(1) Prove that \mathbb{S}^1 is diffeomorphic to \mathbb{RP}^1 .

Hint: Consider the map $f: \mathbb{S}^1 \to \mathbb{S}^1$ given by $f(z) = z^2$ and verify that it induces a diffeomorphism $\hat{f}: \mathbb{RP}^1 \to \mathbb{S}^1$.

- (2) (a) Let $S \subset M^n$ be a k-dimensional submanifold in a smooth manifold M^n . Let $p \in S$ be any point. Prove that there exists an open set $U \subset M$ and a smooth map $\Phi: U \to \mathbb{R}^{n-k}$ such that 0 is a regular value of Φ and $S \cap U = \Phi^{-1}(0)$.
 - (b) Let $S \subset \mathbb{R}^n$ be a k-dimensional submanifold. Let $p \in S$. Show that there an open set $U \subset \mathbb{R}^n$ containing p such that up to reordering of coordinates on $\mathbb{R}^n \ U \cap S$ is equal to the graph of a smooth function $f: W \to \mathbb{R}^{n-k}$ where $W \subset \mathbb{R}^k$ is open. *Hint:* use part a)
 - (c) Let $S \subset \mathbb{R}^3$ be the graph of $z = \sqrt[4]{x^2 + y^2}$. Prove that S is not a smooth submanifold of \mathbb{R}^3 . *Hint:* use part b)