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1 Gaussian distributions on R

Φ̄ vs Φ

Let us start with some basic definitions in a language that assumes minimal or no background
in probability. The function

p(x) =
1√
2π

e−x2/2 (1)

is called the density function, or simply density, of the standard Gaussian distribution. (This no-
tation p is not standard and we will at times use different notation.) This means that, for any
measurable set A on R, we define its standard Gaussian measure by Lebesgue’s integral

γ(A) =
∫

A

1√
2π

e−x2/2 dx. (2)

For example, if A is an interval [a,b], then

γ([a,b]) =
∫ b

a

1√
2π

e−x2/2 dx. (3)

Notice that, in the case when A is the whole real line R, we can use the following trick, using polar
coordinates, to compute( 1√

2π

∫
R

e−x2/2 dx
)2

=
1

2π

∫∫
R2

e−(x
2+y2)/2 dxdy =

1
2π

∫ 2π

0

∫
∞

0
e−r2/2r drdθ = 1,

so the measure of the whole line γ(R) is equal to 1. By the countable additivity of the Lebesgue
integral, if A = ∪`≥1A` is a disjoint union of countably many sets A` for `≥ 1, then

γ(A) =
∫

A

1√
2π

e−x2/2 dx = ∑
`≥1

∫
A`

1√
2π

e−x2/2 dx = ∑
`≥1

γ(A`).

If you imagine an experiment whose outcome is a random real number, you can interpret measure
γ(A) as the probability that the outcome will belong to the set A. Remember, that this is just an
interpretation and, even when we introduce different notation to better match this interpretation, at
the end of the day, we are always interested in various properties of the above measure γ and its
multivariate analogues below.

In a basic undergraduate probability class, you would denote the random outcome of this
imaginary experiment by, say, g, call it a random variable, and use the notation P(g ∈ A) to denote
the “probability that the random variable g takes value in the set A”. When

P(g ∈ A) = γ(A) =
∫

A

1√
2π

e−x2/2 dx, (4)

we would call the standard Gaussian measure γ the distribution of the random variable g. Of
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course, there are many other distributions. The standard Gaussian distribution is also often called
the standard normal distribution and is denoted by N(0,1). An abbreviation g∼N(0,1) means that
g has the standard Gaussian distribution, i.e. (4) holds.

In a graduate probability class, such vagueness as “outcome of a random experiment” is not
allowed, so “random variable” has precise definition, but this is not crucial to us.

Given a (measurable) function f : R→ R, we can plug in g into f and define the expectation
of f (g), denoted by E f (g), as the average of f weighted by the density p(x),

E f (g) :=
∫
R

f (x)p(x)dx. (5)

Informally, we will often call the expectation E f (g) the average of f (g). We will assume that this
is defined only when f (x) is absolutely integrable, as is usual in the Lebesgue integration, i.e.

E| f (g)|=
∫
R
| f (x)|p(x)dx < ∞.

Notice the basic connection between expectations and probability (or integrals and measure),

P(g ∈ A) = E I(g ∈ A), (6)

where I(x ∈ A) is the indicator of the set A,

I(x ∈ A) =
{

1 if x ∈ A
0 if x 6∈ A.

Of course, this connection is just another notation for

γ(A) =
∫

A
p(x)dx =

∫
R

I(x ∈ A)p(x)dx.

When f (x) = xk for integer k ≥ 1, the average

Egk =
∫
R

xk p(x)dx (7)

is called the kth moment of g. The first moment is also called the mean. If g has the standard
Gaussian distribution N(0,1) then, by symmetry, Eg = 0, and, by integration by parts,

Eg2 =
1√
2π

∫
R

x2e−x2/2 dx =
1√
2π

∫
R

xd(−e−x2/2) =
1√
2π

∫
R

e−x2/2 dx = 1.

The quantity Var(g) = E(g−Eg)2 = Eg2− (Eg)2 is called the variance of a random variable g, so
for standard Gaussian Var(g) = 1.

Given two parameters µ ∈ R and σ > 0, and let us denote X := σg+ µ. It is easy to see by
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the change of variables that

P(X ∈ A) = P
(
σg+µ ∈ A

)
= P

(
g ∈ A−µ

σ

)
=
∫

A−µ

σ

1√
2π

e−
x2
2 dx =

∫
A

1√
2πσ

e−
(x−µ)2

2σ2 dx.

The integrand inside the last integral,

pµ,σ (x) =
1√

2πσ
e−

(x−µ)2

2σ2 , (8)

is called the density of the Gaussian distribution N(µ,σ2) with the mean µ and variance σ2,
because µ = EX and σ2 = Var(X). When µ = 0, Gaussian distribution N(0,σ2) is the distribution
of the linear transformation σg of a standard Gaussian random variable g.

Notice how the probabilistic notation P(σg+µ ∈ A),E f (σg+µ) conveniently allows you to
think of these quantities either in terms of the random variable g and express, for example,

E f (σg+µ) =
∫
R

f (σx+µ)p(x)dx,

or in terms of the random variable X = σg+µ and express this as

E f (X) =
∫
R

f (x)pµ,σ (x)dx.

In other words, the notation P and E conveniently hides the change of density, depending on what
you choose to view as your random variable.

Let us record a couple of basic properties of probabilities and expectations, which will be
useful to us. Suppose that the function f in (5) is nonnegative, and consider any t > 0. Then,
integrating separately over two sets {g | f (g)≥ t} and {g | f (g)< t}, we can write

E f (g) = E f (g) I( f (g)≥ t)+E f (g) I( f (g)< t)

≥ E f (g) I( f (g)≥ t)≥ tE I( f (g)≥ t) = tP( f (g)≥ t).

This simple computation gives what is known as Chebyshev’s inequality,

P( f (g)≥ t)≤ E f (g)
t

. (9)

If you are familiar with general distributions and expectations, the same calculation gives

P(X ≥ t)≤ EX
t

(10)

for any nonnegative random variable X and t > 0. In particular, for any random variable X , any
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t ∈ R and λ ≥ 0, this implies Markov’s inequality,

P(X ≥ t) = P(eλX ≥ eλ t)≤ e−λ tEeλX . (11)

Now, let f : R→ R be a convex function. By convexity, f (x)− f (a) ≥ f ′(a)(x− a). If f is not
differentiable at a, one can replace f ′(a) by the slope of any line below f passing through the point
(a, f (a)). For x = X and a = EX , f (X)− f (EX) ≥ f ′(EX)(X −EX), and taking expectations
(integrating) on both sides, we get

E f (X)− f (EX)≥ f ′(EX)(EX−EX) = 0.

This means that for any convex function f , we have

E f (X)≥ f (EX), (12)

which is called Jensen’s inequality.

2 Standard Gaussian distributions on Rn

Let us now consider x = (x1, . . . ,xn) ∈ Rn and denote its Euclidean norm by

‖x‖=
(
x2

1 + . . .+ x2
n
)1/2

.

The function
pn(x) =

1
(
√

2π)n
e−‖x‖

2/2 (13)

is called the density function, or simply density, of the standard Gaussian distribution on Rn. This
means that, for any measurable set A on Rn, we define its standard Gaussian measure by

γn(A) =
∫

A

1
(
√

2π)n
e−‖x‖

2/2 dx. (14)

If p is the standard Gaussian density on R in the previous section then, obviously,

pn(x) = p(x1) · · · p(xn).

As before, we can imagine an outcome of some random experiment g = (g1, . . . ,gn) such that

P(g ∈ A) = γn(A) =
∫

A

1
(
√

2π)n
e−‖x‖

2/2 dx. (15)

We would call the standard Gaussian measure γn the distribution of the random vector g. In some
sense, this vector g or measure γn will be our most basic objects of study.

Let us notice that, if we take the set A to be a rectangle A = ∏`≤n A` with sides A` then, by
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Fubini’s theorem,

P(g ∈ A) = P(g1 ∈ A1, . . . ,gn ∈ An) =
∫

A
p(x1) · · · p(xn)dx1 . . .dxn = ∏

`≤n

∫
A`

p(x)dx.

In particular, if we take all sides to be R except one side A`, this gives that

P(g` ∈ A`) =
∫

A`

p(x)dx.

This means that each coordinate of the standard Gaussian random vector g∈Rn is a standard Gaus-
sian random variable. Again, this is just a probabilistic way of saying that, if you want to measure
along only one coordinate without any constraints on the other coordinates, after integrating out
all the other coordinates, you get

γn(R× . . .×A`×·· ·×R) = γ(A`),

i.e. the standard Gaussian measure on the real line. The measure on one coordinate when you
don’t put any constraints on the other coordinates is called the marginal on this coordinate, so the
marginals of the standard Gaussian measure on Rn are standard Gaussian on R.

We can rewrite the above Fubini theorem as

P(g1 ∈ A1, . . . ,gn ∈ An) = P(g1 ∈ A1) · · ·P(gn ∈ An). (16)

In probability, this property is called independence, or that the random variables g1 . . . ,gn are
independent. This name comes from the fact that for, let’s say two random vectors X and Y ,

P(X ∈ A|Y ∈ B) :=
P(X ∈ A,Y ∈ B)

P(Y ∈ B)

is called the conditional probability that X is in A given that Y is in B. This proportion of outcomes
X ∈ A inside the set Y ∈ B represents the “probability to observe X from A given that you already
observed Y from B”. If the information above Y does not affect the chances of X , we should have

P(X ∈ A|Y ∈ B) = P(X ∈ A),

which, by the above definition, is equivalent to

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B).

