, for « > 8, y(x) — = has positive
derivative and y(0) > 0, while, for < 8, y(z) — « has negative derivative and
y(0) < 0. Thus, for |a — ]| sufficiently small,

1+ap

sup |y(z) —x|=|a—-p " <2a-—-p
s [o(a) = o Bl | 7t | <l

sup
z€[0,1]

,—1’ =|B-a| sup |2z +a—1+(B8—a)lz+a—1]*| <3la— 4|
y' () z€[0,1]

In order to compute the Keller distance we need to find a diffeomorphism o of the
interval such that T}, = Tﬂ oo on a set of large measure; the y defined so far is not
a diffeo, so it is necessary to modify it a bit at the endpoints and we will do it by
introducing two little linear bridges. Let § be such that §% = SUPgepo,1) [¥(z) — x| <

2|a — B[; we can define
@x forx <46
olz) =4 y(z) foré<z<1-9§
ﬁ(w_1+5)+y(1—6) forx>1-9§



THE ENTROPY OF NAKADA’S a-CONTINUED FRACTIONS: ANALYTICAL RESULTS 11

For the sup norm we have

sup |o(z) — x| < maX{y(5) =4, sup |y(z) —=| |y(1—6) -1+ 5I} <
z€[0,1] w€[6,1—4]

< sup |y(z) — [ <28 —qf
z€]0,1]

Since |y(8)| > & — |y(8) — 8| > § — 62, one gets SUP,e[0,6]

1 5
1’ < 175 and

7@ ~

sup
z€[0,1]

LI g0 _gp/e
) 1’§max{3|a ﬁ|71_5}§0|a ]

Now, o is a homeomorphism of [0, 1] with well defined, non-zero derivative except
for the points = §,1 —J. Hence one can construct smooth approximations o,, of ¢
which coincide with it except on [§— 5, 6+ 5 |U[1—0— 5=, 1 — 8+ 5= ] and such that
previous estimates still hold. These o, will be diffeomorphisms of the interval s.t.
To(x) = Ta(on,(x)) for z € [§ + 37,1 — 08— 35]. Since supm([6 + 57,1 — 6 — 5]) =
1—26>1—2|a— B|'/?, then the claim is proven. O

3.3. Holder-continuity of entropy. By using the perturbation theory developed
so far, we complete the proof that the function « +— h(T,) is locally Holder-
continuous. Note that the uniform Lasota-Yorke inequality proven in section 3.1
would already imply continuity by the methods in [10], while here we get a quan-
titative bound on the continuity module.

Proposition 3.9. Let 6 >0, and 0 < s < % Then there exists a constant C > 0
such that
|(Tw) — h(Tp)| < Cla—B|° Yo, € [0,1]

Proof. Let us fixn € (0,1), and choose r such that n = l‘iig&;) . By thm 3.5 applied

to the family @, (using proposition 3.1, lemma 3.6 and lemma 3.8 as hypotheses),
for each e € (0,1) there exist €, C; > 0 such that

Iy — )| < Cila — B2 VB E (a—e,a+e)

Now, in theorem 3.5 the bounds (H, K) depend only on the constants Cy, Cy, Cs,
A, M, and in proposition 3.1 and lemma 3.8 these constants are locally uniformly
bounded in «, hence the following stronger statement is true: for each a € (0,1)
there is C7 > 0 and some neighbourhood U of « such that

I = sl < Cila = B["*  Va,B€U
Since g, = II,(1), the previous equation implies
~ ~ n
1o = pallr = O(la = BI*)
By prop. 3.1, ||pa||Bv is locally bounded, hence so is || ||co and for any p > 1
1P — plle = O(la — B|27)
By Rohlin’s formula, h(7y,) = —2 fol log |y + a — 1|ps (y)dy, thus

1
[W(Ta) = h(Tp)| < 2/ log |y + a —1|pa(y) —logly + 5 —1|ps(y)| dy <
0

by separating the product and applying Holder’s inequality, for any p > 1
< 2||palleo|[log |y + o — 1] —log |y + 8 — 1|12 + [121og(y + B — Dl pp/p-1 |pa — pallLr



12 GIULIO TIOZZO

Now, basic calculus shows || log |y+a—1|—log |y+58—1|||: = O(—|a—F|log |a—p3]|)
and ||2log(y+a—1)| zr/»—1 is bounded independently of «.. Since this is true Vn < 1
and Vp > 1, the claim follows. O

Remark. One has to be careful with the norm he uses to get the convergence,
because while L'-convergence of the densities is assured by uniform Lasota- Yorke,
the invariant densities in general DO NOT converge to each other in BV -norm.

