MAT 1300

Term Test Solutions

- (1) (8 pts) Give the following definitions
 - (a) A tangent vector to a smooth manifold
 - (b) A smooth manifold with boundary.

Solution

- (a) A tangent vector to a smooth manifold M at a point p is a map $v: C^{\infty}(M) \to \mathbb{R}$ satisfying the following conditions
 - (i) v is linear, i.e. $v(\lambda_1 f_1 + \lambda_2 f_2) = \lambda_1 v(f_1) + \lambda_2 v(f_2)$ for any $\lambda_1, \lambda_2 \in \mathbb{R}$ and $f_1, f_2 \in C^{\infty}(M).$
 - (ii) $v(f \cdot g) = v(f)g(p) + f(p)v(g)$ for any $f, g \in C^{\infty}(M)$.
- (b) A smooth manifold with boundary is a generalized smooth manifold with boundary which is Hausdorff and admits a countable atlas. A generalized smooth manifold with boundary is a set M with a collection of maps $\{\psi_{\alpha}: V_{\alpha} \to U_{\alpha}\}_{\alpha \in \mathcal{A}}$ where $V_{\alpha} \subset \mathbb{H}^n$, $U_{\alpha} \subset M$, such that the following conditions are satisfied (i) $\cup_{\alpha} U_{\alpha} = M;$
 - (ii) $\psi_{\alpha} \colon V_{\alpha} \to U_{\alpha}$ is 1-1 and onto;

 - (iii) $V_{\alpha\beta} = \psi_{\alpha}^{-1}(U_{\beta})$ is open in \mathbb{H}^n for any α, β . (iv) $\psi_{\beta}^{-1} \circ \psi_{\alpha} \colon V_{\alpha\beta} \to V_{\beta\alpha}$ is smooth for any $\alpha, \beta \in \mathcal{A}$.
- (2) (10 pts) Let $f: \mathbb{RP}^n \to \mathbb{R}$ be given by $f([x_0:x_1:\ldots:x_n]) = \frac{x_n^2}{x_0^2 + x_1^2 + \ldots + x_n^2}$.
 - (a) Show that f is well defined and smooth.
 - (b) Show that the set $\{f = 1/2\}$ is nonempty and carries a natural structure of a manifold of dimension n-1.

Solution

- (a) Let $\tilde{f}: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}$ be given by $\tilde{f}(x_0, x_1, \dots, x_n] = \frac{x_n^2}{x_0^2 + x_1^2 + \dots + x_n^2}$. Then for any $\lambda \neq 0$ and any $x \in \mathbb{R}^{n+1} \setminus \{0\}$ we have $\tilde{f}(\lambda \cdot x) = \frac{\lambda^2 \cdot x_n^2}{\lambda^2 \cdot x_0^2 + \dots + \lambda^2 \cdot x_n^2} = \frac{x_n^2}{x_0^2 + \dots + x_n^2} = \frac{x_n^2}{x_n^2 + \dots + x_n^2}$ f(x) which means that f is well defined. To see that f is smooth consider its representation in standard coordinate charts $\phi_i \colon \mathbb{R}^n \to \mathbb{RP}^n \ (i = 0, \dots, n))$ given by $\phi_i(x_1, \ldots, x_n) = [x_1 : \ldots : x_i : 1 : x_{i+1} : \ldots : x_n].$ For i < n we have $f \circ \phi_i(x_1, \ldots, x_n) = \frac{x_n^2}{x_1^2 + \ldots + 1 + \ldots + x_n^2}$ is smooth in x. And for i = n we have $f \circ \phi_n(x_1, \ldots, x_n) = \frac{1}{x_1^2 + \ldots + x_n^2 + 1}$ is also smooth in x. Thus f is smooth.
- (b) $f(1 : 0 : \ldots : 0 : 1) = 1/2$ and hence $\{f = 1/2\}$ is nonempty. To see that $\{f = 1/2\}$ carries a natural structure of a manifold of dimension n-1it's sufficient to check that 1/2 is a regular value of f. Since the target is 1-dimensional it's enough to show that $df_p \neq 0$ for any $p \in \{f = 1/2\}$. We'll check it for points lying in $U_i = \phi_i(\mathbb{R}^n)$ for all $i = 0, \ldots, n$.

For i < n we have $g_i(x) = f \circ \phi_i(x_1, \dots, x_n) = \frac{x_n^2}{x_1^2 + \dots + 1 + \dots + x_n^2}$.

We compute $\frac{\partial g_i}{\partial x_n}(x) = \frac{2x_n(1+x_1^2+\dots+x_{n-1}^2)}{(x_1^2+\dots+1+\dots+x_n^2)^2} \neq 0$ unless $x_n = 0$. However, if $x_n = 0$ then $g_i(x) = 0 \neq 1/2$ and hence $dg_i(x) \neq 0$ for any x satisfying $g_i(x) = 1/2$. Similarly, for i = n we have $g_n(x) = \frac{1}{x_1^2 + \dots + x_n^2 + 1}$. We compute

$$\frac{\partial g_i}{\partial x_i}(x) = \frac{-2x_i}{x_1^2 + \ldots + x_n^2 + 1}$$

Thus $dg_n(x) = 0$ only if all $x_i = 0$, i.e. x = 0. However, $g_n(0) = \frac{1}{1} = 1 \neq 1/2$ and hence we also have $dg_n(x) \neq 0$ for any x satisfying $g_n(x) = 1/2$. Altogether this means that $df_p \neq 0$ for any p satisfying f(p) = 1/2 i.e. 1/2 is a

regular value of f. (3) (12 pts) Mark **True or False**. You DO NOT need to justify your answers. Let M, N be smooth manifolds.