The random variables g1 . . . ,gn are called independent if information about any subset of them
does not affect the chances of the others, which is exactly (16).

A slight modification of the standard Gaussian distribution γn on Rn would be to scale each
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coordinate by a constant and consider a random vector (σ1g1, . . . ,σngn), whose density is

∏
`≤n

p0,σ`
(x`) = ∏

`≤n

1√
2πσ`

e
−

x2
`

2σ2
` . (17)

Under this measure, the coordinates are independent with Gaussian distributions N(0,σ2
` ).

3 General Gaussian distributions on Rn: non-degenerate case

In probabilistic language, general Gaussian distributions are defined as the distributions of linear
maps of the standard Gaussian random vector (g1, . . . ,gn). The maps could be between spaces
of different dimensions Rn and Rk but, for simplicity, we will first use only linear maps on Rn

corresponding to square matrices and in this section we will consider only non-degenerate case.

Consider a n× n matrix A such that det(A) 6= 0, and define a random vector X = Ag, where
g = (g1, . . . ,gn) is a standard Gaussian random vector (of course, when we use linear algebra
notation, such as Ag, we think of g as a column vector). For any (measurable) set Ω in Rn, we can
write the probability that X belong to this set as

P(X ∈Ω) = P(Ag ∈Ω) = P(g ∈ A−1
Ω) =

∫
A−1Ω

1
(
√

2π)n
exp
(
−1

2
‖x‖2

)
dx.

Let us now make the change of variables y = Ax or x = A−1y. Then

P(X ∈Ω) =
∫

Ω

1
(
√

2π)n
exp
(
−1

2
‖A−1y‖2

) 1
|det(A)|

dy.

First of all,

‖A−1y‖2 = (A−1y)T (A−1y) = yT (AT )−1A−1y = yT (AAT )−1y = yTC−1y,

where in the last step we introduced the notation

C = AAT . (18)

We will see in a second that C is what is called the covariance matrix of X . It is obvious that this
matrix is symmetric and positive semidefinite. Since

det(C) = det(AAT ) = det(A)det(AT ) = det(A)2,

we have |det(A)|=
√

det(C). Therefore, we can rewrite the above probability as

P(X ∈Ω) =
∫

Ω

1
(
√

2π)k

1√
det(C)

exp
(
−1

2
yTC−1y

)
dy.
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This means that the integrand

pC(x) :=
1

(
√

2π)n

1√
det(C)

exp
(
−1

2
xTC−1x

)
(19)

is the density of X . The distribution with this density, denoted N(0,C), is called the Gaussian
distribution on Rn with the covariance C. Notice that it does not depend on the choice of the
matrix A but only on the matrix C.

• The covariance matrix of a random vector X is the matrix C with elements

ci, j = EXiX j,

when these expectations exist. When X = Ag as above, using that

Eg2
k = 1 and Egkgk′ = 0 for k 6= k′

(integrate with respect to density pn(x) and use Fubini’s theorem), we get by linearity of integral
(expectation),

EXiX j = E
n

∑
k=1

ai,kgk

n

∑
k=1

a j,kgk =
n

∑
k,k′=1

ai,ka j,k′Egkgk′ =
n

∑
k=1

ai,ka j,k.

This is the scalar product of the ith and jth rows of matrix A or, in other words, of the ith row of
matrix A and jth column of matrix AT , which is exactly the (i, j) element ci, j of C = AAT . So C is
the covariance matrix of X ,

Cov(X) =C,

as we mentioned above.

• Notice that, in the case when X = Qg for some orthogonal matrix Q, the covariance C =

QQT is the identity matrix, and the density of X in (19) is standard Gaussian on Rn,

pQ(x) =
1

(
√

2π)n
e−‖x‖

2/2. (20)

This is basically because the standard Gaussian density is a function of ‖x‖ and is, therefore,
rotationally invariant.

• If we take another invertible matrix B, and consider random vector Y = BX = BAg, it will
have a density function (19), only with the covariance

Cov(Y ) = (BA)(BA)T = B(AAT )BT = BCBT = BCov(X)BT . (21)

It is easy to check that this relationship, Cov(Y ) = BCov(X)BT , between the covariances of X and
Y = BX is always true, not only in the Gaussian case.

• The distribution N(0,C) is completely determined by the covariance matrix C. Suppose that
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the covariance matrix is of the block-diagonal form

C =

[
C1 0
0 C2

]
,

where C1 is n1×n1 and C2 is n2×n2, where n = n1+n2. If we write X = (U,V ), where U consists
of the first n1 coordinates and V consists of the last n2 coordinates, then the covariances EXiX j are
equal to 0 if i≤ n1 and j ≥ n1+1. In other words, the coordinates of U and V are uncorrelated. In
this case, if we represent x ∈ Rn and x = (u,v) for u ∈ Rn1 and v ∈ Rn2 , we can write

C−1 =

[
C−1

1 0
0 C−1

2

]
, xTC−1x = uTC−1

1 u+ vTC−1
2 v

and, det(C) = det(C1)det(C2). Therefore, the density pC(x) in (19) can be rewritten as

pC(x) = pC1(u)pC2(v) (22)

where
pC1(u) =

1
(
√

2π)n1

1√
det(C1)

exp
(
−1

2
uTC−1

1 u
)

and
pC2(v) =

1
(
√

2π)n2

1√
det(C2)

exp
(
−1

2
vTC−1

2 v
)

are Gaussian densities on Rn1 and Rn2. Given two sets A1 ⊆ Rn1 and A2 ⊆ Rn2 , we can calculate
the probability that X = (U,V ) belongs to the rectangle A1×A2 as

P(U ∈ A1,V ∈ A2) = P(X ∈ A1×A2) =
∫

A1×A2

pC(x)dx =
∫∫

A1×A2

pC1(u)pC2 dudv

=
∫

A1

pC1(u)du
∫

A2

pC2(v)dv = P(U ∈ A1)P(V ∈ A2).

(Why does the last equality hold?) This means that uncorrelated coordinates of a Gaussian vector
are independent in the probabilistic sense described above. Analytically, it just means that the
density (if it exists) decouples into a product of two densities on the corresponding subspaces.
What we showed is that for Gaussian distributions, uncorrelated means independent.

4 General Gaussian distributions on Rn

Let us now consider a standard Gaussian vector g = (g1, . . . ,gm) on Rm and let A be n×m matrix.
Consider X = Ag, which is now a random vector in Rn. We will see that the distribution of this
vector depends only on the covariance matrix of X ,

Cov(X) = EAg(Ag)T = A(Eggt)AT = AAT =: C,
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and does not really depend on the matrix A or dimension m, except through this covariance matrix.
As before, the distribution of X is denoted N(0,C) and is called the Gaussian distribution on Rn

with the covariance C.

To prove the above statement, we will use the singular value decomposition of the matrix A.
The matrix C = AAT is, obviously, symmetric and positive-semidefinite. Let

C = QDQT

be its eigenvalue decomposition for some n× n orthogonal matrix Q and diagonal matrix D that
has eigenvalues d1, . . . ,dn of C on the diagonal, D= diag(d1, . . . ,dn). Singular value decomposition
tells us that A can be written as

A = QD1/2R,

where D = diag(d1/2
1 , . . . ,d1/2

n ) and R is some m×m orthogonal matrix on Rm. We can rewrite X ,
using this representation, as

X = Ag = QD1/2Rg. (23)

Recall that the random vector Rg on Rm has the standard Gaussian distribution, just like g, because
R is orthogonal. From the point of view of calculating probabilities, we can redefine

X = QD1/2g, (24)

which simply amounts to making the change of variables Rg→ g, which does not affect the density.
Let us denote columns of the matrix Q by q1, . . . ,qn,

Q =
[
q1 q2 · · · qn

]
,

and let us suppose that the eigenvalues of C are arranged in the decreasing order, d1≥ d2≥ . . .≥ dn.
Some of them can be zero, so let us suppose that the first r are non-zero. In this case, we can rewrite

X = QD1/2g = g1d1/2
1 q1 + . . .+grd

1/2
r qr. (25)

Notice that this formula only involves the first r coordinates of the standard Gaussian random
vector g = (g1, . . . ,gm), and their distribution is standard Gaussian on Rr, so the dependence on
the dimension m disappeared. The dependence on the original matrix A also disappeared, since
this representation depends only on the eigenvalues and eigenvectors of the covariance matrix C.
In other words, any linear map of the standard Gaussian random vector on a space of arbitrary
dimension has distribution that depends only on the resulting covariance matrix C. For example,
we can always choose A to be a square matrix if we like, for example, A = QD1/2. Let us collect
several properties of these distributions that will be useful to us.

• Any linear map Y = BX of X ∼ N(0,C) is Gaussian N(0,BCBT ). This is because we can
think of Y as Y = BAg and calculate

Cov(Y ) = BA(BA)T = B(AAT )BT = BCBT ,

10



just like in the previous section.

