
3. Exterior derivative (continued)

Proposition 3.1. Exterior differentiation on a manifold M satisfies the
following properties

a) Let f : M → R be smooth. Then df when viewed as exterior derivative
of f as a 0-form coincides with df - differential of f .

b) d : Ωk(M)→ Ωk+1(M) is linear.
c) d ◦ d = 0

d) d(ω ∧ η) = dω ∧ η + (−1)|ω|·|η|ω ∧ dη
e) If F : Mn → Nm is smooth and ω is a form on N then

F ∗(dω) = d(F ∗(ω))

Moreover, an operation d : Ω∗(M)→ Ω∗+1(M) satisfying a)-d) is unique
and must coincide with the exterior derivative.

Proof. The proof of the properties a)-d) is an immediate consequence of the
definition and the fact that these properties hold for exterior derivatives on
open subsets of Rn.

To prove uniqueness, suppose d is another operation satisfying a)-d).
Observe that locally any ω can be written as ω =

∑
I ωI(x)dxI where

dxI = dxi1 ∧ . . . ∧ dxik and x : U → V ⊂ Rn is a local coordinate chart
on an open subset U ⊂ M . Then we have that dxi = dxi by a) and hence
d(dxi) = d(dxi) = 0 by c). Therefore, by repeatedly applying d) we get that
d(dxi1 ∧ . . . ∧ dxik) = 0. Therefore, by d) again we get that d(ωI(x)dxI) =
d(ωi(x)) ∧ dxI + ωI(x) ∧ d(dxI) = dwi(x) ∧ dxI + 0 = d(ωI(x)dxI). The
general case follows by linearity of d and d. �

4. De Rham cohomology

Definition 4.1. A form ω ∈ Ω∗(M) is called closed if dω = 0.
A form ω ∈ Ω∗(M) is called exact if ω = dη for some η ∈ Ω∗−1(M).

Since d ◦ d = 0 it’s obvious that every exact form is closed. It’s natural
to ask to what extent the converse holds. Let Bk(M) be the set of all exact
k-forms and let Zk(M) be the set of all closed k forms. It’s obvious that
Bk(M), Zk(M) are vector spaces and by above Bk(M) ⊂ Zk(M).

Definition 4.2. Let Mn be a smooth manifold, possibly with boundary.
The k-th de Rham cohomology group of M is defined to be the quotient
group

Hk
DR(M) := Zk(M)/Bk(M)

Since Bk(M) is a vector subspace of Zk(M) the quotient Hk
DR(M) is a

vector space and not just a group.

By the definition that Hk
DR(M) = 0 iff every closed k-form is exact.
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Example 4.3. Let M = V be an open subset of R2. Then a 1-form ω on
V has the form P (x, y)dx + Q(x, y)dy. By definition, w is exact iff ω = df

for some smooth f : V → R, i.e. if P (x, y)dx + Q(x, y)dy = ∂f
∂x (x, y)dx +

∂f
∂y (x, y)dxy, or P (x, y) = ∂f

∂x (x, y) and Q(x, y) = ∂f
∂y (x, y).

On the other hand ω is closed iff 0 = dω = d(P (x, y)dx + Q(x, y)dy) =

(−∂P
∂y (x, y) + ∂Q

∂x (x, y))dx ∧ dy or −∂P
∂y (x, y) + ∂Q

∂x (x, y) = 0.

Thus, every closed 1-form on V is exact iff for any smooth P,Q : V → R
satisfying ∂P

∂y (x, y) = ∂Q
∂x (x, y) there exists a smooth f : V → R such that

P = ∂f
∂x and Q = ∂f

∂y (x, y).

Exercise 4.4. Prove that H1
DR(R2) = 0

Let f : M → N be a smooth map between manifolds. Since F ∗ commutes
with d, F ∗ sends closed forms to closed forms and exact forms to exact forms.
Therefore it induces a homomorphism F ∗ : Hk

DR(N)→ Hk
DR(M) for any k.

Since (G ◦ F )∗ = F ∗ ◦G∗ and Id∗M = Id it follow that if F : M → N is a

diffeomorphism then F ∗ : Hk
DR(N)→ Hk

DR(M) is an isomorphism. We will
see later that for V = R2\{0} the form ω = y

x2+y2
dx− x

x2+y2
dy is closed but

not exact. This will imply that H1
DR(R2\{0}) 6= 0. Since H1(R2) = 0 by

the exercise above, this will show that R2 is not diffeomorphic to R2\{0}.

5. Orientation

5.1. Orientation on a vector space.

Definition 5.1. Let V be a finite dimensional vector space. Let e =
(e1, . . . , en) and e′ = (e′1, . . . , e

′
n) be two bases of V . We say that e ∼ e′

if the transition matrix A from e to e′ has detA > 0. It’s easy to see that
∼ satisfies the following properties

• if e ∼ e′ then e′ ∼ e;
• if e ∼ e′ and e′ ∼ e′′ then e ∼ e′′.

This means that ∼ is an equivalence relation on the set of all bases of V . We
will call equivalence classes mod ∼ orientations on V . We will say that two
bases e, e′ have the same orientation if they belong to the same equivalence
class, i.e. the transition matrix from e to e′ has positive determinant.

