3. EXTERIOR DERIVATIVE (CONTINUED)

Proposition 3.1. Ezterior differentiation on a manifold M satisfies the
following properties

a) Let f: M — R be smooth. Then df when viewed as exterior derivative
of f as a 0-form coincides with df - differential of f.

b) d: QF(M) — QFHL(M) is linear.

c)dod=0

d) dwAn) =dwAn+ (=1, A dy

e) If F: M™ — N™ is smooth and w is a form on N then

F*(dw) = d(F*(w))

Moreover, an operation d: Q*(M) — Q*tY(M) satisfying a)-d) is unique
and must coincide with the exterior derivative.

Proof. The proof of the properties a)-d) is an immediate consequence of the
definition and the fact that these properties hold for exterior derivatives on
open subsets of R™.

To prove uniqueness, suppose d is another operation satisfying a)-d).
Observe that locally any w can be written as w = > ;wr(w)dr! where
de! = dz™" A ... Ada™ and z: U — V C R" is a local coordinate chart
on an open subset U C M. Then we have that dz’ = dz® by a) and hence
d(dz") = d(dz?) = 0 by ¢). Therefore, by repeatedly applying d) we get that
d(dx A...Adz') = 0. Therefore, by d) again we get that d(w;(z)dz!) =
d(wi(2)) A da! + wi(z) Ad(de!) = dwi(x) A dz! + 0 = d(w;(z)dz’). The
general case follows by linearity of d and d. ([

4. DE RHAM COHOMOLOGY

Definition 4.1. A form w € Q*(M) is called closed if dw = 0.
A form w € Q*(M) is called exact if w = dn for some n € Q*~1(M).

Since d o d = 0 it’s obvious that every exact form is closed. It’s natural
to ask to what extent the converse holds. Let B¥(M) be the set of all exact
k-forms and let Z¥(M) be the set of all closed k forms. It’s obvious that
BY(M), Z*(M) are vector spaces and by above B¥(M) c Z¥(M).

Definition 4.2. Let M™ be a smooth manifold, possibly with boundary.
The k-th de Rham cohomology group of M is defined to be the quotient

group

Hpp(M) := Z*(M)/B"(M)

Since B¥(M) is a vector subspace of Z¥(M) the quotient HF (M) is a
vector space and not just a group.

By the definition that H¥ (M) = 0 iff every closed k-form is exact.
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Example 4.3. Let M = V be an open subset of R?. Then a 1-form w on
V has the form P(x,y)dx + Q(x,y)dy. By definition, w is exact iff w = df
for some smooth f: V — R, ie. if P(x,y)dx + Q(z,y)dy = %(az,y)d:v +
9 (2, y)day, or P(z,y) = % (a,y) and Q(z,y) = L (z,y).

On the other hand w is closed iff 0 = dw = d(P(x,y)dz + Q(z,y)dy) =
(=% (2, y) + 52(2,y))dz A dy or —%’(w y) + 52 (z,y) = 0.

Thus, every closed 1-form on V is exact iff for any smooth P,@: V — R
satisfying op (x y) = %g (z,y) there exists a smooth f: V — R such that

p=2 83: andQ— 8y(nr: Y).
Exercise 4.4. Prove that H},5(R?) =0

Let f: M — N be a smooth map between manifolds. Since F™* commutes
with d, F"* sends closed forms to closed forms and exact forms to exact forms.
Therefore it induces a homomorphism F*: H¥ o(N) — HF (M) for any k.

Since (G o F)x = F* o G* and Id}; = Id it follow that if F': M — N is a
diffeomorphism then F*: H¥ o(N) — HE R(M ) is an isomorphism. We will
see later that for V = R?\{0} the form w = e +y2 dz — - iyg dy is closed but
not exact. This will imply that HER(]R2\{O}) # 0. Since H'(R?) = 0 by
the exercise above, this will show that R? is not diffeomorphic to R?\{0}.

5. ORIENTATION
5.1. Orientation on a vector space.

Definition 5.1. Let V be a finite dimensional vector space. Let ¢ =
(e1,...,ey) and € = (€],...,el,) be two bases of V. We say that e ~ ¢’
if the transition matrix A from e to €’ has det A > 0. It’s easy to see that
~ satisfies the following properties

o if e ~ € then ¢ ~ ¢;

eife~é and ¢ ~¢” then e ~ €”.
This means that ~ is an equivalence relation on the set of all bases of V. We
will call equivalence classes mod ~ orientations on V. We will say that two
bases e, €’ have the same orientation if they belong to the same equivalence
class, i.e. the transition matrix from e to €’ has positive determinant.

Lemma 5.2. Let V be a finite dimensional vector space. Then there are
precisely two possible ordinations on V.