• One simple consequence of this is the following stability property of real-valued Gaussian
distributions. Let us take two independence standard Gaussian random variables g1 and g2, which
can be viewed as coordinates of the standard Gaussian random vector (g1,g2) on R2. The maps

X1 = σ1g1, X2 = σ2g2, X = X1 +X2 = σ1g1 +σ2g2

have Gaussian distributions N(0,σ2
1 ), N(0,σ2

2 ) and N(0,σ2
1 +σ2

2 ) on R. In other words, if random
variables X1 ∼ N(0,σ2

1 ), X2 ∼ N(0,σ2
2 ), and X1,X2 are independent, then their sum

X1 +X2 ∼ N(0,σ2
1 +σ

2
2 ).

More generally, if Gaussian random variables Xi ∼ N(0,σ2
i ) for i≤ n are independent, then

X1 + . . .+Xn ∼ N(0,σ2
1 + . . .+σ

2
n ). (26)

Next, we consider a multidimensional analogue of this stability property.

• Let us consider two independent Gaussian random vectors X ∼ N(0,C1) and Y ∼ N(0,C2)

on Rn. Independence means that we can view X = Ag and Y = Bg′ as linear maps of independent
standard Gaussian random vectors g and g′ on Rn. If you like, you can view g and g′ as the first n
and the last n coordinates of the standard Gaussian random vector (g,g′) on R2n. Then the sum

X +Y ∼ N(0,C1 +C2)

is again a Gaussian vector on Rn, because it is a linear map of (g,g′). Its covariance can be easily
computed and it is equal to C1 +C2.

• As in the previous section, suppose that the covariance matrix of X ∼ N(0,C) is of the
block-diagonal form

C =

[
C1 0
0 C2

]
,

where C1 is n1×n1 and C2 is n2×n2, where n = n1+n2. Consider any n1×n1 matrix A and n2×n2
matrix B such that C1 = AAT and C2 = BBT . Let g be standard Gaussian random vector on Rn1

and g′ to be standard Gaussian on Rn2 . If we define U = Ag and V = Bg′ then the vector (U,V ) is
Gaussian on Rn, because it is a linear map of the standard Gaussian vector (g,g′) on R2n. On the
other hand, using that Eg(g′)T = 0, it is easy to check that the covariance of (U,V ) is equal to C.

This means that X and (U,V ) have the same distribution, which means that the first n1 coordinates
of X are independent of the last n2 coordinates.
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5 Gaussian integration by parts

Let g be a Gaussian random variable with variance Eg2 = σ2. Let us denote its density function by

ϕ(x) =
1√
2πv

exp
(
− x2

2σ2

)
. (27)

Notice that xϕ(x) =−σ2ϕ ′(x). Therefore, given a continuously differentiable function F : R→R,
we can integrate by parts,

EgF(g) =
∫

xF(x)ϕ(x)dx =−σ
2F(x)ϕ(x)

∣∣∣+∞

−∞

+σ
2
∫

F ′(x)ϕ(x)dx

= σ
2
∫

F ′(x)ϕ(x)dx = σ
2EF ′(g),

if the limits limx→±∞ F(x)ϕ(x) = 0 and the integrals on both sides are finite. Therefore,

EgF(g) = Eg2EF ′(g). (28)

This computation can be generalized to Gaussian vectors as follows.

Let g = (g`)1≤`≤n be a Gaussian random vector. Given a continuously differentiable function

F = F
(
(x`)1≤`≤n

)
: Rn→ R

that satisfies some mild growth conditions (discussed below), let us show how one can integrate
Eg1F(g) by parts. If σ2 = Eg2

1 > 0 then the Gaussian vector ĝ = (ĝ`)1≤`≤n defined by

ĝ` = g`−λ`g1 where λ` =
Eg1g`

σ2 , (29)

is independent of g1, since the covariance

Eg1ĝ` = Eg1g`−λ`σ
2 = 0.

If we denote λ = (λ`)1≤`≤n then we can write g = ĝ+ g1λ . If E1 denotes the expectation in g1
only for a fixed ĝ, then using (28) implies that

E1g1F(g) = E1g1F(ĝ+g1λ ) = σ
2E1

∂F
∂ t

(ĝ+ tλ )
∣∣∣
t=g1

(30)

if, for all ĝ, limt→±∞ F(ĝ+ tλ )ϕ(t) = 0 and both sides of (30) are finite, which can be ensured by
some mild growth conditions on F and its partial derivatives (see below). If we assume that

g1F(ĝ+g1λ ) and
∂F
∂x

(ĝ+ tλ )
∣∣∣
t=g1

(31)
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are absolutely integrable then, integrating (30) in ĝ, by Fubini’s theorem,

Eg1F(g) = σ
2E

∂F
∂ t

(ĝ+ tλ )
∣∣∣
t=g1

. (32)

Finally, if we compute the derivative,

∂F
∂ t

(ĝ+ tλ )
∣∣∣
t=g1

= ∑
`≤n

λ`
∂F
∂x`

(ĝ+g1λ ) = ∑
`≤n

λ`
∂F
∂x`

(g), (33)

the equation (32) can be rewritten as

Eg1F(g) = ∑
`≤n

E(g1g`)E
∂F
∂x`

(g). (34)

This formula is called the Gaussian integration by parts formula.

The conditions that were used in the derivation of this formula can usually be easily verified
in applications. For example, it is sufficient to have at most exponential growth of F and its partial
derivatives. If we assume that, for some constants c1,c2 > 0,

|F(x)| ≤ c1ec2‖x‖ and, for `≤ n, either
∣∣∣ ∂F
∂x`

(x)
∣∣∣≤ c1ec2‖x‖ or E(g1g`) = 0, (35)

where ‖x‖ is the Euclidean norm of x ∈Rn, then it is easy to see that all the assumptions above are
satisfied. When E(g1g`) = 0, the partial derivative ∂F

∂x`
does not appear in (33), so we do not need

to make any assumptions on its growth.

6 Gaussian interpolation

We will now explain a certain canonical Gaussian interpolation technique, and in the following
sections show several applications. Pedagogically, it is better to understand this calculation and
carry it out in each application from the beginning, instead of using the general formula. We will
not do this here, and simply use the general formula.

Consider two Gaussian random vectors X = (Xi)i≤n and Y = (Yi)i≤n with the covariances

ai, j = EXiX j and bi, j = EYiYj. (36)

If we suppose that X and Y are independent then, for 0≤ t ≤ 1,

Z(t) =
√

tX +
√

1− tY (37)

is a Gaussian random vector Z(t) = (Zi(t))i≤n with the covariance

EZi(t)Z j(t) = tai, j +(1− t)bi, j,

13



which is a linear interpolation between the covariances of X and Y .

Take a twice continuously differentiable function

F = F
(
(x`)1≤`≤n

)
: Rn→ R,

whose derivatives satisfy some growth conditions determined below and, for 0 ≤ t ≤ 1, let us
consider its average along the above interpolation,

f (t) = EF(Z(t)) = EF(
√

tX +
√

1− tY ). (38)

The end points of this interpolation are

f (0) = EF(Y ) and f (1) = EF(X),

which can often be compared in some useful way by analyzing the derivative of f (t) for 0 < t < 1.
When the first partial derivatives have at most exponential growth as in (35), it is easy to check that
one can interchange the derivative and integral to write

f ′(t) = E
d
dt

F(Z(t)) = E∑
i≤n

∂F
∂xi

(Z(t))Z′i(t) = ∑
i≤n

E
∂F
∂xi

(Z(t))Z′i(t).

Let us apply Gaussian integration by parts to each of the terms on the right hand side. Since the
covariance

EZ′i(t)Z j(t) = E
( 1

2
√

t
Xi−

1
2
√

1− t
Yi

)
(
√

tX j +
√

1− tYj) =
1
2
(ai, j−bi, j),

the Gaussian integration by parts formula (34) implies that

E
∂F
∂xi

(Z(t))Z′i(t) =
1
2 ∑

j≤n
(ai, j−bi, j)E

∂ 2F
∂xi∂x j

(Z(t)),

if we assume that, for all 1≤ i, j ≤ n,∣∣∣∂F
∂xi

(x)
∣∣∣≤ c1ec2|x| and, either

∣∣∣ ∂ 2F
∂xi∂x j

(x)
∣∣∣≤ c1ec2|x| or ai, j = bi, j. (39)

Adding up over i≤ n,

f ′(t) =
d
dt
EF(Z(t)) =

1
2 ∑

i, j≤n
(ai, j−bi, j)E

∂ 2F
∂xi∂x j

(Z(t)). (40)

This Gaussian interpolation formula is very useful, as we will see in the applications below. Notice

14



that, if g is standard Gaussian random variable, and f (t,x) = EF(x+
√

tg) then

∂ f
∂ t

=
1
2
EF ′′(x+

√
tg) =

1
2

∂ 2 f
∂x2 ,

(assuming some growth condition on F) so f solves the heat equation with the boundary condition
f (0,x) = F(x).

7 Gaussian concentration

Let us consider a Lipschitz function F = F
(
(x`)1≤`≤n

)
: Rn→ R such that, for some L > 0,

|F(x)−F(y)| ≤ L‖x− y‖ for all x,y ∈ Rn. (41)

The smallest such L is called the Lipschitz seminorm ‖F‖Lip of F .

Theorem 1 If g = (gi)i≤n is a standard Gaussian vector on Rn then, for any t ≥ 0,

P
(
F(g)−EF(g)≥ t

)
≤ exp

(
− t2

4‖F‖2
Lip

)
. (42)

The constant 4 in the exponent is not optimal and can be replaced by 2. Notice that applying this
result to −F gives

P
(
F(g)−EF(g)≤−t

)
≤ exp

(
− t2

4‖F‖2
Lip

)
(43)

and, combining two inequalities (using the union bound), we get

P
(
|F(g)−EF(g)| ≥ t

)
≤ 2exp

(
− t2

4‖F‖2
Lip

)
. (44)

This shows that the probability that F(g) deviates from its average EF(g) by more than t ≥ 0
decreases exponentially fast in t2, and this statement is independent of the dimension n. We will
see many applications of this inequality, but first let us prove it using the Gaussian interpolation
technique.

Proof. First, let us suppose that F is differentiable and its gradient is bounded by L, ‖∇F‖ ≤ L.
Take any λ ≥ 0. The Gaussian interpolation we would like to consider is of the form

f (t) = Eexpλ
(
F(
√

tg1 +
√

1− tg)−F(
√

tg2 +
√

1− tg)
)
, (45)

where g = (gi)i≤n, g1 = (g1
i )i≤n and g2 = (g2

i )i≤n are three independent standard Gaussian vectors
on Rn. To calculate the derivative f ′(t), one can repeat the computation in the last section using
the Gaussian integration by parts. Alternatively, we can use the general formula (40) above, but we
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first have to set up this interpolation in the form (38). Let us consider a function G : R2n→R given
by the formula

G(x1, . . . ,xn,xn+1, . . . ,x2n) = expλ
(
F(x1, . . . ,xn)−F(xn+1, . . . ,x2n)

)
,

and let us define Gaussian random vectors X and Y on R2n by X = (g1,g2),Y = (g,g). Then the
above interpolation can be rewritten in the form (38) as

f (t) = EG(
√

tX +
√

1− tY ).

Notice that the covariance matrices of X and Y are equal to

A = Cov(X) =

[
In 0
0 In

]
, B = Cov(Y ) =

[
In In
In In

]
,

where In is n×n identity matrix. Therefore,

A−B =

[
0 −In
−In 0

]
,

and the difference ai, j−bi, j is non-zero only when 1 ≤ i ≤ n, j = i+n or 1 ≤ j ≤ n, i = j+n, in
which case ai, j−bi, j =−1. If we denote by Fi =

∂F
∂xi

the partial derivative in the ith coordinate of
F(x1, . . . ,xn) for 1≤ i≤ n, then it is easy to see that

∂ 2G
∂xi∂xi+n

= λ
2GFi(x1, . . . ,xn)Fi(xn+1, . . . ,x2n).

By assumption, ‖∇F‖ ≤ L, so the partial derivatives Fi are all bounded, and F grows at most
linearly, |F(x)| ≤ c1+c2‖x‖. So the growth conditions in (39) (for G) are satisfied, and the formula
(40) gives

f ′(t) = λ
2EG(

√
tX +

√
1− tY )

n

∑
i=1

Fi(
√

tg1 +
√

1− tg)Fi(
√

tg2 +
√

1− tg).

By the Cauchy-Schwarz inequality,

n

∑
i=1

Fi(
√

tg1+
√

1− tg)Fi(
√

tg2+
√

1− tg)≤‖∇F(
√

tg1+
√

1− tg)‖‖∇F(
√

tg2+
√

1− tg)‖≤ L2,

which means that (since G is positive)

f ′(t)≤ λ
2L2EG(

√
tX +

√
1− tY ) = λ

2L2 f (t).
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This implies that the derivative(
f (t)e−λ 2L2t)′ = e−λ 2L2t( f ′(t)−λ

2L2 f (t)
)
≤ 0,

so f (t)e−λ 2L2t is decreasing and, therefore, f (1)≤ eλ 2L2
f (0). Recalling the definition (45), we see

that f (0) = 1 and, therefore, we proved that

f (1) = Eexpλ
(
F(g1)−F(g2)

)
≤ eλ 2L2

.

The Gaussian interpolation and the assumption on the gradient, ‖∇F‖ ≤ L, have played their roles.
What remains is to apply Jensen’s and Markov’s inequalities (12) and (11).

Since g1 and g2 are independent, integrating in g2 first (let us denote this integral E2) and
using that exp is convex,

expλ
(
F(g1)−E2F(g2)

)
≤ E2 expλ

(
F(g1)−F(g2)

)
.

Integrating this in g1, and using that g1,g2 have the same distribution as g, we get

Eexpλ
(
F(g)−EF(g)

)
≤ Eexpλ

(
F(g1)−F(g2)

)
≤ eλ 2L2

.

Using Markov’s inequality,

P
(
F(g)−EF(g)≥ t

)
≤ e−λ t expλ

(
F(g)−EF(g)

)
≤ e−λ t+λ 2L2

.

This inequality holds for any λ ≥ 0, and minimizing the right hand side over λ , in other words,
setting λ = t/2L2, finishes the proof of (42) in the case when F is differentiable and its gradient is
bounded by L, ‖∇F‖ ≤ L.

Finally, in the general case when we do not assume differentiability and only assume (41),
one can use the standard smoothing technique. Namely, for ε > 0, we define

Fε(x) = EF(x+ εg), (46)

where g is a standard Gaussian vector on Rn. This function is also Lipschitz,

|Fε(x)−Fε(y)| ≤ E|F(x+ εg)−F(y+ εg)| ≤ L‖x− y‖,

but it is now differentiable (even smooth), because

EF(x+ εg) =
1

(
√

2π)n

∫
Rn

F(x+ εy)e−‖y‖
2/2 dy =

1
(ε
√

2π)n

∫
Rn

F(y)e−‖y−x‖2/2ε2
dy.
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The case proved above shows that

P
(
Fε(g)−EFε(g)≥ t

)
≤ exp

(
− t2

4‖F‖2
Lip

)
. (47)

Since Fε approximates F uniformly for small ε > 0,

|F(x)−Fε(x)| ≤ E|F(x)−F(x+ εg)| ≤ LεE‖g‖,

letting ε ↓ 0 finishes the proof of the general case. ut

8 Examples of concentration inequalities

Example 1. Our first example will be a supremum of linear functionals in Rn. Let us consider a
bounded set A in Rn, and consider the function

F(x) = sup
a∈A

(a,x) = sup
a∈A

(
a1x1 + . . .+anxn

)
.

Since

|F(x)−F(y)|=
∣∣∣sup
a∈A

(
a1x1 + . . .+anxn

)
− sup

a∈A

(
a1y1 + . . .+anyn

)∣∣∣
≤ sup

a∈A

∣∣∣(a1(x1− y1)+ . . .+an(xn− yn)
)∣∣∣≤ sup

a∈A
‖a‖‖x− y‖,

the Lipschitz constant of F is bounded by ‖F‖Lip ≤ supa∈A ‖a‖. Therefore, if g is a standard
Gaussian vector in Rn then

P
(∣∣sup

a∈A
(a,g)−Esup

a∈A
(a,g)

∣∣≥ t
)
≤ 2exp

(
− t2

4supa∈A ‖a‖2

)
. (48)

Let us give a couple of special cases of this inequality.

Example 2. Let X by a Gaussian random vector in Rn with arbitrary covariance matrix. We know
that X is equal in distribution to a linear transformation Cg of the standard Gaussian random vector
g on Rn. If Ci = (ci, j) j≤n is the ith row of C then Xi =Cig and

EX2
i = E(Cig)2 =

n

∑
j=1

c2
i, j = ‖Ci‖2.

If we apply the Example 1 with the set A given by the collection of rows C1, . . . ,Cn, we get

P
(∣∣max

i≤n
Xi−Emax

i≤n
Xi
∣∣≥ t

)
≤ 2exp

(
− t2

4maxi≤nEX2
i

)
. (49)
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A related example is

P
(∣∣∣log

n

∑
i=1

eXi−E log
n

∑
i=1

eXi
∣∣∣≥ t

)
≤ 2exp

(
− t2

4maxi≤nEX2
i

)
, (50)

which follows by the same argument.

Example 3. (Concentration of finite dimensional norms of Gaussian vectors) Let us consider n-
dimensional normed vector space E with the norm ‖ · ‖E and let b1, . . . ,bn be any basis of E. If g
is a standard Gaussian vector in Rn, then

X = g1b1 + . . .+gnbn (51)

is one way to produce a random vector in E. The norm of a vector x ∈ E can be written as the
supremum over the unit ball of the dual space E∗ of linear functionals

‖x‖E = sup
{

ζ (x) | ζ ∈ E∗,‖ζ‖E∗ ≤ 1
}
, (52)

and, in particular, the norm of the random vector X in (51) can be written as

‖X‖E = sup
{

g1ζ (b1)+ . . .+gnζ (bn) | ζ ∈ E∗,‖ζ‖E∗ ≤ 1
}
. (53)

This functional is of the same form as in the Example 1, with the set A in Rn given by

A =
{
(ζ (b1), . . . ,ζ (bn) | ζ ∈ E∗,‖ζ‖E∗ ≤ 1

}
.

The Lipschitz norm of this function is bounded by supa∈A ‖a‖, denoted by

σ(X) := sup
{(

ζ (b1)
2 + . . .+ζ (bn)

2)1/2 | ζ ∈ E∗,‖ζ‖E∗ ≤ 1
}
. (54)

This shows that the norm of a random vector X with Gaussian coordinates satisfies the following
concentration inequality,

P
(∣∣‖X‖E −E‖X‖E

∣∣≥ t
)
≤ 2exp

(
− t2

4σ(X)2

)
. (55)

Another common way to write this, replacing t by tE‖X‖E ,

P
(∣∣‖X‖E −E‖X‖E

∣∣≥ tE‖X‖E

)
≤ 2exp

(
−t2

4

(E‖X‖E

σ(X)

)2)
. (56)

The quantity d(X) :=
(E‖X‖E

σ(X)

)2 is called the concentration dimension of X .

Example 4. (Moment comparison for norms of Gaussian vectors) One useful consequence of the
concentration inequality in Example 3 is that the Lp-norms for p ≥ 1 of the norm ‖X‖E of the
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Gaussian vector X in (51) are comparable to each other,(
E‖X‖E

)p ≤ E‖X‖p
E ≤ cp

(
E‖X‖E

)p
, (57)

where cp is some constant that depends only on p. The first inequality is just Jensen’s inequality,
so we only need to show the second one.

The following simple observation will be useful to us here and in the next section. If p ≥ 1,
and a random variable Z ≥ 0 is nonnegative then we can write the pth moment of Z as

EZp = p
∫

∞

0
xp−1P(Z ≥ x)dx. (58)

Suppose that f is the density function of Z on R+. If, for x≥ 0, we write xp = p
∫

∞

0 sp−1 I(s≤ x)ds
then switching the order of integration (Fubini’s theorem),

EZp =
∫

∞

0
xp f (x)dx = p

∫
∞

0

∫
∞

0
sp−1 I(s≤ x) f (x)dsdx

= p
∫

∞

0

∫
∞

0
sp−1 I(s≤ x) f (x)dxds = p

∫
∞

0
sp−1P(Z ≥ s)ds.

If X does not have density, just write the distribution dP(x) instead of f (x)dx.

If we denote x+ = max(0,x) the positive part of x, then we can bound

‖X‖E ≤ E‖X‖E +(‖X‖E −E‖X‖E)
+.

Let us denote Z = (‖X‖E −E‖X‖E)
+. Using the inequality (a+b)p ≤ 2p−1(ap +bp), we get

E‖X‖p
E ≤ 2p−1(E‖X‖E)

p +2p−1EZp.

For simplicity of notation, let us write σ instead of σ(X). By (55), we know that, P(Z ≥ x) ≤
e−x2/4σ2

for x≥ 0 and, using (58),

EZp ≤ p
∫

∞

0
xp−1e−x2/4σ2

dx = σ
p p
∫

∞

0
t p−1e−t2/4 dt = apσ

p,

where we made the change of variables t =σx and then denoted by ap the constant p
∫

∞

0 t p−1e−t2/4 dt.
Using the concentration inequality in the previous example, we proved that

E‖X‖p
E ≤ 2p−1(E‖X‖E)

p +2p−1apσ(X)p. (59)

It remains to understand how to bound σ(X) in (54). For ζ ∈ E∗, the random variable

ζ (X) = g1ζ (b1)+ . . .+gnζ (bn)
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is Gaussian with the variance

Eζ (X)2 = ζ (b1)
2 + . . .+ζ (bn)

2.

If Y is an arbitrary (centred) Gaussian random variable ∼ N(0,v2) then

E|Y |= 1√
2πv

∫
∞

−∞

|x|e−x2/2v2
dx =

v√
2π

∫
∞

−∞

|y|e−y2/2 dy = v
√

2/π,

which implies that v2 = EY 2 = π

2 (E|Y |)
2. Using this for Y = ζ (X), we get

ζ (b1)
2 + . . .+ζ (bn)

2 = Eζ (X)2 =
π

2
(E|ζ (X)|)2.

Taking supremum over ζ ∈ E∗ such that ‖ζ‖E∗ ≤ 1, we get that

σ(X)2 =
π

2
(
sup

ζ

E|ζ (X)|
)2 ≤ π

2
(
Esup

ζ

|ζ (X)|
)2

=
π

2
(
E‖X‖E

)2
.

This means that σ(X) ≤
√

π/2E‖X‖E , and plugging this into (59), finally proves (57) with the
constant cp = 2p−1(1+ap(π/2)p/2).

9 Gaussian comparison

The first two results we will prove here are generally called Slepian’s inequality.

Theorem 2 Let X = (Xi)i≤n and Y = (Yi)i≤n be two Gaussian vectors in Rn such that

1. EX2
i = EY 2

i for all i≤ n,

2. EXiX j ≤ EYiY j for all i, j ≤ n.

Then, for any choice of parameters (λi)i≤n,

P
( n⋂

i=1

{
Xi ≤ λi

})
≤ P

( n⋂
i=1

{
Yi ≤ λi

})
(60)

and
Emax

i
Xi ≥ Emax

i
Yi. (61)

What this means is that, if the coordinates of X have the same variance, but are less correlated, then
they are less likely to stay below given thresholds (λi) and, therefore, their maximum is bigger on
average. After we prove this result, we will give another proof of the second statement (61) under
less restrictive assumptions.
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Proof. Let us rewrite the indicator

I
( n⋂

i=1

{
xi ≤ λi

})
=

n

∏
i=1

I
(
xi ≤ λi

)
.

Let us approximate each indicator I(xi ≤ λi) by a smooth nonnegative decreasing function ϕi(xi).
Define

ϕ(x) =
n

∏
i=1

ϕi(xi).

If we consider the interpolation f (t) = Eϕ(
√

tX +
√

1− tY ) and use the Gaussian interpolation
formula (40), we will now check that the assumptions of the theorem about the covariances imply
that f ′(t)≤ 0. Indeed, for j 6= i,

∂ 2

∂xi∂x j

n

∏
`=1

ϕ`(x`)≥ 0,

because the derivatives applied to the factors i and j in the product will both be negative, since all
functions ϕ` are decreasing. On the other hand, by assumption, the difference of the covariances
EXiX j−EYiY j ≤ 0 is negative in this case, so the corresponding term in (40) will be negative. The
derivatives ∂ 2/∂x2

i are not important because the variances are equal and EX2
i −EY 2

i = 0. This
proves that f ′(t)≤ 0 and, therefore,

f (1) = Eϕ(X)≤ f (0) = Eϕ(Y ).

Now, letting ϕi, j’s converge to the corresponding indicators, proves that

EI
( n⋂

i=1

{
Xi ≤ λi

})
≤ EI

( n⋂
i=1

{
Yi ≤ λi

})
,

which is the same as (60). Let us show how this implies (61).

Notice that, if we take all λi = λ then (60) can be rewritten as

P
(

max
i=1

Xi ≤ λ

)
≤ P

(
max
i=1

Yi ≤ λ

)
. (62)

Then the inequality (61) for the averages is an immediate consequence of integration by parts, as
follows. Now we jsut need to use (58) in the previous section with p = 1: if Z ≥ 0 then

EZ =
∫

∞

0
P(Z ≥ x)dx.

Let X = maxi=1 Xi and Y = maxi=1Yi, and decompose X and Y into positive and negative parts,

X = X+−X−, Y = Y+−Y−.
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If we take λ ≥ 0, and apply the inequality (62) with λ and −λ , we get

P
(
X+ ≥ λ

)
≥ P

(
Y+ ≥ λ

)
, P
(
X− ≥ λ

)
≤ P

(
Y− ≥ λ

)
.

This implies that EX+ ≥ EY+, EX− ≤ EY−, and subtracting two inequalities we get (61). ut

Next, we will prove (61) under less restrictive assumptions. If we write

E(Xi−X j)
2 = EX2

i +EX2
j −2EXiX j, E(Yi−Yj)

2 = EY 2
i +EY 2

j −2EYiYj

then, under the first assumption that all variances are equal, EX2
i = EY 2

i , the second assumption
that EXiX j ≤ EYiYj for all i, j ≤ n is equivalent to

E(Xi−X j)
2 ≥ E(Yi−Yj)

2 for all i, j ≤ n.

We will now show that with this reformulation of the second assumption, we can drop the first
assumption, which is often convenient in applications.

Theorem 3 Let X = (Xi)i≤n and Y = (Yi)i≤n be two Gaussian vectors in Rn such that

E(Xi−X j)
2 ≥ E(Yi−Y j)

2 for all i, j ≤ n.

Then, the inequality (61) holds, i.e.

Emax
i

Xi ≥ Emax
i

Yi. (63)

Proof. We will apply the same interpolation as in the above proof, but to a special smooth approx-
imation of the maximum function maxi≤n xi given by

F(x) =
1
β

log ∑
i≤n

eβxi,

for positive parameter β > 0. The reason we can view this as a smooth approximation of the
maximum is because

max
i≤n

xi ≤ F(x) =
1
β

log ∑
i≤n

eβxi ≤max
i≤n

xi +
logn

β
.

Indeed, if you keep only the largest term in the sum ∑i≤n eβxi you get the lower bound, and if you
replace each term in this sum by the largest one, you get the upper bound. Now, you can make the
second term logn/β becomes as small as you like by taking β large. If we prove that

EF(X)≥ EF(Y ),
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we recover (63) by letting β go to infinity. To use the Gaussian interpolation (40), let us compute
the derivatives of F . First of all,

pi(x) :=
∂F
∂xi

=
eβxi

∑ j≤n eβx j
.

Differentiating this, we see that

∂ 2F
∂x2

i
= β (pi(x)− pi(x)2),

∂ 2F
∂xi∂x j

=−β pi(x)p j(x) if i 6= j,

Therefore, the Gaussian interpolation formula (40) gives (to simplify notation, we write pi instead
of pi(Z(t)))

f ′(t) =
d
dt
EF(Z(t)) =

1
2 ∑

i, j≤n
(EXiX j−EYiYj)E

∂ 2F
∂xi∂x j

(Z(t))

=
β

2 ∑
i≤n

(EX2
i −EY 2

i )E(pi− p2
i )−

β

2 ∑
i6= j

(EXiX j−EYiYj)Epi p j.

However, we chose F in such a way that,

∑
i≤n

pi(x) = ∑
i≤n

eβxi

∑ j≤n eβx j
= 1.

If we multiply both sides by pi(x) and subtract p2
i (x), we get

pi(x)− p2
i (x) = ∑

j 6=i
pi(x)p j(x).

This means that

∑
i≤n

(EX2
i −EY 2

i )E(pi− p2
i ) = ∑

i≤n
(EX2

i −EY 2
i )E∑

j 6=i
pi p j = ∑

i 6= j
(EX2

i −EY 2
i )Epi p j.

Switching indices i and j, this can also be written as ∑i 6= j(EX2
j −EY 2

j )Epi p j, and taking average
of the two, we get

∑
i≤n

(EX2
i −EY 2

i )E(pi− p2
i ) =

1
2 ∑

i 6= j
(EX2

i +EX2
j −EY 2

i −EY 2
j )Epi p j.

Plugging it into the above expression for the derivative f ′(t) and collecting the terms, we get

f ′(t) =
β

4 ∑
i 6= j

(E(Xi−X j)
2−E(Yi−Yj)

2)Epi p j ≥ 0,
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since, by the assumption of the theorem, each term is positive. This implies that f (1)≥ f (0) or, in
other words, EF(X)≥ EF(Y ). This finishes the proof. ut

Example. Let us consider a Gaussian process

X(t) = (t,g) = t1g1 + . . .+ tngn, (64)

where g = (g1, . . . ,gn) is a standard Gaussian random vector on Rn, and t = (t1, . . . , tn) ∈ T for
some bounded subset T ⊆ Rn. Let us consider a 1-Lipschitz function f : Rn→ Rn, i.e.

‖ f (t)− f (t ′)‖ ≤ ‖t− t ′‖,

and, if we write f = ( f1, . . . , fn), consider a process

Y (t) = ( f (t),g) = f1(t)g1 + . . .+ fn(t)gn. (65)

Obviously,

E(Y (t)−Y (t ′))2 = ‖ f (t)− f (t ′)‖2 ≤ ‖t− t ′‖2 = E(X(t)−X(t ′))2,

so Theorem 3 implies that

Esup
t∈T

Y (t) = Esup
t∈T

( f (t),g)≤ Esup
t∈T

X(t) = Esup
t∈T

(t,g). (66)

A particular example would be to take a 1-Lipschitz function σ : R→ R, |σ(x)−σ(y)| ≤ |x− y|,
and set f (t) = (σ(t1), . . . ,σ(tn)). This example will appear in Project 8. ut

Next, we will prove a more general minimax analogue of the first theorem above known as
Gordon’s comparison inequality.

Theorem 4 Let (Xi, j) and (Yi, j) be two Gaussian vectors indexed by i≤ n, j ≤ m such that

1. EX2
i, j = EY 2

i, j for all i, j,

2. EXi, jXi,` ≤ EYi, jYi,` for all i, j, `,

3. EXi, jXk,` ≥ EYi, jYk,` for all i, j,k, ` such that i 6= k.

Then, for any choice of parameters (λi, j),

P
( n⋃

i=1

m⋂
j=1

{
Xi, j ≤ λi, j

})
≤ P

( n⋃
i=1

m⋂
j=1

{
Yi, j ≤ λi, j

})
(67)

and
Emin

i
max

j
Xi, j ≥ Emin

i
max

j
Yi, j. (68)
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This reduces to Slepian’s inequality when the index i takes only one value, so the condition 3 is
empty.

Proof. Let us rewrite the indicator

I
( n⋃

i=1

m⋂
j=1

{
xi, j ≤ λi, j

})
= 1−

n

∏
i=1

(
1−

m

∏
j=1

I
(
xi, j ≤ λi, j

))
.

Let us approximate each indicator I(xi, j ≤ λi, j) by a smooth nonnegative decreasing function
ϕi, j(xi, j). Define

ϕ(x) = 1−
n

∏
i=1

(
1−

m

∏
j=1

ϕi, j(xi, j)
)
.

If we consider the interpolation f (t) = Eϕ(
√

tX +
√

1− tY ) and use the Gaussian interpolation
formula (40), it is easy to check that the conditions of the Theorem on the covariance imply that
f ′(t)≤ 0. Indeed, for j 6= `,

∂ 2ϕ

∂xi, j∂xi,`
=

n

∏
k 6=i

(
1−

m

∏
p=1

ϕk,p(xk,p)
)

∂ 2

∂xi, j∂xi,`

m

∏
p=1

ϕi,p(xi,p)≥ 0,

because the derivatives applied to two factors in the last product will both be negative (since all
functions ϕi, j are decreasing). On the other hand, by assumption, the difference of the covariances
EXi, jXi,`−EYi, jYi,` ≤ 0 is negative in this case, so the corresponding term in (40) will be negative.
Similarly, for i 6= k,

∂ 2ϕ

∂xi, j∂xk,`
=−

n

∏
k′ 6=i,k

(
1−

m

∏
p=1

ϕk′,p(xk′,p)
)

∂

∂xi, j

m

∏
p=1

ϕi,p(xi,p)
∂

∂xk,`

m

∏
p=1

ϕk,p(xk,p)≤ 0.

By assumption, the difference of the covariances EXi, jXk,`−EYi, jYk,` ≥ 0 is positive in this case,
so the corresponding term in (40) will again be negative. This proves that f ′(t)≤ 0 and, therefore,

f (1) = Eϕ(X)≤ f (0) = Eϕ(Y ).

Now, letting ϕi, j’s converge to the corresponding indicators, proves that

EI
( n⋃

i=1

m⋂
j=1

{
Xi, j ≤ λi, j

})
≤ EI

( n⋃
i=1

m⋂
j=1

{
Yi, j ≤ λi, j

})
,

which is the same as (67). If we take all λi, j = λ , this can be rewritten as

P
(

min
i

max
j

Xi, j ≤ λ

)
≤ P

(
min

i
max

j
Yi, j ≤ λ

)
.

and (68) follows by integration by parts as before. ut
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For the last statement of the previous theorem, one can also remove the assumption about the
equalities of variances.

Theorem 5 Let (Xi, j) and (Yi, j) be two Gaussian vectors indexed by i≤ n, j ≤ m such that

1. E(Xi, j−Xi,`)
2 ≥ E(Yi, j−Yi,`)

2 for all i, j, `,

2. E(Xi, j−Xk,`)
2 ≤ E(Yi, j−Yk,`)

3 for all i, j,k, ` such that i 6= k.

Then,
Emin

i
max

j
Xi, j ≥ Emin

i
max

j
Yi, j. (69)

To prove this inequality, one can use that

F(x) =
1
β

log∑
i

1

∑ j eβXi, j
→−min

i
max

j
Xi, j as β → ∞,

and, as in the proof of Theorem 3, show that EF(X) ≤ EF(Y ). The calculation is a bit more
involved but straightforward. Letting β → ∞ proves (69).

10 Comparison of bilinear and linear forms

Let us consider the following random bilinear form

X(t,u) =
n

∑
i=1

m

∑
j=1

gi, jtiu j, (70)

where (gi, j)i≤n, j≤m are i.i.d. standard Gaussian random variables and parameters

t = (t1, . . . , tn) ∈ Rn and u = (u1, . . . ,um) ∈ Rm.

In various applications, one is interested in quantities of the form

max
t∈T

max
u∈U

X(t,u), min
t∈T

max
u∈U

X(t,u) or min
u∈U

max
t∈T

X(t,u)

for some sets of parameters T ⊆ Rn and U ⊆ Rm, which can be difficult to calculate or estimate
directly. It turns out that one can use comparison inequalities from the previous section to relate
these quantities to similar quantities for another, linear or ‘almost’ linear form. We will give several
examples below.

Example 1. Let us first consider the following random process

Y (t,u) = ‖u‖
n

∑
i=1

hiti +‖t‖
m

∑
j=1

g ju j, (71)
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where h1, . . . ,hn,g1, . . . ,gm are i.i.d. standard Gaussian random variables. This is not quite a linear
form because of the factors ‖t‖ and ‖u‖, but the dependence on t and u is simpler and one can
often analyze more easily the quantities

max
t∈T

max
u∈U

Y (t,u), min
t∈T

max
u∈U

Y (t,u) or min
u∈U

max
t∈T

Y (t,u).

