- (1) (a) Let G be a Lie group with a left invariant Riemannian metric $\langle \cdot, \cdot \rangle$. Prove that it's biinvariant if and only if its restriction to $g = T_e G$ is invariant under Ad_g for any g ∈ G.
 (b) Let N³ be the 3-dimensional Heisenberg group

$$N = \{A = \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} | \text{ where } x, y, z \in \mathbb{R}\}$$

Prove that N does not admit a bi-invariant Riemannian metric.

- (2) (a) Verify that the left invariant volume form on the 3-dimensional Heisenberg group N^3 is bi-invariant.
 - (b) Verify that the left invariant volume form on $GL(2, \mathbb{R})$ is NOT right invariant.
 - (c) Prove that SU(2) is isomorphic to Sp(1). *Hint:* Indentify \mathbb{H} with \mathbb{C}^2 and view elements of Sp(1) as complex linear maps $\mathbb{C}^2 \to \mathbb{C}^2$ which preserve the norm and commute with left multiplicition by *j*.