
1. Differential forms on smooth manifolds

Definition 1.1. Let Mn be a smooth manifold (possibly with boundary).
Define the tensor bundle of k-tensors over M as the disjoint union T k(M) :=⊔
p∈M T k(TpM). Similarly, the bundle of alternating k-tensors on M is

defined as Ak(M) :=
⊔
p∈M Ak(TpM).

We will mostly consider Ak(M), however, all the following constructions
work for T k(M) too.

We are going to show that Ak(M) admits a natural structure of a smooth
manifold. The construction is completely analogous to the construction of
the smooth structure on TM . However, at the moment it’s just a family of
vector spaces with no topology or smooth structure.

Remark 1.2. In the notations of the book Ak(M) = Λk(T ∗M)

We have a canonical projection π : Ak(M) → M given by π(p, w) = p
where p ∈M and w ∈ Ak(TpM). The fiber π−1(p) is equal to Ak(TpM).

Given a diffeomorphism f : M → N its differential dfp : TpM → Tf(p)N
is a linear isomorphism for every p ∈ M . It induces a pullback map
df∗p : Ak(Tf(p)N) → Ak(TpM) which is also a linear isomorphism. Since
f is a bijection we can define

df∗ : Ak(N)→ Ak(M)

as follows. For q ∈ N,w ∈ Ak(TqN) set

df∗(q, w) := df∗f−1(q)(w)

It’s easy to see that df∗ is a bijection which is a linear isomorphism on all
fibers.

Let f : M → N , g : N → P be diffeomorphisms. Then d(g ◦ f) = dg ◦ df
and hence

d(g ◦ f)∗ = df∗ ◦ dg∗

Next let’s consider the case M = V is an open subset of Rn.
Then for any p ∈ M the tangent space TpM has a canonical basis e1 =

∂
∂x1
|p, . . . , en = ∂

∂xn
|p. Therefore T ∗pM has a canonical basis e1, . . . , en were

ei(ej) = δij .
Let xi : Rn → R be the i-th coordinate map. Consider (dxi)p : TpRn → R.

Then (dxi)p(
∂
∂xj
|p) = ∂xi

∂xj
|p = δij . In other words,

(dxi)p = ei i = 1, . . . , n

From now on we will use the notations (dxi)p for the elements of the dual
basis instead of ei. However, these are the same objects and this is simply
a notation change.

Similarly, instead of writing eI = ei1 ∧ . . . ∧ eik we will write dxI |p =
dxi1 |p ∧ . . . ∧ dxik |p.
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Every element w ∈ Ak(TpM) has a unique representation in the form
w =

∑
I=(i1<...<ik)

wIdx
I |p. This gives a canonical bijection

V × R(nk) → Ak(V ) given by (p, {wI}) 7→
∑

I wIdx
I |p with the inverse

map given by
(p, w) 7→ (p, {w(eI)})

Since both these maps are canonical we will identify Ak(V ) with V ×R(nk)

without explicitly writing these maps.
Now letMn be a smooth manifold (possibly with boundary). Let {φα : Vα →

Uα}α∈A be an atlas on M where Uα is open in M and Vα is open in Rn (in
Hn if M has boundary). Let xα = φ−1α : Uα → Vα be the corresponding
local coordinate maps.

Since each xα is a diffeomorphism, by above x∗α : Ak(V ) = V × R(nk) →
Ak(U) is a bijection for each α. Also note that V ×R(nk) ⊂ Rn+(nk) is open.

Lemma 1.3. The collection {Ψα = x∗α}α∈A defines a smooth atlas on
Ak(M).

Proof. The main thing is to check that the transition maps are smooth.
Let α, β ∈ A be arbitrary and consider the map Ψαβ = Ψ−1β ◦ Ψα. Let

f = φ−1β ◦ φα : Vαβ → Vβα. Let’s denote the coordinates on the the domain

by x = (x1, . . . , xn) and on the target by y = (y1, . . . , yn). Then

Ψαβ(x, {wI}) = (f(x), {w′J})
Let us determine the dependence of w′J on x, {wI}. Let p = φα(x). We have
that

∑
I wIdx

I |p =
∑

J w
′
Jdy

J |p. Fix a multi-index J = (j1, . . . , jk) and

evaluate this equality on ∂
∂yj1
|p, . . . , ∂

∂yjk
|p. We have RHS = w′J . LHS =∑

I wIdx
I |p( ∂

∂yj1
|p, . . . , ∂

∂yjk
|p). We have ∂

∂yj
|p =

∑
i
∂xi
∂yj

∂
∂xi
|p.

This gives

wJ =
∑
I

wIdx
I |p(

∂

∂yj1
|p, . . . ,

∂

∂yjk
|p) =

∑
I

wIdx
I(
∑
q1

∂xq1
∂yj1

∂

∂xq1
|p, . . . ,

∑
q1

∂xqk
∂yjk

∂

∂xqk
|p)

=
∑
I

∑
Q=(q1,...,qk)

wI
∂xq1
∂yj1

· . . . · ∂xqk
∂yjk

dxI(
∂

∂xq1
|p, . . . ,

∂

∂xqk
|p)

is smooth since y = y(x) and x = x(y) are smooth. �

Corollary 1.4. The canonical projection π : Ak(M)→M is a submersion.

Remark 1.5. Note that by construction the coordinate maps Ψα commute
with π and are linear isomorphisms on the fibers of π.

Definition 1.6. A smooth differential k-form ω on a manifold Mn is a
smooth section of the bundle π : Ak(M)→M , i.e. it’s a smooth map

ω : M → Ak(M)

such that π ◦ ω = idM , i.e. ω(p) ∈ Ak(TpM) for any p ∈M .
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Given local coordinates x : U → V U ⊂ M,V ⊂ Rn are open, ω|U can
be written as

∑
I ωI(x)dxI . The following Lemma is an easy consequence

of the definition

Lemma 1.7. Let ω : M → Ak(M)→M be a map. TFAE

(1) ω is smooth
(2) For any local coordinate chart x : U → V where U ⊂M,V ⊂ Rn are

open ω|U =
∑

I ωI(x)dxI and all wI(x) are smooth functions.
(3) There exists an atlas {φα : Vα → Uα}α∈A be an atlas on M such

that for any α we have

ω|Uα =
∑
I

ωαI (xα)dxIα

and all ωαI are smooth.

We denote the set of all smooth k-form on M by Ωk(M). We’ll denote
by Ω∗(M) the collection of all forms of all degrees i.e. ∪kΩk(M).

Note that Ω0(M) = C∞(M). All pointwise operations on alternating
tensors such as addition, multiplication by a number and wedge product
make sense for forms Moreover, if ω ∈ Ωk(M) and f : M → R is smooth
then f · ω is also a smooth form.

Pullbacks make sense for forms as well.
Given a smooth map f : M → N and ω ∈ Ωk(N) we define f∗(ω) by

f∗(ω)(p) = df∗p (ω(f(p))). I.e. for v1, . . . vk ∈ TpM we have f∗ω(p)(v1, . . . , vk) =
ω(f(p))(dfp(v1), . . . , dfp(vk)). By computing f∗(ω) in local coordinates it
follows from Lemma 1.7 that f∗(ω) is smooth.

Proposition 1.8.

a) If ω1, ω2 ∈ Ωk(M), f1, f2 : M → R are smooth then f1ω1+f2ω2 ∈ Ωk(M)
is also a smooth k-form.

b) If ω, η ∈ Ω∗(M) then ω ∧ η ∈ Ω∗(M)
c) If F : M → N is smooth then F ∗ : Ω∗(N)→ Ω∗(N) is linear. Moreover

F ∗(g) = g ◦ F for any g ∈ Ω0(N).
d) If F : M → N and G : N → P are smooth and then (G ◦ F )∗ = F ∗ ◦G∗
e) If f : M → R is smooth then f∗(dt) = df - differential of f which in local

coordinates x on M can be written as
∑

i
∂f
∂xi
dxi

f) If F : M → N is smooth and ω, η ∈ Ω∗(N) then F ∗(ω ∧ η) = F ∗(ω) ∧
F ∗(η)

g) If F = (F1, . . . , Fm) : M → Rm is smooth then F ∗(
∑

I=(i1<...<i<k)
wI(y)dyI) =∑

I(ωI ◦ F )dFi1 ∧ . . . ∧ dFik
Proof. a),b),c), f) are straightforward. d) follows from the definition of
pullback and the chain rule d(g ◦ f) = dg ◦ df . e) is immediate from the
definition: for p ∈M, v ∈ Tp(M) we have f∗(dt)(v) = dt(dfp(v)) = dfp(v).

