(1) Let V be a vector field on M i.e. it's a map $V: M \to TM$ such that $V(p) \in T_pM$ for every $p \in M$. Then for any smooth function $f: M \to \mathbb{R}$ we have a new function $V(f): M \to \mathbb{R}$ given by V(f)(p) = V(p)(f) (recall that V(p) is a derivation at p).

Prove that V is smooth if and only if V(f) is smooth for any smooth f.

- (2) Let $M = O(n) = \{A \in M(n \times n) | \text{ such that } A \cdot A^t = Id\}$ with its canonical smooth structure defined in homework 1.
 - (a) Show that the multiplication map $F: M \times M \to M$ given by $F(A, B) = A \cdot B$ is a smooth map. Conclude that for any $A \in O(n)$ the left translation map $l_A: M \to M$ given by $l_A(B) = A \cdot B$ is a diffeomorphism.
 - (b) A vector field V on O(n) is called *left invariant* if for any $A, B \in M$ we have that $dl_A(V(B)) = V(l_A(B))$. Let $e \in O(n)$ be the identity matrix. Prove that for any $v \in T_eO(n)$ there is a unique left invariant vector field V on O(n) such that V(e) = v.
 - (c) Prove that any left invariant vector field on O(n) is smooth. Hint: use problem (1)
 - (d) Prove that TO(n) is diffeomorphic to $O(n) \times \mathbb{R}^{n(n-1)/2}$.
- (3) Let M^n be a manifold without boundary. Let $p \in M$ and $v \in T_p M$. Prove that there exists a smooth curve $\gamma: (-1,1) \to M$ such that $\gamma(0) = p$ and $\gamma'(0) = v$.
- (4) Let V be a smooth vector field on M. Prove that $V: M \to TM$ is an immersion.
- (5) Let $U \subset \mathbb{R}^{n+k}$ be an open subset and let $F: U \to \mathbb{R}^k$ be a smooth map. Let $c \in \mathbb{R}^k$ be a regular value of F and let $M = \{F = c\}$ be the level set with its canonical smooth structure.

Prove that the inclusion $i: M \to \mathbb{R}^{n+k}$ is an immersion.