Lemma 5.2. Let V be a finite dimensional vector space. Then there are
precisely two possible ordinations on V .

Proof. Let e = (e1, . . . , en) be a basis of V and let e′ = (−e1, e2 . . . , en).
Since the transition matrix A from e to e′ has determinant −1 they define
two different orientations on V . We claim that any other basis of V is
equivalent to either e or e′: Let e′′ be a basis of V . Let B be the transition
matrix from e′ to e′′. Then the transition matrix from e to e′′ is BA and
det(BA) = detB·detA = −detB. This means that detB and det(BA) have
opposite signs, and thus one of them is positive and the other is negative.
Therefore e′′ ∼ e or e′′ ∼ e′. �
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We’ll call the two distinct orientations on V opposite or negative to each
other. If ε is an orientation and e = (e1, . . . , en) is a basis we put ε(e) = +1
if e is positively oriented with respect to ε and we put ε(e) = −1 if e is
negatively oriented with respect to ε.

Rn has a canonical orientation defined by the canonical basis (e1, . . . , en)
of Rn.

Orientations on V correspond to orientations on An(V ) ∼= R as follows.
Let w ∈ An(V ) be a nonzero alternating n-tensor. It defines an orienta-

tion εw as follows:
Given a basis e = (e1, . . . , en) we’ll say that e is positively oriented iff

w(e1, . . . , en) > 0. It’s easy to see that this defines an orientation on V . It’s
also obvious that if w′ = λw with λ 6= 0 then w and w′ define the same
orientation iff λ > 0.

5.2. Orientation on manifolds. Let Mn be a smooth n-dimensional man-
ifold (possibly with boundary)

Definition 5.3. An orientation ε on Mn is a choice of orientation ε(p) on
TpM for all p ∈M .

An orientation ε is called continuous if for any p ∈ M there exists an
open set U ⊂ M containing p and a collection of continuous vector fields
X1, . . . Xn on U such that X1(q), . . . Xn(q) is a basis of TqM for any q ∈ U
and ε(X1(q), . . . Xn(q)) = +1 for any q ∈ U .

A manifold M is called orientable if it admits a continuous orientation.

Exercise 5.4. Prove that an orientation ε is continuous if and only if it’s
smooth, i.e. for any p ∈ M there exists an open set U ⊂ M contain-
ing p and a collection of smooth vector fields X1, . . . Xn on U such that
X1(q), . . . Xn(q) is a basis of TqM for any q ∈ U and ε(X1(q), . . . Xn(q)) =
+1 for any q ∈ U .

From now on we will only consider continuous orientations. The relation
between orientations and nonzero alternating n-vectors on a fixed vector
space naturally carries over to manifolds as follows.

Suppose ω is a smooth n-form on Mn such that ω(p) 6= 0 for any p ∈M .
Then ω defines an orientation εω on M as follows. Given p ∈M and a basis
v1, . . . vn of TpM we say that it’s positively oriented iff ω(p)(v1, . . . vn) > 0.

Lemma 5.5. εω is continuous.

Proof. Let p ∈M be any point. Let U be a coordinate ball containing p, so
U is diffeomorphic to an open ball B(0, 1) in Rn under some local coordinate
map x : U → Rn. Let Xi(q) = ∂

∂xi
(q). Then f(q) = ω(X1(q), . . . , Xn(q)) is

smooth on U . Since f(q) 6= 0 for any q, by the Intermediate Value Theorem
we must have that f(q) > 0 for all q ∈ U or f(q) < 0 for all q ∈ U . In the
first case this gives the required collection of continuous vector fields on U .
In the second case the same works after changing X1 to −X1. �
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Next we will show that the converse also holds, i.e. every continuous
orientation is equal to εω for some nowhere zero ω ∈ Ωn(Mn).

Lemma 5.6. Let ε be a continuous orientation on a smooth manifold Mn.
Then there exists a smooth form ω ∈ Ωn(M) such that ω(p) 6= 0 for any
p ∈M and ε = εω.

Proof. Let ε be a continuous orientation on M .
We will use the following terminology. Let ω be a smooth n-form on an

open subset U ⊂M . We will say that ω is positive on U if ω(p)(v1, . . . , vn) >
0 for any p ∈ U and any positive basis v1, . . . , vn of TpM . We need to prove
that there exists a positive form on U = M .

Observe that if ω1, . . . , ωm are positive forms on U and φ1, . . . φm : U → R
are smooth functions such that φi ≥ 0 on U and

∑
i φi > 0 on U then

∑
i φiωi

is positive on U .
For any p ∈M let Up be an open set containing p such that there exist n

smooth vector fields X1, . . . Xn on Up such that X1(q), . . . Xn(q) is a positive
basis of TqM for any q ∈ Up. Let X1(q), . . . , Xn(q) be the dual basis of T ∗qM .

Then X1, . . . , Xn are smooth forms on U (why?). Let ωp = X1 ∧ . . . ∧Xn.
Then it’s a smooth positive form on U . Take a partition of unity {φi}
subordinate to the cover {Up}p∈M of M . Then suppφi ⊂ Upi for some pi
and by the observation above ω =

∑
i φiωi is positive on all of M . �


