- (1) Find the normalizers of the following maximal tori in the corresponding Lie groups
 - (a) $T^1 = \{e^{it} | t \in \mathbb{R}\} \subset \operatorname{Sp}(1).$
 - (b) $T^1 = SO(2) \subset SO(3)$.
 - (c) $T^n \subset U(n)$ the set of all diagonal unitary matrices.
- (2) (a) Let T be a torus. Prove that every nontrivial real irreducible representation of T is 2-dimensional.
 - (b) Let *G* be a compact connected Lie group with a bi-invariant Riemannian metric. Let $T \subset G$ be a maximal torus and let $t = T_e T$ be the Lie algebra of *T*.

Look at the $Ad_{G/T}$ action of T on $t^{\perp} \subset \mathfrak{g} = T_e G$. Let V an irreducible summand of this representation and let $v \in V$ be any unit vector. Let $t \in T$ be a generator. Prove that the set $\{Ad(t^k)(v)|k \in \mathbb{Z}\}$ is dense in the unit sphere in V.

(c) Prove that in every compact connected Lie group there exists a dense finitely generated subgroup. *Hint:* Use part b).