Let us take any two pairs of parameters (t,u) and (t ′,u′) and compute

E
(
X(t,u)−X(t ′,u′)

)2
= E

( n

∑
i=1

m

∑
j=1

gi, j(tiu j− t ′iu
′
j)
)2

=
n

∑
i=1

m

∑
j=1

(tiu j− t ′iu
′
j)

2 = ‖t‖2‖u‖2 +‖t ′‖2‖u′‖2−2(t, t ′)(u,u′). (72)

Similarly, one can compute

E
(
Y (t,u)−Y (t ′,u′)

)2
= E

( n

∑
i=1

hi(‖u‖ti−‖u′‖t ′i)
)2

+E
( m

∑
j=1

g j(‖t‖u j−‖t ′‖u′j)
)2

= 2‖t‖2‖u‖2 +2‖t ′‖2‖u′‖2−2‖u‖‖u′‖(t, t ′)−2‖t‖‖t ′‖(u,u′). (73)

Subtracting and rearranging the terms, it is easy to see that

E
(
Y (t,u)−Y (t ′,u′)

)2−E
(
X(t,u)−X(t ′,u′)

)2
=

=
(
‖t‖‖u‖−‖t ′‖‖u′‖

)2
+2
(
‖t‖‖t ′‖− (t, t ′)

)(
‖u‖‖u′‖− (u,u′)

)
. (74)

By the Cauchy-Schwarz inequality, (t, t ′)≤ ‖t‖‖t ′‖ and (u,u′)≤ ‖u‖‖u′‖, so

E
(
Y (t,u)−Y (t ′,u′)

)2 ≥ E
(
X(t,u)−X(t ′,u′)

)2
. (75)

By Theorem 3 in the previous section,

Emax
t∈T

max
u∈U

X(t,u)≤ Emax
t∈T

max
u∈U

Y (t,u). (76)

This inequality, for example, will be used in the Project 11. ut

In order to apply the results for the minimax mint∈T maxu∈U , we need the reverse inequality
for t = t ′. Because of (75), we can only hope to get the equality

E
(
Y (t,u)−Y (t,u′)

)2
= E

(
X(t,u)−X(t,u′)

)2
. (77)

There are a couple of ways this can be achieved, as we will see in the next examples.
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Example 2. One way to do this is to modify the definition of the bilinear form slightly and consider

X+(t,u) =
n

∑
i=1

m

∑
j=1

gi, jtiu j + z‖t‖‖u‖, (78)

where z is a standard Gaussian random variable independent of all gi, j. Including this additional
term will add (‖t‖‖u‖−‖t ′‖‖u′‖)2 to (72) and, as a result, (74) will become

E
(
Y (t,u)−Y (t ′,u′)

)2−E
(
X+(t,u)−X+(t ′,u′)

)2
=

= 2
(
‖t‖‖t ′‖− (t, t ′)

)(
‖u‖‖u′‖− (u,u′)

)
. (79)

This is equal to zero when t = t ′ so, by Theorem 5,

Emin
t∈T

max
u∈U

X+(t,u)≥ Emin
t∈T

max
u∈U

Y (t,u). (80)

Notice that the inequality is reversed in this case and together with (76), we can write

Emin
t∈T

max
u∈U

Y (t,u)≤ Emin
t∈T

max
u∈U

X+(t,u)≤ Emax
t∈T

max
u∈U

X+(t,u)≤ Emax
t∈T

max
u∈U

Y (t,u). (81)

Moreover, if we take t ′ = 0 in (79), we get that

EX+(t,u)2 = EY (t,u)2 for all (t,u),

so we are in a position to apply Theorem 4 to compare the probabilities as in (67),

P
(⋃

t∈T

⋂
u∈U

{
X+(t,u)≤ λ (t,u)

})
≤ P

(⋃
t∈T

⋂
u∈U

{
Y (t,u)≤ λ (t,u)

})
, (82)

for arbitrary function λ (t,u). Notice that (79) is also equal to zero if u = u′ so, by the same logic,
we can switch the role of the parameters t and u,

Emin
u∈U

max
t∈T

Y (t,u)≤ Emin
u∈U

max
t∈T

X+(t,u)≤ Emax
u∈U

max
t∈T

X+(t,u)≤ Emax
u∈U

max
t∈T

Y (t,u) (83)

and
P
(⋃

u∈U

⋂
t∈T

{
X+(t,u)≤ λ (t,u)

})
≤ P

(⋃
u∈U

⋂
t∈T

{
Y (t,u)≤ λ (t,u)

})
. (84)

This example will be used for example, in Project 6. ut

Example 3. There is another special case that is very useful, when

‖t‖= a for all t ∈ T, ‖u‖ ≤ b for all u ∈U, (85)

for some constants a,b > 0. In other words, T is a subset of the sphere or radius a in Rn and U is
a subset of the ball of radius b in Rm. In this case, we will modify the definition (71) slightly and
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consider a proper random linear form

Y+(t,u) = b
n

∑
i=1

hiti +a
m

∑
j=1

g ju j. (86)

As before, by a direct calculation, one can check that

E
(
Y+(t,u)−Y+(t ′,u′)

)2−E
(
X(t,u)−X(t ′,u′)

)2
= 2
(
a2− (t, t ′)

)(
b2− (u,u′)

)
. (87)

By the Cauchy-Schwarz inequality, this difference is nonnegative. Moreover, it is equal to zero
when t = t ′ by the assumption that ‖t‖= a. This implies, by Theorem 3 and Theorem 5,

Emin
t∈T

max
u∈U

Y+(t,u)≤ Emin
t∈T

max
u∈U

X(t,u)≤ Emax
t∈T

max
u∈U

X(t,u)≤ Emax
t∈T

max
u∈U

Y+(t,u). (88)

This comparison is used in Projects 3 and 4. ut

Example 4. In the setting of the Example 1, let us suppose that

‖t‖= a for all t ∈ T, (89)

i.e. T is a subset of the sphere or radius a in Rn. If we take u = u′ in (74), we get the equality

E
(
Y (t,u)−Y (t ′,u)

)2
= E

(
X(t,u)−X(t ′,u)

)2
. (90)

As in (83), this implies

Emin
u∈U

max
t∈T

Y (t,u)≤ Emin
u∈U

max
t∈T

X(t,u)≤ Emax
u∈U

max
t∈T

X(t,u)≤ Emax
u∈U

max
t∈T

Y (t,u). (91)

This example is not used in any projects, but we mention it here just in case. ut

Example 5. Let us take T = Sn−1 and U = Sm−1 to be unit spheres in Rn and Rm. We will use
Example 3 with a = b = 1 and the role of t and u reversed in (88). First of all,

min
‖u‖=1

max
‖t‖=1

( n

∑
i=1

hiti +
m

∑
j=1

g ju j

)
= max
‖t‖=1

(h, t)− max
‖u‖=1

(g,u) = ‖h‖−‖g‖,

so
Emin

u∈U
max
t∈T

Y+(t,u) = E‖h‖−E‖g‖.

This can be computed explicitly, and it is well-known that

n√
n+1

≤ E‖h‖=
√

2Γ(n+1
2 )

Γ(n
2)

≤
√

n (92)
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(we do not reproduce this here). The same holds for E‖g‖ with n replaced by m. On the other hand,

min
u∈U

max
t∈T

X(t,u) = min
‖u‖=1

( n

∑
i=1

( m

∑
j=1

gi, ju j

)2)1/2
,

which we can rewrite as follows. Let us introduce the notation gi = (gi,1, . . . ,gi,m)
T ∈ Rm and

Z =
1
n

n

∑
i=1

gigT
i . (93)

Vectors gi are i.i.d. standard Gaussian in Rm and m×m matrix Z is their sample covariance matrix.
We can then rewrite

n

∑
j=1

( m

∑
j=1

gi, ju j

)2
=

n

∑
j=1

(gi,u)2 =
n

∑
j=1

uT gigT
i u =

n

∑
j=1

(gigT
i u,u) = n(Zu,u).

Since Z is symmetric and positive semi-definite,

min
‖u‖=1

(Zu,u) = λmin(Z)≥ 0,

where λmin(Z) is the smallest eigenvalue of Z. The first inequality in (88) shows that

E‖h‖−E‖g‖ ≤ E
√

nλmin(Z), (94)

and using (92), we can write √
n

n+1
−
√

m
n
≤ E

√
λmin(Z). (95)

When n = (1+ ε)m, i.e. the sample size n is relatively bigger than the dimension m of our space,
the left hand side is separated away from zero, so the smallest eigenvalue λmin(Z) is separated away
from zero, at least on average. To obtain similar statement in probability, we can use Example 2.
The only difference will be that

min
u∈U

max
t∈T

X+(t,u) =
√

nλmin(Z)+ z,

and using (84) with λ (t,u)≡ λ , we get

P
(√

nλmin(Z)+ z≤ λ

)
≤ P

(
‖h‖−‖g‖ ≤ λ

)
. (96)

If we take λ = t
√

n and flip the inequality, we get

P
(√

λmin(Z)+
z√
n
≥ t
)
≥ P

(‖h‖−‖g‖√
n

≥ t
)
. (97)
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By the law of large number, (‖h‖−‖g‖)/
√

n≈ 1−
√

m/n, so the second probability will be close
to one if n is such that 1−

√
m/n > t, or n > m/(1− t)2. Since z/

√
n is negligible for large n,

this shows that with probability close to one, λmin(Z) ≥ t2. This shows that when n = (1+ ε)m,
λmin(Z) is separated away from zero with high probability, and not only on average.