- (a) A submersion $f: M \to N$ is onto. Answer: **False**. E.g. take the inclusion $i: (-1, 1) \to \mathbb{R}$.
- (b) A smooth embedding $f: M \to N$ is a closed map. Answer: **False**. Same example as in (a).
- (c) If a smooth map $f: M \to N$ is injective then it's an immersion. Answer: **False**. E.g. $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^3$.
- (d) A local diffeomorphism which is 1-1 and onto is a diffeomorphism. Answer: True.
- (e) \mathbb{S}^1 is diffeomorphic to \mathbb{RP}^1 . Answer: **True**.
- (f) Composition of two maps of constant rank has constant rank. Answer: **False**. E.g. take $f: (-1,1) \to R^2$ given by $f(x) = (x,\sqrt{1-x^2})$ and $q: \mathbb{R}^2 \to \mathbb{R}$ given by q(x, y) = y. Both maps have constant rank 1. However, $h(x) = g \circ h(x) = \sqrt{1-x^2}$ does not have constant rank.
- (4) (10 pts) Let M^n, N^m be smooth manifolds such that n > m. Let $f: M^n \to N^m$ be a smooth map.

Prove that f is not 1-1.

Hint: Use the constant rank theorem.

Solution

Let $p \in M$ be a point where $r = \operatorname{rank} df_p$ is maximal possible. Obviously, $r \leq m < n$. By reducing domain and range to co-ordinate charts we can assume that M = U is an open subset in \mathbb{R}^n and $N = \mathbb{R}^m$. By permuting co-ordinates we can assume that the matrix $\left[\frac{\partial f_i}{\partial x_i}(p)\right]_{i,j=1,\dots,r}$ is invertible.

By continuity of determinants the same holds true for points x near p. Thus, df_x has rank $\geq r$ for x near p. But since r was chosen to be maximal possible we actually have rank $df_x = r$ for x near p.

Thus, by the constant rank theorem after a change of coordinates near p on the domain and the target we can assume that f has the form $f(y_1, \ldots, y_n) = (y_1, \ldots, y_r, 0, \ldots, 0)$ which is not 1-1 since r < n. \Box

(5) (10 pts)

(1)

(a) Let $f: M \to \mathbb{R}$ be smooth and let V be a smooth vector field on M. Suppose V(p)(f) > 0 for some p in M.

Prove that there is an open set U containing p such that V(x)(f) > 0 for any $x \in U$.

(b) Let $f: M \to \mathbb{R}$ be smooth. Suppose for every $p \in M$ there exists $v \in T_p M$ such that v(f) > 0.

Prove that there exists a smooth vector field V on M such that V(p)(f) > 0for every $p \in M$.

Hint: Use partition of unity.

Solution

(a) In some local coordinates V has the form $V(x) = \sum_{i=1}^{n} v_i(x) \frac{\partial}{\partial x_i}|_x$ where $v_i(x)$ are smooth functions.

Then $g(x) = V(x)(f) = \sum_{i=1}^{n} v_i(x) \frac{\partial f}{\partial x_i}(x)$ is smooth in x. In particular, it's continuous and since g(p) > 0, by continuity, there exists an open set U containing p such that g(x) > 0 for any $x \in U$. \Box

(b) Let $p \in M$ be any. We are given that there exists $v \in T_p M$ such that v(f) > 0. In some local coordinates x it has the form $v = \sum_{i=1}^n v_i \frac{\partial}{\partial x_i}|_p$ for some $v_1, \ldots v_n \in \mathbb{R}$. Extend v to a smooth vector field V_p on a small open set U_p containing p by the formula $V_p(x) = \sum_{i=1}^n v_i \frac{\partial}{\partial x_i}|_x$. By part (a) we have that V(x)(f) > 0 on some open set $W_p \subset U_p$ containing p.

The collection $\{W_p\}_{p\in M}$ is an open cover of M. Let $\{\phi_i\}_{i=1}^{\infty}$ be a partition of unity subordinate to this cover so that $\operatorname{supp} \phi_i \subset W_{p_i}$.

Let $V = \sum_{i} \phi_i \cdot V_{p_i}$. We claim that V satisfies the required properties: V is obviously smooth and for any $p \in M$ we have

$$V(p)(f) = \sum_{i} \phi_i \cdot V_{p_i}(p)(f) \ge 0$$

since all the terms in the sum are nonnegative. Moreover, for every p there is an i such that $\phi_i(p) > 0$. For that i we have that $p \in \operatorname{supp} \phi_i \subset W_{p_i}$ and therefore, $V_{p_i}(p)(f) > 0$. Thus, at least one term in the sum (1) is positive and hence, V(p)(f) > 0. \Box