For example we have for o > %

()**‘4144* ( %;L*+ ()4i4
PalX) = log(l +a) X[O’I—QQZ] x 12 X(l_aazJ] x o
s0

Var(fo — fia) >

var lim  (pa =pa) = lim_ (pa —pa)

—a2\ —a2
z%(l a ) z%(l a )
a o

which does not converge to 0 as o — a.

4. CENTRAL LIMIT THEOREMS

The goal of this section is to prove a central limit theorem (CLT) for the systems
T,. Given an observable f : I, — R, we denote by S, f the Birkhoff sum

n—1
Suf =Y foT]

Jj=0

The function x +— %(w) is called Birkhoff average and it can be seen as a random

variable on the space I, = [a — 1, a] endowed with the measure p,. By ergodicity,
this random variable converges a.e. to a constant. Our goal is to prove that the
difference from such limit value converges in law to a Gaussian distribution.

Heuristically, this means the sequence of observables {f o T2} (which can be
seen as identically distributed random variables on I,,) behave as if they were in-
dependent, i.e. the system has little memory of its past. A convergence property
of this type is also useful to confirm numerical data, since it implies the variance
of Birkhoff averages up to the nt" iterate decays as ﬁ, hence one can get a good
approximation of the limit value by computing Birkhoff averages up to a suitable
finite time n (see [10]).

First (subsection 4.1), we will prove CLT for observables of bounded variation.
A particularly important observable is log |7’ |, because by Rohlin’s formula its
expectation is the metric entropy. Such observable, however, is not of bounded
variation: in subsection 4.2, we will enlarge the class of observables we work with
in order to encompass certain unbounded functions, including log [T |. In order to
do so, we need to define ad hoc Banach spaces.

4.1. CLT for functions of bounded variation.

Theorem 4.1. Let o € (0,1] and f be a real-valued nonconstant element of
BV (1,). There exists o > 0 such that the random variable %\/ﬁf‘i’“’) converges
in law to a Gaussian N(0,1), i.e. for every v € R we have

Sn - d « 1 v -
lim Lo (fnfffu < v) — 7/ e_ﬁ/Qdm
n—o0 ovn V2 J oo
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The proof of theorem 4.1 follows a method developed by A. Broise [1].

Perturbations of @,
Given f € BV(I,) with real values and given § € C, let us define the operator
®,(8): BV(1,) - BV(I,) with
D4(0)(g) = P(exp(6f)g)
For f fixed, this family of operators has the property that ®;(0) = ® and the

function § — ®;(0) is analytic; the interest in this kind of perturbations resides in
the identity

n—1

}(0)(g) = D™ (exp(6Snf)g)  with S, f =) foTk

Since in our case all eigenvalues of modulus 1 are simple, the spectral decomposition
transfers to the perturbed operator:

F(0)(9) = A5 ()20 (0)(9) + ¥ (0)(9)
where the functions 6 — ®¢(6), 8 — Ao(f) and 0 — V() are analytic in a
neighbourhood of # = 0. Moreover, p(¥¢(0)) < 2+%(q/) < |Xo(8)].

Let us now consider the variance of S, f:

Proposition 4.2 ([1], thm. 6.1). Let o € (0,1] and f be a real-valued element of
BV (1,). Then the sequence

o Snf_nffdﬂa 2
v f () e

converges to a real nonnegative value, which will be denoted by o?. Moreover, o = 0
if and only if there exists u € L2(ua) such that up, € BV (1) and

(6) f—/l Jdbta = u—uoT,

Now, if o > 0, the method of ([1], chap. 6) yields the central limit theorem. The
main steps in the argument are:
(1) Ao(0) = [; fdpa
) If [, fdue =0, then Af(0) = o2

) If f] fdue =0, then lim,, f] <I>” a:tf)(pa)dm:exp(—g)

CLT then follows by Lévy’s continuity theorem, LHS in previous equation being
Sn(f_ffa fd#w)
ovn :

In order to prove the CLT for a given observable we are now left with checking

that equation (6) has no solutions. The following proposition completes the proof

of theorem 4.1.

the characteristic function of the random variable

Proposition 4.3. For every real-valued nonconstant f € BV (1), equation (6) has
no solutions.