We can reformulate these results for general Gaussian vectors on Rm with the covariance C.

If Xi = Agi for some matrix A such that C = AAT , then (Xi)i≤n are i.i.d. N(0,C) and

ZC =
1
n

n

∑
i=1

XiXT
i = AZAT (98)

is their sample covariance matrix, where Z was defined in (93). Since

λmin(ZC) = inf
‖u‖=1

(ZCu,u) = inf
‖u‖=1

(AZAT u,u) = inf
‖u‖=1

(ZAT u,AT u)

≥ λmin(Z) inf
‖u‖=1

(AT u,AT u) = λmin(Z) inf
‖u‖=1

(Cu,u) = λmin(Z)λmin(C),

the statements we obtained above for the sample covariance matrix Z can be transferred to similar
statements for ZC, only now scaled by λmin(C). ut

11 The central limit theorem on R

Let us begin with the definition of convergence in distribution for real-valued random variables. Let
X and Xn for n≥ 1 be some random variables on R, and let P and Pn for n≥ 1 be their distributions
correspondingly. In other words, we know how to calculate probabilities P(A) = P(X ∈ A) for
any measurable set in R, and the same for Xn. This means that we also know how to calculate
expectations

E f (X) =
∫
R

f (x)dP(x), E f (Xn) =
∫
R

f (x)dPn(x).

Let us denoted the set of all continuous and bounded functions on R by

Cb =
{

f : R→ R – continuous and bounded
}
.

We say that Xn→ X in distribution, or Pn→ P weakly if

lim
n→∞

E f (Xn) = lim
n→∞

∫
R

f dPn = E f (X) =
∫
R

f dP for all f ∈Cb. (99)

This is often denoted by Pn
d→ P or Pn =⇒ P.

The cumulative distribution functions of X and Xn are defined by

F(t) = P
(
(−∞, t]

)
= P(X ≤ t), F(t) = Pn

(
(−∞, t]

)
= P(Xn ≤ t).

We will now show that the convergence of probability measures can be expressed in terms of their
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cumulative distribution functions.

Theorem 6 Pn
d→ P if and only if Fn(t)→ F(t) for any point of continuity t of F.

Proof. “=⇒” Suppose that (99) holds. Let us approximate the indicator I(x ≤ t) by continuous
functions so that

I(x≤ t− ε)≤ ϕ1(x)≤ I(x≤ t)≤ ϕ2(x)≤ I(x≤ t + ε),

as in the figure below.

t !!t!

"2"1

x
t+

Obviously, ϕ1,ϕ2 ∈Cb. Then, using (99) for ϕ1 and ϕ2,

F(t− ε)≤
∫

ϕ1 dF = lim
n→∞

∫
ϕ1 dFn ≤ lim

n→∞
Fn(t)≤ lim

n→∞

∫
ϕ2 dFn =

∫
ϕ2 dF ≤ F(t + ε).

Therefore, for any ε > 0, we can write

F(t− ε)≤ lim
n→∞

Fn(t)≤ F(t + ε).

More carefully, we should write liminf and limsup but, since t is a point of continuity of F, letting
ε ↓ 0 proves that the limit limn→∞ Fn(t) exists and is equal to F(t).

“⇐=” Let PC(F) be the set of all points of continuity of F. Since F is monotone, the set
PC(F) is dense in R. Take M large enough such that both M,−M ∈ PC(F) and P((−M,M]c)≤ ε.

Clearly, for large enough n≥ 1 we have Pn((−M,M]c)≤ 2ε. For any k > 1, consider a sequence of
points −M = xk

1 ≤ xk
2 ≤ . . .≤ xk

k = M such that all xi ∈ PC(F) and maxi |xk
i+1− xk

i | → 0 as k→ ∞.
Given a function f ∈Cb, consider an approximating function

fk(x) = ∑
1<i≤k

f (xk
i ) I
(
x ∈ (xk

i−1,x
k
i ]
)
+0 · I

(
x /∈ (−M,M]

)
.

Since f in continuous, we get that

δk(M) := sup
|x|≤M

∣∣ fk(x)− f (x)
∣∣→ 0, k→ ∞.

Since all xk
i ∈ PC(F), by assumption, we can write∫

fk dFn = ∑
1<i≤k

fk(xk
i )
(
Fn(xk

i )−Fn(xk
i−1
) n→∞−→ ∑

1<i≤k
fk(xk

i )
(
F(xk

i )−F(xk
i−1)

)
=
∫

fk dF.
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On the other hand,∣∣∣∫ f dF−
∫

fk dF
∣∣∣≤ ‖ f‖∞P

(
(−M,M]c

)
+δk(M)≤ ‖ f‖∞ε +δk(M)

and, similarly, for large enough n≥ 1,∣∣∣∫ f dFn−
∫

fk dFn

∣∣∣≤ ‖ f‖∞Pn
(
(−M,M]c

)
+δk(M)≤ ‖ f‖∞2ε +δk(M).

Letting n→ ∞, then k→ ∞ and, finally, ε ↓ 0 (or M ↑ ∞), proves that
∫

f dFn→
∫

f dF . ut

Notice that in the above proof, we could have used smooth approximations of indicators, let’s
say, with the third bounded derivative, instead of simply continuous approximations. This means
that, in order to check convergence in distribution, it is enough to check (99) for bounded functions
with the third bounded derivative.

Let us now consider a sequence Xn for n ≥ 1 of independent random variables, which all
have the same distribution. Such random variables are called independent identically distributed,
or simply i.i.d.. We will suppose they have finite (absolute) third moment,

E|X1|3 < ∞,

and denote their mean and variance by

µ = EX1 and σ
2 = Var(X1)< ∞.

We will denote their sum by Sn = X1 + . . .+Xn, and introduce a notation

Zn :=
Sn−nµ√

nσ2
=

1√
n

n

∑
i=1

Xi−µ

σ
. (100)

The following result is known as the Central Limit Theorem. We will prove it as a consequence of
the stability property of the normal distribution proved above.

Theorem 7 The distribution of Zn converges weakly to the standard Gaussian distribution N(0,1).

Remark. One can easily modify the proof to get rid of the unnecessary assumption E|X1|3 < ∞.
The condition σ2 = Var(X1)< ∞ suffices.

Proof. First of all, notice that the random variables (Xi−µ)/σ have mean 0 and variance 1 so, by
changing names, it is enough to prove the result for

Zn =
1√
n

n

∑
i=1

Xi

under the assumption that EX1 = 0,EX2
1 = 1. Let (gi)i≥1 be independent standard normal random
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variables. Then, by the stability property,

Z =
1√
n

n

∑
i=1

gi

also has standard normal distribution N(0,1). If, for 1≤ m≤ n+1, we define

Tm =
1√
n

(
g1 + . . .+gm−1 +Xm + . . .+Xn

)
then, for any bounded function f : R→ R, we can write

∣∣E f (Zn)−E f (Z)
∣∣= ∣∣∣ n

∑
m=1

(
E f (Tm)−E f (Tm+1)

)∣∣∣≤ n

∑
m=1

∣∣E f (Tm)−E f (Tm+1)
∣∣.

If we introduce the notation

Sm =
1√
n

(
g1 + . . .+gm−1 +Xm+1 + . . .+Xn

)
then Tm = Sm +Xm/

√
n and Tm+1 = Sm + gm/

√
n. By the comment above, we can suppose that

f ∈Cb and has uniformly bounded third derivative. Then, by Taylor’s formula,∣∣∣ f (Tm)− f (Sm)−
f ′(Sm)Xm√

n
− f ′′(Sm)X2

m
2n

∣∣∣≤ ‖ f ′′′‖∞|Xm|3

6n3/2

and ∣∣∣ f (Tm+1)− f (Sm)−
f ′(Sm)gm√

n
− f ′′(Sm)g2

m
2n

∣∣∣≤ ‖ f ′′′‖∞|gm|3

6n3/2 .

Notice that Sm is independent of Xm and gm and, therefore,

E f ′(Sm)Xm = E f ′(Sm)EXm = 0 = E f ′(Sm)Egm = E f ′(Sm)gm

and, similarly,

E f ′′(Sm)X2
m = E f ′′(Sm)EX2

m = E f ′′(Sm) = E f ′′(Sm)Eg2
m = E f ′′(Sm)g2

m.

As a result, taking expectations and subtracting the above inequalities, we get

∣∣E f (Tm)−E f (Tm+1)
∣∣≤ ‖ f ′′′‖∞(E|X1|3 +E|g1|3)

6n3/2 .

Adding up over 1≤ m≤ n, we have shown that

∣∣E f (Zn)−E f (Z)
∣∣≤ ‖ f ′′′‖∞(E|X1|3 +E|g1|3)

6
√

n
,
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which implies that limn→∞E f (Zn) = E f (Z). This finishes the proof. ut
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