Proof. Let e = (e1,...,€,) be a basis of V and let ¢/ = (—eq,ez...,¢€,).
Since the transition matrix A from e to €’ has determinant —1 they define
two different orientations on V. We claim that any other basis of V is
equivalent to either e or €¢’: Let ¢’ be a basis of V. Let B be the transition
matrix from €’ to €”. Then the transition matrix from e to €¢” is BA and
det(BA) = det B-det A = — det B. This means that det B and det(BA) have
opposite signs, and thus one of them is positive and the other is negative.
Therefore ¢’ ~ e or €’ ~ €. O
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We'll call the two distinct orientations on V' opposite or negative to each

other. If € is an orientation and e = (eq,...,ey) is a basis we put €(e) = +1
if e is positively oriented with respect to € and we put e(e) = —1 if e is
negatively oriented with respect to e.

R™ has a canonical orientation defined by the canonical basis (eq, ..., e,)
of R™.

Orientations on V correspond to orientations on A" (V) = R as follows.

Let w € A™(V) be a nonzero alternating n-tensor. It defines an orienta-
tion €, as follows:

Given a basis e = (eq,...,e,) we'll say that e is positively oriented iff
w(eq,...,en) > 0. It’s easy to see that this defines an orientation on V. It’s
also obvious that if w’ = Aw with X\ # 0 then w and w’ define the same
orientation iff A > 0.

5.2. Orientation on manifolds. Let M" be a smooth n-dimensional man-
ifold (possibly with boundary)

Definition 5.3. An orientation € on M™ is a choice of orientation €(p) on
T,M for all p € M.

An orientation € is called continuous if for any p € M there exists an
open set U C M containing p and a collection of continuous vector fields
Xi,... X, on U such that Xi(q),...X,(g) is a basis of T;M for any ¢ € U
and €(X1(q),...Xn(q)) = +1 forany ¢ € U.

A manifold M is called orientable if it admits a continuous orientation.

Exercise 5.4. Prove that an orientation € is continuous if and only if it’s
smooth, i.e. for any p € M there exists an open set U C M contain-
ing p and a collection of smooth vector fields X1,...X,, on U such that
Xi(q),...Xn(q) is a basis of TyM for any q € U and e(X1(q),... Xn(q)) =
+1 for any g€ U.

From now on we will only consider continuous orientations. The relation
between orientations and nonzero alternating n-vectors on a fixed vector
space naturally carries over to manifolds as follows.

Suppose w is a smooth n-form on M™ such that w(p) # 0 for any p € M.
Then w defines an orientation €, on M as follows. Given p € M and a basis
v1, ...y of T,M we say that it’s positively oriented iff w(p)(v1,...v,) > 0.

Lemma 5.5. ¢, is continuous.

Proof. Let p € M be any point. Let U be a coordinate ball containing p, so
U is diffeomorphic to an open ball B(0, 1) in R” under some local coordinate
map z: U — R". Let X;(q) = %(q) Then f(¢) = w(X1(q),...,Xn(q)) is
smooth on U. Since f(q) # 0 for any ¢, by the Intermediate Value Theorem
we must have that f(q) > 0 for all ¢ € U or f(q) < 0 for all ¢ € U. In the
first case this gives the required collection of continuous vector fields on U.
In the second case the same works after changing X; to —Xj. O



Next we will show that the converse also holds, i.e. every continuous
orientation is equal to €, for some nowhere zero w € Q"(M").

Lemma 5.6. Let € be a continuous orientation on a smooth manifold M™.
Then there exists a smooth form w € Q"(M) such that w(p) # 0 for any
pE M and e = ¢,.

Proof. Let € be a continuous orientation on M.

We will use the following terminology. Let w be a smooth n-form on an
open subset U C M. We will say that w is positive on U if w(p)(v1,...,vn) >
0 for any p € U and any positive basis v1, ..., v, of T,M. We need to prove
that there exists a positive form on U = M.

Observe that if wy, ..., wy, are positive forms on U and ¢1,...¢p: U - R
are smooth functions such that ¢; > 0on U and ), ¢; > 0on U then ), ¢;w;
is positive on U.

For any p € M let U, be an open set containing p such that there exist n
smooth vector fields X7, ... X, on U, such that X;(q), ... X,(q) is a positive
basis of T, M for any q € U,. Let X'(g),..., X"(q) be the dual basis of ;M.
Then X1, ..., X™ are smooth forms on U (why?). Let w, = X' A... A X"
Then it’s a smooth positive form on U. Take a partition of unity {¢;}
subordinate to the cover {Up}pens of M. Then supp ¢; C U, for some p;
and by the observation above w = ), ¢;w; is positive on all of M. ([