Proof. By proposition 2.1, T, satisfies the hypotheses of a theorem of Zweimiiller

[18], which asserts that there exists C, > 0 such that p, > C, on {p, # 0}.

Hence, the function -y o1 belongs to BV (I,,), so if it exists u such that fp, —
Pao {pa?é }
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(fla fdua)pa = upa —uoTy - ps in BV (I,), then we can multiply by 5= X{paz0} and
get f—fIa fdpe =u—uoT, in BV (I,), with u in BV (I,) because upa € BV (1,);
by knowing that f € BV (I,) we get uwoT, € BV (I,). For each cylinder I; € P,
since Ty, | 1;: Ij — I, is a homeomorphism,

Vlar(u oT,)= Var u

Tu(I;)
hence
Varu0T E VarUOT Var v = Var u
To(l; -1
LePy 1-e7>1 o(5) Lep, 7h
I full I]- full I; full

and, since the set of j s.t. I; is full is infinite, u o T, has a representative with
bounded variation only if Var(,_14)u =0, i.e. u is constant a.e. [l

4.2. CLT for unbounded observables. In order to prove a central limit theo-
rem for the entropy h(T,) one has to consider the observable x — log|T/, (z)| =
—2log |x|, which is not of bounded variation on intervals containing 0. Therefore,
one has to enlarge the space of functions to work with so that it contains such
observable, and use some norm which still allows to bound the essential spectral
radius of the transfer operator. Such technique will be developed in this section.

The strategy is to use the Ionescu-Tulcea and Marinescu theorem to get a spectral
decomposition of the transfer operator, as we did in section 2.2. This theorem
requires a pair of Banach spaces contained in each other such that the operator
preserves both. Traditionally, this is achieved by considering the pair BV (I) C
LY(I). In our case, we will replace the space of functions of bounded variation
with newly-defined, larger spaces Bg s C L', which allow for functions with a mild
singularity in 0.

4.2.1. A new family of Banach spaces. Fix a € (0,1]. Given a positive integer K
and some 0 < § < 1, let us define the K, §-norm of a function f : I, — C as

L —6
s = sup (s + [ 15@iar)

where the L are a sequence of increasing subintervals of I, namely

1
+ il | + _ —.il | - _
j>k

Jizk >
and Ly := Lﬁ U L., with Varg, f := VarL; f+ VarL; f- Let us now define the
space B s of functions of mild growth as '

Bys:={f € L' : f hasa version g with ||g||x.s < oo}
Let us now establish some basic properties of these spaces. First of all, they are
Banach spaces:
Proposition 4.4. For every K € N, 0 < § < 1, the space By s endowed with the
norm
1fllx.6 :=nf{llgllx.s, g=fae}
is a Banach space.
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Proof. This is obviously a normed vector space. Let us prove completeness. If
{fn} is a Cauchy sequence, then there exists for every k a function f, such that
fa lLo— [i in BV (Ly)-norm for n — oco. Also, by restricting fn, |r,,,— fri1 t0
Ly one can conclude f, ., |r,= f, hence one can define f : [a — 1,a] \ {0} —» C
st. flo,= fr- Now, Ve >0 3N Vm,n > N Vk > K

= Fall ) + 870 Var(f = ) < €
and by taking the limit for n — oo one has || fim, — fllx,s <e€. O
Note that || fllz1(z,) < | fllx,s, and Bg s is a BV-module, i.e.
f€Bks,ge BV = fge Bk
Another useful property of these spaces is the following:

Lemma 4.5. For K > max{é,ﬁ} (K>1ifa=1),0<d< 1,34 >0 s.t
Vf € Bk.s

@) < flénfm Vo € a—1,0]\ {0}

Proof. For f € Bgs, v € Ly \ L} |
lf@)] < [f(@) = fle)|+ [f(a)] < \]ii}rrersup‘ﬂ <
K Lt

K

: 1
and since z < e

m(Ly) — \\lz| m(L)

Similarly for x < 0. (]

§
1 1
< ké”f”K,é"FViil"f‘i‘ ||fHL1(In) < (( + 1) —I—K5+ > Hf”K,(S
Ly

Moreover, just as in the case of BV, the inclusion Bg s — L' is compact.
Proposition 4.6. For every K sufficiently large, 6 > 0, the unit ball
B={f€ Brs |flxs <1}

is compact in the L*-topology.

