Fundamental Openness Principle and Zariski's Main Theorem

April 25, 2016

Main Results

Below: $\varphi: X^{(r)} \to Y^{(s)}$ regular dominant map of affine varieties, $r = \dim X$, $s = \dim Y$ and $X \subset \mathbb{C}^n$, $Y \subset \mathbb{C}^m$.

I - Fundamental Openness Principle (FOP):

Suppose r=s, take $x\in X$ s.t. Y topologically unibranch at $\varphi(x)$ and $\{x\}\subset \varphi^{-1}(\varphi(x))$ component, then φ open at x.

II - Dimension of Fibres Theorem (FibDim):

For all $y \in Y$ and any $W \subset \varphi^{-1}(y)$ component, dim $W \ge r - s$.

III - Zariski's Main Theorem - Affine Smooth (ZMT):

Suppose $\varphi: X^{(r)} \to Y^{(r)}$ birational. Fix $a \in X$ with

$$b = \varphi(a) \in Y \setminus \mathsf{Sing} Y$$
. Two possibilities:

(1) Either
$$\exists \varphi^{-1}: \mathcal{U}_b \to X$$
 regular on Zariski-open nhd. $\mathcal{U}_b \subset Y$;

(2) Or,
$$\exists$$
 subvariety $E \subset X$, $a \in E$ such that dim $E = r - 1$

and $\dim \overline{\varphi(E)} \leq r-2$ (in particular, $\varphi^{-1}(b)$ has component through a of dim.> 0).

I - Fundamental Openness Principle

Lemma I.1: For $\varphi: X \to Y$ regular, $\overline{\varphi(X)} = V_Y(\ker \varphi^*)$. Thus φ dominant iff $\varphi^*: \mathbb{C}(X) \to \mathbb{C}(Y)$ injective.

Pf: $\ker \varphi^* \subset I(\varphi(X)) \Longrightarrow \overline{\varphi(X)} = V_Y(I(\varphi(X))) \subset V_Y(\ker \varphi^*).$ Conversely, if $V_Y(J)$ Zar-closed contains $\varphi(X)$, then $\sqrt{J} \subset \sqrt{\ker \varphi^*}$ necessarily, so $V_Y(\ker \varphi^*) \subset V_Y(\sqrt{J}) = V_Y(J)$. If true for any Zar-closed $\varphi(X)$, then $V_Y(\ker \varphi^*) \subset \overline{\varphi(X)}$. Second claim follows from $\varphi^* : \mathbb{C}[Y] \to \mathbb{C}[X]$ injective iff $\overline{\varphi(X)} = V_Y(0) = Y$.

I - Fundamental Openness Principle

Lemma I.2: Smooth points of φ form $\neq \emptyset$ Zar-open subset of X.

Pf: Since $\varphi: X^{(r)} \to Y^{(s)}$ is dominant, $\varphi(X) \setminus \operatorname{Sing} Y \neq \emptyset$ so

$$X \smallsetminus \varphi^{-1}(\operatorname{Sing} Y) \neq \emptyset$$
, and $X_0 := X \smallsetminus (\operatorname{Sing} X \cup \varphi^{-1}(\operatorname{Sing} Y)) \neq \emptyset$.

Set $\operatorname{Cr} \varphi := \big\{ x \in X_0 : \operatorname{rk} (d\varphi)_x < s \big\} \cup (X \setminus X_0)$ is closed analytic,

but is also algebraic (via local alg. coords) and $\dim \mathrm{Cr} \varphi < r.$

Moreover: $CrV(\varphi) := \overline{\varphi(Cr\varphi)} \subseteq Y^{(s)}$ by Sard and $\dim CrV(\varphi) < s$.

I - Fundamental Openness Principle

Pf. FOP: Y top. unibranch at $b = \varphi(a)$ and $\{a\} \subset \varphi^{-1}(b)$ comp.

- 1) Choose cl-open nhds $\mathcal{V}_b \subset Y$, $\{a\} \subset \mathcal{U}_a \subset X$. Since φ regular, $\varphi_{|\mathcal{U}_a} \in \mathcal{C}^0(\mathcal{U}_a)$, shrinking these nhds, $\varphi_{|\mathcal{U}_a} : \mathcal{U}_a \to \mathcal{V}_b$ is proper.
- 2) (Y, b) unibranch: $\exists V_b' \subset V_b$ s.th. $V_b' \setminus \text{CrV}(\varphi)$ connected.

Let $\mathcal{U}_a' := \mathcal{U}_a \cap \varphi^{-1}(\mathcal{V}_b')$. We'll show $\varphi(\mathcal{U}_a') = \mathcal{V}_b'$. Indeed, with

 $B:=\mathsf{CrV}(\varphi)$ map $\psi:=\varphi_{|\mathcal{U}'_{\mathsf{a}}\smallsetminus \varphi^{-1}(B)}$ is a local homeo., smooth and

proper. So $y\mapsto \#\psi^{-1}(y)$ is locally const., thus constant and >0.

Finally $\varphi(\mathcal{U}_a')$ closed in \mathcal{V}_b' , since $\varphi_{|\mathcal{U}_a'}$ is proper and images of closed sets under proper maps are closed. Done.

II - Dimension of Fibres

Lemma II.1: Let $\varphi:X\to\mathbb{C}^k$ morphism of affines s.th. $\{a\}\subset\mathbb{C}^n$ is a component of $\varphi^{-1}(0)$, and k is the smallest dimension for which there exists such a map. Then φ is dominant.

Pf: For φ not dominant $I:=\dim \overline{\varphi(X)} < k$. Let $h_i \in \mathfrak{m}_{\overline{\varphi(X)},0}$ for $1 \leq i \leq l$, s.th. $\forall i \colon h_i \not\equiv 0$ on any comp. of $V_{\overline{\varphi(X)}}(h_{i-1})$. Then $\psi: X \ni x \mapsto (\varphi^*h_1, \cdots, \varphi^*h_l)(x) \in \mathbb{C}^l$ is s.th. $\{a\} \subset \varphi^{-1}(0)$ is a comp. since $\dim V_{\overline{\varphi(X)}}(\{h_i\}_{i=1}^l) = 0$, so k wasn't minimal.

Pf FibDim: Say $b \in Y$, $W \subset \varphi^{-1}(b)$ component s.th. r - s > 0dim W, and $a \in W \setminus \{\text{other } \varphi^{-1}(b) \text{ comp}\}$. We'll construct

dominant regular $\Phi: X \to \mathbb{C}^r$ to get contradiction with FOP:

1) $\exists \rho: X \to \mathbb{C}^{r-1}$ reg. s.th. $\{a\}$ component of $\rho^{-1}(0)$:

$$\forall \ g_1 \in \mathfrak{m}_{Y,b} \setminus I(Y), \ \dim V_Y(g_1) < s \ \text{etc., i.e.} \ \exists \ \{g_i\}_{i=1}^s \subset \mathfrak{m}_{Y,b}$$

s.th.
$$\{b\}$$
 comp. of $V_Y(g_1, \dots, g_s)$. Likewise $\exists \{f_i\}_{i=1}^{r-s-1} \subset \mathfrak{m}_{X,a}$

s.th.
$$\{b\}$$
 comp. of $V_Y(g_1, \cdots, g_s)$. Likewise $\exists \{f_i\}_{i=1}^{r-s-1} \subset \mathfrak{m}_{X,a}$ s.th. $\{a\}$ comp. of $V_X(f_1, \cdots, f_{r-s-1})$. Then our $\rho: X \to \mathbb{C}^{r-1}$ is $x \mapsto (f_1, \cdots, f_{r-s-1}; \varphi^*g_1, \cdots, \varphi^*g_s)(x)$.

2) Reducing "r-1" above to a minimal k:

If $k = \dim \rho(X) < r - 1$, take $\{h_i\}_{i=1}^k \subset \mathbb{C}[\overline{\rho(X)}]$ s.th. $\{0\}$ is a component of $V_{\overline{\rho(X)}}(\{h_i\})$. Let $H := (h_1, \dots h_k)$ and $\psi := H \circ \rho$.

Now say k is minimal in the sense of [II.1] s.th. $\exists \ \psi : X \to \mathbb{C}^k$ with $\{a\}$ comp. of $\psi^{-1}(0)$. Then $\overline{\psi(X)} = \mathbb{C}^k$. Say $\{z_i\}$ coords of \mathbb{C}^k .

3) Construction of $\Phi: X \to \mathbb{C}^r$: Take $\psi: X \to \mathbb{C}^k$ from 2).

Complete $\{\psi^*z_i\}_{i\leq k}$ to transcendence basis of $\mathbb{C}(X)$ over \mathbb{C} with $\{w_i\}\subset\mathbb{C}[X]$ s.th. $w_i(a)=0\ \forall i$. Then our $\Phi:X\to\mathbb{C}^r$ maps $x\mapsto (\psi(x),w_1(x),\cdots,w_{r-k}(x))$, and is dominant.

4) Completion of proof by a contradiction:

Morphism Φ dominant, \mathbb{C}^r is top. unibranch at 0, and $\{a\}$ is a comp. of $\Phi^{-1}(0)$. By FOP, $\exists \mathcal{U}_a$ cl-open nhd s.t. $\Phi(\mathcal{U}_a)$ cl-open.

On the other hand: if $x \in \mathcal{U}_a$ s.th. $\Phi(x) = (0, w_1(x), \cdots w_{r-k}(x))$,

then
$$x \in \psi^{-1}(0) \cap \mathcal{U}_a = \{a\} \Longrightarrow \Phi(\mathcal{U}_a)$$
 isn't cl-open ?! Done.

III - Zariski's main theorem

Pf ZMT: $\varphi:X\to Y$ reg. birational, by def. $\varphi^*:\mathbb{C}(Y)\to\mathbb{C}(X)$ is isomorphism, and locally

$$x_i = \varphi^* \left(\frac{a_i(y_1, \dots, y_r)}{b_i(y_1, \dots, y_r)} \right)$$
 and $a_i, b_i \in \mathbb{C}[Y], \ \forall \ 1 \leq i \leq r,$

where the $b_i \not\equiv 0$ in nhd of $\varphi(x) = y$. Choose $b \in Y \setminus \operatorname{Sing} Y$,

$$\mathcal{O}_{Y,b}$$
 UFD, so $gcd(a_i,b_i)=1$. Let $\theta=\prod_i b_i$.

If $\theta(b) \neq 0$: Then exists local inverse to $\varphi: X \to Y$, namely

$$\psi: Y \setminus V_Y(\theta) \ni (y_1, \cdots, y_r) \mapsto \left(\frac{a_1}{b_1}(y), \cdots, \frac{a_r}{b_r}(y)\right) \in X$$

If $\theta(b) = 0$: Say $b_1(b) = 0$ and $\beta \in \mathbb{C}[Y]$ irreducible factor of $b_1 \in \mathcal{O}_{Y,b}$ s.th. $\beta(b) = 0$. Take $E \subset X \cap V(\varphi^*\beta)$ irred. comp. at a. Then dim E = r - 1. We claim dim $\overline{\varphi(E)} \le r - 2$. Indeed,

$$\varphi^*(a_1) = x_1 \cdot \varphi^*(\beta) \cdot \varphi^*(b_1)$$
, and so $\forall x \in E$ holds $(\varphi^*a_1)(x) = 0$.

Thus $a_1 = \beta = 0$ on $\overline{\varphi(E)}$ and $a_1 \notin \beta \cdot \mathcal{O}_{Y,b} \in \operatorname{Spec}\mathcal{O}_{Y,b}$. So,

$$a_1 \notin \mathfrak{P} := \left\{ f \in \mathbb{C}[Y] \middle/ f \in \beta \cdot \mathcal{O}_{Y,b} \right\} \in \mathsf{Spec}\mathbb{C}[Y].$$
 Therefore

$$\overline{\varphi(E)} \subset V(a_1) \cap V(\mathfrak{P}) \subsetneq V(\mathfrak{P}) \subsetneq Y \text{ implying dim } \overline{\varphi(E)} \leq r - 2.$$

$$\varphi(E) \subset V(a_1) \cap V(\mathfrak{P}) \subsetneq V(\mathfrak{P}) \subsetneq Y \text{ implying dim } \varphi(E) \leq r-2.$$