1. DIFFERENTIAL FORMS ON SMOOTH MANIFOLDS

Definition 1.1. Let M™ be a smooth manifold (possibly with boundary).
Define the tensor bundle of k-tensors over M as the disjoint union 7%(M) :=
Upens T*(T,M). Similarly, the bundle of alternating k-tensors on M is

defined as A*(M) := Upens AR(T,M).

We will mostly consider A¥(M), however, all the following constructions
work for T#(M) too.

We are going to show that A* (M) admits a natural structure of a smooth
manifold. The construction is completely analogous to the construction of
the smooth structure on T'M. However, at the moment it’s just a family of
vector spaces with no topology or smooth structure.

Remark 1.2. In the notations of the book A*(M) = A*(T*M)

We have a canonical projection 7: A*(M) — M given by 7(p,w) = p
where p € M and w € A¥(T,M). The fiber 7~1(p) is equal to A*(T,M).

Given a diffeomorphism f: M — N its differential dfy: TyM — Ty, N
is a linear isomorphism for every p € M. It induces a pullback map
df: .Ak(Tf(p)N ) — AF(T,M) which is also a linear isomorphism. Since
f is a bijection we can define

df*: AF(N) — A% (M)
as follows. For ¢ € N,w € A¥(T,N) set
A (g, w0) = df-s ) ()

It’s easy to see that df* is a bijection which is a linear isomorphism on all
fibers.

Let f: M — N, g: N — P be diffeomorphisms. Then d(g o f) = dg o df
and hence

d(go f)" = df* odg®

Next let’s consider the case M =V is an open subset of R™.

Then for any p € M the tangent space T),M has a canonical basis e; =
%|p, e lp = %h}. Therefore T); M has a canonical basis el ..., e" were
¢'(ej) = dij- ,

Let 2': R™ — R be the i-th coordinate map. Consider (dz*),: T,R" — R.
Then (dmi)p(%b) = %\p = 0j;. In other words,

J J

(dz'), = €' i=1,...,n

From now on we will use the notations (dz;), for the elements of the dual
basis instead of e’. However, these are the same objects and this is simply
a notation change.
Similarly, instead of writing e/ = et A ... A e we will write dml|p =
dzit|p A ... A datk],.
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Every element w € A¥(T,M) has a unique representation in the form
w = ZI:(i1<...<z’k) wydz!|,. This gives a canonical bijection

v x R S A¥(V) given by (p, {w;}) = >, wrdz!|, with the inverse

map given by
(p,w) = (p,{w(er)})

Since both these maps are canonical we will identify A*(V) with V x R(¥)
without explicitly writing these maps.

Now let M™ be a smooth manifold (possibly with boundary). Let {¢q: Vo —
Ua}aea be an atlas on M where Uy, is open in M and V,, is open in R” (in
H" if M has boundary). Let x, = ¢,': U, — V, be the corresponding
local coordinate maps.

Since each z, is a diffeomorphism, by above z%: A¥(V) =V x R -
AF(U) is a bijection for each o. Also note that V x R ¢ RPH(R) s open.

Lemma 1.3. The collection {¥, = z}}aca defines a smooth atlas on
AR (M).

Proof. The main thing is to check that the transition maps are smooth.
Let « ﬂ € A be arbitrary and consider the map V.53 = \If_1 oW,. Let

f= qj 5 © ®a: Vap — Vga. Let’s denote the coordinates on the the domain
by z = (x1,...,2,) and on the target by y = (y1,...,¥yn). Then

Vap(z, {wr}) = (f(z).{w]})
Let us determine the dependence of w’; on z, {w;}. Let p = ¢o(x). We have
that > ;wrdzl|, = Y, wdy’|,. Fix a multi-index J = (jl,...,jk) and

evaluate this equality on %| e 8y ]p We have RHS = w’;. LHS =
Oz
o1 wldzI’p(ay7 lps - 8y] lp). We have 8y]- b =2 dZ] Iz; |p-
This gives
0 ox ox
I a1 dk
wy = wrdzr” |,(=—]p, . .. wldm .
ZI: |p(a3/j1 » Z Z i axq b Z I a%k
Oz 8x 0 0
=2 > wfayqf e g ()
I Q=(q1,--qx) 7 I n k
is smooth since y = y(z) and = = z(y) are smooth. O

Corollary 1.4. The canonical projection w: A¥(M) — M is a submersion.

Remark 1.5. Note that by construction the coordinate maps ¥, commute
with 7 and are linear isomorphisms on the fibers of .

Definition 1.6. A smooth differential k-form w on a manifold M" is a
smooth section of the bundle 7: A*(M) — M, i.e. it’s a smooth map

w: M — AF(M)
such that mow = idyy, i.e. w(p) € A¥(T,M) for any p € M.
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Given local coordinates z: U — V U C M,V C R™ are open, w|y can
be written as Y ;wr(x)dz!. The following Lemma is an easy consequence
of the definition

Lemma 1.7. Let w: M — A¥(M) — M be a map. TFAE

(1) w is smooth

(2) For any local coordinate chart x: U — V where U C M,V C R" are
open w|y = > wr(x)dx! and all wi(z) are smooth functions.

(8) There ezists an atlas {¢a: Vo — Ustaca be an atlas on M such
that for any o we have

wlu, = Y wf (a)day,
I

and all w§ are smooth.

We denote the set of all smooth k-form on M by QF(M). We'll denote
by Q*(M) the collection of all forms of all degrees i.e. U,QF(M).

Note that Q°(M) = C>(M). All pointwise operations on alternating
tensors such as addition, multiplication by a number and wedge product
make sense for forms Moreover, if w € QF(M) and f: M — R is smooth
then f - w is also a smooth form.

Pullbacks make sense for forms as well.

Given a smooth map f: M — N and w € QF(N) we define f*(w) by
[ (w)(p) =dfy(w(f(p))). Le. forvy,...v € TyM we have f*w(p)(v1,...,v%) =
w(f(p))(dfp(v1),...,dfp(vg)). By computing f*(w) in local coordinates it
follows from Lemma 1.7 that f*(w) is smooth.

Proposition 1.8.

a) Ifwi,ws € Q¥ (M), f1, fa: M — R are smooth then fiwi + fows € QF(M)
s also a smooth k-form.

b) If w,m € Q*(M) then w An € Q*(M)

c) If F: M — N is smooth then F*: Q*(N) — Q*(N) is linear. Moreover
F*(g) =goF for any g € Q°(N).

d) If F: M - N and G: N — P are smooth and then (G o F)* = F* o G*

e) If f: M — R is smooth then f*(dt) = df - differential of f which in local

coordinates x on M can be written as ), %dazi

f) If F: M — N is smooth and w,n € Q*(N) then F*(w An) = F*(w) A
F*(n)

g9) If F = (F,...,Fp): M — R™ is smooth then F*(3 ;< <icr) wr(y)dy!) =

Zl(wl o F)dEl VANPIRVAN szk
Proof. a),b),c), ) are straightforward. d) follows from the definition of
pullback and the chain rule d(g o f) = dg o df. e) is immediate from the
definition: for p € M,v € T,(M) we have f*(dt)(v) = dt(dfp(v)) = dfp(v).
To get the coordinate expression for df recall that for any 1-form w we
have w = Ziw(a%i)dxi. In case of w = df this gives df =), df(a%i)dxi =
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g) follows from e), f):

F( Y wiydy’) =) F*(wi(y)dy" A Ady™) =Y " (wroF)F*(dy™)A
I=(i1 <...<i<k) fi I
> (wro F)dF™ A ... AdF™
I
O

Formula g) from the previous Proposition has a particularly simple form
for top dimensional forms:

Lemma 1.9. Let F = (Fy,...,F,): U — V be smooth where U,V C R"
are open. Let w = u(y)dy' A ...dy" be an n-form on V. Then

Ofi
8:5]-

F*(w) = (u(F(2))(det(222))dz' A ... A dz"

2. EXTERIOR DERIVATIVE

Definition 2.1. Let w = Y ; wy(z)dz! be a smooth differential form on an
open subset V' in R™. Define the exterior derivative dw by the formula

dw = Zdwj(x) A dx!
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Proposition 2.2.

a) Let f: V — R be smooth. Then df =), %dwi when viewed as exterior
derivative of f an a 0-form coincides with df - differential of f.

b) d: QF(M) — QF1(M) is linear

¢)dod=0

d) d(wAn) =dw An+ (=)< Ml A dy

e) If F: Vi — Va is smooth where Vi C R™, Vo C R™ are open (m and n
need not be equal) and w is a form on Vy then

F(dw) = d(F*(w))

Proof. a) is proved above in the proof of Proposition 1.8. e) is a formal
consequence of b),c), d) and Proposition 1.8:

By Proposition 1.8 we know that if w = dg where g: N — R is smooth
then F*(dg) =d(go F)).

By linearity it’s enough to prove e) for w = u(y)dy’. Then dw = du A dy’.
Hence F*(dw) = F*(du A dy’) = F*(du) A F*(dy!) = d(uo F)NdF A ... A
dF".

One the other hand, F*(w) = (uo F)dF* A...AdF%*. Then by repeatedly
applying d) and using that d(dF;) = 0 we get that

dF*(w) =d(uo F)ANdF™ A ... N dF™

CAFF(dyi) =
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Definition 2.3. Let M"™ be a smooth manifold and let w be a smooth k-
form on M. Define dw € QF1(M) as follows. Let x: U — V be a local
coordinate chart where U C M,V C R" are open.

Define dw on U as follows. Let a = (z7!)*w be w in = coordinates. Then

set
dw = z*(da)

Lemma 2.4. dw is well defined, i.e. it does not depend on the choice of a
coordinate chart x.

Proof. Let x: Uy — Vi,y: Uy — V5 be two different charts.

Observe that two forms « on Vi, and 8 on Vs define the same form on
UrnU. ie a*(e) = y*(B) iff B = ()" (B) = (y )@ () =
(r oy H*(a) = F*(a) where F is the transition map z oy~!

Let a = z*(w),f = y*(w). By above 8 = F*(a) and to show that dw
is well defined we need to check that F*(da) = df. But this is true by
Proposition 2.2e) because d commutes with pullbacks. O