To get the coordinate expression for df recall that for any 1-form ω we
have ω =

∑
i ω( ∂

∂xi
)dxi. In case of ω = df this gives df =

∑
i df( ∂

∂xi
)dxi =∑

i
∂f
∂xi
dxi
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g) follows from e), f):

F ∗(
∑

I=(i1<...<i<k)

wI(y)dyI) =
∑
I

F ∗(wI(y)dyi1∧. . .∧dyik) =
∑
I

(ωI◦F )F ∗(dyi1)∧. . .∧F ∗(dyik) =

∑
I

(ωI ◦ F )dF i1 ∧ . . . ∧ dF ik

�

Formula g) from the previous Proposition has a particularly simple form
for top dimensional forms:

Lemma 1.9. Let F = (F1, . . . , Fn) : U → V be smooth where U, V ⊂ Rn
are open. Let ω = u(y)dy1 ∧ . . . dyn be an n-form on V . Then

F ∗(ω) = (u(F (x))(det(
∂fi
∂xj

))dx1 ∧ . . . ∧ dxn

2. Exterior derivative

Definition 2.1. Let ω =
∑

I ωI(x)dxI be a smooth differential form on an
open subset V in Rn. Define the exterior derivative dω by the formula

dω =
∑
I

dωI(x) ∧ dxI

Proposition 2.2.

a) Let f : V → R be smooth. Then df =
∑

i
∂f
∂xi
dxi when viewed as exterior

derivative of f an a 0-form coincides with df - differential of f .
b) d : Ωk(M)→ Ωk+1(M) is linear
c) d ◦ d = 0

d) d(ω ∧ η) = dω ∧ η + (−1)|ω|·|η|ω ∧ dη
e) If F : V1 → V2 is smooth where V1 ⊂ Rn, V2 ⊂ Rm are open (m and n

need not be equal) and ω is a form on V2 then

F ∗(dω) = d(F ∗(ω))

Proof. a) is proved above in the proof of Proposition 1.8. e) is a formal
consequence of b),c), d) and Proposition 1.8:

By Proposition 1.8 we know that if ω = dg where g : N → R is smooth
then F ∗(dg) = d(g ◦ F )).

By linearity it’s enough to prove e) for ω = u(y)dyI . Then dω = du∧dyI .
Hence F ∗(dω) = F ∗(du∧ dyI) = F ∗(du)∧F ∗(dyI) = d(u ◦F )∧ dF i1 ∧ . . .∧
dF ik .

One the other hand, F ∗(ω) = (u◦F )dF i1∧ . . .∧dF ik . Then by repeatedly
applying d) and using that d(dFi) = 0 we get that

dF ∗(ω) = d(u ◦ F ) ∧ dF i1 ∧ . . . ∧ dF ik
�
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Definition 2.3. Let Mn be a smooth manifold and let ω be a smooth k-
form on M . Define dω ∈ Ωk+1(M) as follows. Let x : U → V be a local
coordinate chart where U ⊂M,V ⊂ Rn are open.

Define dω on U as follows. Let α = (x−1)∗ω be ω in x coordinates. Then
set

dω := x∗(dα)

Lemma 2.4. dω is well defined, i.e. it does not depend on the choice of a
coordinate chart x.

Proof. Let x : U1 → V1, y : U2 → V2 be two different charts.
Observe that two forms α on V1, and β on V2 define the same form on

U1 ∩ U2. i.e. x∗(α) = y∗(β) iff β = (y−1)∗(y∗(β)) = (y−1)∗(x∗(α)) =
(x ◦ y−1)∗(α) = F ∗(α) where F is the transition map x ◦ y−1

Let α = x∗(ω),β = y∗(ω). By above β = F ∗(α) and to show that dω
is well defined we need to check that F ∗(dα) = dβ. But this is true by
Proposition 2.2e) because d commutes with pullbacks. �


