- (1) Prove that $H_{DR}^1(\mathbb{R}^2) = 0$
- (2) Prove that an orientation ϵ on a smooth manifold M^n is continuous if and only if it's smooth, i.e. for any $p \in M$ there exists an open set $U \subset M$ containing p and a collection of **smooth** vector fields X_1, \ldots, X_n on U such that $X_1(q), \ldots, X_n(q)$ is a basis of T_qM for any $q \in U$ and $\epsilon(X_1(q), \ldots, X_n(q)) = +1$ for any $q \in U$.
- (3) Let M^n be a connected orientable manifold. Prove that there are exactly two possible orientations on M.
- (4) Let $\gamma: [0,1] \to M^n$ be a smooth curve in M. A smooth vector field Xalong γ is a smooth map $X: [0,1] \to TM$ such that $X(t) \in T_{\gamma(t)}M$ for any t.
 - (a) Suppose M^n is oriented with orientation ϵ and X_1, \ldots, X_n are smooth vector fields along $\gamma \colon [0, 1] \to M$ such that $X_1(t), \ldots, X_n(t)$ is a basis of $T_{\gamma(t)}$ for any t. Prove that $\epsilon(X_1(t), \ldots, X_n(t)) =$ const.
 - (b) Prove that \mathbb{RP}^2 is not orientable. Hint: apply part (a) to $\gamma(t) = [\cos(\pi t) : \sin(\pi t) : 0]$