Proof. This fact is well-known when you consider BV instead of Bk s. Now, given
{fn} C B, for any k the sequence of restrictions f, |r, sits inside a closed ball
in BV (L) hence it has a subsequence which converges in L'(Lg) to some Fj €
BV (Ly). By refining the subsequence as k — oo, one finds a subsequence f,, € B
such that for every k, f,, |1, — F) in L'(Ly) and a.e. for | — oo. By uniqueness
of the limit there exists F' such that F' |, = F). By lower semicontinuity of total
variation, k= Vary, F + IFllrzyy < 1,80 F € B. We are just left with proving
fn, — F in LY(1,) for I — co. By lemma 4.5

A
[At=ri [ Aplwiers [ n-ri<z [ Zder [ 15, - B
I Io\Ly, Ly Io\Ly || Ly

The first term tends to 0 as k — oo and the second does so for | — oo as k is
fixed. O
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4.2.2. Spectral decomposition in Bk s. The goal of this section is to prove a spectral
decomposition analogous to theorem 2.2 in the space B s, namely

Theorem 4.7. For every o € (0,1], 0 < 6 < 1 and K sufficiently large, the transfer
operator ®, : Bix s — Bk s decomposes as

o, =11, + 9,
where I, and U, are bounded linear, commuting operators on Bg s, p(¥y) < 1

and I, is a projection onto a one-dimensional eigenspace.

The main ingredient to get the spectral decomposition is again a Lasota-Yorke
type estimate:

Proposition 4.8. Let o € (0,1], 0 < § < 1. Then there exist K € N, 0 < A < 1,
C >0, D >0 such that

196 (Nix.s < CA'[flls + DIl fllr Vf € Brs
Proof. First consider the case @ < 1. By formula (3) and lemma 6.1, 4.

n fooj foo;j
\é&}rr @a(f) S Var +2 sup m S

k jeP, TR (I)NL; |(Te) Oo‘j‘ T (I;)NL;
and by lemma 6.1, 1. and the fact that T} : I; — T2(I;) is a homeomorphism
= 3> Var(fgn.a)+

< 3Var + < -
ZP (T w2 i) = 5, inf o, (m(T2 (1) N L)}

where the inf is taken over all non-empty intervals. Now, note that by lemma 6.1,
3. and prop. 2.1, 2.

2| £l
Z V}ar(fgna Z Varfsngna +

1—
I;€Pyn 7 I;EP, I Ve

hence we are left with only one term to estimate: in order to do so, we will split
the sum in several parts, according to the filtration Ly:

> Varfbupgn a <llgnalle D Var f + Z > Var £ Sup gn.a <
I;€Pn 1 1;€Pn I;€Pn J J

e i
Lo, I; CL<h+1)k\Lhk

<marf+z Var £ osup gua S V0K fllat S I lsl(hADES  sup  gra <

h= (nt1yk Linynyr \Lhk h=1 Lnyyk\Lnk

57

1 1 1 1
and since L i1)k \ Lnk = [_ hk+a’ _(h+1)k+a) U ((h+1)k+a’ hk+a}

(h+1 M
< Il x.6k° (% +Z h2/€2) > < |Ifllx.6k° (% + Kg)

for some universal constant M for all & > K. The same estimate holds for

Var - @7 (f). Moreover, for fixed n and « the set {T2(I;) | I; € Py} is finite,

and since L} and L, are increasing sequences of intervals, inf{m(T2(I;) N L)
I; € P, k> K} is bounded below by a positive constant, and for every a one can
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choose n and K such that X := 6 (72 + £%) < 1. By combining all estimates, there
exists a constant D such that

126 (lxs < Alfllxs +DIflIln V€ Bkys

and by iteration the claim follows. The case a = 1 follows similarly; in this case
ll91,allcc = 1, but proposition 2.1 is replaced by

2n—4
V5 —1
lgnalloc <4 < 19n.alloc <2

2

O

Proof of theorem 4.7. By propositions 4.6 and 4.8, the transfer operators @,
acting on By s satisify the hypotheses of Ionescu-Tulcea and Marinescu’s theorem
[5], hence we have a spectral decomposition of @, with a finite number of spectral
projectors onto eigenvalues of unit modulus. Moreover, mixing of T, still implies
there is only one eigenvalue of modulus one and its eigenspace is one-dimensional.

O

Note that since BV (I,) C Bk,s, the invariant density p, previously obtained is
still a fixed point of ®,, hence I, is nothing but projection onto Cp,,.

4.2.3. End of proof. The proof of theorem 1.2 now follows from standard application
of the martingale central limit theorem. We will refer to the version given in ([17],
Thm. 2.11). In order to adapt it to our situation, we need the following two
lemmas:

Lemma 4.9. Let o € (0,1], 0 < § < %, and K s.t. theorem 4.7 holds, and
consider f € By s with f[ fdpe = 0. Denote by Fy the Borel o-algebra on I, and

Fn :=T,"(Fo). Then

SIES | Flll2(ua) < +00

n=0

Proof.

506 | Py =50 { | (00 T2) fdo 6 € 200). [y = 1 =

12220
Vinf p,

Now, by lemma 4.5 and since 0 < § < 3, [|®2(fpa)llr2(de) < CIP2(fpa)l k.5, and

by theorem 4.7 ®2(fpa) = ¥"(fpa) goes to 0 exponentially fast in By s-norm as
n — 0. g

— sup { [ e € L), [0 = 1} <

Lemma 4.10. Let f € Bk, real-valued, non-constant such that f[ fdp, = 0.
Then there exists no function uw € By s such that

f=u—uoT, po—a.e.
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Proof. Notice that u, and Lebesgue measure are abs. continuous w.r.t. each other,
hence measure zero sets are the same. Suppose there exists u which satisfies the
equation; then, u o Ty, belongs to Bk ;. However,

Var uoTy) Var uoT,) Var u:(k:fjmm) Var wu
I;:ll I full (@=1,0) (a—1,a)

J<k JSk

On the other hand, Var, +(u o T,) < k°||u o T,||k,s with § < 1, which contradicts
k
the previous estimate unless Var,_1,o)u =0, i.e. u is constant a.e. O

Proof of theorem 1.2. We can assume fl fdue = 0. By ([17], Thm. 2.11) and
lemma 4.9, the claim follows unless there exists u € L?(u) such that
f=u—uoT, Lo, — G-€.

If there exists such u, one can assume that [u dp, = 0, and then, by the proof of
([17], Thm. 2.11), u is given by

oo

Z(I) fpa

j=1

where convergence of the series is in L%(u,). By the spectral decomposition,

> ®/(fpa) converges also in By s C L?(uy). Moreover, since p, is in BV and is

bounded from below, then pi is in BV. Thus, u lies in Bk s, and this contradicts

lemma 4.10 unless f is constant. (|
Now, the function x — log |z| belongs to every By s, therefore

Corollary 4.11. For every a € (0,1], the Birkhoff averages for the observable
log |T/,(z)| = —2log |x| distribute normally around the value h(T,).

5. STABILITY OF STANDARD DEVIATION

Having established the convergence of Birkhoff sums to a Gaussian distribution,
we are now interested in analyzing how the standard deviation of this Gaussian
varies when « varies. The question is motivated by the numerical simulations in
[2], section 2. We prove the following

Theorem 5.1. Let f : (—1,1) — R of class Ct. For every a € (0,1) let us consider

the variance ,
2 . 1 Snf_nf[a fdﬂa
o, = lim dpig,
n—oo [ \/ﬁ

Then, for every o € (0,1)
. 2 _ 2
0{1—>mg 0y =04
The variance o2 of the limit distribution is the second derivative of the eigenval-
ues A\g(#) of the perturbed transfer operators {®,, r s} (see the discussion in section
4.1, and in particular eq. 2. after prop. 4.2). In order to prove the theorem, we
will prove uniform convergence in « of the eigenvalues, via application of theorem
3.5 to the family {(bot,f,@}{|a7g|<6,\9|<6,||f7i”°o<6}'
Hypothesis (1) of thm. 3.5 is easily proved:
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Lemma 5.2. For any C > 0, there exists M > 0 such that
|5 olle < M™ Vn e NVae (0,1) V|0 < C
for every f € L*(1y) s.t || flleo < C.
Proof. For g € BV
197 .0 (9)ll = 55 g)ll < [[e”5 glly < (1€ [l lgllh < e Pl |g]),
where we used that the unperturbed operators have unit norm on L*. (]

Hypothesis (4) follows directly from lemma 3.8; the precise statement, whose
proof we omit, is the following:

Lemma 5.3. Let a € (0,1). Then there exist ¢,C > 0 such that for any f, f €
BV ([0,1]) s.t. [|f = flleo <€ V|0 <€, V| —al <e
12050 = ®apoll < C (lo—a'* +1If = fll=)
We now check condition (2), using the estimates in section 3.1 to get a Lasota-
Yorke inequality which is uniform in both « and 6.
Proposition 5.4. Let a € (0,1). There exist 0 < A < 1, €, Co,C3 such that
Yar D7 o(g) < CoA” \garg +Csllgllih VneN
for every a € (a — €, + ¢€), for every |0] < € and for every f € CY(1,) with
[ fller <1
Proof. Let us fix g € BV. We have

Var @4 1o(9) = Var @5 (e g) < Var(e™ /g - gn.a) = 3 Var(e"g- go.a)

Note that, since g, o |ar,= 0,

VTaI‘(EOS"fQQn,a) < \Gar(ees"fggn,a) + Ol f oo Vlér(gqu,a)
- g -

J J

ef5nf !
Vi gl -+ sup
() |/, =
and by expanding the derivative

eesnf ! B (695"1‘)/ ( 1 )/ . 605"f922;3(f/0T§)(T§)l ( 1 )I 05
((T&‘)/) T mey \mey) ¢ T T2y Nawy) -

n—1 ’ ’ /
_ 5nf {02 (foTa) (( 1 ) ] < o1 1911 Moo +2

Now, by lemma 6.1, 3

eesnf
n.ag) = Var I < gup
)= Ve [y <5

J

0Sn f
0Sn f €
!

(Tz)

Vi
VIEJ;_Lr(e I?r g

STty oms] N\ (TR) 1—7a
Moreover, by the estimates of proposition 3.1 (eq. (5)), for each « € (0,1) and
each n there exist 1, D such that

Var(ggn,a) < (20 +4)7g Varg + Dglli Ve & (a—=n,a+1n)

hence by combining all previous estimates
1611110 + 2

D
F1=221 b)Y gl

Var @0 .0(g) < (2n + 5)e" 117 Var g ¢ ¥111 (
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and the claim follows by choosing some n large enough and iterating. (]

Remark. Notice this is the only place where we need f € C'. This is because, if
f € BV, e?5+F will not in general be of bounded variation.

We are now ready to draw consequences for the spectral decomposition: let us
denote by Aq,f(6) the eigenvalue of @, r ¢ which is closest to 1.

Lemma 5.5. Let o € (0,1), and suppose we have a family { fa}ae(o,1) of functions
fo :10,1] = R of class C* for every o and such that

- Ifa — falloo = 0 for @ — a

- SUPue(0,1) |l falloe < 00
Then there exists € > 0 such that Ay, (0) converges to A, (0) on 0] < € uniformly
n 6 as @ — a.

Proof. Let us fix r € (A, 1) and J such that 0 < § < 157". Then the projectors
1

= 5= (2= ®ap,0) 'dz
21 Jap(1,5) !

(7) Ha;foue :

are defined for |o — @] < € and |f| < € for some € and for ¢ sufficiently small
rank(Il, s, ¢) = rank(Il, 7, 0) = 1 ([7], cor. 3) so they are all projections on the 1-
dimensional eigenspace relative to the eigenvalue which is closest to 1. By Dunford
calculus we also have

1
(8) Aarfo (o 00 = Pa,fo0lla, 100

=5 22— Paf,,0) " dz
21 Jap(1,5) d

By thm. 3.5 and proposition 5.3 there exists C' such that for |a —a| < e and 0| < €

n
1 = Pagan) ™ = (2= Pap) NS C (Jo =l + 1 fa — fall)
with n > 0 fixed by thm. 3.5 so by eqns 7 and 8
[Aa(0) — Aa ()] = O(|a _Q|1/2 + 1 fo = falloo)”

uniformly in 6 as a — a. ([
Proof of theorem 5.1. Let fo:[0,1] = R be fo(z) := fle+a—1) = [T | fdua.
Since po — po in L' and f(z+a—1) = f(z+a—1) in L, we have [ | fdpua —
f(il fdpa, and the family {f,} satisfies the hypotheses of lemma 5.5, therefore

Aa,fo (0) converges uniformly in a nbd of 6 = 0 to Ay 7, (€). Since all Ay, () are
analytic in 6 you also have convergence of all derivatives, in particular A{ fu (0) —

Aa, . (0). We now note that fol fa(x)po(z)dx = 0, which implies, as we have seen
in section 2.2, that A , (0) = 0. O
6. APPENDIX

Let us recall a few well-known properties of total variation:

Lemma 6.1. Let I C R be a bounded interval, J C I a subinterval and f of
bounded variation. Then:

)
1
sup /(o) < Ve £+ — [ |f(@)lda
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(2) If g€ BV(J),
Var(fg) <sup|f(z)| Varg + sup[g(x)| Var f
J z€J J z€J J
(3) If g is of class C* on J,
Var(fg) < Var fsuplg(a)| + suply(0)] [ |7(o)ldo
J J o ozeg z€J J

(4)
Var(fx,) < Var f + 2sup |f|
I J J

Let us also prove the basic properties of T, mentioned in section 2.1. Proof of
proposition 2.1.

(1)
1

2 2 2
sup sup = sup z° <max{a’, (a—1)"}
jeprzel; (Ta) (@) zefa—1a)

The case for n > 1 follows from the chain rule for derivatives.
(2) Let Ky, :=supjep, SUp,e, |90 (2)|- For n =1,

() |-

(T3 (@) = (T3 (Tal@) T4 ()
(T2 (@) = (T32) (T [Th (@) + (T2 (Ta(@) T4 (2)

For every x in the interior of some interval I; € Pp1,

' (Ta+h)"(@) | _ ’(TS)”(TCY(HC))(T(;(96))2 4 T (Ta(2))T5/ ()
(T )y @) | UTR) (Ta(2)Te@)? (1) (Ta(2) T3, (2)]?

3 ‘ (T2) (T (2)) ‘ T/ (2) L

TR (Ta@)? | T @) () (Ta ()] —

hence K,+1 < K, + 27" and by induction K,, < Zz;é 29k < 172%.

(3) By induction on n: let I e De the interval of the partition P, which contains
a—1 and I;; be the one which contains a.

For n =1, T,(I;) = I, for I; # I, I7 . hence

) ]m’

K = sup sup
JEP1 QCE[J'

sup 2|z <2
z€la—1,a]

Now,

IN

Kn + K1’Y;L

{Ta(Ij)llj € Pl} < {IavTa(I;M)aTa(Ijtn)}

Let m > 1; consider an element of the partition P,,+1, which will be of
the form Ijo N Tﬁl(Ijl) M--- OT’”(Ijn) 7é @, with Ijm - 7Ijn S Pl. If we
let L :=1I;, N---NT~™(; ), we have L # () and L € P,. Moreover,
one verifies that

T Ly N T Iy NN T (,) © T (L, NN T 0(1,)) = Ta (L)

At this point we have two cases:
o if T,,(I;,) 2 L then

Ta (L, N T L) N N T (1)) = To (L)

[e] «



22

(1]
2]
(3]

(4]
(5]
(6]
(7]
(8]
(9]
[10]
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[15]
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(17]
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e otherwise we have T,,(I;,) 2 L but T,,(I;,)NL # 0 (if the intersection is
empty, so it is the interval we started with); since T (I;) = I for I; #
I; IT | this implies I;, € {I; I} }. Moreover, because T, (I;

JM? " Jm JM? " Jm jM)
and Ta(I;;) are intervals with supremum equal to «, there exists at

most one interval I, of the partition P, s.t. Ta(I]'-tn) NI, # 0 and
T.(1I ; ) 2 I;; in the same way there exists only one interval I,, of the
partition P, such that T,(I;,,) N1, # 0 and T, (I, ) 2 1., therefore
either L =1, or L = I,.
In conclusion {T7T1(1;) | I; € Ppy1} is contained in
{Ta (1) | I; € Py UTa (I, 0T (1) WIS (15, N To ' (1))

JIM
hence at every step the cardinality can only increase by at most 2.
(4) Recall that
2

(@) = z* if x belongs to some I;
g1,0l® 0  otherwise

hence the claim follows from sommability of the series Y /.
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